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Abstract. This paper studies the stability of isoperimetric inequalities
under quasi-isometries between non-exceptional Riemann surfaces endowed
with their Poincaré metrics. This stability was proved by Kanai in the more
general setting of Riemannian manifolds under the condition of positive injec-
tivity radius. The present work proves the stability of the linear isoperimetric
inequality for planar surfaces (genus zero surfaces) without any condition on
their injectivity radii. It is also shown the stability of any non-linear isoperi-
metric inequality.

1. Introduction.

An interesting problem in the study of geometric properties of surfaces is to consider
their stability under appropriate deformations. In the 1985, in [20] M. Kanai proved the
quasi-isometric stability (see the definition of quasi-isometry in Section 2) of several
geometric properties for a large class of Riemannian manifolds.

We shall be interested not only in his results but in the ideas behind the proofs.
Concretely, those relating the manifold with a particular graph (an ε-net of the manifold)
in order to study the stability of the quasi-isometry. Several authors have followed Kanai
in studying the stability of some other property, or in proving the equivalence of a
manifold with a different associated graph (see, e.g., [1], [7], [16], [19], [21], [22], [28],
[29], [32], [33], [35], [37], [39]).

Quasi-isometries play a central role in the theory of Gromov hyperbolic spaces for
they preserve hyperbolicity of geodesic metric spaces (see, e.g., [17], [18]).

A non-exceptional Riemann surface S will mean a two-dimensional manifold with a
complete conformal metric of constant negative curvature −1. In this case, the universal
covering space of S is the unit disk D endowed with its Poincaré metric. The only
exceptional Riemann surfaces are the sphere, the plane, the punctured plane and the
tori.
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A Riemann surface S satisfies the α-isoperimetric inequality (1/2 ≤ α ≤ 1) if there
exists a constant cα(S) such that

AS(Ω)α ≤ cα(S)LS(∂Ω) (1.1)

for every relatively compact domain Ω ⊂ S. Throughout, AS , LS and dS refer to Poincaré
area, length and distance of S and LII refers to the 1-isoperimetric inequality also known
as the linear isoperimetric inequality.

There are close connections between LII and some conformal invariants of Riemann
surfaces, namely the bottom of the spectrum of the Laplace-Beltrami operator, the expo-
nent of convergence, and the Hausdorff dimensions of the sets of both bounded geodesics
and escaping geodesics in the surface (see [5], [6, p. 228], [10], [11], [12], [13], [14], [15],
[24], [25], [38, p. 333]). Isoperimetric inequalities are of interest in pure and applied
mathematics (see, e.g., [9], [27]).

The injectivity radius ι(p) of p ∈ S is defined as the supremum of those r > 0 such
that BS(p, r) is simply connected or, equivalently, as half the infimum of the lengths of
the (homotopically non-trivial) loops based at p. The injectivity radius ι(S) of S is the
infimum over p ∈ S of ι(p).

This paper considers the stability of isoperimetric inequalities under quasi-isometries
between non-exceptional Riemann surfaces. This stability was proved by Kanai in [20]
under the hypothesis ι(S) > 0 in the very general setting of Riemannian manifolds.
Example 2.3 in the next section shows that the stability fails without the hypothesis
ι(S) > 0. Since this example involves non-zero genus surfaces, it is natural to wonder if
the stability holds for planar surfaces.

The main result in this paper is the following.

Theorem 1.1. Let S and S′ be quasi-isometric non-exceptional genus zero Rie-
mann surfaces. Then S′ satisfies the linear isoperimetric inequality if and only if S

satisfies the linear isoperimetric inequality. Furthermore, if f : S −→ S′ is a c-full (a, b)-
quasi-isometry, and c1(S′) < ∞ then c1(S) ≤ C, where C is a universal constant which
just depends on a, b, c and c1(S′).

For surfaces of positive finite genus, the following result shows that the first conclu-
sion of Theorem 1.1 holds:

Theorem 1.2. Let S and S′ be quasi-isometric non-exceptional Riemann surfaces
with finite genus. Then S′ satisfies the LII if and only if S satisfies the LII.

However Example 7.2 shows that the second conclusion of Theorem 1.1 fails in this
case of positive finite genus.

The idea behind the proof of Theorem 1.1 is simple: each surface is split into a thin
part (with small injectivity radius) and a thick part; a slight modification of the proof of
Kanai’s theorem applied to the thick part, together with some new arguments to show
that the thin part is “essentially” preserved under the quasi-isometry give the theorem.
The difficulty is the following: two quasi-isometric surfaces have a similar shape at a
large scale (if viewed from sufficiently far), but they can look very different at a small
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scale (by definition a quasi-isometry may not be continuous). In particular, the image
of a continuous loop by a quasi-isometry need not be a continuous curve, and thus the
injectivity radii can be very different in two quasi-isometric surfaces (see, e.g., Examples
2.4 and 2.5). Theorem 1.3 deals with this situation and states that a quasi-isometry
between planar surfaces maps points with small injectivity radius to points with small
injectivity radius (in a precise quantitative way).

Theorem 1.3. Let S and S′ be non-exceptional genus zero Riemann surfaces and
let f : S −→ S′ be a c-full (a, b)-quasi-isometry. For each ε′ > 0 there exists ε > 0 which
just depends on ε′, a, b, c, such that if ι(z) < ε then ι(f(z)) < ε′. Moreover, given ε1 > 0,
ε can be taken so that ε < ε1.

In fact, the core of this work is devoted to proving Theorem 1.3.
We show that a very different situation appears when dealing with the α-

isoperimetric inequality, 1/2 ≤ α < 1.

Theorem 1.4. Let S and S′ be quasi-isometric non-exceptional Riemann surfaces
with ι(S) > 0, and 1/2 ≤ α < 1. Then S′ satisfies the α-isoperimetric inequality if and
only if S satisfies the α-isoperimetric inequality and ι(S′) > 0.

Note that here we have no hypothesis on genus.
Hence, the behavior of the α-isoperimetric inequality in Riemann surfaces under

quasi-isometries is very different in the cases α = 1 and α < 1.
The outline of this paper is as follows. Section 2 contains some background and

examples. In Section 3 the continuity of the injectivity radius in a Riemann surface is
studied. Section 4 contains some technical lemmas on quasi-isometries which will be
needed in Section 5 in order to control the distortion of the injectivity radius under
quasi-isometries. In Section 6 the proof of Theorem 1.1 is given, and finally, Sections 7
and 8 are devoted to generalize this theorem to finite genus surfaces and to non-linear
isoperimetric inequalities, respectively.

2. Background and examples.

A function between two metric spaces f : X −→ Y is said to be an (a, b)-quasi-
isometric embedding with constants a ≥ 1, b ≥ 0, if

1
a

dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b, for every x1, x2 ∈ X.

Such a quasi-isometric embedding f is a quasi-isometry if, furthermore, there exists a
constant c ≥ 0 such that f is c-full, i.e., if for every y ∈ Y there exists x ∈ X with
dY (y, f(x)) ≤ c.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry
between them.

An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometric embedding between an in-
terval of R and X. A geodesic in X is a (1, 0)-quasigeodesic.

It is easy to check that to be quasi-isometric is an equivalence relation on the set of
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metric spaces.
The word geodesic will always be used with this meaning except for the case of either

simple closed geodesics (which are just local geodesics) or geodesic loops (which are just
local geodesics except in their basepoints).

The surface S will be split into thin and thick parts, and some standard tools for
constructing Riemann surfaces will be needed. Doubly connected domains will be crucial.

A collar in a non-exceptional Riemann surface S about a simple closed geodesic σ is
a doubly connected domain in S “bounded” by two Jordan curves (called the boundary
curves of the collar) orthogonal to the pencil of geodesics emanating from σ; such collar
is equal to {p ∈ S : dS(p, σ) ≤ d}, for some positive constant d. The constant d is called
the width of the collar.

Let S be a non-exceptional Riemann surface with a cusp q (if S ⊂ C, every isolated
point in ∂S is a cusp). A collar in S about q is a doubly connected domain in S “bounded”
both by q and a Jordan curve (called the boundary curve of the collar) orthogonal to the
pencil of geodesics emanating from q. It is well known that the length of the boundary
curve is equal to the area of the collar (see, e.g., [4]). A collar of area β is called a
β-collar.

A Y -piece is a compact bordered Riemann surface which is topologically a sphere
without three disks and whose border is the union of three simple closed geodesics. Given
three positive numbers a, b, c, there is a unique (up to conformal mapping) Y-piece such
that their boundary curves have lengths a, b, c (see, e.g., [31, p. 410]). They are a
standard tool for constructing Riemann surfaces ([8, Chapter X.3] and [6, Chapter 1]).

A generalized or degenerated Y -piece is a bordered or non-bordered Riemann surface
which is topologically a sphere without n open disks and m points, with integers n,m ≥ 0
and n + m = 3, so that the n boundary curves are simple closed geodesics and the m

deleted points are cusps. Observe that a generalized Y -piece is topologically the union
of a Y -piece and m cylinders, with 0 ≤ m ≤ 3.

A funnel is a bordered Riemann surface which is topologically a cylinder and whose
border is a simple closed geodesic. Given any positive number a, there is a unique (up
to conformal mapping) funnel such that its boundary curve has length a.

We collect below two well known hyperbolic trigonometric formulae (see, e.g., [6,
p. 454]) which will be useful.

Proposition 2.1. The following formulae hold for polygons on the unit disk (and
then for simply connected polygons on any non-exceptional Riemann surface).

(1) If a, b, c are the lengths of the sides of a right-angled geodesic triangle and c is the
length of the hypotenuse, then cosh c = cosh a cosh b.

(2) Let us consider a geodesic quadrilateral with three right angles and let φ the other
angle. If α, β are the lengths of the sides which meet with angle φ and a is the length
of the opposite side to the side with length α, then sinhα = sinh a cosh β.

Example 2.3 shows that the stability of LII fails for surfaces with zero injectivity
radius. We need a previous result.

Lemma 2.2. A non-exceptional Riemann surface of finite type satisfies the LII if
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and only if it has at least a funnel.

Proof. Let S be a non-exceptional Riemann surface of finite type.
If S has not funnels, then it has finite area and consequently it has not LII.
Assume now that S has at least a funnel. A domain Ω ⊂ S is said to be a geodesic

domain if ∂Ω is a finite number of simple closed geodesics, and AS(Ω) is finite. By
Lemma 6.5 with ε = 0, S has LII if and only if it has LII for geodesic domains. Note
that there are just a finite number of geodesic domains Ω in S; since S has at least a
funnel, every geodesic domain Ω in S verifies LS(∂Ω) > 0; therefore, S satisfies the LII.

¤

Example 2.3. There exist two non-exceptional Riemann surfaces S, S′ and a quasi-
isometry f : S → S′, such that ι(S) = ι(S′) = 0, S does not satisfy the LII and S′

satisfies the LII.
Let us consider two isometric Y -pieces Y1, Y2 such that ∂Yj is the union of three

simple closed geodesics with length 1 for j = 1, 2. Denote by X the bordered surface
obtained by pasting two boundary curves of Y1 with two boundary curves of Y2 (X
is a torus with two holes). Let us consider a sequence {Xm}m≥1 of bordered surfaces
isometric to X; denote by S0 the bordered surface obtained by pasting a boundary curve
of Xm with a boundary curve of Xm+1 for every m ≥ 1. Consider now a generalized
Y -piece Y0 with a cusp and such that ∂Y0 is the union of two simple closed geodesics
with length 1.

S is the (non bordered) surface obtained by pasting a funnel (with boundary of
length 1) to one boundary curve of Y0 and S0 to the other boundary curve of Y0. S does
not satisfy the LII since

⋃n
m=1 Xm has area 4πn and its boundary has length 2 for every

n ≥ 1.
The surface S′ is obtained by pasting a funnel (with boundary of length 1) to a

generalized Y -piece Y ∗ with two cusps and such that ∂Y ∗ is a simple closed geodesics
with length 1. Lemma 2.2 gives that S′ satisfies the LII.

Finally, let us prove the existence of a quasi-isometry f : S → S′. Fix geodesic rays
γ, γ′ (geodesics whose domain is the interval [0,∞)) in S0 and in the 2-collar C of a fixed
cusp of S′, starting in ∂S0 and ∂C, respectively. Let us consider the bijective isometry
g : γ → γ′. We can easily check that the map f0 : S0 → C defined in the following way
is a quasi-isometry: if p(z) is the nearest point in γ from z ∈ S0, then f0(z) = g(p(z)).
Define f : S → S′ as follows: f = f0 on S0, f is any isometry between the funnels of S

and S′, f is any isometry between the 2-collar of the cusp of S and the 2-collar of the
cusp of S′ which does not intersect f(S0), and f = u0 otherwise, where u0 is any fixed
point in S′. Now, we can easily check that f is a quasi-isometry.

The following examples show that the conclusion of Theorem 1.3 does not hold if S

or S′ are surfaces of positive genus. In particular, Example 2.5 shows that thin parts are
not in correspondence.

Example 2.4. There exist constants a, b, c, I1, I2 with the following property: for
each n there exist non-exceptional Riemann surfaces Sn, S′n and a c-full (a, b)-quasi-
isometry fn : Sn → S′n, such that ι(z) ≥ n for every z ∈ Sn and I1 ≤ ι(z) ≤ I2 for every
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z ∈ S′n.
Let Sn be the annulus with the simple closed geodesic with length 2n. Consider

an 1-net Nn of Sn; by [20] there exists a quasi-isometry gn : Sn → Nn with universal
constants. By [26, Theorem 3.4] (see also [3, Theorem 23]), there exist a cubic graph Cn

and a quasi-isometry hn : Nn → Cn with universal constants. Let us consider a sequence
{Ym} of Y -pieces such that ∂Ym is the union of three simple closed geodesics with length
1 for every m (therefore, they are isometric). It suffices to consider as S′n the surface
obtained by pasting the Y -pieces {Ym} following the combinatorial design of Cn. Since
[35, Theorem 3.8] or [39, Theorem 4.17] provide a quasi-isometry un : Cn → S′n with
universal constants, there exists a quasi-isometry fn : Sn → S′n with universal constants.

Example 2.5. There exist constants I1, I2 with the following property: there
exist non-exceptional Riemann surfaces S, S′ and a quasi-isometry f : S → S′, such that
I1 ≤ ι(z) ≤ I2 for every z ∈ S and ι(S′) = 0.

Let us consider a sequence {Xm}m∈Z of bordered surfaces isometric to the torus
with two holes X in Example 2.3; then S is obtained by pasting a boundary curve of Xm

with a boundary curve of Xm+1 for every m ∈ Z.
Consider now two isometric generalized Y -pieces Y3, Y4 with a cusp and such that

∂Yj is the union of two simple closed geodesics with length 1 for j = 3, 4. It suffices to
consider S′ as the (non bordered) surface obtained by pasting the two boundary curves
of Y3 with the two boundary curves of Y4 (S′ is a torus with two cusps).

The existence of a quasi-isometry f : S → S′ can be shown with a similar argument
to the one used in Example 2.3.

3. Continuity of the injectivity radius.

The following result is well-known and easy to check.

Lemma 3.1. Let M be a Riemannian manifold and x, y ∈ M . Then |ι(x)− ι(y)| ≤
dM (x, y).

This last result can be improved for small values of the injectivity radius.

Lemma 3.2. Let S be a non-exceptional Riemann surface and z, w ∈ S. Then

ι(w) ≥ arcsinh
(
e−dS(z,w) min{1, sinh ι(z)}).

In particular, if sinh ι(z), sinh ι(w) ≤ 1, then | log sinh ι(w)− log sinh ι(z)| ≤ dS(z, w).

Proof. Let us choose geodesic loops γz and γw with respective base points z and
w such that ι(z) = LS(γz) and ι(w) = LS(γw).

Assume first that γz and γw are freely homotopic. It is clear that the minimum
value of ι(w) is attained if γz and γw bordered a cusp and z and w belong to the same
geodesic escaping to the cusp.

As usual, consider a fundamental domain for S in the upper halfplane H contained
in {z ∈ H : 0 ≤ <z ≤ 1} and such that {z ∈ H : 0 ≤ <z ≤ 1, =z ≥ 1/2} corresponds
to the 2-collar of this cusp in S. Let us represent γz (respectively, γw) in the upper
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half-plane by means of a geodesic with endpoints iα and iα + 1 (respectively, iβ and
iβ + 1, with β > α). Note that

sinh ι(z) = sinh
dH(iα, iα + 1)

2
=

1
2α

,

sinh ι(w) =
1
2β

, dS(z, w) = dH(iα, iβ) = log
β

α
= log

sinh ι(z)
sinh ι(w)

.

Hence, the minimum value of ι(w) is attained with ι(w) = arcsinh
(
e−dS(z,w) sinh ι(z)

)
.

Assume now that γz and γw are not freely homotopic. Let us consider a geodesic
[z, w] in S and the nearest point z0 to z in [z, w] with a geodesic loop γz0 freely homotopic
to γw such that ι(z0) = LS(gz0). It is not difficult to see that ι(z0) ≥ arcsinh 1 (the
injectivity radius of any point in the boundary of the 2-collar of a cusp). The previous
argument gives ι(w) ≥ arcsinh(e−dS(z0,w) sinh ι(z0)) ≥ arcsinh e−dS(z,w). This finishes
the proof of the first statement. The second statement is a direct consequence of the first
one. ¤

4. Technical lemmas on quasi-isometries.

A key step in the proof of our main result in this paper (Theorem 1.1) is to control the
distortion of the injectivity radius under quasi-isometric transformations (see Theorems
1.3 and 5.1). Due to the complexity of the proofs of these theorems, this section is
devoted to present some technical lemmas used in their proofs.

Let us consider H > 0, a metric space X, and a subset Y ⊆ X. The set VH(Y ) :=
{x ∈ X : d(x, Y ) ≤ H} is called the H-neighborhood of Y in X.

A control on how collars behave under quasi-isometries will be needed, and thus a
more general definition is required:

Let us consider a quasi-isometry f : S → S′, a finite or infinite geodesic γ ⊂ S and
a connected subset γ0 of that geodesic. Given two positive constants h and r, then the
h-neighborhood of f(γ) in S′ is an (f, γ, γ0, h, r)-tube T if for every point p ∈ γ0, the
closed ball BS′(f(p), r) is contained in T .

In principle, although a tube does not need to be doubly connected, Theorems 4.5
and 4.6 will show that they are “essentially” doubly connected, and that explain the
name.

We will use several times the following result known as Collar Lemma (see [30]).

Lemma 4.1. If σ is a simple closed geodesic in a non-exceptional Riemann surface
S, then there exists a collar about σ of width d, for every 0 < d ≤ w, where cosh w =
coth(LS(σ)/2). Hence, if LS(σ) < 2 arccoth(cosh t), then w > t.

Remark 4.2. Along this chapter, σ will denote a simple closed geodesic in S and
w the width of the collar of σ, where cosh w = coth(LS(σ)/2).

Denote by Cσ,d the collar of σ of width d and by Cσ the collar of σ of width w. It
is well known that if σ1 and σ2 are disjoint simple closed geodesics, then Cσ1 ∩Cσ2 = ∅.

For each cusp there exists a 2-collar and 2-collars of different cusps are disjoint.
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Besides, the collar Cσ of the simple closed geodesic σ does not intersect the 2-collar of
a cusp (see [30], [36] and [6, Chapter 4]). If a λ-collar of a cusp (with 0 < λ ≤ 2) in
a Riemann surface has boundary curve α, denote this collar by Cα. Denote also by Cα

the H-neighborhood of the 2-collar of a cusp with boundary α (now α can be a union of
closed curves).

The next result deals with collars of geodesics and cusps separately:

Lemma 4.3. Assume that S is a genus zero Riemann surface. Let f be a c-full
(a, b)-quasi-isometry from S to S′, and t > 0 a constant. Then, there exist positive
constants k1, k2 and k depending only on a, b, c, t that satisfy the following :

1. Let σ be a simple closed geodesic on S with LS(σ) < k2, γ a geodesic perpendicular
to σ contained in Cσ with LS(γ) = 2w and γ0 := {p ∈ γ : dS(p, σ) < w − k1}. Then
there exists an (f, γ, γ0, h, h + t)-tube T ⊂ S′ with h := 3a + b + c.

2. Let C be the 2-collar of a cusp in S with boundary curve σ, γ an infinite geodesic
contained in C perpendicular to σ and γ0 := {p ∈ γ : dS(p, σ) > k}. Then there exists
an (f, γ, γ0, h, h + t)-tube T ⊂ S′ with h := 2a + b + c.

Proof. 1. Set k1 := 2a(3a+2b+2c+ t) and k2 := 2 arccoth(cosh k1). Notice that
k1 ≥ 6, since a ≥ 1. Since S is a zero genus surface, γ is a geodesic (not just a local
geodesic); therefore, f(γ) is an (a, b)-quasigeodesic.

Seeking for a contradiction, let us assume that there exists a point p ∈ γ0 such that
the ball B := BS′(f(p), h + t) is not contained in T . That is, there exists a point
q ∈ B \ T for which

dS′(q, f(γ)) > h. (4.2)

Since f is c-full, there must exist p1 ∈ S \ γ such that dS′(f(p1), q) ≤ c. Let us
assume that dS(p1, σ) > w−k1/2. Since p ∈ γ0, it means that dS(p, p1) > k1/2. Using
the fact that f is an (a, b)-quasi-isometry,

dS′(f(p), f(p1)) ≥ 1
a

dS(p, p1)− b >
k1

2a
− b. (4.3)
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By the triangle inequality, and using that q ∈ B,

dS′(f(p1), f(p)) ≤ dS′(f(p1), q) + dS′(q, f(p)) ≤ 3a + b + 2c + t. (4.4)

Combining now (4.3) and (4.4), one deduces k1 < 2a(3a + 2b + 2c + t), which
contradicts the definition of k1. Therefore, p1 ∈ Cσ,w−k1/2. Then, there exists a
point p2 ∈ γ close enough to p1, verifying that dS(p1, p2) is upper bounded by the
length of one of the boundary curves of Cσ,w−k1/2. Using Fermi coordinates based on
σ, we can easily check that LS(∂Cσ,w−k1/2)/2 ≤ LS(∂Cσ)/2 = LS(σ) cosh w. Collar
Lemma gives dS(p1, p2) ≤ LS(∂Cσ)/2 = LS(σ) cosh w = LS(σ) coth(LS(σ)/2) ≤ 3
since k1 ≥ 6 and LS(σ) < 2 arccoth(cosh k1).

On one hand, since f is an (a, b)-quasi-isometry (recall that p2 ∈ γ),

dS′(f(p1), f(γ)) ≤ dS′(f(p1), f(p2)) ≤ adS(p1, p2) + b < 3a + b. (4.5)

On the other hand, taking into account (4.2),

dS′(f(p1), f(γ)) ≥ dS′(f(γ), q)− dS′(q, f(p1)) ≥ 3a + b + c− c = 3a + b. (4.6)

Obviously (4.6) contradicts (4.5), so such a point q ∈ B \ T cannot exist and the
tube T mentioned in the statement of the theorem does exist.

2. The same arguments work for this situation, defining k := a(2a + 2b + 2c + t). ¤

Lemma 4.4. Let η be an (a, b)-quasi-geodesic in S and h > 0. Then there exists
a positive constant r0, which just depends on a, b, h, with the following property : if for
some z0 ∈ η the ball B := BS(z0, r) is simply connected and it is contained in the
h-neighborhood of η, then r ≤ r0.

Proof. Let us define r0 := 2h(J + 1), where J is the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + h

)
.

Note that, since B is simply connected, the ball B1 := BS(z0, r/2) is simply connected
and, besides, geodesically convex. Let I be a closed interval on the real line and η :
I −→ S a parametrization of the (a, b)-quasigeodesic. Seeking for a contradiction, let us
assume that r > 2h(J + 1).

Define j1 as the least integer satisfying

j1 >
1
h

(
a2

2
(3h + b) + b + 2h

)
.

There exists δ > 0 such that

r > 2(h + δ)(J + 1),
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j1 <
1

h + δ

(
a2

2
(3h + 3δ + b) + b + 2h + 2δ

)
+ 2,

j1 >
1

h + δ

(
a2

2
(3h + 3δ + b) + b + 2h + 2δ

)
(4.7)

and

J >
1

h + δ

(
a2

(
a2

2
(3h + 3δ + b) + 2b + 5h + 5δ

)
+ b + h + δ

)
.

Let us consider any geodesic γ1 ⊂ B1 extended in both directions from the point
z0 and a second geodesic γ2, perpendicular to γ1 and extended just in one direction
from z0. Let us fix points z1, z2, z3, . . . ∈ γ1 in one of the directions starting at z0 and
z−1, z−2, z−3, . . . ∈ γ1 in the opposite direction from z0, such that dS(z0, zj) = |j|(h + δ)
for every j with |j|(h + δ) < r/2. Analogously, choose points wj ∈ γ2 with dS(z0, wj) =
j(h + δ) for every j > 0 with j(h + δ) < r/2.

Since B1 is contained in the h-neighborhood of η, for each of these points zj , wj ∈ B1

there exist points z∗j , w∗j ∈ η verifying dS(zj , z
∗
j ) ≤ h + δ and dS(wj , w

∗
j ) ≤ h + δ.

Let tj , sj ∈ I be the real values such that η(tj) = z∗j and η(sj) = w∗j (according to
this notation, η(t0) = z0 = z∗0). Then |tj − tk| ≤ a(dS(z∗j , z∗k) + b) ≤ a(|j − k|(h + δ) +
2h + 2δ + b) and, in particular,

|tj − tj+1| ≤ a(3h + 3δ + b). (4.8)

Note that z∗J and z∗−J are both in the ball B1:

dS(z∗±J , z0) ≤ dS(z∗±J , z±J) + dS(z±J , z0) ≤ h + δ + J(h + δ) = (h + δ)(J + 1) < r/2.

For the defined value j1

|sj1 − t0| ≤ a
(
dS(w∗j1 , z0) + b

) ≤ a
(
dS(w∗j1 , wj1) + dS(wj1 , z0) + b

)

≤ a(h + δ + j1(h + δ) + b). (4.9)

A similar argument gives

|tJ − t0| ≥ 1
a
(dS(z0, z

∗
J)− b) ≥ 1

a
(J(h + δ)− h− δ − b). (4.10)

Using the third inequality in (4.7) and j1(h + δ) < a2/2(3h + 3δ + b) + b + 4h + 4δ, we
can easily check that

1
a
(J(h + δ)− h− δ − b) > a(h + δ + b + j1(h + δ)).

Therefore, comparing (4.9) and (4.10), one obtains |tJ − t0| > |sj1 − t0|. Analogously,
|t−J − t0| > |sj1 − t0|. Hence, by (4.8), there exists some j2 ∈ Z such that
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|sj1 − tj2 | ≤
a

2
(3h + 3δ + b).

Taking into account the above inequality,

dS(wj1 , zj2) ≤ dS

(
w∗j1 , z

∗
j2

)
+ 2h + 2δ ≤ a|sj1 − tj2 |+ b + 2h + 2δ

≤ a2

2
(3h + 3δ + b) + b + 2h + 2δ and

dS(wj1 , zj2) ≥ dS(wj1 , z0) = j1(h + δ).

Thus,

j1(h + δ) ≤ a2

2
(3h + 3δ + b) + b + 2h + 2δ,

which contradicts the second inequality in (4.7). Therefore, r ≤ 2h(J +1) as claimed. ¤

Theorem 4.5. Assume that S and S′ are genus zero surfaces. Let γ be any geodesic
perpendicular to σ contained in Cσ with LS(γ) = 2w. There exist positive constants
r0, k0, k1, k2, which just depend on a, b, c, so that if γ0 := {p ∈ γ : dS(p, σ) < w−k1} and
LS(σ) < k2, then there exists an (f, γ, γ0, h, h + k0)-tube T ⊂ S′ with h := 3a + b + c.

Furthermore, if u1, u2 are the endpoints of γ0, and gi is any simple geodesic loop
with base point f(ui) and LS′(gi) = 2ι(f(ui)) (i = 1, 2), then g1 and g2 bound a doubly
connected set in S′, and for every z ∈ γ0, ι(f(z)) ≤ r0 and the injectivity radius in f(z)
is attained in the geodesic loop with base point f(z) freely homotopic to a simple closed
geodesic σ′ in S′, where σ′ only depends on σ and f . Besides, f(Cσ) is contained in the
H0-neighborhood of the collar Cσ′ of σ′, where H0 := r0 + ak1 + b.

Note that σ′ does not depend neither on γ or γ0.

Proof. Let us define J as the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + h

)
,

r0 := 2h(J + 1), k0 := a2(12h(J + 1) + 1/2 + 3b) + 12h(J + 1) + b + h + 3, k1 :=
2a(3a + 2b + 2c + k0) and k2 := 2 arccoth(cosh(k1 + a(4h(J + 1) + b)/2)).

Since LS(σ) < k2, the width w of the collar Cσ verifies the inequality w > k1 +
a(2r0 + b)/2 (see Collar Lemma), and consequently,

dS′(f(u2), f(u1)) ≥ 1
a

dS(u2, u1)− b =
2w − 2k1

a
− b > 4h(J + 1) = 2r0.

Therefore, it is possible to choose points x0, x1, . . . , xm ∈ γ0, where x0 = u1, xm = u2

and

2r0 < dS′(f(xj), f(xj−1)) ≤ 4r0 (4.11)
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for j = 1, . . . , m.
Note that h+k0 > r0. Let us consider any r1 with h+k0 > r1 > r0. By Lemma 4.3

(1), taking t = k0, Vh+k0(f(γ0)) ⊂ Vh(f(γ)), and thus Lemma 4.4 gives that the balls
BS′(f(xj), r1) are not simply connected for j = 0, 1, . . . , m. Therefore, the injectivity
radius ι(f(xj)) at the point f(xj) is less than r1 for every r1 > r0, and then ι(f(xj)) ≤ r0.
In particular, ι(f(u1)), ι(f(u2)) ≤ r0. Consequently, there exists a simple geodesic loop
gj with base point f(xj) and LS′(gj) = 2ι(f(xj)) ≤ 2r0. In light of (4.11), gj ∩ gj+1 = ∅.
Since S′ is a genus zero surface, gj and gj+1 disconnect S′, and then S′ \ (gj ∪ gj+1)
has three connected components. Consider the geodesics γ′j := [f(xj), f(xj+1)] ⊂ S′ for
j = 0, . . . , m− 1.

Claim. γ′j ∩ gj = {f(xj)} and γ′j ∩ gj+1 = {f(xj+1)} for j = 0, . . . , m− 1.

Assume the claim holds. Assume that gj is not freely homotopic to gj+1 for some
j. It will be shown that, in that case, BS′(f(xj), k0) * Vh(f(γ)), contradicting Lemma
4.3 (1). Set ηj := gj ∪ γ′j ∪ gj+1 ∪ (−γ′j). Note that LS′(ηj) ≤ 12r0. By means of a slight
modification of ηj , one can construct a simple closed curve η′j freely homotopic to ηj ,
with η′j ∩ {gj ∪ gj+1} = ∅, LS′(η′j) ≤ 12r0 + 1 and HS′(ηj , η

′
j) ≤ 1 (where HS′ denotes

Hausdorff distance) as follows. Without loss of generality, S′ is a domain contained in C,
so take opposite orientation for gj and gj+1 and let ηj be an oriented curve. If either gj

surrounds gj+1 or gj+1 surrounds gj , choose η′j contained in the annulus in C bounded
by gj and gj+1. Otherwise, choose η′j contained in the “exterior” connected component
of S′ \ ηj .

Since the curves gj , gj+1 and η′j are not trivial, gj , gj+1 and η′j disconnect S′ and
S′ \ (gj ∪ gj+1 ∪ η′j) has four connected components, one of them bounded (with finite
diameter) denoted by V ; and other three unbounded (with infinite diameter). Note
that ∂V = gj ∪ gj+1 ∪ η′j . Since there are three unbounded connected components
of S′ \ (gj ∪ gj+1 ∪ η′j), there must exist an unbounded connected component U with
f(u), f(v) /∈ U . Note that

diamS′ ∂U ≤ 1
2

max
{
LS′(gj), LS′(gj+1), LS′(η′j)

} ≤ 6r0 +
1
2
.

Since V is contained in the 1-neighborhood of ηj and LS′(ηj) ≤ 12r0, then

diamS′ V ≤ 1 + diamS′ ηj + 1 ≤ 6r0 + 2.

Assume first that f(γ) intersects U . In this case, diamS′(f(γ) ∩ U) is bounded
above. Indeed, consider γ0 to be oriented from u1 to u2 and consider points p′ := inf{τ ∈
[u1, u2] : f(τ) ∈ U} and q′ := sup{τ ∈ [u1, u2] : f(τ) ∈ U}.

Given p, q ∈ γ ∩ f−1(U), since LS′(η′j) ≤ 12r0 +1, f(γ) is a (possibly) discontinuous
curve with gaps of amplitude at most b, one deduces

dS′(f(p), f(q)) ≤ adS(p, q) + b ≤ adS(p′, q′) + b ≤ a2dS′(f(p′), f(q′)) + a2b + b

≤ a2(diamS′ ∂U + 2b) + a2b + b
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≤ a2(6r0 + 1/2 + 3b) + b = k0 − 6r0 − h− 3. (4.12)

Thus diamS′(f(γ) ∩ U) ≤ k0 − 6r0 − 2 − h − 1. Consequently, if z ∈ f(γ) ∩ U , then
dS′(f(xj), z) ≤ diamS′ V + diamS′(f(γ) ∩ U) ≤ k0 − h− 1.

If f(γ) does not intersect U and z ∈ U , then dS′(f(xj), z) ≤ diamS′ V ≤ k0 − h− 1.
Therefore, in both cases, since the region U is unbounded, the ball BS′(f(xj), k0)

cannot be contained in T = Vh(f(γ)), which contradicts Lemma 4.3 (1).
Since it was shown that the closed ball BS′(f(xj), h + k0) must be contained in T ,

then BS′(f(xj), k0) must also be contained in T .
Therefore, gj is freely homotopic to gj+1 for every j. Consequently, the simple

geodesic loops g0 = g1 and gm = g2 with base points f(u1) and f(u2), respectively, are
freely homotopic and bound a doubly connected set in S′ as claimed.

By taking different sequences of points {xj} one can check that if z ∈ γ0, and gz is
any simple geodesic loop with base point f(z) and LS′(gz) = 2ι(f(z)), then gz is freely
homotopic to g1 and ι(f(z)) ≤ r0.

By Theorem 4.6 below, the map f provides a bijective correspondence from the cusps
of S to the cusps of S′; hence, there exists a simple closed curve σ′ freely homotopic to
g1 of length l. By Collar Lemma and Proposition 2.1, the injectivity radius ι0 at the
points in ∂Cσ′ satisfies sinh ι0 = sinh(l/2) cosh w = cosh(l/2) > 1.

For z ∈ γ0, f(z) either belongs to the collar Cσ′ , and thus to Vr0(C
′
σ), or, otherwise,

let us define t := dS′(f(z), σ′)−w > 0. Then, sinh r0 ≥ sinh ι(z) = sinh(l/2) cosh(w + t)
and

1
2

et <
1
2

et sinh(l/2) cosh w <
1
2

ew+t sinh(l/2) < cosh(w + t) sinh(l/2)

≤ sinh r0 <
1
2

er0 .

Hence, t < r0 and f(γ0) ⊂ Vr0(Cσ′). Given another geodesic γ̃0 perpendicular to σ, it
has been proved that f(γ̃0) is contained in the r0-neighborhood of Cσ̃′ for some simple
closed curve σ̃′ in S′; in order to check that σ̃′ = σ′ it suffices to repeat the previous
argument replacing γ0 by any geodesic γ1 meeting σ with an angle π/2 − ε for small
ε > 0. Therefore, f({p ∈ S : dS(p, σ) ≤ w − k1}) is contained in the r0-neighborhood of
Cσ′ , and f(Cσ) is contained in the (ak1 + b + r0)-neighborhood of Cσ′ .

In order to prove the first part of the claim, assume that there exists a point ζ in
γ′j ∩ gj \ {f(xj)} and argue by contradiction.

Denote by g∗j a subcurve of gj joining f(xj) and ζ and denote by γ∗j the subcurve
of γ′j joining f(xj) and ζ. Since γ′j is a geodesic, LS′(γ∗j ) ≤ LS′(g∗j ). Choose g∗j so
that the loop Γ0 := g∗j ∪ γ∗j with base point f(xj) is non trivial; since Γ0 has a corner
in ζ, there exists a curve Γ freely homotopic to Γ0 (thus non trivial) with LS′(Γ) <

LS′(g∗j ) + LS′(γ∗j ) ≤ LS′(gj). This inequality contradicts

LS′(gj) = 2ι(f(xj)) = inf{LS′(c) : c is a loop with base point f(xj)}.

The proof of the second part of the claim is similar.
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The claim, and hence the Theorem, hold. ¤

Theorem 4.6. Assume that S′ is a genus zero surface and f : S −→ S′ a c-full
(a, b)-quasi-isometry. Let C be the 2-collar of a cusp in S with boundary curve σ and
γ an infinite geodesic contained in C perpendicular to σ. There exist positive constants
H, k, t, which just depends on a, b, c, so that if γ0 := {p ∈ γ : dS(p, σ) > k}, then there
exists an (f, γ, γ0, h, h + t)-tube T ⊂ S′ with h := 2a + b + c. Furthermore, f(C ) is
contained in the H-neighborhood of the 2-collar of a cusp in S′.

Proof. Define J as the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + h

)
.

Let us consider positive constants t := a2(12h(J +1)+1/2+3b)+12h(J +1)+ b+h+3,
k := a(2a + 2b + 2c + t) and H := ak + b + log sinh(2h(J + 1)).

The statement about the existence of the tube is given by Lemma 4.3 (2), since this
lemma holds for any positive value of t, and k is defined as in the proof of Lemma 4.3.

Let us choose now two points u1, u2 ∈ γ0 such that dS(u1, u2) > a(4h(J + 1) + b),
which is always possible since γ0 is infinite. Notice that

dS′(f(u2), f(u1)) ≥ 1
a

dS(u2, u1)− b > 4h(J + 1).

Let us define the constant C := a2(12h(J + 1) + 1/2 + 2b) + 12h(J + 1) + ab + b +
h + 3. From this point on, the conclusion of this theorem can be obtained repeating the
reasoning offered in the proof of Theorem 4.5 with C playing the role of k0. However,
since now the geodesic γ0 is infinite, the distance between u1 and u2 can be arbitrarily
large. Then, all the geodesic loops {gj} with base point f(xj), for any xj located on
γ0 are homotopic and, besides, LS′(gj) ≤ 4h(J + 1). It means that f(C ) is actually
contained in a neighborhood of a cusp in S′, since f(C ) is not a bounded set.

Next, it will be shown that f(C ) is inside the H-neighborhood of the 2-collar of
a cusp in S′. Let us choose any of the geodesic loops gj mentioned above, and let us
assume that it lies out of the 2-collar of the corresponding cusp in S′. As usual, consider
a fundamental domain for S′ in the upper halfplane H contained in {z ∈ H : 0 ≤ <z ≤ 1}
and such that {z ∈ H : 0 ≤ <z ≤ 1, =z ≥ 1/2} corresponds to the 2-collar of this cusp in
S′. Let us represent gj in the upper half-plane by means of a geodesic with endpoints iα

and iα +1. If α ≥ 1/2, then gj is in the 2-collar in S′. Hence, α < 1/2. If d is the actual
length of gj , then sinh(d/2) = 1/(2α). Taking into account that d = LS′(gj) ≤ 4h(J +1),
then 1/(2α) = sinh(d/2) ≤ sinh(2h(J + 1)), and

dH(iα, i/2) = log
1
2α

≤ log sinh(2h(J + 1)) =: H1,

which means that xj is in the H1-neighborhood of the boundary curve of the 2-collar in
S′. Hence, in any case, xj is in the H1-neighborhood of the 2-collar in S′. Therefore,
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f({p ∈ C : dS(p, σ) > k}) is contained in the H1-neighborhood of the 2-collar in S′, and
f(C ) is contained in the (H1 + ak + b)-neighborhood of the 2-collar of a cusp in S′. ¤

Lemma 4.7. Fix two positive constants d1 and ι0. Let S be a non-exceptional
Riemann surface, σ be a simple closed geodesic with S\σ non-connected, and x, y points in
S such that dS(x, y) ≥ d1 and the geodesic loops gx, gy with base points x, y, respectively,
freely homotopic to σ, verify LS(gx), LS(gy) ≤ 2ι0. Let σx (respectively, σy) be the set
of points in the connected component of S \ σ containing x (respectively, y) which are at
distance dS(x, σ) (respectively, dS(y, σ)) from σ; denote by C the domain in S bounded
by σx and σy, and by C0 the set of points in C at distance greater or equal than d2 from
∂C = σx ∪ σy, with

0 < d2 < arccosh
2 cosh2(d1/2)√

4 cosh2(d1/2) + sinh2 ι0
. (4.13)

Then C0 is non empty and sinh ι(z) < 2 e−d2 sinh ι0 for every z ∈ C0.

Remark 4.8. An elementary computation gives that if d1 ≥ max{2ι0, 2d2+log 20},
then (4.13) holds.

Proof. Define l := LS(σ) and x0 (respectively, y0) the point in σ with dS(x, σ) =
dS(x, x0) (respectively, dS(y, σ) = dS(y, y0)). It is clear that the maximum of the
injectivity radius is attained when S is an annulus with simple closed geodesic σ,
dS(x, y) = d1, LS(gx), LS(gy) = 2ι0, and x, y are antipodal points with respect to σ, i.e.,
dS(x, σ) = dS(y, σ) and dS(x0, y0) = l/2. In this case, defining u := dS(x, σ) = dS(y, σ),
Proposition 2.1 gives cosh(d1/2) = cosh u cosh(l/4) and sinh ι0 = sinh(l/2) cosh u. Hence,

sinh(l/4) =
sinh(l/2)

2 cosh(l/4)
=

sinh ι0
2 cosh(d1/2)

,

cosh u =
cosh(d1/2)
cosh(l/4)

=
2 cosh2(d1/2)√

4 cosh2(d1/2) + sinh2 ι0
.

Therefore, take 0 < d2 < dS(x, σ) = dS(y, σ) and C0 is not the empty set. If u ∈ Cσ,
denote by ψu the geodesic loop with base point u freely homotopic to σ. For any z ∈ ∂C0,
Proposition 2.1 gives

sinh(LS(ψz)/2) = sinh(l/2) cosh(u− d2) ≤ eu−d2 sinh(l/2)

< 2 e−d2 sinh(l/2) cosh u = 2 e−d2 sinh ι0.

Hence, for any z ∈ C0, sinh(LS(ψz)/2) < 2 e−d2 sinh ι0 and, consequently, sinh ι(z) <

2 e−d2 sinh ι0. ¤

Lemma 4.9. Let S be a non-exceptional Riemann surface and z ∈ S. If ι(z) <

arcsinh 1, then the shortest geodesic loop η with base point z is contained either in the
2-collar of a cusp or in the collar Cσ of a simple closed geodesic σ.
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Proof. Given any point p on the boundary of the 2-collar of a cusp, or on the
boundary of the collar of a simple closed geodesic then ι(p) ≥ arcsinh 1 by Collar Lemma.

Therefore z must lie inside the cusp or collar. Lifting its shortest geodesic loop to
the universal covering shows this will also be the case for its geodesic loop. ¤

Lemma 4.10. Let S be a non-exceptional Riemann surface, σ be a simple closed
geodesic in S and z a point in the collar Cσ. Then dS(z, ∂Cσ) ≥ log(1/ sinh ι(z)).

Proof. If ι(z) ≥ arcsinh 1, then dS(z, ∂Cσ) ≥ 0 ≥ log(1/ sinh ι(z)). Assume now
that ι(z) < arcsinh 1. By Lemma 4.9 the shortest geodesic loop η with base point z is
contained in Cσ. Note that if d := dS(z, σ), then dS(z, ∂Cσ) = w − d. Let l := LS(σ);
by Collar Lemma and Proposition 2.1:

sinh ι(z) = sinh(l/2) cosh d =
cosh d

sinhw
≥ ed−w,

which implies the result. ¤

Lemma 4.11. Let S be a non-exceptional genus zero Riemann surface, I and h

two positive constants, σ a simple closed geodesic with LS(σ) ≤ 2 I, and Ch
σ the h-

neighborhood of Cσ. Denote by S1 a connected component of S \ σ, and by α1 the set of
closed curves in ∂Ch

σ ∩ S1. If p, q ∈ α1, then dS(p, q) ≤ ehI coth I.

Proof. Without loss of generality, assume that S is an annulus and σ is the
simple closed geodesic in S. Define l := LS(σ) and L := LS(α1). Since l/2 ≤ I and
g(x) = x coth x is an increasing function for x > 0,

dS(p, q) ≤ L/2 = (l/2) cosh w
cosh(w + h)

cosh w
< (l/2) coth(l/2)

cosh(w + h)
cosh w

≤ eh I coth I. ¤

Finally, the following two lemmas are easy to check.

Lemma 4.12. Let g : [α, β] → R be an (a, b)-quasi-isometric embedding with g(β) >

g(α). If x, y ∈ [α, β] and y > x + (a + 1)b, then g(y) > g(x).

Lemma 4.13. Let g : [0,∞) → [0,∞) be an (a, b)-quasi-isometric embedding. If
x, y ≥ 0 and y > x + (a + 1)b, then g(y) > g(x).

5. Stability of the injectivity radius under quasi-isometries.

Recall the notation Cσ and Cα for collars of simple closed geodesic and cusps respec-
tively. Also denote by Cα the H-neighborhood of the 2-collar of a cusp with boundary
α (now α can be a union of closed curves).

5.1. Proof of Theorem 1.3.
Without loss of generality assume that 0 < ε′, ε ≤ arcsinh 1. Fix z ∈ S with

ι(z) < arcsinh 1.
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The proof takes advantage of the relation between ι(z) and the distance from z to
the boundary of the collar of a cusp when z is in the interior of the collar of a cusp, or
the distance from z to the boundary of the collar of a simple closed geodesic when z is
in the collar.

Assume first that the shortest geodesic loop based on z is freely homotopic to a cusp
in S. Let z belong to the interior of the 2-collar of this cusp, Cα, where α is its boundary
curve. In this setting sinh ι(z) = e−dS(z,α) < 1.

For every u ∈ Cα define Wα(u) := dS(u, α). Then for any two points u, v ∈ Cα,

|Wα(v)−Wα(u)| ≤ dS(v, u) ≤ |Wα(v)−Wα(u)|+ 1, (5.14)

By Theorem 4.6, f(Cα) is contained in Cα′ , the H-neighborhood of the 2-collar of
a cusp in S′ (now α′ := ∂Cα′ can be a union of closed curves). Let us define Wα′(p) :=
dS′(p, α′) for every p ∈ Cα′ . Then,

|Wα′(f(v))−Wα′(f(u))| ≤ dS′(f(v), f(u))

≤ |Wα′(f(v))−Wα′(f(u))|+ 1 + 2H, (5.15)

for any two points u, v ∈ Cα.
By (5.14) and (5.15),

|Wα′(f(v))−Wα′(f(u))| ≤ dS′(f(v), f(u)) ≤ adS(v, u) + b

≤ a(|Wα(v)−Wα(u)|+ 1) + b

= a|Wα(v)−Wα(u)|+ a + b,

|Wα′(f(v))−Wα′(f(u))| ≥ dS′(f(v), f(u))− 1− 2H

≥ 1
a

dS(v, u)− b− 1− 2H

≥ 1
a
|Wα(v)−Wα(u)| − 1− b− 2H, (5.16)

for any two points u, v ∈ Cα. Therefore, (5.16) shows that there is an (a, a+b+2H) quasi-
isometric embedding defined from [0,∞) to [0,∞) that relates Wα(u) with Wα′(f(u)),
for every u ∈ Cα.

Let z0 be the point in α so that dS(z, α) = dS(z, z0). Then

Wα(z)−Wα(z0) = Wα(z) = log
1

sinh ι(z)
> log

1
sinh ε

. (5.17)

Choosing ε so that sinh ε < e−(a+1)(a+b+2H),

Wα(z)−Wα(z0) > (a + 1)(a + b + 2H).
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By Lemma 4.13, Wα′(f(z)) > Wα′(f(z0)), and thus (5.16) and (5.17) give

Wα′(f(z)) ≥ Wα′(f(z))−Wα′f((z0)) =
∣∣Wα′(f(z))−Wα′f((z0))

∣∣

≥ 1
a

∣∣Wα(z)−Wα(z0)
∣∣− 1− b− 2H >

1
a

log
1

sinh ε
− 1− b− 2H

> log
1

sinh ε′
+ H ≥ H,

since 0 < ε′ ≤ arcsinh 1, and if ε is taken to be

sinh ε < min
{
(sinh ε′)ae−a(3H+1+b), e−(a+1)(a+b+2H)

}
.

Since Wα′(f(z)) > H, f(z) is in the 2-collar of the cusp, and thus Wα′(f(z)) =
− log sinh ι(f(z)) + H. Hence ι(f(z)) < ε′.

Assume now that the shortest loop based on z is freely homotopic to a simple closed
geodesic σ; then z belongs to the interior of the collar Cσ of width w. Let us consider
the geodesics γ, γ0 and the constants r0, k0, k1, k2,H0 as in Theorem 4.5. If we require
ε ≤ k2/2, then l := LS(σ) ≤ 2ι(z) < k2. By Collar Lemma and Proposition 2.1 we
have that the length 2ι0 of the geodesic loop freely homotopic to σ and based in any
point in ∂Cσ satisfies sinh ι0 = sinh(l/2) cosh w = cosh(l/2) < cosh(k2/2) =: k3; thus
ι(u) < arcsinh k3 for every u ∈ Cσ.

Denote by α1, α2 the simple closed curves in ∂Cσ; then LS(αj) = l cosh w <

2 sinh(l/2) cosh w = 2 cosh(l/2) < 2 cosh(k2/2) = 2k3 for j = 1, 2. Define Wαj (u) :=
dS(u, αj) for every u ∈ Cσ and j = 1, 2. Since S is a genus zero surface,

|Wαj
(v)−Wαj

(u)| ≤ dS(v, u) ≤ |Wαj
(v)−Wαj

(u)|+ k3, (5.18)

for any two points u, v ∈ Cσ.
By Theorem 4.5, f(Cσ) is contained in the H0-neighborhood of the collar Cσ′ of a

simple closed geodesic σ′ in S′.
Denote by Ψu the geodesic loop with base point f(u) freely homotopic to σ′. Let

u ∈ Cσ, then

LS′(Ψu) ≤ 2(r0 + ak1 + b) := 2r′0

since if dS(u, ∂Cσ) ≥ k1, Theorem 4.5 gives LS′(Ψu) = 2ι(f(u)) ≤ 2r0.
S′ is also a genus zero surface, therefore S′\σ′ has two connected components S′1, S

′
2.

Then, f(Cσ) intersects either both of them or only one of them. In the former case, define
rj := sup{dS′(f(u), σ′) | u ∈ Cσ, f(u) ∈ S′j} and α′j := {v ∈ S′j | dS′(v, σ′) = rj} for
j = 1, 2.

In the latter case, define r1 := inf{dS′(f(u), σ′) | u ∈ Cσ}, r2 := sup{dS′(f(u), σ′) |
u ∈ Cσ}, and α′j := {v ∈ S′i | dS′(v, σ′) = rj} for j = 1, 2 where i so that S′i ∩ f(Cσ) 6= ∅.

Let C0
σ′ the domain in S′ bounded by α′1 and α′2. For any p ∈ C0

σ′ , define Wα′j (p) :=
dS′(p, α′j), j = 1, 2. By Lemma 4.11, for any u, v ∈ Cσ,
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∣∣Wα′j (f(v))−Wα′j (f(u))
∣∣ ≤ dS′(f(v), f(u))

≤ ∣∣Wα′j (f(v))−Wα′j (f(u))
∣∣ + eH0r′0 coth r′0, (5.19)

By virtue of (5.18) and (5.19), for any u, v ∈ Cσ,

∣∣Wα′j (f(v))−Wα′j (f(u))
∣∣ ≤ dS′(f(v), f(u)) ≤ adS(v, u) + b

≤ a(|Wαj
(v)−Wαj

(u)|+ k3) + b

= a|Wαj
(v)−Wαj

(u)|+ ak3 + b,
∣∣Wα′j (f(v))−Wα′j (f(u))

∣∣ ≥ dS′(f(v), f(u))− eH0r′0 coth r′0

≥ 1
a

dS(v, u)− b− eH0r′0 coth r′0

≥ 1
a
|Wαj

(v)−Wαj
(u)| − eH0r′0 coth r′0 − b. (5.20)

If γ is a geodesic orthogonal to σ, and setting k4 := eH0r′0 coth r′0, then (5.20) shows
that there are two (a, ak3 + b + k4)-quasi-isometric embeddings defined from [0, 2w] to R
that relate Wαj (u) with Wα′j (f(u)), for every u ∈ γ and j = 1, 2.

Let z ∈ γ and let zj the point zj := γ ∩ αj for j = 1, 2. By Lemma 4.10,

Wαj
(z)−Wαj

(zj) = Wαj
(z) ≥ dS(z, ∂Cσ) ≥ log

1
sinh ι(z)

> log
1

sinh ε

≥ (a + 1)(ak3 + b + k4),

if ε is taken to be ε ≤ arcsinh e−(a+1)(ak3+b+k4).
Without loss of generality, label α′1 and α′2 so that f(zi) is closest to α′i for i = 1, 2.
Therefore, by Lemma 4.12 together with (5.20),

Wα′j (f(z)) ≥ ∣∣Wα′j (f(z))−Wα′j f((zj))
∣∣ ≥ 1

a

∣∣Wαj (z)−Wαj (zj)
∣∣− k4 − b

=
1
a

Wαj (z)− k4 − b.

By Lemma 4.10

dS(z, ∂Cσ) ≥ log
1

sinh ι(z)
> log

1
sinh ε

.

If ε is taken to be so that

log
1

sinh ε
≥ a

(
1 + b + k4 + log

2 sinh r′0
sinh ε′

)
=: k∗1 ,

Lemma 4.10 gives, together with the quasi-isometric embedding,
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Wα′j (f(z)) ≥ 1
a

Wαj
(z)− k4 − b ≥ 1

a
dS(z, ∂Cσ)− k4 − b > log

2 sinh r′0
sinh ε′

.

Set d2 := 1+ log(2 sinh r′0/sinh ε′) and d1 := dS′(f(z1), f(z2)). In order to apply Remark
4.8, d1 should satisfy d1 > max{2r′0, 2d2 + log 20}, since ι(f(zj)) ≤ r′0. Using f is an
(a, b)-quasi-isometry,

d1 ≥ 1
a

dS(z1, z2)− b =
2w

a
− b.

By Collar Lemma together with ι(z) < ε, the width w satisfies cosh w > coth ε. There-
fore, it suffices to choose ε to be so that coth ε ≥ cosh((a/2)(b+max{2r′0, 2d2 +log 20})).

Hence, by Lemma 4.7, sinh ι(f(z)) < 2 e−d2 sinh r′0 < sinh ε′ if ι(z) < ε where ε must
satisfy all the above restrictions, namely:

0 < ε ≤ min
{

k2

2
, arcsinh e−(a+1)(ak3+b+k4), arcsinh e−k∗1 ,

arccoth cosh
a(b + max{2r′0, 2d2 + log 20})

2

}
. ¤

Note that the constant ε in Theorem 1.3 does not depend on z, f, S, S′.

Theorem 5.1. Let S and S′ be non-exceptional genus zero Riemann surfaces and
f : S −→ S′ a c-full (a, b)-quasi-isometry. For each ε > 0 there exists ε′ > 0 which just
depends on ε, a, b, c, such that if ι(z) ≥ ε then ι(f(z)) ≥ ε′.

Proof. For each fixed z ∈ S let us define a function Fz : S′ −→ S as follows:
Fz(f(z)) := z; for each y ∈ f(S)\{f(z)} fix any x ∈ f−1(y) and define Fz(y) := x; finally,
for each y ∈ S′ \ f(S) choose any x ∈ S with dS′(f(x), y) ≤ c and define Fz(y) := x. It
is easy to check that Fz is an ab-full (a, a(b + 2c))-quasi-isometry.

Consequently, by Theorem 1.3, for each ε > 0 there exists ε′ > 0, which just depends
on ε, a, b, c, such that if ι(p) < ε′ then ι(Fz(p)) < ε. In particular, if ι(f(z)) < ε′ then
ι(z) = ι(Fz(f(z))) < ε. Since ε′ does not depend on z, f or Fz, then ι(z) < ε for every
z ∈ S with ι(f(z)) < ε′. ¤

6. Proof of Theorem 1.1.

This section is devoted to the proof of Theorem 1.1, which follows Kanai’s approach.
In Kanai’s results it is essential that both ι(S) and ι(S′) are positive; these conditions will
be avoided due to Theorems 1.3 and 5.1 and the thick-thin decomposition of Riemann
surfaces given by Margulis Lemma (see, e.g., [2, p. 107]). Concretely, for any ε < arcsinh 1
any Riemann surface, S, can be partitioned into a thick part, Sε := {z ∈ S : ι(z) > ε},
and a thin part, S \ Sε, whose components are either collars of cusps or collars of closed
geodesics of length less than or equal to 2ε (see Lemma 4.9).

In order to prove Theorem 1.1, it will be shown that it suffices to consider the thick
parts of S and S′ for some particular choices of ε and ε′, so that Kanai’s insight can be
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brought to Sε and S′ε′ if we avoid the (possible) contribution to the LII given by ∂Sε

and ∂S′ε′ .
We will need the following improvement of Theorems 1.3 and 5.1.

Lemma 6.1. Let S and S′ be non-exceptional genus zero Riemann surfaces, and
f : S −→ S′ be a c-full (a, b)-quasi-isometry. Then, given 0 < ε, ε1 < arcsinh 1, there
exist 0 < ε′, ε̃ < ε1, which just depend on ε, ε1, a, b, c, so that

f(Sε) ⊂ S′ε′ ⊂ Vc(f(Sε̃)).

Proof. Theorem 5.1 asserts that given ε there exists ε′ so that the first inclusion
holds. For the second one, given ε′ there exists ε̃′ such that S′ \ S′ε′ ⊃ Vc(S′ \ S′ε̃′) by
Lemma 3.2. Let z′ ∈ S′ε′ ; then Vc(z′) ⊂ S′ε̃′ and since f is c-full, there exists x′ ∈ Vc(z′)
so that x′ = f(x) for some x ∈ Sε̃ where ε̃ is given by ε̃′ in Theorem 1.3. Therefore
z′ ∈ Vc(f(Sε̃)). Since St becomes larger as t > 0 decreases, one can obtain 0 < ε′, ε̃ < ε1.

¤

As a first goal it is going to be proved the LII intrinsic to a bordered surface, Sε

contained in S; note that Sε is not necessarily connected. To this end, we define below
the “thick” boundary of a subset of S as its intrinsic boundary in Sε, and the “intrinsic”
LII that will refered to as LIIε.

Definition 6.2. Given a non-exceptional Riemann surface S, ε > 0 and a domain
Ω in Sε, define

∂εΩ := ∂Ω ∩ Sε = ∂Ω \ ∂Sε.

Remark 6.3. If γ is a non-trivial simple closed curve, γ ⊂ ∂εΩ, then LS(γ) > 2ε.

Definition 6.4. Sε is said to satisfy the ε-linear isoperimetric inequality, LIIε,
if there exists a positive constant c, such that if Ω is a relatively compact domain in Sε

with smooth boundary, then

AS(Ω) ≤ cLS(∂εΩ). (6.21)

A reduction is that it suffices to prove LIIε for intrinsic geodesic domains in Sε. A
domain Ω ⊂ S is said to be a geodesic domain if ∂Ω is a finite number of simple closed
geodesics, and AS(Ω) is finite. Note that Ω does not need to be relatively compact for it
could contain a finite number of cusps. From this point of view, the boundary of a cusp
will be considered as an improper geodesic of zero length. An intrinsic geodesic domain
is a geodesic domain intrinsic to Sε, i.e., the intersection of a geodesic domain in S with
Sε.

Let us denote by c1(Sε) the sharp ε-linear isoperimetric constant of Sε and by
c1,g(Sε) the sharp ε-linear isoperimetric constant of Sε for intrinsic geodesic domains.

Lemma 6.5. Let S be a non-exceptional Riemann surface and ε ≥ 0 so that ε <

arcsinh 1. Then,
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Sε has LIIε ⇐⇒ Sε has LIIε for intrinsic geodesic domains in Sε.

In fact, c1,g(Sε) ≤ c1(Sε) ≤ c1,g(Sε) + 2.

Note that this lemma also holds for S, corresponding to the case ε = 0; Lemma 6.5
with ε = 0 was proved in [15, Lemma 1.2] and improved in [23, Theorem 7].

Proof. The first inequality is direct. For the second one, Collar Lemma and Bers’
theorem (see [4]) give LIIε with constant 2 for simply connected and doubly connected
domains. It is well known that these domains satisfy LII with constant 1 (see [15, Lemma
1.2] and [23, Theorem 7]). For other domains, Ω ⊂ Sε, write ∂Ω =

⋃n
j=1 gj , where each

gj can be assumed to be a non-trivial simple closed curve and n ≥ 3. Consider Ω̃, the
intrinsic geodesic domain in Sε bounded by

⋃n
j=1 βj where βj is the intrinsic geodesic in

Sε ∪ ∂Sε homotopic to gj . Then LS(∂εΩ̃) ≤ LS(∂εΩ) and AS(Ω) ≤ AS(Ω̃) + AS(Ω \ Ω̃)
where Ω \ Ω̃ is a disjoint union of doubly connected domains, each component bounded
by a pair βj and gj , or simply connected domains bounded by subsets of βj and gj with
the same endpoints. Since LS(βj) ≤ LS(gj), applying the LII for simply and doubly
connected domains to each component of Ω\ Ω̃ one gets AS(Ω\ Ω̃) ≤ 2LS(∂εΩ) and thus

AS(Ω) ≤ AS(Ω̃) + 2LS(∂εΩ) ≤ c1,g(Sε)LS(∂εΩ) + 2LS(∂εΩ),

and then c1(Sε) ≤ c1,g(Sε) + 2. This inequality and the first one prove the lemma. ¤

Finally the LII in S can be deduced from the LIIε in Sε,

Proposition 6.6. Let S be a non-exceptional Riemann surface. Then there exists
a universal positive constant ε0 ≤ arcsinh 1 verifying the following properties:

1. If Sε has LIIε for some 0 < ε < ε0, then S has LII. Moreover, c1(S) ≤ 2c1,g(Sε)+2.
2. If S has LII, then Sε has LIIε for every 0 < ε < min{ε0, (12c1,g(S))−1}. Moreover,

c1(Sε) ≤ (2πc1,g(S))/(2π − 1) + 2.

Proof. By Collar Lemma, there exists a positive constant ε0 ≤ arcsinh 1 so that
if 0 < ε < ε0, then AS(C \ Sε) ≤ AS(C ∩ Sε) for all C collars in S, and LS(η) ≤ 3ε for
every closed curve η ⊆ ∂Sε.

In order to prove the first item, consider any fixed geodesic domain Ω ⊂ S. Then

Ω ∩ Sε = Ω1 ∪ · · · ∪ Ωm

with {Ωk} disjoint intrinsic geodesic domains in Sε. Since 0 < ε < ε0,

AS(Ω) = AS(Ω ∩ Sε) + AS(Ω \ Sε) ≤ 2AS(Ω ∩ Sε)

= 2
∑

k

AS(Ωk) ≤ 2c1,g(Sε)
∑

k

LS(∂εΩk) = 2c1,g(Sε)LS(∂Ω).

Then c1,g(S) ≤ 2c1,g(Sε) and Lemma 6.5 gives the first item.
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By Lemma 6.5, the proof of the second item will follow if it is shown that when S

satisfies the LII then Sε satisfies the LIIε for intrinsic geodesic domains. It will first
be shown that, as a consequence of the LII in S, for any geodesic domain Ω̃ in S, the
length of the short curves of its boundary is controlled by the length of the long curves;
concretely, LS(∂εΩ̃) ≥ (2π − 1)LS(∂Ω̃ \ ∂εΩ̃).

To this end, consider Ω̃ a geodesic domain in S with ∂Ω̃ =
⋃n

j=1 βj (each βj is either
a simple closed geodesic or a cusp and n ≥ 3) and define J := {j : LS(βj) < (2c1,g(S))−1}
where c1,g(S) is the LII constant in S for geodesic domains. Then, if g denotes the genus
of Ω̃, by Gauss-Bonnet Theorem, the LLI can be written as

c1,g(S)
( ∑

j∈J

LS(βj) +
∑

j /∈J

LS(βj)
)
≥ 2π(n− 2 + 2g),

and using that (c1,g(S))−1 ≥ 2(]J)−1
∑

j∈J LS(βj) one gets

∑

j /∈J

LS(βj) ≥
(

4π(n− 2 + 2g)
]J

− 1
) ∑

j∈J

LS(βj) ≥ (2π − 1)
∑

j∈J

LS(βj).

If ε > 0 is chosen so that ε < ε0 and 3ε < (4c1,g(S))−1, then for any j /∈ J , βj is in
∂εΩ̃, and the above inequality implies LS(∂εΩ̃) ≥ (2π− 1)LS(∂Ω̃ \ ∂εΩ̃) for any geodesic
domain in S.

Let us show now that Sε (with ε < min{ε0, (12c1,g(S))−1} chosen as above) satisfies
the LIIε for intrinsic geodesic domains. If Ω is an intrinsic geodesic domain in Sε then
it can be written as Ω = Ω̃∩Sε, where Ω̃ is a geodesic domain in S such that ∂εΩ = ∂εΩ̃
and since Ω̃ satisfies the LII in S,

AS(Ω) ≤ AS(Ω̃) ≤ c1,g(S)
(
LS(∂εΩ̃) + LS(∂Ω̃ \ ∂εΩ̃)

) ≤ 2πc1,g(S)
2π − 1

LS(∂εΩ).

Then Lemma 6.5 gives the second item. ¤

Following Kanai’s procedure, the LII will be transferred from bordered surfaces to
nets and viceversa. To this end, a subset G of S is said to be δ-separated for δ > 0,
if dS(p, q) > δ whenever p and q are distinct points of G. It is called maximal if it is
maximal with respect to the order relation of inclusion.

Consider the distance dG in G induced by the distance dS of S. Concretely, given
p1, p2 ∈ G, dG(p1, p2) = M if and only if M ≥ 0 is the only natural number such that

δM ≤ dS(p1, p2) < δ(M + 1). (6.22)

The set of neighbors of G is defined as N(p) = {q ∈ G : dG(p, q) = 1} and gives a net
structure to the set G. Such net will be referred to as δ-net.

The linear isoperimetric inequality on nets is therefore defined as follows.

Definition 6.7. Let G be a net. For a subset T of G, define its boundary as
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∂T := {q ∈ G \ T : dG(q, T ) = 1}. It is said that G satisfies the LII if there exists a
finite constant c1(G) > 0 so that for any non-empty finite subset T of G,

#T ≤ c1(G)#∂T.

Let S be a Riemann surface and 0 < ε < arcsinh 1. Note that Lemma 3.2 gives that
ι(Vε(Sε)) ≥ c(ε), where c(ε) := arcsinh(e−ε sinh ε). The pair (G, δ) will denote a δ-net
associated to the pair (S, ε) as follows: Set δ ≤ ι(Vε(Sε))/2, and choose a maximal δ-net
G on Sε so that

AS(Sε ∩BS(p, δ)) >
1
2
AS(BS(p, δ)), (6.23)

for all p ∈ G; such choice of G is possible due to Collar Lemma. Note also that G does
not need to be connected.

Notice that since (G, δ) is maximal, there are no neighborhoods of points of Sε that
are not covered by balls BS(p, δ) with p ∈ G. If this were the case one could add such
point p to the net G contradicting maximality. If nevertheless there was a point q on the
boundary of some balls BS(p, δ) not covered, these balls could be slightly moved so that
a neighborhood of q would not be covered and, as before, add q to the net. So, without
loss of generality, Sε ⊂

⋃
p∈G BS(p, δ).

The strategy of the proof of Theorem 1.1 is as follows: Consider S and S′ Riemann
surfaces and f : S −→ S′ a quasi-isometry, (G, δ) and (G′, δ′) nets in (S, ε) and (S′, ε′). It
will be assumed that S′ satisfies the LII that will be transferred to the net (G′, δ′). Then
it will be shown that (G, δ) and (G′, δ′) are quasi-isometric and so (G, δ) also satisfies
the LII. Finally, this LII will be transferred to S. The next two results deal with
transferring the LII between surfaces and nets: A direct application of [20, Lemma 4.5]
is the following result:

Lemma 6.8. Let S′ be a non-exceptional Riemann surface satisfying the LII and
0 < ε′ < min{ε0, (12c1(S′))−1}, where ε0 is the constant in Proposition 6.6. Let (G′, δ′)
be a δ′-net associated to (S′, ε′). Then,

(G′, δ′) also satisfies the LII and c1(G′) ≤ 12 sinh δ′

cosh(δ′/2)− 1
c1(S′).

Proof. Proposition 6.6 implies that S′ε′ satisfies the LIIε′ and applying Kanai’s
arguments in [20, Lemma 4.5] to S′ε′ and G′ the proof follows. ¤

The following lemma gives the other direction. To this end, recall Buser’s local lineal
isoperimetric inequality ([6, p. 215], [20, p. 411]).

Lemma 6.9. Let (G, δ) be a δ-net associated to (S, ε). Then

(G, δ) has LII =⇒ Sε has LIIε. (6.24)

Moreover, c1(Sε) ≤ 2 mc1,l(Sε)max{1, 2 c1(G)(sinh(9δ/4)/sinh(δ/4))2} + 2, where
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c1,l(Sε) is the constant in the local LII and m =: supz∈S #{p ∈ G : z ∈ BS(p, δ)} < ∞.

Proof. As in the previous lemma, it is possible to reproduce Kanai’s proof in [20,
Lemma 4.5] to get the result, mainly because it deals with a subset of S with positive
injectivity radius, Sε.

By Lemma 6.5, it suffices to consider Ω an intrinsic geodesic domain of Sε, for which
it is possible to separate ∂Sε from ∂εΩ (by Collar Lemma). That is, if p ∈ ∂εΩ, there
exists a ball BS(p, 3ε) so that ∂Sε ∩ BS(p, 3ε) = ∅. Following Kanai’s proof, define sets
O, P0 ⊂ G

O :=
{

p ∈ G : AS(BS(p, δ) ∩ Ω) >
1
2
AS(BS(p, δ))

}
,

P0 := {p ∈ G \O : BS(p, δ) ∩ Ω 6= ∅},

so that Ω ⊂ ⋃
p∈O∪P0

BS(p, δ).
Since Ω is an intrinsic geodesic domain its boundary is a union of simple closed

curves, some of them curves of ∂Sε and the rest geodesics on S (the latter conform ∂εΩ).
Since (G, δ) is a δ-net associated to (S, ε), Collar Lemma implies that if BS(p, δ) (for
p ∈ G) intersects one curve of ∂Ω \ ∂εΩ ⊂ ∂Sε then it does not intersect any other curve
of ∂Ω. If this is the case, the fact that G ⊂ Sε and condition (6.23) imply that p ∈ O.
Therefore, BS(p, δ)∩ (∂Ω \ ∂εΩ) = ∅ for all p ∈ P0. Since ι(Sε) > δ the local LII can be
applied

∑

p∈P0

AS(BS(p, δ) ∩ Ω) ≤ c1,l(Sε)
∑

p∈P0

LS(BS(p, δ) ∩ ∂Ω)

= c1,l(Sε)
∑

p∈P0

LS(BS(p, δ) ∩ ∂εΩ) ≤ c1,l(Sε)mLS(∂εΩ).

Now, following Kanai’s estimates:

AS(Ω) ≤
∑

p∈O

AS(BS(p, δ) ∩ Ω) +
∑

p∈P0

AS(BS(p, δ) ∩ Ω) ≤ A(δ)]O + c1,l(Sε)mLS(∂εΩ),

where A(r) = 4π sinh2 r is the area of balls with radius r in D (the universal covering
space of S). Writing ν := LS(∂εΩ)/AS(Ω), then AS(Ω) ≤ A(δ)/(1 − c1,l(Sε)mν)]O.
If ν ≥ (2mc1,l(Sε))−1, then the LIIε holds for Ω with constant 2mc1,l(Sε); otherwise,
ν ≤ (2mc1,l(Sε))−1 and thus

AS(Ω) ≤ 2A(δ)]O.

On the other hand, points in ∂εΩ will be near of points in ∂O (since ∂O ⊂ Sε). More
precisely, if p ∈ ∂O then there exists p′ ∈ N(p) ∩ O, and BS(p, δ) ∩ σ 6= ∅ for some
simple closed geodesic σ ⊂ ∂εΩ. Note that σ separates p from p′ in BS(p′, 2δ) since it is
a geodesic and so AS(BS(z, δ)) ∩ Ω) = AS(BS(z, δ))/2 for z ∈ σ. Thus dS(p′, σ) < 2δ
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and therefore ∂O ⊂ V2δ(∂εΩ). Let Q be a maximal δ-separated subset of ∂εΩ; then⋃
p∈∂O BS(p, δ/2) ⊂ V5δ/2(∂εΩ) ⊂ ⋃

q∈Q BS(q, 9δ/2), which implies

A(δ/2)]∂O ≤
∑

q∈Q

AS(BS(q, 9δ/2)) ≤ A(9δ/2)
A(δ)

∑

q∈Q

AS(BS(q, δ))

=
2A(9δ/2)

A(δ)

∑

q∈Q

AS(BS(q, δ) ∩ Ω)

≤ 2c1,l(Sε)A(9δ/2)
A(δ)

∑

q∈Q

LS(BS(q, δ) ∩ ∂εΩ)

≤ 2mc1,l(Sε)A(9δ/2)
A(δ)

LS(∂εΩ),

where the local isoperimetric inequality was once again used. Combining this estimate
with the previous one, and using the LII for G the desired result is obtained also in the
case ν ≤ (2mc1,l(Sε))−1. ¤

As a last step, it will be constructed a quasi-isometry between the two nets (G, δ)
and (G′, δ′) associated to (S, ε) and (S, ε′) respectively with 0 < ε < arcsinh 1 and 0 < ε′,
ε̃ < ε given by Lemma 6.1.

Proposition 6.10. The nets (G, δ) and (G′, δ′) are quasi-isometric. More pre-
cisely, there is a C ′-full (A,B)-quasi-isometry g : G −→ G′, with A = amax{δ′/δ, δ/δ′},
B = 5 + (aδ/δ′) + b/δ′ and C ′ = 2 + (a(2δ + C(ε, ε̃)) + 2b + c)/δ′ where C(ε, ε̃) is the
maximum diameter of the connected components of Sε̃ \ Sε where ε̃ is given by Lemma
6.1.

Moreover, for any X ⊂ G, #X ≤ µ#g(X) where µ ≤ 13a(2δ′+b)/δ.

Remark 6.11. No connectivity is assumed for either G or G′. Note that the
constant C(ε, ε̃) does not depend on S due to Margulis Lemma.

In [20, Lemma 4.2] Kanai proves that the LII on graphs is preserved by quasi-
isometries; thus an immediate consequence is:

Corollary 6.12. For (G, δ) and (G′, δ′) as above,

(G, δ) satisfies the LII ⇐⇒ (G′, δ′) satisfies the LII.

Moreover, c1(G) ≤ µ12A(B+2C−1)+C−2c1(G′), with µ as in Proposition 6.10.

Proof. The function g will be defined as follows:
Given p1 ∈ G, there exists at least one point p′1 ∈ G′ so that p′1 ∈ BS′(f(p1), 2δ′),

since f(Sε) ⊂ S′ε′ by Lemma 6.1. Define g(p1) := p′1.
Consider two points p1, p2 ∈ G and suppose dG′(g(p1), g(p2)) = M for some M ≥ 0;

that is,
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Mδ′ ≤ dS′(g(p1), g(p2)) < (M + 1)δ′.

Transferring this property to f :

dS′(f(p1), f(p2)) ≤ dS′(f(p1), g(p1)) + dS′(f(p2), g(p2)) + dS′(g(p1), g(p2))

≤ 4δ′ + (M + 1)δ′ = (5 + M)δ′.

This estimate together with f being an (a, b)-quasi-isometry give:

1
a
dS(p1, p2)− b ≤ dS′(f(p1), f(p2)) ≤ (5 + M)δ′ ≤ δ′(5 + dG′(g(p1), g(p2))),

that is,

1
aδ′

dS(p1, p2)−
(

b

δ′
+ 5

)
≤ dG′(g(p1), g(p2)).

Use the fact that δdG(p1, p2) ≤ dS(p1, p2) to finally conclude

δ

aδ′
dG(p1, p2)−

(
5 +

b

δ′

)
≤ dG′(g(p1), g(p2)).

The other direction follows from an analogous argument, obtaining in this case:

dG′(g(p1), g(p2)) ≤ aδ

δ′
dG(p1, p2) +

(
4 +

b + aδ

δ′

)
.

Finally it will be shown that

G′ ⊂
⋃

p∈G

B′
G(g(p), C ′).

Take q ∈ G′ ⊂ S′ε′ and 0 < ε̃ < ε given by Lemma 6.1 such that S′ε′ ⊂ Vc(f(Sε̃));
then q ∈ Vc(f(Sε̃)). Therefore, there exist x̃ ∈ Sε̃ and x ∈ Sε so that dS(x, x̃) < C(ε, ε̃)
and dS′(f(x̃), q) ≤ c (f is c-full). Since G is a maximal δ-net in Sε there exists p ∈ G

such that dS(p, x) < 2δ. Let r ∈ G′ be given by r := g(p); then dS′(r, f(p)) < 2δ′.
These facts together with f being an (a, b)-quasi-isometry, give:

dS′(q, g(p)) ≤ a(2δ + C(ε, ε̃)) + 2b + c + 2δ′.

Since dG′(q, g(p)) ≤ dS′(q, g(p))/δ′, then dG′(q, g(p)) ≤ 2 + (a(2δ + C(ε, ε̃)) + 2b + c)/δ′.
Finally, #X ≤ µ#g(X) where µ ≤ 13(a(2δ′+b))/δ will be shown. It is easy to check

that for Riemann surfaces, the number of points p ∈ G contained in a ball of radius δ

is at most 13 since they are δ-separated. By the way g was defined, if p, q ∈ G, with
g(p) = g(q), then dS(p, q) ≤ a(2δ′ + b). And thus the corollary follows. ¤
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Finally, the combination of all previous results will give the proof of Theorem 1.1.

6.1. Proof of Theorem 1.1.
Assume that S′ has LII. If ε0 is the constant in Proposition 6.6, let us fix 0 < ε < ε0

and let 0 < ε′, ε̃ < min{ε0, (12c1(S′))−1} given by Lemma 6.1. Let (G′, δ′) be a net
associated to (S′, ε′). Since S′ has LII, by Lemma 6.8, G′ has LII. If (G, δ) is a
net associated to (S, ε), then Proposition 6.10 gives that (G, δ) and (G′, δ′) are quasi-
isometric, and Corollary 6.12 concludes that (G, δ) has LII. Lemma 6.9 states that Sε

has LIIε and, since 0 < ε < ε0, Lemma 6.6 gives that S has LII.
Moreover, the isoperimetric constant obtained c1(S) < ∞ depends just on

ε, a, b, c, c1(S′). In order to avoid the dependence on ε, it suffices to take ε = ε0/2,
since ε0 is a universal constant. ¤

7. Surfaces with finite genus.

In order to obtain a similar result to Theorem 1.1 for surfaces with finite genus, the
following lemma is needed.

Lemma 7.1. Let S be a non-exceptional Riemann surface with finite genus and
infinite area. Let σ1, . . . , σk be a set of pairwise disjoint simple closed geodesics in S

such that S \ {σ1 ∪ · · · ∪ σk} is connected and has not genus; denote by S0 the bordered
surface obtained as the completion of S \ {σ1 ∪ · · · ∪ σk}. Then the following facts hold :

• S and S0 are quasi-isometric.
• S satisfies the LII if and only if S0 satisfies the LII.

Proof. Theorem 2.2 in [34] gives the first statement.
In order to prove the second one, assume that S0 satisfies the LII (the other im-

plication is direct). Seeking for a contradiction let us suppose that S does not satisfy
the LII. Hence, by Lemma 6.5 there exists a sequence of geodesic domains Ωn in S

with AS(Ωn)/LS(∂Ωn) → ∞. Since S0 satisfies the LII, without loss of generality,
assume that there exists 1 ≤ jn ≤ k with σjn

⊂ ∂Ωn for each n; furthermore, since
LS(σ1∪· · ·∪σk) is a fixed number (and then bounded), one can also assume AS(Ωn) ≤ c

for some constant c and every n, and LS(∂Ωn) → 0 (note that LS(∂Ωn) > 0 since S has
infinite area).

Let us consider a ball BS(z, r) in S with σ1 ∪ · · · ∪ σk ⊂ BS(z, r); let us choose now
R > r with AS(BS(z, R) \ BS(z, r)) > c (this is possible since S has infinite area). Let
us define u := min{LS(σ) : σ is a simple closed geodesic with σ ∩ BS(z, R) 6= ∅}. Since
AS(BS(z,R) \ BS(z, r)) > AS(Ωn) and σ1 ∪ · · · ∪ σk ⊂ BS(z, r), there exists a simple
closed geodesic σn ⊆ ∂Ωn with σn ∩ BS(z, R) 6= ∅ and σn 6= σj for j = 1, . . . , k (since
S \ {σ1 ∪ · · · ∪ σk} is connected and S has infinite area, there is no geodesic domain Ω in
S with ∂Ω ⊆ σ1 ∪ · · · ∪ σk). Hence,

AS(Ωn) ≤ c
LS(σn)

u
≤ c

u
LS(∂Ωn),

which contradicts AS(Ωn)/LS(∂Ωn) →∞. ¤
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7.1. Proof of Theorem 1.2.
It is not difficult to check that S has finite area if and only if S′ has finite area;

in this case, S and S′ do not satisfy the LII. Otherwise, the theorem is a consequence
of Lemma 7.1 and Theorem 1.1 (which also holds for bordered surfaces whose border
is a finite union of simple closed geodesics; it suffices to take ε, ε′, ε̃ less than half the
minimum of the lengths of these simple closed geodesics). ¤

It is not possible to obtain a quantitative version of Theorem 1.2, as shows the
following example.

Example 7.2. There exist constants a, b, c, with the following property: for each
n there exist non-exceptional Riemann surfaces with finite genus Sn satisfying the LII

and a c-full (a, b)-quasi-isometry fn : Sn → S1, with limn→∞ c1(Sn) = ∞.
Let us consider the bordered surfaces Y1 and X in Example 2.3, and a sequence

{Xm}m≥1 of bordered surfaces isometric to X; denote by Rn the bordered surface ob-
tained from X1, . . . , Xn by pasting a boundary curve of Xm with a boundary curve of
Xm+1 for every 1 ≤ m ≤ n− 1 (Rn is a surface with genus n and two boundary curves).
Consider now a generalized Y -piece Y0 with a cusp and such that ∂Y0 is the union of two
simple closed geodesics with length 1. Denote by R0 the bordered surface obtained by
pasting two boundary curves of Y1 with two boundary curves of Y0 (R0 is a torus with
a cusp and a hole). Sn is the (non bordered) surface obtained by pasting a funnel (with
boundary of length 1) to one boundary curve of Rn and R0 to the other boundary curve
of Rn.

Lemma 2.2 gives that Sn satisfies the LII for every n.
The domain

⋃n
m=1 Xm in Sn has area 4πn and its boundary has length 2 for every

n ≥ 1. This implies that limn→∞ c1(Sn) = ∞.
Finally, let us prove the existence of c-full (a, b)-quasi-isometries fn : Sn → S1. Fix

geodesic rays γn in Sn starting in ∂(R0 ∪ Rn). Let us consider the bijective isometry
gn : γn → γ1. We can easily check that the map hn : R0 ∪Rn → R0 ∪R1 defined in the
following way is a quasi-isometry with constants which do not depend on n: if pn(z) is
the nearest point in γn from z ∈ R0 ∪Rn, then hn(z) = gn(pn(z)). Define fn : Sn → S1

as follows: fn = hn on the interior of R0∪Rn, and fn is any isometry between the funnels
of Sn and S1. Now, we can easily check that f is a quasi-isometry with constants which
do not depend on n.

8. Non-linear isoperimetric inequalities.

This section deals with α-isoperimetric inequalities with 1/2 ≤ α < 1, which have a
very different behavior from LII.

Proposition 8.1. If a Riemann surface S satisfies ι(S) = 0, then S does not
satisfy the α-isoperimetric inequality for each 1/2 ≤ α < 1.

Proof. Seeking for a contradiction, let us assume that S satisfies the α-
isoperimetric inequality for some 1/2 ≤ α < 1.

If S has a cusp, let us consider the a-collars C(a) of the cusp, with 0 < a ≤ 2.
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It is well known that AS(C(a)) = LS(∂C(a)) = a; hence, aα ≤ cαa, which gives a
contradiction if a → 0+.

If S has no cusp, then there exists a sequence of simple closed geodesics {σn} with
limn→∞ LS(σn) = 0. Denote by Cn the collar of σn of width 1. It is well known that
AS(Cn) = 2LS(σn) sinh 1 and LS(∂Cn) = 2LS(σn) cosh 1; hence, (2LS(σn) sinh 1)α ≤
cα2LS(σn) cosh 1, which gives a contradiction if n →∞. ¤

Theorem 1.4 follows from Proposition 8.1 and [20, Theorem 4.1].
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Potential Anal., 15 (2001), 199–244.

[ 8 ] I. Chavel, Eigenvalues in Riemannian Geometry, Pure Appl. Math., 115, Academic Press, New

York, 1984.

[ 9 ] I. Chavel, Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives, Cam-

bridge Tracts in Math., 145, Cambridge University Press, Cambridge, 2001.

[10] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Problems in Analysis,

Princeton University, 1969, (ed. Robert C. Gunning), Princeton University Press, Princeton,

1970, pp. 195–199.

[11] J. L. Fernández and M. V. Melián, Bounded geodesics of Riemann surfaces and hyperbolic man-

ifolds, Trans. Amer. Math. Soc., 347 (1995), 3533–3549.

[12] J. L. Fernández and M. V. Melián, Escaping geodesics of Riemannian surfaces, Acta Math., 187

(2001), 213–236.

[13] J. L. Fernández, M. V. Melián and D. Pestana, Quantitative mixing results and inner functions,

Math. Ann., 337 (2007), 233–251.

[14] J. L. Fernández, M. V. Melián and D. Pestana, Expanding maps, shrinking targets and hitting

times, Nonlinearity, 25 (2012), 2443–2471.
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[39] E. Touŕıs, Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces, J. Math.

Anal. Appl., 380 (2011), 865–881.

Alicia Canton

Universidad Politecnica de Madrid

Avenida Arco de la Victoria, 4

Ciudad Universitaria 28040 Madrid

Spain

E-mail: alicia.canton@upm.es

Ana Granados

Saint Louis University

Madrid Campus

Avenida del Valle 34

28003 Madrid

Spain

E-mail: agranado@slu.edu

Ana Portilla

Saint Louis University

Madrid Campus

Avenida del Valle 34

28003 Madrid

Spain

E-mail: aportil2@slu.edu

Jose M. Rodriguez

Universidad Carlos III de Madrid

Avenida de la Universidad 30

28911 Leganés - Madrid

Spain

E-mail: jomaro@math.uc3m.es

http://dx.doi.org/10.2969/jmsj/03820227
http://dx.doi.org/10.2969/jmsj/03820227
http://dx.doi.org/10.2996/kmj/1123767010
http://dx.doi.org/10.2996/kmj/1123767010
http://dx.doi.org/10.1016/S0926-2245(96)00051-4
http://dx.doi.org/10.1016/S0926-2245(96)00051-4
http://dx.doi.org/10.2478/s11533-012-0036-4
http://dx.doi.org/10.1007/BF02921869
http://dx.doi.org/10.5565/PUBLMAT_53109_04
http://dx.doi.org/10.1007/BF02566252
http://dx.doi.org/10.5565/PUBLMAT_38194_19
http://dx.doi.org/10.5565/PUBLMAT_38194_19
http://dx.doi.org/10.5565/PUBLMAT_38294_15
http://dx.doi.org/10.1023/B:AMHU.0000028240.16521.9d
http://dx.doi.org/10.1007/s10114-005-0547-z
http://dx.doi.org/10.1007/s10114-005-0547-z
http://dx.doi.org/10.2307/1970201
http://dx.doi.org/10.2307/1970201
http://dx.doi.org/10.1090/S0002-9939-1993-1158010-1
http://dx.doi.org/10.1090/S0002-9939-1993-1158010-1
http://dx.doi.org/10.1016/j.jmaa.2011.02.067
http://dx.doi.org/10.1016/j.jmaa.2011.02.067



