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Abstract. We minutely describe the intersection of two real forms in a
non-irreducible Hermitian symmetric space M of compact type. In the case
where M is irreducible we have already done it in our previous paper. In this
paper we reduce the description of the intersection of two real forms to that in
some special cases. This reduction is based on the information of the group of
all isometries obtained by Takeuchi. We can describe the intersection in the
special cases and in all cases. In particular we obtain the intersection number
of two real forms in a Hermitian symmetric space of compact type.

1. Introduction.

The present paper is a sequel to our previous papers [6] and [7], in which we proved
that the intersection of two real forms in a Hermitian symmetric space of compact type
is an antipodal set and we determined the intersection numbers of two real forms in
the irreducible Hermitian symmetric spaces of compact type. A submanifold L in a
Hermitian symmetric space M is called a real form in M , if L is the set of fixed points of
an involutive anti-holomorphic isometry of M . A subset S in a Riemannian symmetric
space M is called an antipodal set, if sxy = y for any x, y in S, where sx is the geodesic
symmetry at x. The 2-number #2M of M is defined as the supremum of the cardinalities
of antipodal sets of M . We call an antipodal set in M great if its cardinality attains #2M .

In the present paper we show that any real form in a Hermitian symmetric space
M of compact type is a product of real forms in some irreducible factors of M and some
diagonal real forms, whose definition is given in Definition 2.4. Moreover, we can reduce
the intersection of two real forms in M to that of two real forms in some irreducible factors
and that of two diagonal real forms. We have already investigated the intersection of
two real forms in each irreducible Hermitian symmetric space of compact type in [6].
We minutely investigate the intersection of two real forms in a non-irreducible Hermitian
symmetric space of compact type in the present paper. For this purpose we reduce the
intersection of two real forms to those in four special cases in Theorem 2.7. According to
this theorem it is sufficient to investigate the intersection of two diagonal real forms in
the product of two copies of an irreducible Hermitian symmetric space of compact type.
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We explain logical relations among [6], [7] and this paper. We proved that the
intersection of two real forms in a Hermitian symmetric space of compact type is an
antipodal set, which was stated in Theorem 1.1 of [6], but its proof was not complete.
In [7] we correct the proof of Theorem 1.1 in [6] using Theorem 2.7 in this paper. We
prove Theorem 2.7 in this paper, whose proof is independent of [6].

The organization of this paper is as follows. In Section 2, we consider classifica-
tions of real forms in a Hermitian symmetric space M of compact type with respect to
the group A(M) of all holomorphic isometries of M and its identity component A0(M).
Leung [1] and Takeuchi [5] gave the classification of real forms in an irreducible Her-
mitian symmetric space of compact type with respect to A(M). In order to compare
two classifications of real forms with respect to A(M) and A0(M), we use the result of
Takeuchi [4] on A(M)/A0(M). Moreover we consider the classification of real forms in a
non-irreducible Hermitian symmetric space M of compact type with respect to A0(M)
in Theorem 2.6 and determine all possible pairs of two real forms in Theorem 2.7.

Theorem 2.7 implies that the intersection of two real forms in a Hermitian symmetric
space of compact type is reduced to that of two real forms in some irreducible factors
and that of two diagonal real forms. In Section 3 we describe the intersection of two
diagonal real forms in Theorem 3.1.

The authors are indebted to the referee, whose comments improved the manuscript.

2. Real forms.

In this section we describe real forms in Hermitian symmetric spaces of compact
type. Especially we minutely investigate real forms in a Hermitian symmetric space of
compact type which is not irreducible.

Leung [1] classified real forms in irreducible Hermitian symmetric spaces of compact
type. Although he stated that a real form in a non-irreducible Hermitian symmetric
space of compact type is a product of real forms in irreducible factors, it is not true since
we have such real forms as in Lemma 2.3.

Let I(M) denote the group of all isometries of Hermitian symmetric space M of
compact type and let A(M) denote the group of all holomorphic isometries of M . We
denote their identity components by I0(M) and A0(M) respectively. Then we have
I0(M) = A0(M). Leung [1] and Takeuchi [5] gave the classification of real forms in
irreducible Hermitian symmetric spaces of compact type with respect to A(M). If we
consider the classification with respect to A0(M), we generally obtain more detailed
classification. But we later show that the classification with respect to A(M) coincides
with the classification with respect to A0(M) (Proposition 2.2).

We recall the results about I(M)/I0(M) and A(M)/A0(M) obtained by Murakami
[3] and Takeuchi [4].

We denote by Gi(Kn) the Grassmann manifold consisting of K-subspaces of K-
dimension i in Kn for K = R,C,H and by Qj(C) the complex hyperquadric in the
(j + 1)-dimensional complex projective space.

Lemma 2.1 ([3], [4]). Let M be an irreducible Hermitian symmetric space of
compact type. Then I(M)/I0(M) and A(M)/A0(M) are as follows.
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(A) If M = Q2m(C) (m ≥ 2) or M = Gm(C2m) (m ≥ 2), then

I(M)/I0(M) ∼= Z2 × Z2 and A(M)/A0(M) ∼= Z2.

(B) Otherwise,

I(M)/I0(M) ∼= Z2 and A(M) = A0(M).

Using this lemma we obtain the following proposition.

Proposition 2.2. The classification of real forms in an irreducible Hermitian
symmetric space M of compact type with respect to A(M) coincides with the classification
with respect to A0(M).

Proof. In the case where M belongs to the class (B) in Lemma 2.1 we have
nothing to prove. So we consider the class (A).

In the case of M = Qn(C) for general n, Qn(C) is holomorphically isometric to the
oriented real Grassmann manifold G̃2(Rn+2) consisting of oriented linear subspaces of
dimension 2 in Rn+2. We regard G̃2(Rn+2) as a submanifold in

∧2 Rn+2 in a natural
way. We take an orthonormal basis u1, u2, e1, . . . , en of Rn+2. For 0 ≤ k ≤ n we define
a submanifold Sk,n−k of G̃2(Rn+2) by

Sk,n−k = Sk(Ru1 + Re1 + · · ·+ Rek) ∧ Sn−k(Ru2 + Rek+1 + · · ·+ Ren),

where Sm(V ) is the unit hypersphere of dimension m in a real Euclidean space V of
dimension m + 1. By [1] and [5] any real form in Qn(C) is transformed by A(Qn(C)) to
one of Sk,n−k (0 ≤ k ≤ [n/2]).

In the case of M = Q2m(C) (m ≥ 2), A(M)/A0(M) ∼= Z2 by Lemma 2.1, so A(M)
has two connected components:

A(M) = A0(M) ∪A1(M).

We can see that the result of Takeuchi [4, p. 113] implies a (2m + 2)× (2m + 2) matrix

φ =




1
. . .

1
−1




is an element of A1(M), which preserves each real form Sk,2m−k (0 ≤ k ≤ m). Hence
the classification of real forms with respect to A(M) coincides with the classification of
real forms with respect to A0(M).

In the case of M = Gi(Cn) for general i and n, by [1] and [5] any real form in Gi(Cn)
is transformed by A(Gi(Cn)) to Gi(Rn), Gi/2(Hn/2) if i and n are even, or U(n/2) if n

is even and i = n/2.
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In the case of M = Gm(C2m) (m ≥ 2), A(M)/A0(M) ∼= Z2 by Lemma 2.1, so A(M)
has two connected components:

A(M) = A0(M) ∪A1(M).

The canonical decomposition of the Lie algebra su(2m) of A(M) is as follows:

su(2m) = s(u(m)× u(m)) + m,

m =
{[

Z
−tZ̄

] ∣∣∣∣ Z is an m×m complex matrix
}

,

which is identified with the tangent space ToM . We can see that by the result of Takeuchi
[4, p. 107], Proposition 4.1 and its corollary in Chapter VII in Loos [2] there exists
φ ∈ A1(M) which satisfies

φ(o) = o, dφo

[
Z

−tZ̄

]
=

[
tZ

−Z̄

]
.

It preserves each tangent space at o of real forms Gm(R2m), U(m), and Gm/2(Hm) with
even m. Hence the classification of real forms with respect to A(M) coincides with the
classification of real forms with respect to A0(M). ¤

Lemma 2.3. Let M1 and M2 be Hermitian symmetric spaces of compact type and
let τ : M1 → M2 be an anti-holomorphic isometric map. Then the correspondence
M1 × M2 3 (x, y) 7→ (τ−1(y), τ(x)) ∈ M1 × M2 gives an involutive anti-holomorphic
isometry of M1 ×M2 and the real form obtained from the map is

Dτ (M1) = {(x, τ(x)) | x ∈ M1}.

For holomorphic isometries g1 of M1 and g2 of M2, we have (g1, g2)Dτ (M1) =
Dg2τg−1

1
(M1).

Proof. Since τ is an anti-holomorphic isometric map, the map (x, y) 7→ (τ−1(y),
τ(x)) is an involutive anti-holomorphic isometry of M1 ×M2, which determines the real
form Dτ (M1). The definition of Dτ (M1) implies the last part of the lemma. ¤

Definition 2.4. We call such a real form Dτ (M1) as in Lemma 2.3 a diagonal real
form determined by τ : M1 → M2.

Proposition 2.5. Let M be an irreducible Hermitian symmetric space of compact
type. Then any element of I(M)−A(M) is an anti-holomorphic isometry. The connected
components of I(M)−A(M) corresponds to the A0(M×M)-congruent classes of diagonal
real forms in M ×M bijectively under the correspondence I(M)−A(M) 3 τ 7→ Dτ (M).

Proof. Since each irreducible Hermitian symmetric space M of compact type
has at least one real form, M has an anti-holomorphic isometry τ0. We have I(M) =
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A(M) ∪ τ0A(M) because I(M)/A(M) ∼= Z2 by Lemma 2.1. Hence each element of
I(M)−A(M) = τ0A(M) is an anti-holomorphic isometry.

Let τ1 and τ2 be anti-holomorphic isometries of M . If they belong to the same
connected component, there exists g ∈ A0(M) such that τ2 = τ1g. Since A0(M ×M) =
A0(M) × A0(M) and Dτ2(M) = Dτ1g(M) = (g−1, 1)Dτ1(M), Dτ1(M) and Dτ2(M) are
A0(M ×M)-congruent.

Conversely, if Dτ1(M) and Dτ2(M) are A0(M×M)-congruent, there exists (g1, g2) ∈
A0(M) × A0(M) such that Dτ2(M) = (g1, g2)Dτ1(M) = Dg2τ1g−1

1
(M) and so τ2 =

g2τ1g
−1
1 . Hence τ1 and τ2 belong to the same connected component. Therefore the

correspondence of the connected component containing τ ∈ I(M)−A(M) to the A0(M×
M)-congruent class of Dτ (M) is a bijection. ¤

Theorem 2.6. A real form in a Hermitian symmetric space M of compact type is
a product of real forms in irreducible factors of M and diagonal real forms determined
from irreducible factors of M .

Proof. Let M be a Hermitian symmetric space of compact type and let L be a
real form in M . M is decomposed as

M = M1 × · · · ×Mr,

where Mi’s are irreducible Hermitian symmetric spaces of compact type. I0(Mi) is a
compact simple Lie group and we have

I0(M) = I0(M1)× · · · × I0(Mr),

which is the decomposition of I0(M) as a product of compact simple Lie groups. We
denote the Lie algebras of I0(M), I0(M1), . . . , I0(Mr) by g, g1, . . . , gr respectively. Then
we have

g = g1 ⊕ · · · ⊕ gr,

which is the decomposition of g as a direct sum of compact simple ideals.
Let τ : M → M be an involutive anti-holomorphic isometry of M which determines

L. If we take o ∈ L, τ induces a linear transformation dτo : ToM → ToM of ToM which
is the differential of τ at o since τ(o) = o. We define an involutive automorphism Iτ of
I0(M) by

Iτ : I0(M) → I0(M) ; g 7→ τgτ−1.

The differential dIτ : g → g is an involutive automorphism. And the image dIτ (gi) of
each simple ideal gi is a simple ideal of g. Hence dIτ (gi) = gj for some j. That is, either
dIτ preserves a simple factor or dIτ exchanges two simple factors. Putting

o = (o1, . . . , or) (oi ∈ Mi)
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and

M̃i = {o1} × · · · × {oi−1} ×Mi × {oi+1} × · · · × {or},

we describe an arbitrary point of M̃i as

(e, . . . , e, gi, e, . . . , e) o (gi ∈ I0(Mi))

where e denotes the identity element. If Iτ (I0(Mi)) = I0(Mj), we have

τ ((e, . . . , e, gi, e, . . . , e)o) = Iτ ((e, . . . , e, gi, e, . . . , e)) o ∈ M̃j

hence τ(M̃i) = M̃j . If i = j, τ preserves M̃i and if i 6= j, τ maps M̃i to M̃j and M̃j to
M̃i. If i = j, the i-th factor L ∩ M̃i of L coincides with F (τ |M̃i

, M̃i). Let

(Mi ×Mj)∼ = {o1} × · · · × {oi−1} ×Mi × {oi+1} × · · · × {oj−1}
×Mj × {oj+1} × · · · × {or}.

If i 6= j, the (i, j)-th factor L∩(Mi×Mj)∼ of L is the fixed point set of an involutive
anti-holomorphic isometry

(xi, xj) 7→ (τ(xj), τ(xi))

of (Mi×Mj)∼ ∼= Mi×Mj and it is identified with Dτ |M̃i
(M̃i). Hence we conclude that L

is a product of some real forms of irreducible factors of M and some diagonal real forms
determined from irreducible factors of M . ¤

Theorem 2.7. Let M be a Hermitian symmetric space of compact type and

M = M1 × · · · ×Mm

be a decomposition of M into irreducible factors. Then two real forms L1 and L2 in M

are decomposed as

L1 = L1,1 × · · · × L1,n, L2 = L2,1 × · · · × L2,n

and for each a (1 ≤ a ≤ n) the pair of L1,a and L2,a are one of the following.

(1) Two real forms in Mi for some i (1 ≤ i ≤ m).
(2) After renumbering irreducible factors of M if necessary,

N1 ×Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s
(M2s)

and

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−1(M2s−1)×N2s+1,
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where τi : Mi → Mi+1 (1 ≤ i ≤ 2s) is an anti-holomorphic isometric map which
determines Dτi

(Mi), and N1 ⊂ M1 and N2s+1 ⊂ M2s+1 are real forms. The inter-
section of these two real forms is

{
(x, τ1(x), τ2τ1(x), . . . , τ2s · · · τ1(x)) | x ∈ N1 ∩ (τ2s · · · τ1)−1(N2s+1)

}
.

Here (τ2s · · · τ1)−1(N2s+1) is a real form in M1 and the intersection of the two real
forms mentioned above is homothetic to the intersection of two real forms N1 and
(τ2s · · · τ1)−1(N2s+1) in M1.

(3) After renumbering irreducible factors of M if necessary,

N1 ×Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s−2(M2s−2)×N2s

and

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−3(M2s−3)×Dτ2s−1(M2s−1),

where τi : Mi → Mi+1 (1 ≤ i ≤ 2s− 1) is an anti-holomorphic isometric map which
determines Dτi

(Mi), and N1 ⊂ M1 and N2s ⊂ M2s are real forms. The intersection
of these two real forms is

{
(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | x ∈ N1 ∩ (τ2s−1 · · · τ1)−1(N2s)

}
.

Here (τ2s−1 · · · τ1)−1(N2s) is a real form in M1 and the intersection of the two real
forms mentioned above is homothetic to the intersection of two real forms N1 and
(τ2s−1 · · · τ1)−1(N2s) in M1.

(4) After renumbering irreducible factors of M if necessary,

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−1(M2s−1)

and

Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s(M2s),

where τi : Mi → Mi+1 (1 ≤ i ≤ 2s − 1) and τ2s : M2s → M1 are anti-holomorphic
isometric maps which determine Dτi(Mi) (1 ≤ i ≤ 2s). The intersection of these
two real forms is

{
(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | (x, τ−1

2s (x)) ∈ Dτ2s−1···τ1(M1) ∩Dτ−1
2s

(M1)
}
.

Here Dτ2s−1···τ1(M1) and Dτ−1
2s

(M1) are diagonal real forms in M1 × M2s and the
intersection of the two real forms mentioned above is homothetic to the intersection
of these two diagonal real forms.

We denote an irreducible Hermitian symmetric space of compact type by and
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a real form in it by e . We denote a product of two irreducible Hermitian symmetric
spaces of compact type by and we denote a product of real forms in each irreducible
factor by e e and a diagonal real form by e e . We express a real form in a product of
more than two irreducible Hermitian symmetric spaces of compact type similarly. Then
the result in Theorem 2.7 is expressed as follows.

(1) e
e

(2) e e e e e
e e e e e

(3) e e e e
e e e e e e

(4) e e e e
e e e e e e
¨ ¥

Proof. By Theorem 2.6 Li is a product of real forms in irreducible factors of
M and diagonal real forms determined from irreducible factors of M . There are two
possibilities one of which is the case when M1-component of L1, that is L1∩M̃1, is a real
form in M1 and the other is the case where M1-component of L1 is a part of a diagonal
real form.

We consider the case where the M1-component of L1 is a real form of M1. If the M1-
component of L2 is also a real form of M1, it is the case of (1). If the M1-component of
L2 is a part of diagonal real form, after renumbering irreducible factors of M , a diagonal
real form Dτ1(M1) with anti-holomorphic isometric map τ1 : M1 → M2 is M1 × M2-
component of L1. If the M2-component of L1 is a real form of M2, it is the case of (3)
where s = 1. If the M2-component of L1 is a part of diagonal real form, after renumbering
irreducible factors of M , a diagonal real form Dτ2(M2) determined by anti-holomorphic
isometric isomorphism τ2 : M2 → M3 is M2 × M3-component of L1. Iterating these
procedures, we obtain the case of (2) or (3).

We consider the case where the M1-component of L1 is a part of diagonal real form.
After renumbering irreducible factors of M , a diagonal real form Dτ1(M1) determined
by anti-holomorphic isometric isomorphism τ1 : M1 → M2 is M1×M2-component of L1.
If the M1-component of L2 is a real form in M1 and M2-component of L2 is also a real
form in M2, it is the case of (3) where s = 1. If the M1-component of L2 is a real form in
M1 and M2-component of L2 is a part of diagonal real form, it is the case of (2) or (3). If
the M1-component of L2 is a part of diagonal real form, there are two possibilities. One
is that the other part of the diagonal real form is contained in M2. The other is that the
other part of the diagonal real form is contained in another irreducible factor of M . The
former is the case of (4) where s = 1 and the latter is the case of (2), (3) or (4).

In the case of (2), we obtain that the intersection of the two real forms is

{
(x, τ1(x), τ2τ1(x), . . . , τ2s · · · τ1(x)) | x ∈ N1 ∩ (τ2s · · · τ1)−1(N2s+1)

}
,

where (τ2s · · · τ1)−1(N2s+1) is a real form in M1 and the above intersection of two real
forms is homothetic to the intersection of two real forms in an irreducible factor of M .

In the case of (3), we obtain that the intersection of the two real forms is
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{
(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | x ∈ N1 ∩ (τ2s−1 · · · τ1)−1(N2s)

}
,

where (τ2s−1 · · · τ1)−1(N2s) is a real form in M1 and the above intersection of two real
forms is homothetic to the intersection of two real forms in an irreducible factor of M .

In the case of (4), we obtain that the intersection of the two real forms is

{
(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | (x, τ−1

2s (x)) ∈ Dτ2s−1···τ1(M1) ∩Dτ−1
2s

(M1)
}
.

Dτ2s−1···τ1(M1) and Dτ−1
2s

(M1) are diagonal real forms in M1 ×M2s and the intersection
is homothetic to these diagonal real forms in M1 ×M2s. ¤

3. The intersection of two diagonal real forms.

According to Theorem 2.7 we can reduce the intersection of two real forms in a
non-irreducible Hermitian symmetric space of compact type to

(1) the intersection of two real forms in an irreducible Hermitian symmetric space of
compact type,

(2) the intersection of two diagonal real forms in the product of two copies of an irre-
ducible Hermitian symmetric space of compact type.

Since we already investigated (1) in our previous paper [6], it is sufficient to investigate
(2).

Theorem 3.1. Let M1,M2 be irreducible Hermitian symmetric spaces of compact
type which are holomorphically isometric. We take two anti-holomorphic isometric maps
τ1 : M1 → M2 and τ2 : M2 → M1. We assume that the intersection of Dτ1(M1) and
Dτ−1

2
(M1) is discrete. Then we have the following.

(1) If M1 = Q2m(C) (m ≥ 2) and τ2τ1 does not belong to A0(M1),

#(Dτ1(M1) ∩Dτ−1
2

(M1)) = 2m < 2m + 2 = #2M1.

(2) If M1 = Gm(C2m) (m ≥ 2) and τ2τ1 does not belong to A0(M1),

#(Dτ1(M1) ∩Dτ−1
2

(M1)) = 2m <

(
2m

m

)
= #2M1.

(3) Otherwise, Dτ1(M1)∩Dτ−1
2

(M1) is a great antipodal set of Dτ1(M1) and Dτ−1
2

(M1),
thus

#(Dτ1(M1) ∩Dτ−1
2

(M1)) = #2M1.

Proof. If τ2τ1 belongs to A0(M1), Dτ1(M1) and Dτ−1
2

(M1) are congruent by
Lemma 2.3. Their intersection Dτ1(M1)∩Dτ−1

2
(M1) is a great antipodal set in Dτ1(M1)

and Dτ−1
2

(M1) by Theorem 1.3 in [6] and
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#(Dτ1(M1) ∩Dτ−1
2

(M1)) = #2M1.

If τ2τ1 does not belong to A0(M1), then M1 = Q2m(C) (m ≥ 2), Gm(C2m) (m ≥ 2)
by Lemma 2.1.

We assume that M1 = Q2m(C). We prove

(∗) #(Dτ1(M1) ∩Dτ−1
2

(M1)) = 2m

for m ≥ 1 by induction on m.
In the case of m = 1, we have Q2(C) = CP 1 × CP 1. We denote by z = (z0, z1) the

homogeneous coordinate of CP 1 and define

τ : CP 1 → CP 1; [z] 7→ [z̄]

which is an anti-holomorphic isometry of CP 1.

I(CP 1) = A0(CP 1) ∪ τA0(CP 1)

is the decomposition of I(CP 1) into the union of connected components.
We define

α : CP 1 × CP 1 → CP 1 × CP 1; (x, y) 7→ (y, x),

which is a holomorphic isometry of CP 1 ×CP 1. We write A0 = A0(CP 1) for simplicity.
We obtain

A(CP 1 × CP 1) = (A0 ×A0) ∪ α(A0 ×A0),

where A0(CP 1 × CP 1) = A0 × A0, and the set of all anti-holomorphic isometries of
CP 1 × CP 1 is

(τA0 × τA0) ∪ α(τA0 × τA0).

The assumption that τ2τ1 /∈ A0(CP 1 × CP 1) implies τ2τ1 ∈ α(A0 × A0), thus τ1 and
τ−1
2 belong to different connected components τA0× τA0 and α(τA0× τA0). So we may

suppose that τ1 ∈ τA0 × τA0 and τ−1
2 ∈ α(τA0 × τA0). Dτ1(CP 1 × CP 1) is congruent

with Dτ×τ (CP 1×CP 1) and Dτ−1
2

(CP 1×CP 1) is congruent with Dα(τ×τ)(CP 1×CP 1).
Their diagrams are

Dτ×τ (CP 1 × CP 1) : e e e e
¨ ¥

§ ¦ ,

Dα(τ×τ)(CP 1 × CP 1) : e e e e
¨ ¥

.

We exchange the second and the third irreducible factors and obtain
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Dτ×τ (CP 1 × CP 1) : e e e e
,

Dα(τ×τ)(CP 1 × CP 1) : e e e e
¨ ¥

,

which is the case (4) in Theorem 2.7. Since A(CP 1) = A0(CP 1), we have

#(Dτ1(CP 1 × CP 1) ∩Dτ−1
2

(CP 1 × CP 1)) = #2CP 1 = 2.

Therefore we obtain (∗) in the case of m = 1.
Two real forms treated above are essentially same as those in Example 4.7 in [6].
Now we move to the case of m ≥ 2. We may suppose o ∈ Dτ1(M1) ∩ Dτ−1

2
(M1).

This implies τ1(o) = τ2(o) = o. The polars of Q2m(C) are

M+
0 = {o}, M+

1 = {ō}, M+
2 = Q2m−2(C),

where ō denotes the pole of o and if o = v1∧v2, then ō = −v1∧v2. We note that τ1(ō) = ō

and τ2(ō) = ō. τ1 and τ2 preserve M+
2 = Q2m−2(C). The polars of Q2m(C) × Q2m(C)

are given by

M+
i ×M+

j (0 ≤ i, j ≤ 2).

The intersection of Dτ1(Q2m(C)) and each polar of Q2m(C)×Q2m(C) is as follows.

Dτ1(Q2m(C)) ∩ {(o, o)} = {(o, o)},
Dτ1(Q2m(C)) ∩ {(ō, ō)} = {(ō, ō)},
Dτ1(Q2m(C)) ∩Q2m−2(C)×Q2m−2(C) = Dτ1|Q2m−2(C)(Q2m−2(C)),

and the intersection is the empty set for the others. We obtain the intersection of
Dτ2−1(Q2m(C)) and each polar of Q2m(C)×Q2m(C) similarly. If we put

φ =




1
. . .

1
−1


 ,

then the action of φ on M1 = Q2m(C) is an element of A(M1)−A0(M1). Thus φτ2τ1 be-
longs to A0(M1). If we restrict it to Q2m−2(C), then it belongs to A0(Q2m−2(C)). Hence
τ2τ1|Q2m−2(C) does not belong to A0(Q2m−2(C)). So by the assumption of induction, we
have

#
(
Dτ1|Q2m−2(C)(Q2m−2(C)) ∩Dτ2−1|Q2m−2(C)(Q2m−2(C))

)
= 2m− 2.
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Thus by Lemma 4.3 in [6] we have

#
(
Dτ1(Q2m(C)) ∩Dτ2−1(Q2m(C))

)
= 1 + 1 + (2m− 2) = 2m

and we complete the proof of (∗) by induction.

In order to calculate the intersection number of diagonal real forms in a product of
two copies of the complex Grassmann manifold Gm(C2m), we investigate the action of
the element φ of A(Gm(C2m))−A0(Gm(C2m)) which is determined by

φ(o) = o, dφo

[
Z

−tZ̄

]
=

[
tZ

−Z̄

]

on Gm(C2m). The holomorphic isometry φ induces an isomorphism:

A0(Gm(C2m)) → A0(Gm(C2m)); g 7→ φgφ−1. (∗)

We also denote by φ the isomorphism of su(2m) induced by the above isomorphism (∗).
Hence the action of φ on su(2m) is given by

φ

([
S1 X
−tX̄ S2

])
=

[
S̄2

tX
−X̄ S̄1

]
.

We also denote by the same symbol φ the automorphism of SU(2m) induced by φ. We
denote

diag{x1, . . . , xm} =




x1

. . .
xm


 .

Since
(
SU(2m), S(U(m)× U(m))

)
is a compact symmetric pair and

{[
X

−X

] ∣∣∣∣ X = diag{x1, . . . , xm}, xi ∈ R
}

generates a maximal torus of compact symmetric space Gm(C2m) ∼= SU(2m)/S(U(m)×
U(m)), any element of SU(2m) is represented as

[
g1

g2

](
exp

[
X

−X

]) [
h1

h2

]

for some
[ g1

g2

]
,
[

h1
h2

] ∈ S(U(m) × U(m)) and X = diag{x1, . . . , xm}, xi ∈ R. If we
set C and S as

C = diag{cos x1, . . . , cos xm}, S = diag{sinx1, . . . , sinxm},
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then

exp
[

X
−X

]
=

[
C S
−S C

]
.

Hence

φ

([
g1

g2

] [
C S
−S C

] [
h1

h2

])
=

[
ḡ2

ḡ1

] [
C S
−S C

] [
h̄2

h̄1

]
.

Any point in Gm(C2m) is obtained from the origin o = Cm = 〈e1, . . . , em〉C of Gm(C2m)
by the action of SU(2m). Thus the action of φ on Gm(C2m) is given by

φ

([
g1

g2

] [
C S
−S C

]
o

)
=

[
ḡ2

ḡ1

] [
C S
−S C

]
o.

Now we describe the polars of Gm(C2m) with respect to o and investigate the action
of φ on each polar. The polars of Gm(C2m) are

M+
0 = {o},

M+
j = Gm−j(〈e1, . . . , em〉C)×Gj(〈em+1, . . . , e2m〉C) (1 ≤ j ≤ m− 1),

M+
m = {〈em+1, . . . , e2m〉C}.

We express these polars as the orbits of S(U(m)×U(m)). If we put x1 = · · · = xm−j = 0
and xm−j+1 = · · · = xm = −π/2, then

[
C S
−S C

]
ei = ei (1 ≤ i ≤ m− j),

[
C S
−S C

]
ei = em+i (m− j + 1 ≤ i ≤ m).

So we have

[
C S
−S C

]
o = 〈e1, . . . , em−j , em+m−j+1, . . . , e2m〉C

and

S(U(m)× U(m))
[

C S
−S C

]
o = Gm−j(Cm)×Gj(Cm) = M+

j .

The image of

(g1〈e1, . . . , em−j〉C, g2〈em+m−j+1, . . . , e2m〉C) ∈ M+
j
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under φ is

φ(g1〈e1, . . . , em−j〉C, g2〈em+m−j+1, . . . , e2m〉C)
= (ḡ2〈e1, . . . , em−j〉C, ḡ1〈em+m−j+1, . . . , e2m〉C) ∈ M+

j

and each polar M+
j is preserved by the action of φ because φ fixes o.

From the above we know the action more precisely. If we put

ψ =
[

1m

1m

]
,

then the action of ψ on Gm(C2m) is a holomorphic isometry. And we have

ḡ2〈e1, . . . , em−j〉C = ψḡ2〈em+m−j+1, . . . , e2m〉⊥C ,

ḡ1〈em+m−j+1, . . . , e2m〉C = ψḡ1〈e1, . . . , em−j〉⊥C ,

where ⊥ in the right hand side denote the orthogonal complement in 〈em+1, . . . , e2m〉C
and in 〈e1, . . . , em〉C respectively. Thus we have

φ(V1, V2) =
(
ψV̄ ⊥

2 , ψV̄ ⊥
1

)
((V1, V2) ∈ Gm−j(Cm)×Gj(Cm)).

Hence φ exchanges the irreducible factors of M+
j = Gm−j(Cm)×Gj(Cm).

Now we come to the position to prove that

#(Dτ1(M1) ∩Dτ−1
2

(M1)) = 2m

for M1 = Gm(C2m) (m ≥ 2). We may assume that (o, o) ∈ Dτ1(M1) ∩Dτ−1
2

(M1). The
polars of M1 ×M2 with respect to (o, o) are given by M+

j ×M+
k (0 ≤ j, k ≤ m).

The intersection of Dτ1(M1) and each polar of M1 ×M2 is given by the following.

Dτ1(M1) ∩
(
M+

j ×M+
j

)
=





M+
0 ×M+

0 (j = 0),

Dτ1|M+
j

(
M+

j

)
(1 ≤ j ≤ m− 1),

M+
m ×M+

m (j = m),

where M+
0 and M+

m consist of a single point and the intersection is the empty set for the
others.

Similarly, the intersection of Dτ−1
2

(M1) and each polar of M1×M2 is given as follows.

Dτ−1
2

(M1) ∩
(
M+

j ×M+
j

)
=





M+
0 ×M+

0 (j = 0),

Dτ−1
2 |

M
+
j

(
M+

j

)
(1 ≤ j ≤ m− 1),

M+
m ×M+

m (j = m),
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and the intersection is the empty set for the others.
By the assumption that τ2τ1 /∈ A0(M1) and Lemma 2.1 (4), τ1 and τ2 belong to dif-

ferent connected components, thus τ2 and φτ1 belong to the same connected component.
Since (o, o) ∈ Dτ1(M1)∩Dτ−1

2
(M1), we have τ1(o) = τ2(o) = o. So τi preserves each

polar M+
j for i = 1, 2. By a similar argument in the proof of Theorem 2.6 we can see

that τi preserves or exchanges two irreducible factors of M+
j = Gm−j(Cm) × Gj(Cm).

If τ1 preserves two irreducible factors, then φτ1 exchanges two irreducible factors. We
see that τ2 also exchanges two irreducible factors since τ2 belongs to the same connected
component as φτ1. Similarly, if τ1 exchanges two irreducible factors, then τ2 preserves
two irreducible factors. So this case reduces to the case where τ1 preserves two irreducible
factors. Thus we can write

τ1(x1, x2) = (τ11(x1), τ12(x2)),

τ2(x1, x2) = (τ22(x2), τ21(x1)),
((x1, x2) ∈ Gm−j(Cm)×Gj(Cm)),

where

τ11 : Gm−j(Cm) → Gm−j(Cm),

τ12 : Gj(Cm) → Gj(Cm),

τ21 : Gm−j(Cm) → Gj(Cm),

τ22 : Gj(Cm) → Gm−j(Cm)

are all anti-holomorphic isometric maps. Using these we obtain

Dτ1|M+
j

(
M+

j

)
=

{
(x, τ1(x)) | x ∈ M+

j

}

= {(x1, x2, τ11(x1), τ12(x2)) | x1 ∈ Gm−j(Cm), x2 ∈ Gj(Cm)}

and

Dτ2|M+
j

(
M+

j

)
=

{
(x, τ2(x)) | x ∈ M+

j

}

= {(x1, x2, τ22(x2), τ21(x1)) | x1 ∈ Gm−j(Cm), x2 ∈ Gj(Cm)}.

Their diagrams are

Dτ1|M+
j

(M+
j ) : e e e e

¨ ¥

§ ¦ ,

Dτ2|M+
j

(M+
j ) : e e e e

¨ ¥
.

We exchange the second and the third irreducible factors and obtain
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Dτ1|M+
j

(M+
j ) : e e e e

,

Dτ2|M+
j

(M+
j ) : e e e e

¨ ¥
,

which is the case (4) in Theorem 2.7.
Hence the pair of two diagonal real forms in M+

j ×M+
j given in the above belongs

to the case (4) in Theorem 2.7. In this case

#
(
Dτ1|M+

j

(M+
j ) ∩Dτ2|M+

j

(M+
j )

)
= #

(
Dτ12τ−1

22 τ11
(Gm−j(Cm)) ∩Dτ21(Gm−j(Cm))

)
.

If τ−1
21 τ12τ

−1
22 τ11 belongs to I0(Gm−j(Cm)), then Dτ12τ−1

22 τ11
(Gm−j(Cm)) and

Dτ21(Gm−j(Cm)) are congruent in M+
j = Gm−j(Cm)×Gj(Cm) by Lemma 2.3, hence

#
(
Dτ12τ−1

22 τ11
(Gm−j(Cm)) ∩Dτ21(Gm−j(Cm))

)
= #2Gm−j(Cm) =

(
m

j

)

by Theorem 1.3 in [6]. For this purpose we will prove τ−1
21 τ12τ

−1
22 τ11 belongs to

I0(Gm−j(Cm)).
Since τ2 and φτ1 belong to the same connected component of I(M1) and τ2(o) =

φτ1(o) = o, there is an element k ∈ I0(M1) satisfying τ2 = φτ1k and k(o) = o. We can
express the action of φ on M+

j = Gm−j(Cm)×Gj(Cm) as

φ(x1, x2) = (φ2(x2), φ1(x1)) (x1 ∈ Gm−j(Cm), x2 ∈ Gj(Cm)),

where φ1 : Gm−j(Cm) → Gj(Cm) and φ2 : Gj(Cm) → Gm−j(Cm) are holomorphic
isometric maps and we have φ1φ2 = id and φ2φ1 = id, by the description of φ obtained
above.

Since

(τ22(x2), τ21(x1)) = φτ1k(x1, x2)

= (φ2τ12k2(x2), φ1τ11k1(x1))

where k(x1, x2) = (k1(x1), k2(x2)) for (x1, x2) ∈ Gm−j(C2m)×Gj(Cm), we have

τ21 = φ1τ11k1, τ22 = φ2τ12k2.

Hence

τ−1
21 τ12τ

−1
22 τ11 = (φ1τ11k1)−1τ12(φ2τ12k2)−1τ11

= k−1
1 τ−1

11 φ−1
1 τ12k

−1
2 τ−1

12 φ−1
2 τ11.

Because τ12k
−1
2 τ−1

12 ∈ I0(Gj(Cm)), we have



The intersection of two real forms II 291

φ−1
1 τ12k

−1
2 τ−1

12 φ−1
2 = φ2τ12k

−1
2 τ−1

12 φ−1
2 ∈ I0(Gj(Cm))

and τ−1
11 φ−1

1 τ12k
−1
2 τ−1

12 φ−1
2 τ11 ∈ I0(Gm−j(Cm)) hence τ−1

21 τ12τ
−1
22 τ11 ∈ I0(Gm−j(Cm)).

So we have

#
(
Dτ1|M+

j

(M+
j ) ∩Dτ−1

2 |
M

+
j

(M+
j )

)
= #2Gm−j(Cm) =

(
m

j

)
.

Thus by Lemma 4.3 in [6] we obtain

#(Dτ1(Gm(C2m)) ∩Dτ−1
2

(Gm(C2m)) =
m∑

j=0

#
(
Dτ1|M+

j

(M+
j ) ∩Dτ−1

2 |
M

+
j

(M+
j )

)

=
m∑

j=0

(
m

j

)
= 2m. ¤
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