Quasi-isometries and isoperimetric inequalities in planar domains

By Alicia Canton, Ana Granados, Ana Portilla and Jose M. Rodriguez

(Received Jan. 25, 2012)
(Revised Jan. 22, 2013)

Abstract

This paper studies the stability of isoperimetric inequalities under quasi-isometries between non-exceptional Riemann surfaces endowed with their Poincaré metrics. This stability was proved by Kanai in the more general setting of Riemannian manifolds under the condition of positive injectivity radius. The present work proves the stability of the linear isoperimetric inequality for planar surfaces (genus zero surfaces) without any condition on their injectivity radii. It is also shown the stability of any non-linear isoperimetric inequality.

1. Introduction.

An interesting problem in the study of geometric properties of surfaces is to consider their stability under appropriate deformations. In the 1985 , in [20] M. Kanai proved the quasi-isometric stability (see the definition of quasi-isometry in Section 2) of several geometric properties for a large class of Riemannian manifolds.

We shall be interested not only in his results but in the ideas behind the proofs. Concretely, those relating the manifold with a particular graph (an ε-net of the manifold) in order to study the stability of the quasi-isometry. Several authors have followed Kanai in studying the stability of some other property, or in proving the equivalence of a manifold with a different associated graph (see, e.g., $[\mathbf{1}],[\mathbf{7}],[\mathbf{1 6}],[\mathbf{1 9}],[\mathbf{2 1}],[\mathbf{2 2}],[\mathbf{2 8}]$, [29], [32], [33], [35], [37], [39]).

Quasi-isometries play a central role in the theory of Gromov hyperbolic spaces for they preserve hyperbolicity of geodesic metric spaces (see, e.g., [17], [18]).

A non-exceptional Riemann surface S will mean a two-dimensional manifold with a complete conformal metric of constant negative curvature -1 . In this case, the universal covering space of S is the unit disk \mathbb{D} endowed with its Poincaré metric. The only exceptional Riemann surfaces are the sphere, the plane, the punctured plane and the tori.

[^0]A Riemann surface S satisfies the α-isoperimetric inequality $(1 / 2 \leq \alpha \leq 1)$ if there exists a constant $c_{\alpha}(S)$ such that

$$
\begin{equation*}
A_{S}(\Omega)^{\alpha} \leq c_{\alpha}(S) L_{S}(\partial \Omega) \tag{1.1}
\end{equation*}
$$

for every relatively compact domain $\Omega \subset S$. Throughout, A_{S}, L_{S} and d_{S} refer to Poincaré area, length and distance of S and $L I I$ refers to the 1-isoperimetric inequality also known as the linear isoperimetric inequality.

There are close connections between $L I I$ and some conformal invariants of Riemann surfaces, namely the bottom of the spectrum of the Laplace-Beltrami operator, the exponent of convergence, and the Hausdorff dimensions of the sets of both bounded geodesics and escaping geodesics in the surface (see [5], [6, p. 228], [10], [11], [12], [13], [14], [15], [24], [25], [38, p.333]). Isoperimetric inequalities are of interest in pure and applied mathematics (see, e.g., $[\mathbf{9}],[\mathbf{2 7}]$).

The injectivity radius $\iota(p)$ of $p \in S$ is defined as the supremum of those $r>0$ such that $B_{S}(p, r)$ is simply connected or, equivalently, as half the infimum of the lengths of the (homotopically non-trivial) loops based at p. The injectivity radius $\iota(S)$ of S is the infimum over $p \in S$ of $\iota(p)$.

This paper considers the stability of isoperimetric inequalities under quasi-isometries between non-exceptional Riemann surfaces. This stability was proved by Kanai in [20] under the hypothesis $\iota(S)>0$ in the very general setting of Riemannian manifolds. Example 2.3 in the next section shows that the stability fails without the hypothesis $\iota(S)>0$. Since this example involves non-zero genus surfaces, it is natural to wonder if the stability holds for planar surfaces.

The main result in this paper is the following.
Theorem 1.1. Let S and S^{\prime} be quasi-isometric non-exceptional genus zero Riemann surfaces. Then S^{\prime} satisfies the linear isoperimetric inequality if and only if S satisfies the linear isoperimetric inequality. Furthermore, if $f: S \longrightarrow S^{\prime}$ is a c-full (a, b) -quasi-isometry, and $c_{1}\left(S^{\prime}\right)<\infty$ then $c_{1}(S) \leq C$, where C is a universal constant which $j u s t ~ d e p e n d s ~ o n ~ a, b, c$ and $c_{1}\left(S^{\prime}\right)$.

For surfaces of positive finite genus, the following result shows that the first conclusion of Theorem 1.1 holds:

Theorem 1.2. Let S and S^{\prime} be quasi-isometric non-exceptional Riemann surfaces with finite genus. Then $S^{\prime \prime}$ satisfies the LII if and only if S satisfies the LII.

However Example 7.2 shows that the second conclusion of Theorem 1.1 fails in this case of positive finite genus.

The idea behind the proof of Theorem 1.1 is simple: each surface is split into a thin part (with small injectivity radius) and a thick part; a slight modification of the proof of Kanai's theorem applied to the thick part, together with some new arguments to show that the thin part is "essentially" preserved under the quasi-isometry give the theorem. The difficulty is the following: two quasi-isometric surfaces have a similar shape at a large scale (if viewed from sufficiently far), but they can look very different at a small
scale (by definition a quasi-isometry may not be continuous). In particular, the image of a continuous loop by a quasi-isometry need not be a continuous curve, and thus the injectivity radii can be very different in two quasi-isometric surfaces (see, e.g., Examples 2.4 and 2.5). Theorem 1.3 deals with this situation and states that a quasi-isometry between planar surfaces maps points with small injectivity radius to points with small injectivity radius (in a precise quantitative way).

Theorem 1.3. Let S and S^{\prime} be non-exceptional genus zero Riemann surfaces and let $f: S \longrightarrow S^{\prime}$ be a c-full (a, b)-quasi-isometry. For each $\varepsilon^{\prime}>0$ there exists $\varepsilon>0$ which just depends on $\varepsilon^{\prime}, a, b, c$, such that if $\iota(z)<\varepsilon$ then $\iota(f(z))<\varepsilon^{\prime}$. Moreover, given $\varepsilon_{1}>0$, ε can be taken so that $\varepsilon<\varepsilon_{1}$.

In fact, the core of this work is devoted to proving Theorem 1.3.
We show that a very different situation appears when dealing with the α isoperimetric inequality, $1 / 2 \leq \alpha<1$.

Theorem 1.4. Let S and S^{\prime} be quasi-isometric non-exceptional Riemann surfaces with $\iota(S)>0$, and $1 / 2 \leq \alpha<1$. Then S^{\prime} satisfies the α-isoperimetric inequality if and only if S satisfies the α-isoperimetric inequality and $\iota\left(S^{\prime}\right)>0$.

Note that here we have no hypothesis on genus.
Hence, the behavior of the α-isoperimetric inequality in Riemann surfaces under quasi-isometries is very different in the cases $\alpha=1$ and $\alpha<1$.

The outline of this paper is as follows. Section 2 contains some background and examples. In Section 3 the continuity of the injectivity radius in a Riemann surface is studied. Section 4 contains some technical lemmas on quasi-isometries which will be needed in Section 5 in order to control the distortion of the injectivity radius under quasi-isometries. In Section 6 the proof of Theorem 1.1 is given, and finally, Sections 7 and 8 are devoted to generalize this theorem to finite genus surfaces and to non-linear isoperimetric inequalities, respectively.

2. Background and examples.

A function between two metric spaces $f: X \longrightarrow Y$ is said to be an (a, b)-quasiisometric embedding with constants $a \geq 1, b \geq 0$, if

$$
\frac{1}{a} d_{X}\left(x_{1}, x_{2}\right)-b \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq a d_{X}\left(x_{1}, x_{2}\right)+b, \quad \text { for every } x_{1}, x_{2} \in X
$$

Such a quasi-isometric embedding f is a quasi-isometry if, furthermore, there exists a constant $c \geq 0$ such that f is c-full, i.e., if for every $y \in Y$ there exists $x \in X$ with $d_{Y}(y, f(x)) \leq c$.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry between them.

An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometric embedding between an interval of \mathbb{R} and X. A geodesic in X is a (1,0)-quasigeodesic.

It is easy to check that to be quasi-isometric is an equivalence relation on the set of
metric spaces.
The word geodesic will always be used with this meaning except for the case of either simple closed geodesics (which are just local geodesics) or geodesic loops (which are just local geodesics except in their basepoints).

The surface S will be split into thin and thick parts, and some standard tools for constructing Riemann surfaces will be needed. Doubly connected domains will be crucial.

A collar in a non-exceptional Riemann surface S about a simple closed geodesic σ is a doubly connected domain in S "bounded" by two Jordan curves (called the boundary curves of the collar) orthogonal to the pencil of geodesics emanating from σ; such collar is equal to $\left\{p \in S: d_{S}(p, \sigma) \leq d\right\}$, for some positive constant d. The constant d is called the width of the collar.

Let S be a non-exceptional Riemann surface with a cusp q (if $S \subset \mathbb{C}$, every isolated point in ∂S is a cusp). A collar in S about q is a doubly connected domain in S "bounded" both by q and a Jordan curve (called the boundary curve of the collar) orthogonal to the pencil of geodesics emanating from q. It is well known that the length of the boundary curve is equal to the area of the collar (see, e.g., [4]). A collar of area β is called a β-collar.

A Y-piece is a compact bordered Riemann surface which is topologically a sphere without three disks and whose border is the union of three simple closed geodesics. Given three positive numbers a, b, c, there is a unique (up to conformal mapping) Y-piece such that their boundary curves have lengths a, b, c (see, e.g., [31, p.410]). They are a standard tool for constructing Riemann surfaces ([8, Chapter X.3] and [6, Chapter 1]).

A generalized or degenerated Y-piece is a bordered or non-bordered Riemann surface which is topologically a sphere without n open disks and m points, with integers $n, m \geq 0$ and $n+m=3$, so that the n boundary curves are simple closed geodesics and the m deleted points are cusps. Observe that a generalized Y-piece is topologically the union of a Y-piece and m cylinders, with $0 \leq m \leq 3$.

A funnel is a bordered Riemann surface which is topologically a cylinder and whose border is a simple closed geodesic. Given any positive number a, there is a unique (up to conformal mapping) funnel such that its boundary curve has length a.

We collect below two well known hyperbolic trigonometric formulae (see, e.g., [6, p. 454]) which will be useful.

Proposition 2.1. The following formulae hold for polygons on the unit disk (and then for simply connected polygons on any non-exceptional Riemann surface).
(1) If a, b, c are the lengths of the sides of a right-angled geodesic triangle and c is the length of the hypotenuse, then $\cosh c=\cosh a \cosh b$.
(2) Let us consider a geodesic quadrilateral with three right angles and let ϕ the other angle. If α, β are the lengths of the sides which meet with angle ϕ and a is the length of the opposite side to the side with length α, then $\sinh \alpha=\sinh a \cosh \beta$.

Example 2.3 shows that the stability of $L I I$ fails for surfaces with zero injectivity radius. We need a previous result.

Lemma 2.2. A non-exceptional Riemann surface of finite type satisfies the LII if
and only if it has at least a funnel.
Proof. Let S be a non-exceptional Riemann surface of finite type.
If S has not funnels, then it has finite area and consequently it has not $L I I$.
Assume now that S has at least a funnel. A domain $\Omega \subset S$ is said to be a geodesic domain if $\partial \Omega$ is a finite number of simple closed geodesics, and $A_{S}(\Omega)$ is finite. By Lemma 6.5 with $\varepsilon=0, S$ has $L I I$ if and only if it has $L I I$ for geodesic domains. Note that there are just a finite number of geodesic domains Ω in S; since S has at least a funnel, every geodesic domain Ω in S verifies $L_{S}(\partial \Omega)>0$; therefore, S satisfies the LII.

Example 2.3. There exist two non-exceptional Riemann surfaces S, S^{\prime} and a quasiisometry $f: S \rightarrow S^{\prime}$, such that $\iota(S)=\iota\left(S^{\prime}\right)=0, S$ does not satisfy the LII and S^{\prime} satisfies the LII.

Let us consider two isometric Y-pieces Y_{1}, Y_{2} such that ∂Y_{j} is the union of three simple closed geodesics with length 1 for $j=1,2$. Denote by X the bordered surface obtained by pasting two boundary curves of Y_{1} with two boundary curves of Y_{2} (X is a torus with two holes). Let us consider a sequence $\left\{X_{m}\right\}_{m \geq 1}$ of bordered surfaces isometric to X; denote by S_{0} the bordered surface obtained by pasting a boundary curve of X_{m} with a boundary curve of X_{m+1} for every $m \geq 1$. Consider now a generalized Y-piece Y_{0} with a cusp and such that ∂Y_{0} is the union of two simple closed geodesics with length 1.
S is the (non bordered) surface obtained by pasting a funnel (with boundary of length 1) to one boundary curve of Y_{0} and S_{0} to the other boundary curve of $Y_{0} . S$ does not satisfy the $L I I$ since $\bigcup_{m=1}^{n} X_{m}$ has area $4 \pi n$ and its boundary has length 2 for every $n \geq 1$.

The surface S^{\prime} is obtained by pasting a funnel (with boundary of length 1) to a generalized Y-piece Y^{*} with two cusps and such that ∂Y^{*} is a simple closed geodesics with length 1. Lemma 2.2 gives that S^{\prime} satisfies the LII.

Finally, let us prove the existence of a quasi-isometry $f: S \rightarrow S^{\prime}$. Fix geodesic rays γ, γ^{\prime} (geodesics whose domain is the interval $[0, \infty)$) in S_{0} and in the 2 -collar C of a fixed cusp of S^{\prime}, starting in ∂S_{0} and ∂C, respectively. Let us consider the bijective isometry $g: \gamma \rightarrow \gamma^{\prime}$. We can easily check that the map $f_{0}: S_{0} \rightarrow C$ defined in the following way is a quasi-isometry: if $p(z)$ is the nearest point in γ from $z \in S_{0}$, then $f_{0}(z)=g(p(z))$. Define $f: S \rightarrow S^{\prime}$ as follows: $f=f_{0}$ on S_{0}, f is any isometry between the funnels of S and S^{\prime}, f is any isometry between the 2-collar of the cusp of S and the 2 -collar of the cusp of S^{\prime} which does not intersect $f\left(S_{0}\right)$, and $f=u_{0}$ otherwise, where u_{0} is any fixed point in S^{\prime}. Now, we can easily check that f is a quasi-isometry.

The following examples show that the conclusion of Theorem 1.3 does not hold if S or S^{\prime} are surfaces of positive genus. In particular, Example 2.5 shows that thin parts are not in correspondence.

Example 2.4. There exist constants a, b, c, I_{1}, I_{2} with the following property: for each n there exist non-exceptional Riemann surfaces S_{n}, S_{n}^{\prime} and a c-full (a, b)-quasiisometry $f_{n}: S_{n} \rightarrow S_{n}^{\prime}$, such that $\iota(z) \geq n$ for every $z \in S_{n}$ and $I_{1} \leq \iota(z) \leq I_{2}$ for every
$z \in S_{n}^{\prime}$.
Let S_{n} be the annulus with the simple closed geodesic with length $2 n$. Consider an 1-net N_{n} of S_{n}; by [20] there exists a quasi-isometry $g_{n}: S_{n} \rightarrow N_{n}$ with universal constants. By [26, Theorem 3.4] (see also [3, Theorem 23]), there exist a cubic graph C_{n} and a quasi-isometry $h_{n}: N_{n} \rightarrow C_{n}$ with universal constants. Let us consider a sequence $\left\{Y_{m}\right\}$ of Y-pieces such that ∂Y_{m} is the union of three simple closed geodesics with length 1 for every m (therefore, they are isometric). It suffices to consider as S_{n}^{\prime} the surface obtained by pasting the Y-pieces $\left\{Y_{m}\right\}$ following the combinatorial design of C_{n}. Since [35, Theorem 3.8] or [39, Theorem 4.17] provide a quasi-isometry $u_{n}: C_{n} \rightarrow S_{n}^{\prime}$ with universal constants, there exists a quasi-isometry $f_{n}: S_{n} \rightarrow S_{n}^{\prime}$ with universal constants.

Example 2.5. There exist constants I_{1}, I_{2} with the following property: there exist non-exceptional Riemann surfaces S, S^{\prime} and a quasi-isometry $f: S \rightarrow S^{\prime}$, such that $I_{1} \leq \iota(z) \leq I_{2}$ for every $z \in S$ and $\iota\left(S^{\prime}\right)=0$.

Let us consider a sequence $\left\{X_{m}\right\}_{m \in \mathbb{Z}}$ of bordered surfaces isometric to the torus with two holes X in Example 2.3; then S is obtained by pasting a boundary curve of X_{m} with a boundary curve of X_{m+1} for every $m \in \mathbb{Z}$.

Consider now two isometric generalized Y-pieces Y_{3}, Y_{4} with a cusp and such that ∂Y_{j} is the union of two simple closed geodesics with length 1 for $j=3,4$. It suffices to consider S^{\prime} as the (non bordered) surface obtained by pasting the two boundary curves of Y_{3} with the two boundary curves of $Y_{4}\left(S^{\prime}\right.$ is a torus with two cusps).

The existence of a quasi-isometry $f: S \rightarrow S^{\prime}$ can be shown with a similar argument to the one used in Example 2.3.

3. Continuity of the injectivity radius.

The following result is well-known and easy to check.
Lemma 3.1. Let M be a Riemannian manifold and $x, y \in M$. Then $|\iota(x)-\iota(y)| \leq$ $d_{M}(x, y)$.

This last result can be improved for small values of the injectivity radius.
Lemma 3.2. Let S be a non-exceptional Riemann surface and $z, w \in S$. Then

$$
\iota(w) \geq \operatorname{arcsinh}\left(e^{-d_{S}(z, w)} \min \{1, \sinh \iota(z)\}\right)
$$

In particular, if $\sinh \iota(z), \sinh \iota(w) \leq 1$, then $|\log \sinh \iota(w)-\log \sinh \iota(z)| \leq d_{S}(z, w)$.
Proof. Let us choose geodesic loops γ_{z} and γ_{w} with respective base points z and w such that $\iota(z)=L_{S}\left(\gamma_{z}\right)$ and $\iota(w)=L_{S}\left(\gamma_{w}\right)$.

Assume first that γ_{z} and γ_{w} are freely homotopic. It is clear that the minimum value of $\iota(w)$ is attained if γ_{z} and γ_{w} bordered a cusp and z and w belong to the same geodesic escaping to the cusp.

As usual, consider a fundamental domain for S in the upper halfplane \mathbb{H} contained in $\{z \in \mathbb{H}: 0 \leq \Re z \leq 1\}$ and such that $\{z \in \mathbb{H}: 0 \leq \Re z \leq 1, \Im z \geq 1 / 2\}$ corresponds to the 2 -collar of this cusp in S. Let us represent γ_{z} (respectively, γ_{w}) in the upper
half-plane by means of a geodesic with endpoints $i \alpha$ and $i \alpha+1$ (respectively, $i \beta$ and $i \beta+1$, with $\beta>\alpha)$. Note that

$$
\begin{aligned}
& \sinh \iota(z)=\sinh \frac{d_{\mathbb{H}}(i \alpha, i \alpha+1)}{2}=\frac{1}{2 \alpha}, \\
& \sinh \iota(w)=\frac{1}{2 \beta}, \quad d_{S}(z, w)=d_{\mathbb{H}}(i \alpha, i \beta)=\log \frac{\beta}{\alpha}=\log \frac{\sinh \iota(z)}{\sinh \iota(w)}
\end{aligned}
$$

Hence, the minimum value of $\iota(w)$ is attained with $\iota(w)=\operatorname{arcsinh}\left(e^{-d_{S}(z, w)} \sinh \iota(z)\right)$.
Assume now that γ_{z} and γ_{w} are not freely homotopic. Let us consider a geodesic $[z, w]$ in S and the nearest point z_{0} to z in $[z, w]$ with a geodesic loop $\gamma_{z_{0}}$ freely homotopic to γ_{w} such that $\iota\left(z_{0}\right)=L_{S}\left(g_{z_{0}}\right)$. It is not difficult to see that $\iota\left(z_{0}\right) \geq \operatorname{arcsinh} 1$ (the injectivity radius of any point in the boundary of the 2-collar of a cusp). The previous $\operatorname{argument}$ gives $\iota(w) \geq \operatorname{arcsinh}\left(e^{-d_{S}\left(z_{0}, w\right)} \sinh \iota\left(z_{0}\right)\right) \geq \operatorname{arcsinh} e^{-d_{S}(z, w)}$. This finishes the proof of the first statement. The second statement is a direct consequence of the first one.

4. Technical lemmas on quasi-isometries.

A key step in the proof of our main result in this paper (Theorem 1.1) is to control the distortion of the injectivity radius under quasi-isometric transformations (see Theorems 1.3 and 5.1). Due to the complexity of the proofs of these theorems, this section is devoted to present some technical lemmas used in their proofs.

Let us consider $H>0$, a metric space X, and a subset $Y \subseteq X$. The set $V_{H}(Y):=$ $\{x \in X: d(x, Y) \leq H\}$ is called the H-neighborhood of Y in X.

A control on how collars behave under quasi-isometries will be needed, and thus a more general definition is required:

Let us consider a quasi-isometry $f: S \rightarrow S^{\prime}$, a finite or infinite geodesic $\gamma \subset S$ and a connected subset γ_{0} of that geodesic. Given two positive constants h and r, then the h-neighborhood of $f(\gamma)$ in S^{\prime} is an $\left(f, \gamma, \gamma_{0}, h, r\right)$-tube T if for every point $p \in \gamma_{0}$, the closed ball $\overline{B_{S^{\prime}}(f(p), r)}$ is contained in T.

In principle, although a tube does not need to be doubly connected, Theorems 4.5 and 4.6 will show that they are "essentially" doubly connected, and that explain the name.

We will use several times the following result known as Collar Lemma (see [30]).
Lemma 4.1. If σ is a simple closed geodesic in a non-exceptional Riemann surface S, then there exists a collar about σ of width d, for every $0<d \leq w$, where $\cosh w=$ $\operatorname{coth}\left(L_{S}(\sigma) / 2\right)$. Hence, if $L_{S}(\sigma)<2 \operatorname{arccoth}(\cosh t)$, then $w>t$.

Remark 4.2. Along this chapter, σ will denote a simple closed geodesic in S and w the width of the collar of σ, where $\cosh w=\operatorname{coth}\left(L_{S}(\sigma) / 2\right)$.

Denote by $C_{\sigma, d}$ the collar of σ of width d and by C_{σ} the collar of σ of width w. It is well known that if σ_{1} and σ_{2} are disjoint simple closed geodesics, then $C_{\sigma_{1}} \cap C_{\sigma_{2}}=\emptyset$.

For each cusp there exists a 2 -collar and 2 -collars of different cusps are disjoint.

Besides, the collar C_{σ} of the simple closed geodesic σ does not intersect the 2-collar of a cusp (see [30], [36] and [6, Chapter 4]). If a λ-collar of a cusp (with $0<\lambda \leq 2$) in a Riemann surface has boundary curve α, denote this collar by \mathscr{C}_{α}. Denote also by \mathscr{C}_{α} the H-neighborhood of the 2-collar of a cusp with boundary α (now α can be a union of closed curves).

The next result deals with collars of geodesics and cusps separately:
Lemma 4.3. Assume that S is a genus zero Riemann surface. Let f be a c-full (a, b)-quasi-isometry from S to S^{\prime}, and $t>0$ a constant. Then, there exist positive constants k_{1}, k_{2} and k depending only on a, b, c, t that satisfy the following:

1. Let σ be a simple closed geodesic on S with $L_{S}(\sigma)<k_{2}, \gamma$ a geodesic perpendicular to σ contained in C_{σ} with $L_{S}(\gamma)=2 w$ and $\gamma_{0}:=\left\{p \in \gamma: d_{S}(p, \sigma)<w-k_{1}\right\}$. Then there exists an $\left(f, \gamma, \gamma_{0}, h, h+t\right)$-tube $T \subset S^{\prime}$ with $h:=3 a+b+c$.
2. Let \mathscr{C} be the 2-collar of a cusp in S with boundary curve σ, γ an infinite geodesic contained in \mathscr{C} perpendicular to σ and $\gamma_{0}:=\left\{p \in \gamma: d_{S}(p, \sigma)>k\right\}$. Then there exists an ($f, \gamma, \gamma_{0}, h, h+t$)-tube $T \subset S^{\prime}$ with $h:=2 a+b+c$.

Proof. 1. Set $k_{1}:=2 a(3 a+2 b+2 c+t)$ and $k_{2}:=2 \operatorname{arccoth}\left(\cosh k_{1}\right)$. Notice that $k_{1} \geq 6$, since $a \geq 1$. Since S is a zero genus surface, γ is a geodesic (not just a local geodesic); therefore, $f(\gamma)$ is an (a, b)-quasigeodesic.

Seeking for a contradiction, let us assume that there exists a point $p \in \gamma_{0}$ such that the ball $B:=\overline{B_{S^{\prime}}(f(p), h+t)}$ is not contained in T. That is, there exists a point $q \in B \backslash T$ for which

$$
\begin{equation*}
d_{S^{\prime}}(q, f(\gamma))>h \tag{4.2}
\end{equation*}
$$

Since f is c-full, there must exist $p_{1} \in S \backslash \gamma$ such that $d_{S^{\prime}}\left(f\left(p_{1}\right), q\right) \leq c$. Let us assume that $d_{S}\left(p_{1}, \sigma\right)>w-k_{1} / 2$. Since $p \in \gamma_{0}$, it means that $d_{S}\left(p, p_{1}\right)>k_{1} / 2$. Using the fact that f is an (a, b)-quasi-isometry,

$$
\begin{equation*}
d_{S^{\prime}}\left(f(p), f\left(p_{1}\right)\right) \geq \frac{1}{a} d_{S}\left(p, p_{1}\right)-b>\frac{k_{1}}{2 a}-b . \tag{4.3}
\end{equation*}
$$

By the triangle inequality, and using that $q \in B$,

$$
\begin{equation*}
d_{S^{\prime}}\left(f\left(p_{1}\right), f(p)\right) \leq d_{S^{\prime}}\left(f\left(p_{1}\right), q\right)+d_{S^{\prime}}(q, f(p)) \leq 3 a+b+2 c+t . \tag{4.4}
\end{equation*}
$$

Combining now (4.3) and (4.4), one deduces $k_{1}<2 a(3 a+2 b+2 c+t)$, which contradicts the definition of k_{1}. Therefore, $p_{1} \in C_{\sigma, w-k_{1} / 2}$. Then, there exists a point $p_{2} \in \gamma$ close enough to p_{1}, verifying that $d_{S}\left(p_{1}, p_{2}\right)$ is upper bounded by the length of one of the boundary curves of $C_{\sigma, w-k_{1} / 2}$. Using Fermi coordinates based on σ, we can easily check that $L_{S}\left(\partial C_{\sigma, w-k_{1} / 2}\right) / 2 \leq L_{S}\left(\partial C_{\sigma}\right) / 2=L_{S}(\sigma) \cosh w$. Collar Lemma gives $d_{S}\left(p_{1}, p_{2}\right) \leq L_{S}\left(\partial C_{\sigma}\right) / 2=L_{S}(\sigma) \cosh w=L_{S}(\sigma) \operatorname{coth}\left(L_{S}(\sigma) / 2\right) \leq 3$ since $k_{1} \geq 6$ and $L_{S}(\sigma)<2 \operatorname{arccoth}\left(\cosh k_{1}\right)$.

On one hand, since f is an (a, b)-quasi-isometry (recall that $p_{2} \in \gamma$),

$$
\begin{equation*}
d_{S^{\prime}}\left(f\left(p_{1}\right), f(\gamma)\right) \leq d_{S^{\prime}}\left(f\left(p_{1}\right), f\left(p_{2}\right)\right) \leq a d_{S}\left(p_{1}, p_{2}\right)+b<3 a+b \tag{4.5}
\end{equation*}
$$

On the other hand, taking into account (4.2),

$$
\begin{equation*}
d_{S^{\prime}}\left(f\left(p_{1}\right), f(\gamma)\right) \geq d_{S^{\prime}}(f(\gamma), q)-d_{S^{\prime}}\left(q, f\left(p_{1}\right)\right) \geq 3 a+b+c-c=3 a+b \tag{4.6}
\end{equation*}
$$

Obviously (4.6) contradicts (4.5), so such a point $q \in B \backslash T$ cannot exist and the tube T mentioned in the statement of the theorem does exist.
2. The same arguments work for this situation, defining $k:=a(2 a+2 b+2 c+t)$.

Lemma 4.4. Let η be an (a, b)-quasi-geodesic in S and $h>0$. Then there exists a positive constant r_{0}, which just depends on a, b, h, with the following property: if for some $z_{0} \in \eta$ the ball $B:=B_{S}\left(z_{0}, r\right)$ is simply connected and it is contained in the h-neighborhood of η, then $r \leq r_{0}$.

Proof. Let us define $r_{0}:=2 h(J+1)$, where J is the least integer satisfying

$$
J>\frac{1}{h}\left(a^{2}\left(\frac{a^{2}}{2}(3 h+b)+2 b+5 h\right)+b+h\right) .
$$

Note that, since B is simply connected, the ball $B_{1}:=B_{S}\left(z_{0}, r / 2\right)$ is simply connected and, besides, geodesically convex. Let I be a closed interval on the real line and η : $I \longrightarrow S$ a parametrization of the (a, b)-quasigeodesic. Seeking for a contradiction, let us assume that $r>2 h(J+1)$.

Define j_{1} as the least integer satisfying

$$
j_{1}>\frac{1}{h}\left(\frac{a^{2}}{2}(3 h+b)+b+2 h\right) .
$$

There exists $\delta>0$ such that

$$
r>2(h+\delta)(J+1)
$$

$$
\begin{align*}
& j_{1}<\frac{1}{h+\delta}\left(\frac{a^{2}}{2}(3 h+3 \delta+b)+b+2 h+2 \delta\right)+2 \\
& j_{1}>\frac{1}{h+\delta}\left(\frac{a^{2}}{2}(3 h+3 \delta+b)+b+2 h+2 \delta\right) \tag{4.7}
\end{align*}
$$

and

$$
J>\frac{1}{h+\delta}\left(a^{2}\left(\frac{a^{2}}{2}(3 h+3 \delta+b)+2 b+5 h+5 \delta\right)+b+h+\delta\right) .
$$

Let us consider any geodesic $\gamma_{1} \subset B_{1}$ extended in both directions from the point z_{0} and a second geodesic γ_{2}, perpendicular to γ_{1} and extended just in one direction from z_{0}. Let us fix points $z_{1}, z_{2}, z_{3}, \ldots \in \gamma_{1}$ in one of the directions starting at z_{0} and $z_{-1}, z_{-2}, z_{-3}, \ldots \in \gamma_{1}$ in the opposite direction from z_{0}, such that $d_{S}\left(z_{0}, z_{j}\right)=|j|(h+\delta)$ for every j with $|j|(h+\delta)<r / 2$. Analogously, choose points $w_{j} \in \gamma_{2}$ with $d_{S}\left(z_{0}, w_{j}\right)=$ $j(h+\delta)$ for every $j>0$ with $j(h+\delta)<r / 2$.

Since B_{1} is contained in the h-neighborhood of η, for each of these points z_{j}, $w_{j} \in B_{1}$ there exist points $z_{j}^{*}, w_{j}^{*} \in \eta$ verifying $d_{S}\left(z_{j}, z_{j}^{*}\right) \leq h+\delta$ and $d_{S}\left(w_{j}, w_{j}^{*}\right) \leq h+\delta$.

Let $t_{j}, s_{j} \in I$ be the real values such that $\eta\left(t_{j}\right)=z_{j}^{*}$ and $\eta\left(s_{j}\right)=w_{j}^{*}$ (according to this notation, $\left.\eta\left(t_{0}\right)=z_{0}=z_{0}^{*}\right)$. Then $\left|t_{j}-t_{k}\right| \leq a\left(d_{S}\left(z_{j}^{*}, z_{k}^{*}\right)+b\right) \leq a(|j-k|(h+\delta)+$ $2 h+2 \delta+b)$ and, in particular,

$$
\begin{equation*}
\left|t_{j}-t_{j+1}\right| \leq a(3 h+3 \delta+b) \tag{4.8}
\end{equation*}
$$

Note that z_{J}^{*} and z_{-J}^{*} are both in the ball B_{1} :

$$
d_{S}\left(z_{ \pm J}^{*}, z_{0}\right) \leq d_{S}\left(z_{ \pm J}^{*}, z_{ \pm J}\right)+d_{S}\left(z_{ \pm J}, z_{0}\right) \leq h+\delta+J(h+\delta)=(h+\delta)(J+1)<r / 2 .
$$

For the defined value j_{1}

$$
\begin{align*}
\left|s_{j_{1}}-t_{0}\right| & \leq a\left(d_{S}\left(w_{j_{1}}^{*}, z_{0}\right)+b\right) \leq a\left(d_{S}\left(w_{j_{1}}^{*}, w_{j_{1}}\right)+d_{S}\left(w_{j_{1}}, z_{0}\right)+b\right) \\
& \leq a\left(h+\delta+j_{1}(h+\delta)+b\right) \tag{4.9}
\end{align*}
$$

A similar argument gives

$$
\begin{equation*}
\left|t_{J}-t_{0}\right| \geq \frac{1}{a}\left(d_{S}\left(z_{0}, z_{J}^{*}\right)-b\right) \geq \frac{1}{a}(J(h+\delta)-h-\delta-b) . \tag{4.10}
\end{equation*}
$$

Using the third inequality in (4.7) and $j_{1}(h+\delta)<a^{2} / 2(3 h+3 \delta+b)+b+4 h+4 \delta$, we can easily check that

$$
\frac{1}{a}(J(h+\delta)-h-\delta-b)>a\left(h+\delta+b+j_{1}(h+\delta)\right) .
$$

Therefore, comparing (4.9) and (4.10), one obtains $\left|t_{J}-t_{0}\right|>\left|s_{j_{1}}-t_{0}\right|$. Analogously, $\left|t_{-J}-t_{0}\right|>\left|s_{j_{1}}-t_{0}\right|$. Hence, by (4.8), there exists some $j_{2} \in \mathbb{Z}$ such that

$$
\left|s_{j_{1}}-t_{j_{2}}\right| \leq \frac{a}{2}(3 h+3 \delta+b)
$$

Taking into account the above inequality,

$$
\begin{aligned}
d_{S}\left(w_{j_{1}}, z_{j_{2}}\right) & \leq d_{S}\left(w_{j_{1}}^{*}, z_{j_{2}}^{*}\right)+2 h+2 \delta \leq a\left|s_{j_{1}}-t_{j_{2}}\right|+b+2 h+2 \delta \\
& \leq \frac{a^{2}}{2}(3 h+3 \delta+b)+b+2 h+2 \delta \quad \text { and } \\
d_{S}\left(w_{j_{1}}, z_{j_{2}}\right) & \geq d_{S}\left(w_{j_{1}}, z_{0}\right)=j_{1}(h+\delta) .
\end{aligned}
$$

Thus,

$$
j_{1}(h+\delta) \leq \frac{a^{2}}{2}(3 h+3 \delta+b)+b+2 h+2 \delta,
$$

which contradicts the second inequality in (4.7). Therefore, $r \leq 2 h(J+1)$ as claimed.
Theorem 4.5. Assume that S and $S^{\prime \prime}$ are genus zero surfaces. Let γ be any geodesic perpendicular to σ contained in C_{σ} with $L_{S}(\gamma)=2 w$. There exist positive constants $r_{0}, k_{0}, k_{1}, k_{2}$, which just depend on a, b, c, so that if $\gamma_{0}:=\left\{p \in \gamma: d_{S}(p, \sigma)<w-k_{1}\right\}$ and $L_{S}(\sigma)<k_{2}$, then there exists an ($f, \gamma, \gamma_{0}, h, h+k_{0}$)-tube $T \subset S^{\prime}$ with $h:=3 a+b+c$.

Furthermore, if u_{1}, u_{2} are the endpoints of γ_{0}, and g^{i} is any simple geodesic loop with base point $f\left(u_{i}\right)$ and $L_{S^{\prime}}\left(g^{i}\right)=2 \iota\left(f\left(u_{i}\right)\right)(i=1,2)$, then g^{1} and g^{2} bound a doubly connected set in S^{\prime}, and for every $z \in \gamma_{0}, \iota(f(z)) \leq r_{0}$ and the injectivity radius in $f(z)$ is attained in the geodesic loop with base point $f(z)$ freely homotopic to a simple closed geodesic σ^{\prime} in S^{\prime}, where σ^{\prime} only depends on σ and f. Besides, $f\left(C_{\sigma}\right)$ is contained in the H_{0}-neighborhood of the collar $C_{\sigma^{\prime}}$ of σ^{\prime}, where $H_{0}:=r_{0}+a k_{1}+b$.

Note that σ^{\prime} does not depend neither on γ or γ_{0}.
Proof. Let us define J as the least integer satisfying

$$
J>\frac{1}{h}\left(a^{2}\left(\frac{a^{2}}{2}(3 h+b)+2 b+5 h\right)+b+h\right)
$$

$r_{0}:=2 h(J+1), k_{0}:=a^{2}(12 h(J+1)+1 / 2+3 b)+12 h(J+1)+b+h+3, k_{1}:=$ $2 a\left(3 a+2 b+2 c+k_{0}\right)$ and $k_{2}:=2 \operatorname{arccoth}\left(\cosh \left(k_{1}+a(4 h(J+1)+b) / 2\right)\right)$.

Since $L_{S}(\sigma)<k_{2}$, the width w of the collar C_{σ} verifies the inequality $w>k_{1}+$ $a\left(2 r_{0}+b\right) / 2$ (see Collar Lemma), and consequently,

$$
d_{S^{\prime}}\left(f\left(u_{2}\right), f\left(u_{1}\right)\right) \geq \frac{1}{a} d_{S}\left(u_{2}, u_{1}\right)-b=\frac{2 w-2 k_{1}}{a}-b>4 h(J+1)=2 r_{0}
$$

Therefore, it is possible to choose points $x_{0}, x_{1}, \ldots, x_{m} \in \gamma_{0}$, where $x_{0}=u_{1}, x_{m}=u_{2}$ and

$$
\begin{equation*}
2 r_{0}<d_{S^{\prime}}\left(f\left(x_{j}\right), f\left(x_{j-1}\right)\right) \leq 4 r_{0} \tag{4.11}
\end{equation*}
$$

for $j=1, \ldots, m$.
Note that $h+k_{0}>r_{0}$. Let us consider any r_{1} with $h+k_{0}>r_{1}>r_{0}$. By Lemma 4.3 (1), taking $t=k_{0}, V_{h+k_{0}}\left(f\left(\gamma_{0}\right)\right) \subset V_{h}(f(\gamma))$, and thus Lemma 4.4 gives that the balls $B_{S^{\prime}}\left(f\left(x_{j}\right), r_{1}\right)$ are not simply connected for $j=0,1, \ldots, m$. Therefore, the injectivity radius $\iota\left(f\left(x_{j}\right)\right)$ at the point $f\left(x_{j}\right)$ is less than r_{1} for every $r_{1}>r_{0}$, and then $\iota\left(f\left(x_{j}\right)\right) \leq r_{0}$. In particular, $\iota\left(f\left(u_{1}\right)\right), \iota\left(f\left(u_{2}\right)\right) \leq r_{0}$. Consequently, there exists a simple geodesic loop g_{j} with base point $f\left(x_{j}\right)$ and $L_{S^{\prime}}\left(g_{j}\right)=2 \iota\left(f\left(x_{j}\right)\right) \leq 2 r_{0}$. In light of (4.11), $g_{j} \cap g_{j+1}=\emptyset$. Since S^{\prime} is a genus zero surface, g_{j} and g_{j+1} disconnect S^{\prime}, and then $S^{\prime} \backslash\left(g_{j} \cup g_{j+1}\right)$ has three connected components. Consider the geodesics $\gamma_{j}^{\prime}:=\left[f\left(x_{j}\right), f\left(x_{j+1}\right)\right] \subset S^{\prime}$ for $j=0, \ldots, m-1$.

CLAim. $\quad \gamma_{j}^{\prime} \cap g_{j}=\left\{f\left(x_{j}\right)\right\}$ and $\gamma_{j}^{\prime} \cap g_{j+1}=\left\{f\left(x_{j+1}\right)\right\}$ for $j=0, \ldots, m-1$.
Assume the claim holds. Assume that g_{j} is not freely homotopic to g_{j+1} for some j. It will be shown that, in that case, $B_{S^{\prime}}\left(f\left(x_{j}\right), k_{0}\right) \nsubseteq V_{h}(f(\gamma))$, contradicting Lemma 4.3 (1). Set $\eta_{j}:=g_{j} \cup \gamma_{j}^{\prime} \cup g_{j+1} \cup\left(-\gamma_{j}^{\prime}\right)$. Note that $L_{S^{\prime}}\left(\eta_{j}\right) \leq 12 r_{0}$. By means of a slight modification of η_{j}, one can construct a simple closed curve η_{j}^{\prime} freely homotopic to η_{j}, with $\eta_{j}^{\prime} \cap\left\{g_{j} \cup g_{j+1}\right\}=\emptyset, L_{S^{\prime}}\left(\eta_{j}^{\prime}\right) \leq 12 r_{0}+1$ and $\mathcal{H}_{S^{\prime}}\left(\eta_{j}, \eta_{j}^{\prime}\right) \leq 1$ (where $\mathcal{H}_{S^{\prime}}$ denotes Hausdorff distance) as follows. Without loss of generality, S^{\prime} is a domain contained in \mathbb{C}, so take opposite orientation for g_{j} and g_{j+1} and let η_{j} be an oriented curve. If either g_{j} surrounds g_{j+1} or g_{j+1} surrounds g_{j}, choose η_{j}^{\prime} contained in the annulus in \mathbb{C} bounded by g_{j} and g_{j+1}. Otherwise, choose η_{j}^{\prime} contained in the "exterior" connected component of $S^{\prime} \backslash \eta_{j}$.

Since the curves g_{j}, g_{j+1} and η_{j}^{\prime} are not trivial, g_{j}, g_{j+1} and η_{j}^{\prime} disconnect S^{\prime} and $S^{\prime} \backslash\left(g_{j} \cup g_{j+1} \cup \eta_{j}^{\prime}\right)$ has four connected components, one of them bounded (with finite diameter) denoted by V; and other three unbounded (with infinite diameter). Note that $\partial V=g_{j} \cup g_{j+1} \cup \eta_{j}^{\prime}$. Since there are three unbounded connected components of $S^{\prime} \backslash\left(g_{j} \cup g_{j+1} \cup \eta_{j}^{\prime}\right)$, there must exist an unbounded connected component U with $f(u), f(v) \notin U$. Note that

$$
\operatorname{diam}_{S^{\prime}} \partial U \leq \frac{1}{2} \max \left\{L_{S^{\prime}}\left(g_{j}\right), L_{S^{\prime}}\left(g_{j+1}\right), L_{S^{\prime}}\left(\eta_{j}^{\prime}\right)\right\} \leq 6 r_{0}+\frac{1}{2}
$$

Since \bar{V} is contained in the 1-neighborhood of η_{j} and $L_{S^{\prime}}\left(\eta_{j}\right) \leq 12 r_{0}$, then

$$
\operatorname{diam}_{S^{\prime}} \bar{V} \leq 1+\operatorname{diam}_{S^{\prime}} \eta_{j}+1 \leq 6 r_{0}+2
$$

Assume first that $f(\gamma)$ intersects \bar{U}. In this case, $\operatorname{diam}_{S^{\prime}}(f(\gamma) \cap \bar{U})$ is bounded above. Indeed, consider γ_{0} to be oriented from u_{1} to u_{2} and consider points $p^{\prime}:=\inf \{\tau \in$ $\left.\left[u_{1}, u_{2}\right]: f(\tau) \in \bar{U}\right\}$ and $q^{\prime}:=\sup \left\{\tau \in\left[u_{1}, u_{2}\right]: f(\tau) \in \bar{U}\right\}$.

Given $p, q \in \gamma \cap f^{-1}(\bar{U})$, since $L_{S^{\prime}}\left(\eta_{j}^{\prime}\right) \leq 12 r_{0}+1, f(\gamma)$ is a (possibly) discontinuous curve with gaps of amplitude at most b, one deduces

$$
\begin{aligned}
d_{S^{\prime}}(f(p), f(q)) & \leq a d_{S}(p, q)+b \leq a d_{S}\left(p^{\prime}, q^{\prime}\right)+b \leq a^{2} d_{S^{\prime}}\left(f\left(p^{\prime}\right), f\left(q^{\prime}\right)\right)+a^{2} b+b \\
& \leq a^{2}\left(\operatorname{diam}_{S^{\prime}} \partial U+2 b\right)+a^{2} b+b
\end{aligned}
$$

$$
\begin{equation*}
\leq a^{2}\left(6 r_{0}+1 / 2+3 b\right)+b=k_{0}-6 r_{0}-h-3 \tag{4.12}
\end{equation*}
$$

Thus $\operatorname{diam}_{S^{\prime}}(f(\gamma) \cap \bar{U}) \leq k_{0}-6 r_{0}-2-h-1$. Consequently, if $z \in f(\gamma) \cap \bar{U}$, then $d_{S^{\prime}}\left(f\left(x_{j}\right), z\right) \leq \operatorname{diam}_{S^{\prime}} \bar{V}+\operatorname{diam}_{S^{\prime}}(f(\gamma) \cap \bar{U}) \leq k_{0}-h-1$.

If $f(\gamma)$ does not intersect \bar{U} and $z \in \bar{U}$, then $d_{S^{\prime}}\left(f\left(x_{j}\right), z\right) \leq \operatorname{diam}_{S^{\prime}} \bar{V} \leq k_{0}-h-1$.
Therefore, in both cases, since the region U is unbounded, the ball $\overline{B_{S^{\prime}}\left(f\left(x_{j}\right), k_{0}\right)}$ cannot be contained in $T=V_{h}(f(\gamma))$, which contradicts Lemma 4.3 (1).

Since it was shown that the closed ball $\overline{B_{S^{\prime}}\left(f\left(x_{j}\right), h+k_{0}\right)}$ must be contained in T, then $\overline{B_{S^{\prime}}\left(f\left(x_{j}\right), k_{0}\right)}$ must also be contained in T.

Therefore, g_{j} is freely homotopic to g_{j+1} for every j. Consequently, the simple geodesic loops $g_{0}=g^{1}$ and $g_{m}=g^{2}$ with base points $f\left(u_{1}\right)$ and $f\left(u_{2}\right)$, respectively, are freely homotopic and bound a doubly connected set in S^{\prime} as claimed.

By taking different sequences of points $\left\{x_{j}\right\}$ one can check that if $z \in \gamma_{0}$, and g_{z} is any simple geodesic loop with base point $f(z)$ and $L_{S^{\prime}}\left(g_{z}\right)=2 \iota(f(z))$, then g_{z} is freely homotopic to g^{1} and $\iota(f(z)) \leq r_{0}$.

By Theorem 4.6 below, the map f provides a bijective correspondence from the cusps of S to the cusps of S^{\prime}; hence, there exists a simple closed curve σ^{\prime} freely homotopic to g^{1} of length l. By Collar Lemma and Proposition 2.1, the injectivity radius ι_{0} at the points in $\partial C_{\sigma^{\prime}}$ satisfies $\sinh \iota_{0}=\sinh (l / 2) \cosh w=\cosh (l / 2)>1$.

For $z \in \gamma_{0}, f(z)$ either belongs to the collar $C_{\sigma^{\prime}}$, and thus to $V_{r_{0}}\left(C_{\sigma}^{\prime}\right)$, or, otherwise, let us define $t:=d_{S^{\prime}}\left(f(z), \sigma^{\prime}\right)-w>0$. Then, $\sinh r_{0} \geq \sinh \iota(z)=\sinh (l / 2) \cosh (w+t)$ and

$$
\begin{aligned}
\frac{1}{2} e^{t}<\frac{1}{2} e^{t} \sinh (l / 2) \cosh w & <\frac{1}{2} e^{w+t} \sinh (l / 2)<\cosh (w+t) \sinh (l / 2) \\
& \leq \sinh r_{0}<\frac{1}{2} e^{r_{0}}
\end{aligned}
$$

Hence, $t<r_{0}$ and $f\left(\gamma_{0}\right) \subset V_{r_{0}}\left(C_{\sigma^{\prime}}\right)$. Given another geodesic $\tilde{\gamma}_{0}$ perpendicular to σ, it has been proved that $f\left(\tilde{\gamma}_{0}\right)$ is contained in the r_{0}-neighborhood of $C_{\tilde{\sigma}^{\prime}}$ for some simple closed curve $\tilde{\sigma}^{\prime}$ in S^{\prime}; in order to check that $\tilde{\sigma}^{\prime}=\sigma^{\prime}$ it suffices to repeat the previous argument replacing γ_{0} by any geodesic γ_{1} meeting σ with an angle $\pi / 2-\varepsilon$ for small $\varepsilon>0$. Therefore, $f\left(\left\{p \in S: d_{S}(p, \sigma) \leq w-k_{1}\right\}\right)$ is contained in the r_{0}-neighborhood of $C_{\sigma^{\prime}}$, and $f\left(C_{\sigma}\right)$ is contained in the $\left(a k_{1}+b+r_{0}\right)$-neighborhood of $C_{\sigma^{\prime}}$.

In order to prove the first part of the claim, assume that there exists a point ζ in $\gamma_{j}^{\prime} \cap g_{j} \backslash\left\{f\left(x_{j}\right)\right\}$ and argue by contradiction.

Denote by g_{j}^{*} a subcurve of g_{j} joining $f\left(x_{j}\right)$ and ζ and denote by γ_{j}^{*} the subcurve of γ_{j}^{\prime} joining $f\left(x_{j}\right)$ and ζ. Since γ_{j}^{\prime} is a geodesic, $L_{S^{\prime}}\left(\gamma_{j}^{*}\right) \leq L_{S^{\prime}}\left(g_{j}^{*}\right)$. Choose g_{j}^{*} so that the loop $\Gamma_{0}:=g_{j}^{*} \cup \gamma_{j}^{*}$ with base point $f\left(x_{j}\right)$ is non trivial; since Γ_{0} has a corner in ζ, there exists a curve Γ freely homotopic to Γ_{0} (thus non trivial) with $L_{S^{\prime}}(\Gamma)<$ $L_{S^{\prime}}\left(g_{j}^{*}\right)+L_{S^{\prime}}\left(\gamma_{j}^{*}\right) \leq L_{S^{\prime}}\left(g_{j}\right)$. This inequality contradicts

$$
L_{S^{\prime}}\left(g_{j}\right)=2 \iota\left(f\left(x_{j}\right)\right)=\inf \left\{L_{S^{\prime}}(c): c \text { is a loop with base point } f\left(x_{j}\right)\right\} .
$$

The proof of the second part of the claim is similar.

The claim, and hence the Theorem, hold.
Theorem 4.6. Assume that S^{\prime} is a genus zero surface and $f: S \longrightarrow S^{\prime}$ a c-full (a, b)-quasi-isometry. Let \mathscr{C} be the 2 -collar of a cusp in S with boundary curve σ and γ an infinite geodesic contained in \mathscr{C} perpendicular to σ. There exist positive constants H, k, t, which just depends on a, b, c, so that if $\gamma_{0}:=\left\{p \in \gamma: d_{S}(p, \sigma)>k\right\}$, then there exists an $\left(f, \gamma, \gamma_{0}, h, h+t\right)$-tube $T \subset S^{\prime}$ with $h:=2 a+b+c$. Furthermore, $f(\mathscr{C})$ is contained in the H-neighborhood of the 2-collar of a cusp in S^{\prime}.

Proof. Define J as the least integer satisfying

$$
J>\frac{1}{h}\left(a^{2}\left(\frac{a^{2}}{2}(3 h+b)+2 b+5 h\right)+b+h\right) .
$$

Let us consider positive constants $t:=a^{2}(12 h(J+1)+1 / 2+3 b)+12 h(J+1)+b+h+3$, $k:=a(2 a+2 b+2 c+t)$ and $H:=a k+b+\log \sinh (2 h(J+1))$.

The statement about the existence of the tube is given by Lemma 4.3 (2), since this lemma holds for any positive value of t, and k is defined as in the proof of Lemma 4.3.

Let us choose now two points $u_{1}, u_{2} \in \gamma_{0}$ such that $d_{S}\left(u_{1}, u_{2}\right)>a(4 h(J+1)+b)$, which is always possible since γ_{0} is infinite. Notice that

$$
d_{S^{\prime}}\left(f\left(u_{2}\right), f\left(u_{1}\right)\right) \geq \frac{1}{a} d_{S}\left(u_{2}, u_{1}\right)-b>4 h(J+1) .
$$

Let us define the constant $C:=a^{2}(12 h(J+1)+1 / 2+2 b)+12 h(J+1)+a b+b+$ $h+3$. From this point on, the conclusion of this theorem can be obtained repeating the reasoning offered in the proof of Theorem 4.5 with C playing the role of k_{0}. However, since now the geodesic γ_{0} is infinite, the distance between u_{1} and u_{2} can be arbitrarily large. Then, all the geodesic loops $\left\{g_{j}\right\}$ with base point $f\left(x_{j}\right)$, for any x_{j} located on γ_{0} are homotopic and, besides, $L_{S^{\prime}}\left(g_{j}\right) \leq 4 h(J+1)$. It means that $f(\mathscr{C})$ is actually contained in a neighborhood of a cusp in S^{\prime}, since $f(\mathscr{C})$ is not a bounded set.

Next, it will be shown that $f(\mathscr{C})$ is inside the H-neighborhood of the 2 -collar of a cusp in S^{\prime}. Let us choose any of the geodesic loops g_{j} mentioned above, and let us assume that it lies out of the 2-collar of the corresponding cusp in S^{\prime}. As usual, consider a fundamental domain for S^{\prime} in the upper halfplane \mathbb{H} contained in $\{z \in \mathbb{H}: 0 \leq \Re z \leq 1\}$ and such that $\{z \in \mathbb{H}: 0 \leq \Re z \leq 1, \Im z \geq 1 / 2\}$ corresponds to the 2 -collar of this cusp in S^{\prime}. Let us represent g_{j} in the upper half-plane by means of a geodesic with endpoints $i \alpha$ and $i \alpha+1$. If $\alpha \geq 1 / 2$, then g_{j} is in the 2 -collar in S^{\prime}. Hence, $\alpha<1 / 2$. If d is the actual length of g_{j}, then $\sinh (d / 2)=1 /(2 \alpha)$. Taking into account that $d=L_{S^{\prime}}\left(g_{j}\right) \leq 4 h(J+1)$, then $1 /(2 \alpha)=\sinh (d / 2) \leq \sinh (2 h(J+1))$, and

$$
d_{\mathbb{H}}(i \alpha, i / 2)=\log \frac{1}{2 \alpha} \leq \log \sinh (2 h(J+1))=: H_{1},
$$

which means that x_{j} is in the H_{1}-neighborhood of the boundary curve of the 2-collar in S^{\prime}. Hence, in any case, x_{j} is in the H_{1}-neighborhood of the 2 -collar in S^{\prime}. Therefore,
$f\left(\left\{p \in \mathscr{C}: d_{S}(p, \sigma)>k\right\}\right)$ is contained in the H_{1}-neighborhood of the 2-collar in S^{\prime}, and $f(\mathscr{C})$ is contained in the $\left(H_{1}+a k+b\right)$-neighborhood of the 2-collar of a cusp in S^{\prime}.

Lemma 4.7. Fix two positive constants d_{1} and ι_{0}. Let S be a non-exceptional Riemann surface, σ be a simple closed geodesic with $S \backslash \sigma$ non-connected, and x, y points in S such that $d_{S}(x, y) \geq d_{1}$ and the geodesic loops g_{x}, g_{y} with base points x, y, respectively, freely homotopic to σ, verify $L_{S}\left(g_{x}\right), L_{S}\left(g_{y}\right) \leq 2 \iota_{0}$. Let σ_{x} (respectively, σ_{y}) be the set of points in the connected component of $S \backslash \sigma$ containing x (respectively, y) which are at distance $d_{S}(x, \sigma)$ (respectively, $d_{S}(y, \sigma)$) from σ; denote by C the domain in S bounded by σ_{x} and σ_{y}, and by C_{0} the set of points in C at distance greater or equal than d_{2} from $\partial C=\sigma_{x} \cup \sigma_{y}$, with

$$
\begin{equation*}
0<d_{2}<\operatorname{arccosh} \frac{2 \cosh ^{2}\left(d_{1} / 2\right)}{\sqrt{4 \cosh ^{2}\left(d_{1} / 2\right)+\sinh ^{2} \iota_{0}}} . \tag{4.13}
\end{equation*}
$$

Then C_{0} is non empty and $\sinh \iota(z)<2 e^{-d_{2}} \sinh \iota_{0}$ for every $z \in C_{0}$.
REmARK 4.8. An elementary computation gives that if $d_{1} \geq \max \left\{2 \iota_{0}, 2 d_{2}+\log 20\right\}$, then (4.13) holds.

Proof. Define $l:=L_{S}(\sigma)$ and x_{0} (respectively, y_{0}) the point in σ with $d_{S}(x, \sigma)=$ $d_{S}\left(x, x_{0}\right)$ (respectively, $d_{S}(y, \sigma)=d_{S}\left(y, y_{0}\right)$). It is clear that the maximum of the injectivity radius is attained when S is an annulus with simple closed geodesic σ, $d_{S}(x, y)=d_{1}, L_{S}\left(g_{x}\right), L_{S}\left(g_{y}\right)=2 \iota_{0}$, and x, y are antipodal points with respect to σ, i.e., $d_{S}(x, \sigma)=d_{S}(y, \sigma)$ and $d_{S}\left(x_{0}, y_{0}\right)=l / 2$. In this case, defining $u:=d_{S}(x, \sigma)=d_{S}(y, \sigma)$, Proposition 2.1 gives $\cosh \left(d_{1} / 2\right)=\cosh u \cosh (l / 4)$ and $\sinh \iota_{0}=\sinh (l / 2) \cosh u$. Hence,

$$
\begin{aligned}
\sinh (l / 4) & =\frac{\sinh (l / 2)}{2 \cosh (l / 4)}=\frac{\sinh \iota_{0}}{2 \cosh \left(d_{1} / 2\right)} \\
\cosh u & =\frac{\cosh \left(d_{1} / 2\right)}{\cosh (l / 4)}=\frac{2 \cosh ^{2}\left(d_{1} / 2\right)}{\sqrt{4 \cosh ^{2}\left(d_{1} / 2\right)+\sinh ^{2} \iota_{0}}} .
\end{aligned}
$$

Therefore, take $0<d_{2}<d_{S}(x, \sigma)=d_{S}(y, \sigma)$ and C_{0} is not the empty set. If $u \in C_{\sigma}$, denote by ψ_{u} the geodesic loop with base point u freely homotopic to σ. For any $z \in \partial C_{0}$, Proposition 2.1 gives

$$
\begin{aligned}
\sinh \left(L_{S}\left(\psi_{z}\right) / 2\right)=\sinh (l / 2) \cosh \left(u-d_{2}\right) & \leq e^{u-d_{2}} \sinh (l / 2) \\
& <2 e^{-d_{2}} \sinh (l / 2) \cosh u=2 e^{-d_{2}} \sinh \iota_{0} .
\end{aligned}
$$

Hence, for any $z \in C_{0}, \sinh \left(L_{S}\left(\psi_{z}\right) / 2\right)<2 e^{-d_{2}} \sinh \iota_{0}$ and, consequently, $\sinh \iota(z)<$ $2 e^{-d_{2}} \sinh \iota_{0}$.

Lemma 4.9. Let S be a non-exceptional Riemann surface and $z \in S$. If $\iota(z)<$ $\operatorname{arcsinh} 1$, then the shortest geodesic loop η with base point z is contained either in the 2 -collar of a cusp or in the collar C_{σ} of a simple closed geodesic σ.

Proof. Given any point p on the boundary of the 2 -collar of a cusp, or on the boundary of the collar of a simple closed geodesic then $\iota(p) \geq \operatorname{arcsinh} 1$ by Collar Lemma.

Therefore z must lie inside the cusp or collar. Lifting its shortest geodesic loop to the universal covering shows this will also be the case for its geodesic loop.

Lemma 4.10. Let S be a non-exceptional Riemann surface, σ be a simple closed geodesic in S and z a point in the collar C_{σ}. Then $d_{S}\left(z, \partial C_{\sigma}\right) \geq \log (1 / \sinh \iota(z))$.

Proof. If $\iota(z) \geq \operatorname{arcsinh} 1$, then $d_{S}\left(z, \partial C_{\sigma}\right) \geq 0 \geq \log (1 / \sinh \iota(z))$. Assume now that $\iota(z)<\operatorname{arcsinh} 1$. By Lemma 4.9 the shortest geodesic loop η with base point z is contained in C_{σ}. Note that if $d:=d_{S}(z, \sigma)$, then $d_{S}\left(z, \partial C_{\sigma}\right)=w-d$. Let $l:=L_{S}(\sigma)$; by Collar Lemma and Proposition 2.1:

$$
\sinh \iota(z)=\sinh (l / 2) \cosh d=\frac{\cosh d}{\sinh w} \geq e^{d-w}
$$

which implies the result.
Lemma 4.11. Let S be a non-exceptional genus zero Riemann surface, I and h two positive constants, σ a simple closed geodesic with $L_{S}(\sigma) \leq 2 I$, and C_{σ}^{h} the h neighborhood of C_{σ}. Denote by S_{1} a connected component of $S \backslash \sigma$, and by α_{1} the set of closed curves in $\partial C_{\sigma}^{h} \cap S_{1}$. If $p, q \in \alpha_{1}$, then $d_{S}(p, q) \leq e^{h} I \operatorname{coth} I$.

Proof. Without loss of generality, assume that S is an annulus and σ is the simple closed geodesic in S. Define $l:=L_{S}(\sigma)$ and $L:=L_{S}\left(\alpha_{1}\right)$. Since $l / 2 \leq I$ and $g(x)=x \operatorname{coth} x$ is an increasing function for $x>0$,

$$
\begin{aligned}
d_{S}(p, q) \leq L / 2=(l / 2) \cosh w \frac{\cosh (w+h)}{\cosh w} & <(l / 2) \operatorname{coth}(l / 2) \frac{\cosh (w+h)}{\cosh w} \\
& \leq e^{h} I \operatorname{coth} I
\end{aligned}
$$

Finally, the following two lemmas are easy to check.
Lemma 4.12. Let $g:[\alpha, \beta] \rightarrow \mathbb{R}$ be an (a, b)-quasi-isometric embedding with $g(\beta)>$ $g(\alpha)$. If $x, y \in[\alpha, \beta]$ and $y>x+(a+1) b$, then $g(y)>g(x)$.

Lemma 4.13. Let $g:[0, \infty) \rightarrow[0, \infty)$ be an (a, b)-quasi-isometric embedding. If $x, y \geq 0$ and $y>x+(a+1) b$, then $g(y)>g(x)$.

5. Stability of the injectivity radius under quasi-isometries.

Recall the notation C_{σ} and \mathscr{C}_{α} for collars of simple closed geodesic and cusps respectively. Also denote by \mathscr{C}_{α} the H-neighborhood of the 2-collar of a cusp with boundary α (now α can be a union of closed curves).

5.1. Proof of Theorem 1.3.

Without loss of generality assume that $0<\varepsilon^{\prime}, \varepsilon \leq \operatorname{arcsinh} 1$. Fix $z \in S$ with $\iota(z)<\operatorname{arcsinh} 1$.

The proof takes advantage of the relation between $\iota(z)$ and the distance from z to the boundary of the collar of a cusp when z is in the interior of the collar of a cusp, or the distance from z to the boundary of the collar of a simple closed geodesic when z is in the collar.

Assume first that the shortest geodesic loop based on z is freely homotopic to a cusp in S. Let z belong to the interior of the 2-collar of this cusp, \mathscr{C}_{α}, where α is its boundary curve. In this setting $\sinh \iota(z)=e^{-d_{S}(z, \alpha)}<1$.

For every $u \in \mathscr{C}_{\alpha}$ define $W_{\alpha}(u):=d_{S}(u, \alpha)$. Then for any two points $u, v \in \mathscr{C}_{\alpha}$,

$$
\begin{equation*}
\left|W_{\alpha}(v)-W_{\alpha}(u)\right| \leq d_{S}(v, u) \leq\left|W_{\alpha}(v)-W_{\alpha}(u)\right|+1, \tag{5.14}
\end{equation*}
$$

By Theorem 4.6, $f\left(\mathscr{C}_{\alpha}\right)$ is contained in $\mathscr{C}_{\alpha^{\prime}}$, the H-neighborhood of the 2-collar of a cusp in S^{\prime} (now $\alpha^{\prime}:=\partial \mathscr{C}_{\alpha^{\prime}}$ can be a union of closed curves). Let us define $W_{\alpha^{\prime}}(p):=$ $d_{S^{\prime}}\left(p, \alpha^{\prime}\right)$ for every $p \in \mathscr{C}_{\alpha^{\prime}}$. Then,

$$
\begin{align*}
\left|W_{\alpha^{\prime}}(f(v))-W_{\alpha^{\prime}}(f(u))\right| & \leq d_{S^{\prime}}(f(v), f(u)) \\
& \leq\left|W_{\alpha^{\prime}}(f(v))-W_{\alpha^{\prime}}(f(u))\right|+1+2 H, \tag{5.15}
\end{align*}
$$

for any two points $u, v \in \mathscr{C}_{\alpha}$.
By (5.14) and (5.15),

$$
\begin{align*}
\left|W_{\alpha^{\prime}}(f(v))-W_{\alpha^{\prime}}(f(u))\right| & \leq d_{S^{\prime}}(f(v), f(u)) \leq a d_{S}(v, u)+b \\
& \leq a\left(\left|W_{\alpha}(v)-W_{\alpha}(u)\right|+1\right)+b \\
& =a\left|W_{\alpha}(v)-W_{\alpha}(u)\right|+a+b \\
\left|W_{\alpha^{\prime}}(f(v))-W_{\alpha^{\prime}}(f(u))\right| & \geq d_{S^{\prime}}(f(v), f(u))-1-2 H \\
& \geq \frac{1}{a} d_{S}(v, u)-b-1-2 H \\
& \geq \frac{1}{a}\left|W_{\alpha}(v)-W_{\alpha}(u)\right|-1-b-2 H \tag{5.16}
\end{align*}
$$

for any two points $u, v \in \mathscr{C}_{\alpha}$. Therefore, (5.16) shows that there is an $(a, a+b+2 H)$ quasiisometric embedding defined from $[0, \infty)$ to $[0, \infty)$ that relates $W_{\alpha}(u)$ with $W_{\alpha^{\prime}}(f(u))$, for every $u \in \mathscr{C}_{\alpha}$.

Let z_{0} be the point in α so that $d_{S}(z, \alpha)=d_{S}\left(z, z_{0}\right)$. Then

$$
\begin{equation*}
W_{\alpha}(z)-W_{\alpha}\left(z_{0}\right)=W_{\alpha}(z)=\log \frac{1}{\sinh \iota(z)}>\log \frac{1}{\sinh \varepsilon} \tag{5.17}
\end{equation*}
$$

Choosing ε so that $\sinh \varepsilon<e^{-(a+1)(a+b+2 H)}$,

$$
W_{\alpha}(z)-W_{\alpha}\left(z_{0}\right)>(a+1)(a+b+2 H)
$$

By Lemma 4.13, $W_{\alpha^{\prime}}(f(z))>W_{\alpha^{\prime}}\left(f\left(z_{0}\right)\right)$, and thus (5.16) and (5.17) give

$$
\begin{aligned}
W_{\alpha^{\prime}}(f(z)) & \geq W_{\alpha^{\prime}}(f(z))-W_{\alpha^{\prime}} f\left(\left(z_{0}\right)\right)=\left|W_{\alpha^{\prime}}(f(z))-W_{\alpha^{\prime}} f\left(\left(z_{0}\right)\right)\right| \\
& \geq \frac{1}{a}\left|W_{\alpha}(z)-W_{\alpha}\left(z_{0}\right)\right|-1-b-2 H>\frac{1}{a} \log \frac{1}{\sinh \varepsilon}-1-b-2 H \\
& >\log \frac{1}{\sinh \varepsilon^{\prime}}+H \geq H,
\end{aligned}
$$

since $0<\varepsilon^{\prime} \leq \operatorname{arcsinh} 1$, and if ε is taken to be

$$
\sinh \varepsilon<\min \left\{\left(\sinh \varepsilon^{\prime}\right)^{a} e^{-a(3 H+1+b)}, e^{-(a+1)(a+b+2 H)}\right\}
$$

Since $W_{\alpha^{\prime}}(f(z))>H, f(z)$ is in the 2-collar of the cusp, and thus $W_{\alpha^{\prime}}(f(z))=$ $-\log \sinh \iota(f(z))+H$. Hence $\iota(f(z))<\varepsilon^{\prime}$.

Assume now that the shortest loop based on z is freely homotopic to a simple closed geodesic σ; then z belongs to the interior of the collar C_{σ} of width w. Let us consider the geodesics γ, γ_{0} and the constants $r_{0}, k_{0}, k_{1}, k_{2}, H_{0}$ as in Theorem 4.5. If we require $\varepsilon \leq k_{2} / 2$, then $l:=L_{S}(\sigma) \leq 2 \iota(z)<k_{2}$. By Collar Lemma and Proposition 2.1 we have that the length $2 \iota_{0}$ of the geodesic loop freely homotopic to σ and based in any point in ∂C_{σ} satisfies $\sinh \iota_{0}=\sinh (l / 2) \cosh w=\cosh (l / 2)<\cosh \left(k_{2} / 2\right)=: k_{3}$; thus $\iota(u)<\operatorname{arcsinh} k_{3}$ for every $u \in C_{\sigma}$.

Denote by α_{1}, α_{2} the simple closed curves in ∂C_{σ}; then $L_{S}\left(\alpha_{j}\right)=l \cosh w<$ $2 \sinh (l / 2) \cosh w=2 \cosh (l / 2)<2 \cosh \left(k_{2} / 2\right)=2 k_{3}$ for $j=1,2$. Define $W_{\alpha_{j}}(u):=$ $d_{S}\left(u, \alpha_{j}\right)$ for every $u \in C_{\sigma}$ and $j=1,2$. Since S is a genus zero surface,

$$
\begin{equation*}
\left|W_{\alpha_{j}}(v)-W_{\alpha_{j}}(u)\right| \leq d_{S}(v, u) \leq\left|W_{\alpha_{j}}(v)-W_{\alpha_{j}}(u)\right|+k_{3}, \tag{5.18}
\end{equation*}
$$

for any two points $u, v \in C_{\sigma}$.
By Theorem 4.5, $f\left(C_{\sigma}\right)$ is contained in the H_{0}-neighborhood of the collar $C_{\sigma^{\prime}}$ of a simple closed geodesic σ^{\prime} in S^{\prime}.

Denote by Ψ_{u} the geodesic loop with base point $f(u)$ freely homotopic to σ^{\prime}. Let $u \in C_{\sigma}$, then

$$
L_{S^{\prime}}\left(\Psi_{u}\right) \leq 2\left(r_{0}+a k_{1}+b\right):=2 r_{0}^{\prime}
$$

since if $d_{S}\left(u, \partial C_{\sigma}\right) \geq k_{1}$, Theorem 4.5 gives $L_{S^{\prime}}\left(\Psi_{u}\right)=2 \iota(f(u)) \leq 2 r_{0}$.
S^{\prime} is also a genus zero surface, therefore $S^{\prime} \backslash \sigma^{\prime}$ has two connected components $S_{1}^{\prime}, S_{2}^{\prime}$. Then, $f\left(C_{\sigma}\right)$ intersects either both of them or only one of them. In the former case, define $r_{j}:=\sup \left\{d_{S^{\prime}}\left(f(u), \sigma^{\prime}\right) \mid u \in C_{\sigma}, f(u) \in S_{j}^{\prime}\right\}$ and $\alpha_{j}^{\prime}:=\left\{v \in S_{j}^{\prime} \mid d_{S^{\prime}}\left(v, \sigma^{\prime}\right)=r_{j}\right\}$ for $j=1,2$.

In the latter case, define $r_{1}:=\inf \left\{d_{S^{\prime}}\left(f(u), \sigma^{\prime}\right) \mid u \in C_{\sigma}\right\}, r_{2}:=\sup \left\{d_{S^{\prime}}\left(f(u), \sigma^{\prime}\right) \mid\right.$ $\left.u \in C_{\sigma}\right\}$, and $\alpha_{j}^{\prime}:=\left\{v \in S_{i}^{\prime} \mid d_{S^{\prime}}\left(v, \sigma^{\prime}\right)=r_{j}\right\}$ for $j=1,2$ where i so that $S_{i}^{\prime} \cap f\left(C_{\sigma}\right) \neq \emptyset$.

Let $C_{\sigma^{\prime}}^{0}$ the domain in S^{\prime} bounded by α_{1}^{\prime} and α_{2}^{\prime}. For any $p \in C_{\sigma^{\prime}}^{0}$, define $W_{\alpha_{j}^{\prime}}(p):=$ $d_{S^{\prime}}\left(p, \alpha_{j}^{\prime}\right), j=1,2$. By Lemma 4.11, for any $u, v \in C_{\sigma}$,

$$
\begin{align*}
\left|W_{\alpha_{j}^{\prime}}(f(v))-W_{\alpha_{j}^{\prime}}(f(u))\right| & \leq d_{S^{\prime}}(f(v), f(u)) \\
& \leq\left|W_{\alpha_{j}^{\prime}}(f(v))-W_{\alpha_{j}^{\prime}}(f(u))\right|+e^{H_{0}} r_{0}^{\prime} \operatorname{coth} r_{0}^{\prime} \tag{5.19}
\end{align*}
$$

By virtue of (5.18) and (5.19), for any $u, v \in C_{\sigma}$,

$$
\begin{align*}
\left|W_{\alpha_{j}^{\prime}}(f(v))-W_{\alpha_{j}^{\prime}}(f(u))\right| & \leq d_{S^{\prime}}(f(v), f(u)) \leq a d_{S}(v, u)+b \\
& \leq a\left(\left|W_{\alpha_{j}}(v)-W_{\alpha_{j}}(u)\right|+k_{3}\right)+b \\
& =a\left|W_{\alpha_{j}}(v)-W_{\alpha_{j}}(u)\right|+a k_{3}+b \\
\left|W_{\alpha_{j}^{\prime}}(f(v))-W_{\alpha_{j}^{\prime}}(f(u))\right| & \geq d_{S^{\prime}}(f(v), f(u))-e^{H_{0}} r_{0}^{\prime} \operatorname{coth} r_{0}^{\prime} \\
& \geq \frac{1}{a} d_{S}(v, u)-b-e^{H_{0}} r_{0}^{\prime} \operatorname{coth} r_{0}^{\prime} \\
& \geq \frac{1}{a}\left|W_{\alpha_{j}}(v)-W_{\alpha_{j}}(u)\right|-e^{H_{0}} r_{0}^{\prime} \operatorname{coth} r_{0}^{\prime}-b . \tag{5.20}
\end{align*}
$$

If γ is a geodesic orthogonal to σ, and setting $k_{4}:=e^{H_{0}} r_{0}^{\prime} \operatorname{coth} r_{0}^{\prime}$, then (5.20) shows that there are two $\left(a, a k_{3}+b+k_{4}\right)$-quasi-isometric embeddings defined from $[0,2 w]$ to \mathbb{R} that relate $W_{\alpha_{j}}(u)$ with $W_{\alpha_{j}^{\prime}}(f(u))$, for every $u \in \gamma$ and $j=1,2$.

Let $z \in \gamma$ and let z_{j} the point $z_{j}:=\gamma \cap \alpha_{j}$ for $j=1,2$. By Lemma 4.10,

$$
\begin{aligned}
W_{\alpha_{j}}(z)-W_{\alpha_{j}}\left(z_{j}\right)=W_{\alpha_{j}}(z) \geq d_{S}\left(z, \partial C_{\sigma}\right) \geq \log \frac{1}{\sinh \iota(z)} & >\log \frac{1}{\sinh \varepsilon} \\
& \geq(a+1)\left(a k_{3}+b+k_{4}\right)
\end{aligned}
$$

if ε is taken to be $\varepsilon \leq \operatorname{arcsinh} e^{-(a+1)\left(a k_{3}+b+k_{4}\right)}$.
Without loss of generality, label α_{1}^{\prime} and α_{2}^{\prime} so that $f\left(z_{i}\right)$ is closest to α_{i}^{\prime} for $i=1,2$.
Therefore, by Lemma 4.12 together with (5.20),

$$
\begin{aligned}
W_{\alpha_{j}^{\prime}}(f(z)) \geq\left|W_{\alpha_{j}^{\prime}}(f(z))-W_{\alpha_{j}^{\prime}} f\left(\left(z_{j}\right)\right)\right| & \geq \frac{1}{a}\left|W_{\alpha_{j}}(z)-W_{\alpha_{j}}\left(z_{j}\right)\right|-k_{4}-b \\
& =\frac{1}{a} W_{\alpha_{j}}(z)-k_{4}-b .
\end{aligned}
$$

By Lemma 4.10

$$
d_{S}\left(z, \partial C_{\sigma}\right) \geq \log \frac{1}{\sinh \iota(z)}>\log \frac{1}{\sinh \varepsilon}
$$

If ε is taken to be so that

$$
\log \frac{1}{\sinh \varepsilon} \geq a\left(1+b+k_{4}+\log \frac{2 \sinh r_{0}^{\prime}}{\sinh \varepsilon^{\prime}}\right)=: k_{1}^{*}
$$

Lemma 4.10 gives, together with the quasi-isometric embedding,

$$
W_{\alpha_{j}^{\prime}}(f(z)) \geq \frac{1}{a} W_{\alpha_{j}}(z)-k_{4}-b \geq \frac{1}{a} d_{S}\left(z, \partial C_{\sigma}\right)-k_{4}-b>\log \frac{2 \sinh r_{0}^{\prime}}{\sinh \varepsilon^{\prime}}
$$

Set $d_{2}:=1+\log \left(2 \sinh r_{0}^{\prime} / \sinh \varepsilon^{\prime}\right)$ and $d_{1}:=d_{S^{\prime}}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)$. In order to apply Remark 4.8, d_{1} should satisfy $d_{1}>\max \left\{2 r_{0}^{\prime}, 2 d_{2}+\log 20\right\}$, since $\iota\left(f\left(z_{j}\right)\right) \leq r_{0}^{\prime}$. Using f is an (a, b)-quasi-isometry,

$$
d_{1} \geq \frac{1}{a} d_{S}\left(z_{1}, z_{2}\right)-b=\frac{2 w}{a}-b .
$$

By Collar Lemma together with $\iota(z)<\varepsilon$, the width w satisfies $\cosh w>\operatorname{coth} \varepsilon$. Therefore, it suffices to choose ε to be so that $\operatorname{coth} \varepsilon \geq \cosh \left((a / 2)\left(b+\max \left\{2 r_{0}^{\prime}, 2 d_{2}+\log 20\right\}\right)\right)$.

Hence, by Lemma 4.7, $\sinh \iota(f(z))<2 e^{-d_{2}} \sinh r_{0}^{\prime}<\sinh \varepsilon^{\prime}$ if $\iota(z)<\varepsilon$ where ε must satisfy all the above restrictions, namely:

$$
\begin{aligned}
0<\varepsilon \leq \min & \left\{\frac{k_{2}}{2}, \operatorname{arcsinh} e^{-(a+1)\left(a k_{3}+b+k_{4}\right)}, \operatorname{arcsinh} e^{-k_{1}^{*}},\right. \\
& \left.\operatorname{arccoth} \cosh \frac{a\left(b+\max \left\{2 r_{0}^{\prime}, 2 d_{2}+\log 20\right\}\right)}{2}\right\} .
\end{aligned}
$$

Note that the constant ε in Theorem 1.3 does not depend on z, f, S, S^{\prime}.
Theorem 5.1. Let S and S^{\prime} be non-exceptional genus zero Riemann surfaces and $f: S \longrightarrow S^{\prime}$ a c-full (a, b)-quasi-isometry. For each $\varepsilon>0$ there exists $\varepsilon^{\prime}>0$ which just depends on ε, a, b, c, such that if $\iota(z) \geq \varepsilon$ then $\iota(f(z)) \geq \varepsilon^{\prime}$.

Proof. For each fixed $z \in S$ let us define a function $F_{z}: S^{\prime} \longrightarrow S$ as follows: $F_{z}(f(z)):=z$; for each $y \in f(S) \backslash\{f(z)\}$ fix any $x \in f^{-1}(y)$ and define $F_{z}(y):=x$; finally, for each $y \in S^{\prime} \backslash f(S)$ choose any $x \in S$ with $d_{S^{\prime}}(f(x), y) \leq c$ and define $F_{z}(y):=x$. It is easy to check that F_{z} is an $a b$-full $(a, a(b+2 c)$)-quasi-isometry.

Consequently, by Theorem 1.3, for each $\varepsilon>0$ there exists $\varepsilon^{\prime}>0$, which just depends on ε, a, b, c, such that if $\iota(p)<\varepsilon^{\prime}$ then $\iota\left(F_{z}(p)\right)<\varepsilon$. In particular, if $\iota(f(z))<\varepsilon^{\prime}$ then $\iota(z)=\iota\left(F_{z}(f(z))\right)<\varepsilon$. Since ε^{\prime} does not depend on z, f or F_{z}, then $\iota(z)<\varepsilon$ for every $z \in S$ with $\iota(f(z))<\varepsilon^{\prime}$.

6. Proof of Theorem 1.1.

This section is devoted to the proof of Theorem 1.1, which follows Kanai's approach. In Kanai's results it is essential that both $\iota(S)$ and $\iota\left(S^{\prime}\right)$ are positive; these conditions will be avoided due to Theorems 1.3 and 5.1 and the thick-thin decomposition of Riemann surfaces given by Margulis Lemma (see, e.g., [2, p. 107]). Concretely, for any $\varepsilon<\operatorname{arcsinh} 1$ any Riemann surface, S, can be partitioned into a thick part, $S_{\varepsilon}:=\{z \in S: \iota(z)>\varepsilon\}$, and a thin part, $S \backslash S_{\varepsilon}$, whose components are either collars of cusps or collars of closed geodesics of length less than or equal to 2ε (see Lemma 4.9).

In order to prove Theorem 1.1, it will be shown that it suffices to consider the thick parts of S and S^{\prime} for some particular choices of ε and ε^{\prime}, so that Kanai's insight can be
brought to S_{ε} and $S_{\varepsilon^{\prime}}^{\prime}$ if we avoid the (possible) contribution to the LII given by ∂S_{ε} and $\partial S_{\varepsilon^{\prime}}^{\prime}$.

We will need the following improvement of Theorems 1.3 and 5.1.
Lemma 6.1. Let S and S^{\prime} be non-exceptional genus zero Riemann surfaces, and $f: S \longrightarrow S^{\prime}$ be a c-full (a, b)-quasi-isometry. Then, given $0<\varepsilon, \varepsilon_{1}<\operatorname{arcsinh} 1$, there exist $0<\varepsilon^{\prime}, \tilde{\varepsilon}<\varepsilon_{1}$, which just depend on $\varepsilon, \varepsilon_{1}, a, b, c$, so that

$$
f\left(S_{\varepsilon}\right) \subset S_{\varepsilon^{\prime}}^{\prime} \subset V_{c}\left(f\left(S_{\tilde{\varepsilon}}\right)\right)
$$

Proof. Theorem 5.1 asserts that given ε there exists ε^{\prime} so that the first inclusion holds. For the second one, given ε^{\prime} there exists $\tilde{\varepsilon}^{\prime}$ such that $S^{\prime} \backslash S_{\varepsilon^{\prime}}^{\prime} \supset V_{c}\left(S^{\prime} \backslash S_{\varepsilon^{\prime}}^{\prime}\right)$ by Lemma 3.2. Let $z^{\prime} \in S_{\varepsilon^{\prime}}^{\prime}$; then $V_{c}\left(z^{\prime}\right) \subset S_{\tilde{\varepsilon}^{\prime}}^{\prime}$ and since f is c-full, there exists $x^{\prime} \in V_{c}\left(z^{\prime}\right)$ so that $x^{\prime}=f(x)$ for some $x \in S_{\tilde{\varepsilon}}$ where $\tilde{\varepsilon}$ is given by $\tilde{\varepsilon}^{\prime}$ in Theorem 1.3. Therefore $z^{\prime} \in V_{c}\left(f\left(S_{\tilde{\varepsilon}}\right)\right)$. Since S_{t} becomes larger as $t>0$ decreases, one can obtain $0<\varepsilon^{\prime}, \tilde{\varepsilon}<\varepsilon_{1}$.

As a first goal it is going to be proved the $L I I$ intrinsic to a bordered surface, S_{ε} contained in S; note that S_{ε} is not necessarily connected. To this end, we define below the "thick" boundary of a subset of S as its intrinsic boundary in S_{ε}, and the "intrinsic" $L I I$ that will refered to as $L I I_{\varepsilon}$.

Definition 6.2. Given a non-exceptional Riemann surface $S, \varepsilon>0$ and a domain Ω in S_{ε}, define

$$
\partial_{\varepsilon} \Omega:=\partial \Omega \cap S_{\varepsilon}=\partial \Omega \backslash \partial S_{\varepsilon}
$$

Remark 6.3. If γ is a non-trivial simple closed curve, $\gamma \subset \partial_{\varepsilon} \Omega$, then $L_{S}(\gamma)>2 \varepsilon$.
Definition 6.4. S_{ε} is said to satisfy the ε-linear isoperimetric inequality, $L I I_{\varepsilon}$, if there exists a positive constant c, such that if Ω is a relatively compact domain in S_{ε} with smooth boundary, then

$$
\begin{equation*}
A_{S}(\Omega) \leq c L_{S}\left(\partial_{\varepsilon} \Omega\right) \tag{6.21}
\end{equation*}
$$

A reduction is that it suffices to prove $L I I_{\varepsilon}$ for intrinsic geodesic domains in S_{ε}. A domain $\Omega \subset S$ is said to be a geodesic domain if $\partial \Omega$ is a finite number of simple closed geodesics, and $A_{S}(\Omega)$ is finite. Note that Ω does not need to be relatively compact for it could contain a finite number of cusps. From this point of view, the boundary of a cusp will be considered as an improper geodesic of zero length. An intrinsic geodesic domain is a geodesic domain intrinsic to S_{ε}, i.e., the intersection of a geodesic domain in S with S_{ε}.

Let us denote by $c_{1}\left(S_{\varepsilon}\right)$ the sharp ε-linear isoperimetric constant of S_{ε} and by $c_{1, g}\left(S_{\varepsilon}\right)$ the sharp ε-linear isoperimetric constant of S_{ε} for intrinsic geodesic domains.

Lemma 6.5. Let S be a non-exceptional Riemann surface and $\varepsilon \geq 0$ so that $\varepsilon<$ $\operatorname{arcsinh} 1$. Then,
S_{ε} has $L I I_{\varepsilon} \Longleftrightarrow S_{\varepsilon}$ has $L I I_{\varepsilon}$ for intrinsic geodesic domains in S_{ε}.
In fact, $c_{1, g}\left(S_{\varepsilon}\right) \leq c_{1}\left(S_{\varepsilon}\right) \leq c_{1, g}\left(S_{\varepsilon}\right)+2$.
Note that this lemma also holds for S, corresponding to the case $\varepsilon=0$; Lemma 6.5 with $\varepsilon=0$ was proved in [15, Lemma 1.2] and improved in [23, Theorem 7].

Proof. The first inequality is direct. For the second one, Collar Lemma and Bers' theorem (see [4]) give $L I I_{\varepsilon}$ with constant 2 for simply connected and doubly connected domains. It is well known that these domains satisfy $L I I$ with constant 1 (see [15, Lemma 1.2] and [23, Theorem 7]). For other domains, $\Omega \subset S_{\varepsilon}$, write $\partial \Omega=\bigcup_{j=1}^{n} g_{j}$, where each g_{j} can be assumed to be a non-trivial simple closed curve and $n \geq 3$. Consider $\tilde{\Omega}$, the intrinsic geodesic domain in S_{ε} bounded by $\bigcup_{j=1}^{n} \beta_{j}$ where β_{j} is the intrinsic geodesic in $S_{\varepsilon} \cup \partial S_{\varepsilon}$ homotopic to g_{j}. Then $L_{S}\left(\partial_{\varepsilon} \tilde{\Omega}\right) \leq L_{S}\left(\partial_{\varepsilon} \Omega\right)$ and $A_{S}(\Omega) \leq A_{S}(\tilde{\Omega})+A_{S}(\Omega \backslash \tilde{\Omega})$ where $\Omega \backslash \tilde{\Omega}$ is a disjoint union of doubly connected domains, each component bounded by a pair β_{j} and g_{j}, or simply connected domains bounded by subsets of β_{j} and g_{j} with the same endpoints. Since $L_{S}\left(\beta_{j}\right) \leq L_{S}\left(g_{j}\right)$, applying the $L I I$ for simply and doubly connected domains to each component of $\Omega \backslash \tilde{\Omega}$ one gets $A_{S}(\Omega \backslash \tilde{\Omega}) \leq 2 L_{S}\left(\partial_{\varepsilon} \Omega\right)$ and thus

$$
A_{S}(\Omega) \leq A_{S}(\tilde{\Omega})+2 L_{S}\left(\partial_{\varepsilon} \Omega\right) \leq c_{1, g}\left(S_{\varepsilon}\right) L_{S}\left(\partial_{\varepsilon} \Omega\right)+2 L_{S}\left(\partial_{\varepsilon} \Omega\right)
$$

and then $c_{1}\left(S_{\varepsilon}\right) \leq c_{1, g}\left(S_{\varepsilon}\right)+2$. This inequality and the first one prove the lemma.
Finally the $L I I$ in S can be deduced from the $L I I_{\varepsilon}$ in S_{ε},
Proposition 6.6. Let S be a non-exceptional Riemann surface. Then there exists a universal positive constant $\varepsilon_{0} \leq \operatorname{arcsinh} 1$ verifying the following properties:

1. If S_{ε} has $L I I_{\varepsilon}$ for some $0<\varepsilon<\varepsilon_{0}$, then S has LII. Moreover, $c_{1}(S) \leq 2 c_{1, g}\left(S_{\varepsilon}\right)+2$.
2. If S has LII, then S_{ε} has LII I_{ε} for every $0<\varepsilon<\min \left\{\varepsilon_{0},\left(12 c_{1, g}(S)\right)^{-1}\right\}$. Moreover, $c_{1}\left(S_{\varepsilon}\right) \leq\left(2 \pi c_{1, g}(S)\right) /(2 \pi-1)+2$.

Proof. By Collar Lemma, there exists a positive constant $\varepsilon_{0} \leq \operatorname{arcsinh} 1$ so that if $0<\varepsilon<\varepsilon_{0}$, then $A_{S}\left(C \backslash S_{\varepsilon}\right) \leq A_{S}\left(C \cap S_{\varepsilon}\right)$ for all C collars in S, and $L_{S}(\eta) \leq 3 \varepsilon$ for every closed curve $\eta \subseteq \partial S_{\varepsilon}$.

In order to prove the first item, consider any fixed geodesic domain $\Omega \subset S$. Then

$$
\Omega \cap S_{\varepsilon}=\Omega_{1} \cup \cdots \cup \Omega_{m}
$$

with $\left\{\Omega_{k}\right\}$ disjoint intrinsic geodesic domains in S_{ε}. Since $0<\varepsilon<\varepsilon_{0}$,

$$
\begin{aligned}
A_{S}(\Omega) & =A_{S}\left(\Omega \cap S_{\varepsilon}\right)+A_{S}\left(\Omega \backslash S_{\varepsilon}\right) \leq 2 A_{S}\left(\Omega \cap S_{\varepsilon}\right) \\
& =2 \sum_{k} A_{S}\left(\Omega_{k}\right) \leq 2 c_{1, g}\left(S_{\varepsilon}\right) \sum_{k} L_{S}\left(\partial_{\varepsilon} \Omega_{k}\right)=2 c_{1, g}\left(S_{\varepsilon}\right) L_{S}(\partial \Omega)
\end{aligned}
$$

Then $c_{1, g}(S) \leq 2 c_{1, g}\left(S_{\varepsilon}\right)$ and Lemma 6.5 gives the first item.

By Lemma 6.5, the proof of the second item will follow if it is shown that when S satisfies the $L I I$ then S_{ε} satisfies the $L I I_{\varepsilon}$ for intrinsic geodesic domains. It will first be shown that, as a consequence of the $L I I$ in S, for any geodesic domain $\tilde{\Omega}$ in S, the length of the short curves of its boundary is controlled by the length of the long curves; concretely, $L_{S}\left(\partial_{\varepsilon} \tilde{\Omega}\right) \geq(2 \pi-1) L_{S}\left(\partial \tilde{\Omega} \backslash \partial_{\varepsilon} \tilde{\Omega}\right)$.

To this end, consider $\tilde{\Omega}$ a geodesic domain in S with $\partial \tilde{\Omega}=\bigcup_{j=1}^{n} \beta_{j}$ (each β_{j} is either a simple closed geodesic or a cusp and $n \geq 3)$ and define $J:=\left\{j: L_{S}\left(\beta_{j}\right)<\left(2 c_{1, g}(S)\right)^{-1}\right\}$ where $c_{1, g}(S)$ is the LII constant in S for geodesic domains. Then, if g denotes the genus of $\tilde{\Omega}$, by Gauss-Bonnet Theorem, the $L L I$ can be written as

$$
c_{1, g}(S)\left(\sum_{j \in J} L_{S}\left(\beta_{j}\right)+\sum_{j \notin J} L_{S}\left(\beta_{j}\right)\right) \geq 2 \pi(n-2+2 g),
$$

and using that $\left(c_{1, g}(S)\right)^{-1} \geq 2(\sharp J)^{-1} \sum_{j \in J} L_{S}\left(\beta_{j}\right)$ one gets

$$
\sum_{j \notin J} L_{S}\left(\beta_{j}\right) \geq\left(\frac{4 \pi(n-2+2 g)}{\sharp J}-1\right) \sum_{j \in J} L_{S}\left(\beta_{j}\right) \geq(2 \pi-1) \sum_{j \in J} L_{S}\left(\beta_{j}\right) .
$$

If $\varepsilon>0$ is chosen so that $\varepsilon<\varepsilon_{0}$ and $3 \varepsilon<\left(4 c_{1, g}(S)\right)^{-1}$, then for any $j \notin J, \beta_{j}$ is in $\partial_{\varepsilon} \tilde{\Omega}$, and the above inequality implies $L_{S}\left(\partial_{\varepsilon} \tilde{\Omega}\right) \geq(2 \pi-1) L_{S}\left(\partial \tilde{\Omega} \backslash \partial_{\varepsilon} \tilde{\Omega}\right)$ for any geodesic domain in S.

Let us show now that S_{ε} (with $\varepsilon<\min \left\{\varepsilon_{0},\left(12 c_{1, g}(S)\right)^{-1}\right\}$ chosen as above) satisfies the $L I I_{\varepsilon}$ for intrinsic geodesic domains. If Ω is an intrinsic geodesic domain in S_{ε} then it can be written as $\Omega=\tilde{\Omega} \cap S_{\varepsilon}$, where $\tilde{\Omega}$ is a geodesic domain in S such that $\partial_{\varepsilon} \Omega=\partial_{\varepsilon} \tilde{\Omega}$ and since $\tilde{\Omega}$ satisfies the $L I I$ in S,

$$
A_{S}(\Omega) \leq A_{S}(\tilde{\Omega}) \leq c_{1, g}(S)\left(L_{S}\left(\partial_{\varepsilon} \tilde{\Omega}\right)+L_{S}\left(\partial \tilde{\Omega} \backslash \partial_{\varepsilon} \tilde{\Omega}\right)\right) \leq \frac{2 \pi c_{1, g}(S)}{2 \pi-1} L_{S}\left(\partial_{\varepsilon} \Omega\right)
$$

Then Lemma 6.5 gives the second item.
Following Kanai's procedure, the $L I I$ will be transferred from bordered surfaces to nets and viceversa. To this end, a subset G of S is said to be δ-separated for $\delta>0$, if $d_{S}(p, q)>\delta$ whenever p and q are distinct points of G. It is called maximal if it is maximal with respect to the order relation of inclusion.

Consider the distance d_{G} in G induced by the distance d_{S} of S. Concretely, given $p_{1}, p_{2} \in G, d_{G}\left(p_{1}, p_{2}\right)=M$ if and only if $M \geq 0$ is the only natural number such that

$$
\begin{equation*}
\delta M \leq d_{S}\left(p_{1}, p_{2}\right)<\delta(M+1) \tag{6.22}
\end{equation*}
$$

The set of neighbors of G is defined as $N(p)=\left\{q \in G: d_{G}(p, q)=1\right\}$ and gives a net structure to the set G. Such net will be referred to as δ-net.

The linear isoperimetric inequality on nets is therefore defined as follows.
Definition 6.7. Let G be a net. For a subset T of G, define its boundary as
$\partial T:=\left\{q \in G \backslash T: d_{G}(q, T)=1\right\}$. It is said that G satisfies the LII if there exists a finite constant $c_{1}(G)>0$ so that for any non-empty finite subset T of G,

$$
\# T \leq c_{1}(G) \# \partial T
$$

Let S be a Riemann surface and $0<\varepsilon<\operatorname{arcsinh} 1$. Note that Lemma 3.2 gives that $\iota\left(V_{\varepsilon}\left(S_{\varepsilon}\right)\right) \geq c(\varepsilon)$, where $c(\varepsilon):=\operatorname{arcsinh}\left(e^{-\varepsilon} \sinh \varepsilon\right)$. The pair (G, δ) will denote a δ-net associated to the pair (S, ε) as follows: Set $\delta \leq \iota\left(V_{\varepsilon}\left(S_{\varepsilon}\right)\right) / 2$, and choose a maximal δ-net G on S_{ε} so that

$$
\begin{equation*}
A_{S}\left(S_{\varepsilon} \cap B_{S}(p, \delta)\right)>\frac{1}{2} A_{S}\left(B_{S}(p, \delta)\right) \tag{6.23}
\end{equation*}
$$

for all $p \in G$; such choice of G is possible due to Collar Lemma. Note also that G does not need to be connected.

Notice that since (G, δ) is maximal, there are no neighborhoods of points of S_{ε} that are not covered by balls $B_{S}(p, \delta)$ with $p \in G$. If this were the case one could add such point p to the net G contradicting maximality. If nevertheless there was a point q on the boundary of some balls $B_{S}(p, \delta)$ not covered, these balls could be slightly moved so that a neighborhood of q would not be covered and, as before, add q to the net. So, without loss of generality, $S_{\varepsilon} \subset \bigcup_{p \in G} B_{S}(p, \delta)$.

The strategy of the proof of Theorem 1.1 is as follows: Consider S and S^{\prime} Riemann surfaces and $f: S \longrightarrow S^{\prime}$ a quasi-isometry, (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ nets in (S, ε) and $\left(S^{\prime}, \varepsilon^{\prime}\right)$. It will be assumed that S^{\prime} satisfies the $L I I$ that will be transferred to the net $\left(G^{\prime}, \delta^{\prime}\right)$. Then it will be shown that (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ are quasi-isometric and so (G, δ) also satisfies the $L I I$. Finally, this $L I I$ will be transferred to S. The next two results deal with transferring the LII between surfaces and nets: A direct application of [20, Lemma 4.5] is the following result:

Lemma 6.8. Let S^{\prime} be a non-exceptional Riemann surface satisfying the LII and $0<\varepsilon^{\prime}<\min \left\{\varepsilon_{0},\left(12 c_{1}\left(S^{\prime}\right)\right)^{-1}\right\}$, where ε_{0} is the constant in Proposition 6.6. Let $\left(G^{\prime}, \delta^{\prime}\right)$ be a δ^{\prime}-net associated to $\left(S^{\prime}, \varepsilon^{\prime}\right)$. Then,

$$
\left(G^{\prime}, \delta^{\prime}\right) \text { also satisfies the } L I I \text { and } c_{1}\left(G^{\prime}\right) \leq \frac{12 \sinh \delta^{\prime}}{\cosh \left(\delta^{\prime} / 2\right)-1} c_{1}\left(S^{\prime}\right)
$$

Proof. Proposition 6.6 implies that $S_{\varepsilon^{\prime}}^{\prime}$ satisfies the $L I I_{\varepsilon^{\prime}}$ and applying Kanai's arguments in [20, Lemma 4.5] to $S_{\varepsilon^{\prime}}^{\prime}$ and G^{\prime} the proof follows.

The following lemma gives the other direction. To this end, recall Buser's local lineal isoperimetric inequality ([6, p. 215], [20, p. 411]).

Lemma 6.9. Let (G, δ) be a δ-net associated to (S, ε). Then

$$
\begin{equation*}
(G, \delta) \text { has } L I I \Longrightarrow S_{\varepsilon} \text { has } L I I_{\varepsilon} \tag{6.24}
\end{equation*}
$$

Moreover, $c_{1}\left(S_{\varepsilon}\right) \leq 2 m c_{1, l}\left(S_{\varepsilon}\right) \max \left\{1,2 c_{1}(G)(\sinh (9 \delta / 4) / \sinh (\delta / 4))^{2}\right\}+2$, where
$c_{1, l}\left(S_{\varepsilon}\right)$ is the constant in the local LII and $m=: \sup _{z \in S} \#\left\{p \in G: z \in B_{S}(p, \delta)\right\}<\infty$.
Proof. As in the previous lemma, it is possible to reproduce Kanai's proof in [20, Lemma 4.5] to get the result, mainly because it deals with a subset of S with positive injectivity radius, S_{ε}.

By Lemma 6.5 , it suffices to consider Ω an intrinsic geodesic domain of S_{ε}, for which it is possible to separate ∂S_{ε} from $\partial_{\varepsilon} \Omega$ (by Collar Lemma). That is, if $p \in \partial_{\varepsilon} \Omega$, there exists a ball $B_{S}(p, 3 \varepsilon)$ so that $\partial S_{\varepsilon} \cap B_{S}(p, 3 \varepsilon)=\emptyset$. Following Kanai's proof, define sets $O, P_{0} \subset G$

$$
\begin{aligned}
O & :=\left\{p \in G: A_{S}\left(B_{S}(p, \delta) \cap \Omega\right)>\frac{1}{2} A_{S}\left(B_{S}(p, \delta)\right)\right\}, \\
P_{0} & :=\left\{p \in G \backslash O: B_{S}(p, \delta) \cap \Omega \neq \emptyset\right\},
\end{aligned}
$$

so that $\Omega \subset \bigcup_{p \in O \cup P_{0}} B_{S}(p, \delta)$.
Since Ω is an intrinsic geodesic domain its boundary is a union of simple closed curves, some of them curves of ∂S_{ε} and the rest geodesics on S (the latter conform $\partial_{\varepsilon} \Omega$). Since (G, δ) is a δ-net associated to (S, ε), Collar Lemma implies that if $B_{S}(p, \delta)$ (for $p \in G)$ intersects one curve of $\partial \Omega \backslash \partial_{\varepsilon} \Omega \subset \partial S_{\varepsilon}$ then it does not intersect any other curve of $\partial \Omega$. If this is the case, the fact that $G \subset S_{\varepsilon}$ and condition (6.23) imply that $p \in O$. Therefore, $B_{S}(p, \delta) \cap\left(\partial \Omega \backslash \partial_{\varepsilon} \Omega\right)=\emptyset$ for all $p \in P_{0}$. Since $\iota\left(S_{\varepsilon}\right)>\delta$ the local LII can be applied

$$
\begin{aligned}
\sum_{p \in P_{0}} A_{S}\left(B_{S}(p, \delta) \cap \Omega\right) & \leq c_{1, l}\left(S_{\varepsilon}\right) \sum_{p \in P_{0}} L_{S}\left(B_{S}(p, \delta) \cap \partial \Omega\right) \\
& =c_{1, l}\left(S_{\varepsilon}\right) \sum_{p \in P_{0}} L_{S}\left(B_{S}(p, \delta) \cap \partial_{\varepsilon} \Omega\right) \leq c_{1, l}\left(S_{\varepsilon}\right) m L_{S}\left(\partial_{\varepsilon} \Omega\right) .
\end{aligned}
$$

Now, following Kanai's estimates:

$$
A_{S}(\Omega) \leq \sum_{p \in O} A_{S}\left(B_{S}(p, \delta) \cap \Omega\right)+\sum_{p \in P_{0}} A_{S}\left(B_{S}(p, \delta) \cap \Omega\right) \leq A(\delta) \sharp O+c_{1, l}\left(S_{\varepsilon}\right) m L_{S}\left(\partial_{\varepsilon} \Omega\right),
$$

where $A(r)=4 \pi \sinh ^{2} r$ is the area of balls with radius r in \mathbb{D} (the universal covering space of $S)$. Writing $\nu:=L_{S}\left(\partial_{\varepsilon} \Omega\right) / A_{S}(\Omega)$, then $A_{S}(\Omega) \leq A(\delta) /\left(1-c_{1, l}\left(S_{\varepsilon}\right) m \nu\right) \sharp O$. If $\nu \geq\left(2 m c_{1, l}\left(S_{\varepsilon}\right)\right)^{-1}$, then the $L I I_{\varepsilon}$ holds for Ω with constant $2 m c_{1, l}\left(S_{\varepsilon}\right)$; otherwise, $\nu \leq\left(2 m c_{1, l}\left(S_{\varepsilon}\right)\right)^{-1}$ and thus

$$
A_{S}(\Omega) \leq 2 A(\delta) \sharp O
$$

On the other hand, points in $\partial_{\varepsilon} \Omega$ will be near of points in ∂O (since $\partial O \subset S_{\varepsilon}$). More precisely, if $p \in \partial O$ then there exists $p^{\prime} \in N(p) \cap O$, and $B_{S}(p, \delta) \cap \sigma \neq \emptyset$ for some simple closed geodesic $\sigma \subset \partial_{\varepsilon} \Omega$. Note that σ separates p from p^{\prime} in $B_{S}\left(p^{\prime}, 2 \delta\right)$ since it is a geodesic and so $\left.A_{S}\left(B_{S}(z, \delta)\right) \cap \Omega\right)=A_{S}\left(B_{S}(z, \delta)\right) / 2$ for $z \in \sigma$. Thus $d_{S}\left(p^{\prime}, \sigma\right)<2 \delta$
and therefore $\partial O \subset V_{2 \delta}\left(\partial_{\varepsilon} \Omega\right)$. Let Q be a maximal δ-separated subset of $\partial_{\varepsilon} \Omega$; then $\bigcup_{p \in \partial O} B_{S}(p, \delta / 2) \subset V_{5 \delta / 2}\left(\partial_{\varepsilon} \Omega\right) \subset \bigcup_{q \in Q} B_{S}(q, 9 \delta / 2)$, which implies

$$
\begin{aligned}
A(\delta / 2) \sharp \partial O & \leq \sum_{q \in Q} A_{S}\left(B_{S}(q, 9 \delta / 2)\right) \leq \frac{A(9 \delta / 2)}{A(\delta)} \sum_{q \in Q} A_{S}\left(B_{S}(q, \delta)\right) \\
& =\frac{2 A(9 \delta / 2)}{A(\delta)} \sum_{q \in Q} A_{S}\left(B_{S}(q, \delta) \cap \Omega\right) \\
& \leq \frac{2 c_{1, l}\left(S_{\varepsilon}\right) A(9 \delta / 2)}{A(\delta)} \sum_{q \in Q} L_{S}\left(B_{S}(q, \delta) \cap \partial_{\varepsilon} \Omega\right) \\
& \leq \frac{2 m c_{1, l}\left(S_{\varepsilon}\right) A(9 \delta / 2)}{A(\delta)} L_{S}\left(\partial_{\varepsilon} \Omega\right)
\end{aligned}
$$

where the local isoperimetric inequality was once again used. Combining this estimate with the previous one, and using the $L I I$ for G the desired result is obtained also in the case $\nu \leq\left(2 m c_{1, l}\left(S_{\varepsilon}\right)\right)^{-1}$.

As a last step, it will be constructed a quasi-isometry between the two nets (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ associated to (S, ε) and $\left(S, \varepsilon^{\prime}\right)$ respectively with $0<\varepsilon<\operatorname{arcsinh} 1$ and $0<\varepsilon^{\prime}$, $\tilde{\varepsilon}<\varepsilon$ given by Lemma 6.1.

Proposition 6.10. The nets (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ are quasi-isometric. More precisely, there is a C^{\prime}-full (A, B)-quasi-isometry $g: G \longrightarrow G^{\prime}$, with $A=a \max \left\{\delta^{\prime} / \delta, \delta / \delta^{\prime}\right\}$, $B=5+\left(a \delta / \delta^{\prime}\right)+b / \delta^{\prime}$ and $C^{\prime}=2+(a(2 \delta+C(\varepsilon, \tilde{\varepsilon}))+2 b+c) / \delta^{\prime}$ where $C(\varepsilon, \tilde{\varepsilon})$ is the maximum diameter of the connected components of $S_{\tilde{\varepsilon}} \backslash S_{\varepsilon}$ where $\tilde{\varepsilon}$ is given by Lemma 6.1.

Moreover, for any $X \subset G, \# X \leq \mu \# g(X)$ where $\mu \leq 13^{a\left(2 \delta^{\prime}+b\right) / \delta}$.
Remark 6.11. No connectivity is assumed for either G or G^{\prime}. Note that the constant $C(\varepsilon, \tilde{\varepsilon})$ does not depend on S due to Margulis Lemma.

In [20, Lemma 4.2] Kanai proves that the $L I I$ on graphs is preserved by quasiisometries; thus an immediate consequence is:

Corollary 6.12. For (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ as above,

$$
(G, \delta) \text { satisfies the } L I I \Longleftrightarrow\left(G^{\prime}, \delta^{\prime}\right) \text { satisfies the } L I I
$$

Moreover, $c_{1}(G) \leq \mu 12^{A(B+2 C-1)+C-2} c_{1}\left(G^{\prime}\right)$, with μ as in Proposition 6.10.
Proof. The function g will be defined as follows:
Given $p_{1} \in G$, there exists at least one point $p_{1}^{\prime} \in G^{\prime}$ so that $p_{1}^{\prime} \in B_{S^{\prime}}\left(f\left(p_{1}\right), 2 \delta^{\prime}\right)$, since $f\left(S_{\varepsilon}\right) \subset S_{\varepsilon^{\prime}}^{\prime}$ by Lemma 6.1. Define $g\left(p_{1}\right):=p_{1}^{\prime}$.

Consider two points $p_{1}, p_{2} \in G$ and suppose $d_{G^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right)=M$ for some $M \geq 0$; that is,

$$
M \delta^{\prime} \leq d_{S^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right)<(M+1) \delta^{\prime}
$$

Transferring this property to f :

$$
\begin{aligned}
d_{S^{\prime}}\left(f\left(p_{1}\right), f\left(p_{2}\right)\right) & \leq d_{S^{\prime}}\left(f\left(p_{1}\right), g\left(p_{1}\right)\right)+d_{S^{\prime}}\left(f\left(p_{2}\right), g\left(p_{2}\right)\right)+d_{S^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right) \\
& \leq 4 \delta^{\prime}+(M+1) \delta^{\prime}=(5+M) \delta^{\prime}
\end{aligned}
$$

This estimate together with f being an (a, b)-quasi-isometry give:

$$
\frac{1}{a} d_{S}\left(p_{1}, p_{2}\right)-b \leq d_{S^{\prime}}\left(f\left(p_{1}\right), f\left(p_{2}\right)\right) \leq(5+M) \delta^{\prime} \leq \delta^{\prime}\left(5+d_{G^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right)\right)
$$

that is,

$$
\frac{1}{a \delta^{\prime}} d_{S}\left(p_{1}, p_{2}\right)-\left(\frac{b}{\delta^{\prime}}+5\right) \leq d_{G^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right)
$$

Use the fact that $\delta d_{G}\left(p_{1}, p_{2}\right) \leq d_{S}\left(p_{1}, p_{2}\right)$ to finally conclude

$$
\frac{\delta}{a \delta^{\prime}} d_{G}\left(p_{1}, p_{2}\right)-\left(5+\frac{b}{\delta^{\prime}}\right) \leq d_{G^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right)
$$

The other direction follows from an analogous argument, obtaining in this case:

$$
d_{G^{\prime}}\left(g\left(p_{1}\right), g\left(p_{2}\right)\right) \leq \frac{a \delta}{\delta^{\prime}} d_{G}\left(p_{1}, p_{2}\right)+\left(4+\frac{b+a \delta}{\delta^{\prime}}\right) .
$$

Finally it will be shown that

$$
G^{\prime} \subset \bigcup_{p \in G} B_{G}^{\prime}\left(g(p), C^{\prime}\right)
$$

Take $q \in G^{\prime} \subset S_{\varepsilon^{\prime}}^{\prime}$ and $0<\tilde{\varepsilon}<\varepsilon$ given by Lemma 6.1 such that $S_{\varepsilon^{\prime}}^{\prime} \subset V_{c}\left(f\left(S_{\tilde{\varepsilon}}\right)\right)$; then $q \in V_{c}\left(f\left(S_{\tilde{\varepsilon}}\right)\right)$. Therefore, there exist $\tilde{x} \in S_{\tilde{\varepsilon}}$ and $x \in S_{\varepsilon}$ so that $d_{S}(x, \tilde{x})<C(\varepsilon, \tilde{\varepsilon})$ and $d_{S^{\prime}}(f(\tilde{x}), q) \leq c(f$ is c-full $)$. Since G is a maximal δ-net in S_{ε} there exists $p \in G$ such that $d_{S}(p, x)<2 \delta$. Let $r \in G^{\prime}$ be given by $r:=g(p)$; then $d_{S^{\prime}}(r, f(p))<2 \delta^{\prime}$.

These facts together with f being an (a, b)-quasi-isometry, give:

$$
d_{S^{\prime}}(q, g(p)) \leq a(2 \delta+C(\varepsilon, \tilde{\varepsilon}))+2 b+c+2 \delta^{\prime} .
$$

Since $d_{G^{\prime}}(q, g(p)) \leq d_{S^{\prime}}(q, g(p)) / \delta^{\prime}$, then $d_{G^{\prime}}(q, g(p)) \leq 2+(a(2 \delta+C(\varepsilon, \tilde{\varepsilon}))+2 b+c) / \delta^{\prime}$.
Finally, $\# X \leq \mu \# g(X)$ where $\mu \leq 13^{\left(a\left(2 \delta^{\prime}+b\right)\right) / \delta}$ will be shown. It is easy to check that for Riemann surfaces, the number of points $p \in G$ contained in a ball of radius δ is at most 13 since they are δ-separated. By the way g was defined, if $p, q \in G$, with $g(p)=g(q)$, then $d_{S}(p, q) \leq a\left(2 \delta^{\prime}+b\right)$. And thus the corollary follows.

Finally, the combination of all previous results will give the proof of Theorem 1.1.

6.1. Proof of Theorem 1.1.

Assume that S^{\prime} has LII. If ε_{0} is the constant in Proposition 6.6, let us fix $0<\varepsilon<\varepsilon_{0}$ and let $0<\varepsilon^{\prime}, \tilde{\varepsilon}<\min \left\{\varepsilon_{0},\left(12 c_{1}\left(S^{\prime}\right)\right)^{-1}\right\}$ given by Lemma 6.1. Let $\left(G^{\prime}, \delta^{\prime}\right)$ be a net associated to $\left(S^{\prime}, \varepsilon^{\prime}\right)$. Since S^{\prime} has LII, by Lemma 6.8, G^{\prime} has LII. If (G, δ) is a net associated to (S, ε), then Proposition 6.10 gives that (G, δ) and $\left(G^{\prime}, \delta^{\prime}\right)$ are quasiisometric, and Corollary 6.12 concludes that (G, δ) has LII. Lemma 6.9 states that S_{ε} has $L I I_{\varepsilon}$ and, since $0<\varepsilon<\varepsilon_{0}$, Lemma 6.6 gives that S has LII.

Moreover, the isoperimetric constant obtained $c_{1}(S)<\infty$ depends just on $\varepsilon, a, b, c, c_{1}\left(S^{\prime}\right)$. In order to avoid the dependence on ε, it suffices to take $\varepsilon=\varepsilon_{0} / 2$, since ε_{0} is a universal constant.

7. Surfaces with finite genus.

In order to obtain a similar result to Theorem 1.1 for surfaces with finite genus, the following lemma is needed.

Lemma 7.1. Let S be a non-exceptional Riemann surface with finite genus and infinite area. Let $\sigma_{1}, \ldots, \sigma_{k}$ be a set of pairwise disjoint simple closed geodesics in S such that $S \backslash\left\{\sigma_{1} \cup \cdots \cup \sigma_{k}\right\}$ is connected and has not genus; denote by S_{0} the bordered surface obtained as the completion of $S \backslash\left\{\sigma_{1} \cup \cdots \cup \sigma_{k}\right\}$. Then the following facts hold:

- S and S_{0} are quasi-isometric.
- S satisfies the LII if and only if S_{0} satisfies the LII.

Proof. Theorem 2.2 in [34] gives the first statement.
In order to prove the second one, assume that S_{0} satisfies the $L I I$ (the other implication is direct). Seeking for a contradiction let us suppose that S does not satisfy the LII. Hence, by Lemma 6.5 there exists a sequence of geodesic domains Ω_{n} in S with $A_{S}\left(\Omega_{n}\right) / L_{S}\left(\partial \Omega_{n}\right) \rightarrow \infty$. Since S_{0} satisfies the LII, without loss of generality, assume that there exists $1 \leq j_{n} \leq k$ with $\sigma_{j_{n}} \subset \partial \Omega_{n}$ for each n; furthermore, since $L_{S}\left(\sigma_{1} \cup \cdots \cup \sigma_{k}\right)$ is a fixed number (and then bounded), one can also assume $A_{S}\left(\Omega_{n}\right) \leq c$ for some constant c and every n, and $L_{S}\left(\partial \Omega_{n}\right) \rightarrow 0$ (note that $L_{S}\left(\partial \Omega_{n}\right)>0$ since S has infinite area).

Let us consider a ball $B_{S}(z, r)$ in S with $\sigma_{1} \cup \cdots \cup \sigma_{k} \subset B_{S}(z, r)$; let us choose now $R>r$ with $A_{S}\left(B_{S}(z, R) \backslash B_{S}(z, r)\right)>c$ (this is possible since S has infinite area). Let us define $u:=\min \left\{L_{S}(\sigma): \sigma\right.$ is a simple closed geodesic with $\left.\sigma \cap B_{S}(z, R) \neq \emptyset\right\}$. Since $A_{S}\left(B_{S}(z, R) \backslash B_{S}(z, r)\right)>A_{S}\left(\Omega_{n}\right)$ and $\sigma_{1} \cup \cdots \cup \sigma_{k} \subset B_{S}(z, r)$, there exists a simple closed geodesic $\sigma^{n} \subseteq \partial \Omega_{n}$ with $\sigma^{n} \cap B_{S}(z, R) \neq \emptyset$ and $\sigma^{n} \neq \sigma_{j}$ for $j=1, \ldots, k$ (since $S \backslash\left\{\sigma_{1} \cup \cdots \cup \sigma_{k}\right\}$ is connected and S has infinite area, there is no geodesic domain Ω in S with $\left.\partial \Omega \subseteq \sigma_{1} \cup \cdots \cup \sigma_{k}\right)$. Hence,

$$
A_{S}\left(\Omega_{n}\right) \leq c \frac{L_{S}\left(\sigma^{n}\right)}{u} \leq \frac{c}{u} L_{S}\left(\partial \Omega_{n}\right)
$$

which contradicts $A_{S}\left(\Omega_{n}\right) / L_{S}\left(\partial \Omega_{n}\right) \rightarrow \infty$.

7.1. Proof of Theorem 1.2.

It is not difficult to check that S has finite area if and only if S^{\prime} has finite area; in this case, S and S^{\prime} do not satisfy the $L I I$. Otherwise, the theorem is a consequence of Lemma 7.1 and Theorem 1.1 (which also holds for bordered surfaces whose border is a finite union of simple closed geodesics; it suffices to take $\varepsilon, \varepsilon^{\prime}, \tilde{\varepsilon}$ less than half the minimum of the lengths of these simple closed geodesics).

It is not possible to obtain a quantitative version of Theorem 1.2, as shows the following example.

Example 7.2. There exist constants a, b, c, with the following property: for each n there exist non-exceptional Riemann surfaces with finite genus S_{n} satisfying the LII and a c-full (a, b)-quasi-isometry $f_{n}: S_{n} \rightarrow S_{1}$, with $\lim _{n \rightarrow \infty} c_{1}\left(S_{n}\right)=\infty$.

Let us consider the bordered surfaces Y_{1} and X in Example 2.3, and a sequence $\left\{X_{m}\right\}_{m \geq 1}$ of bordered surfaces isometric to X; denote by R_{n} the bordered surface obtained from X_{1}, \ldots, X_{n} by pasting a boundary curve of X_{m} with a boundary curve of X_{m+1} for every $1 \leq m \leq n-1$ (R_{n} is a surface with genus n and two boundary curves). Consider now a generalized Y-piece Y_{0} with a cusp and such that ∂Y_{0} is the union of two simple closed geodesics with length 1 . Denote by R_{0} the bordered surface obtained by pasting two boundary curves of Y_{1} with two boundary curves of Y_{0} (R_{0} is a torus with a cusp and a hole). S_{n} is the (non bordered) surface obtained by pasting a funnel (with boundary of length 1) to one boundary curve of R_{n} and R_{0} to the other boundary curve of R_{n}.

Lemma 2.2 gives that S_{n} satisfies the LII for every n.
The domain $\bigcup_{m=1}^{n} X_{m}$ in S_{n} has area $4 \pi n$ and its boundary has length 2 for every $n \geq 1$. This implies that $\lim _{n \rightarrow \infty} c_{1}\left(S_{n}\right)=\infty$.

Finally, let us prove the existence of c-full (a, b)-quasi-isometries $f_{n}: S_{n} \rightarrow S_{1}$. Fix geodesic rays γ_{n} in S_{n} starting in $\partial\left(R_{0} \cup R_{n}\right)$. Let us consider the bijective isometry $g_{n}: \gamma_{n} \rightarrow \gamma_{1}$. We can easily check that the map $h_{n}: R_{0} \cup R_{n} \rightarrow R_{0} \cup R_{1}$ defined in the following way is a quasi-isometry with constants which do not depend on n : if $p_{n}(z)$ is the nearest point in γ_{n} from $z \in R_{0} \cup R_{n}$, then $h_{n}(z)=g_{n}\left(p_{n}(z)\right)$. Define $f_{n}: S_{n} \rightarrow S_{1}$ as follows: $f_{n}=h_{n}$ on the interior of $R_{0} \cup R_{n}$, and f_{n} is any isometry between the funnels of S_{n} and S_{1}. Now, we can easily check that f is a quasi-isometry with constants which do not depend on n.

8. Non-linear isoperimetric inequalities.

This section deals with α-isoperimetric inequalities with $1 / 2 \leq \alpha<1$, which have a very different behavior from LII.

Proposition 8.1. If a Riemann surface S satisfies $\iota(S)=0$, then S does not satisfy the α-isoperimetric inequality for each $1 / 2 \leq \alpha<1$.

Proof. Seeking for a contradiction, let us assume that S satisfies the α isoperimetric inequality for some $1 / 2 \leq \alpha<1$.

If S has a cusp, let us consider the a-collars $C(a)$ of the cusp, with $0<a \leq 2$.

It is well known that $A_{S}(C(a))=L_{S}(\partial C(a))=a$; hence, $a^{\alpha} \leq c_{\alpha} a$, which gives a contradiction if $a \rightarrow 0^{+}$.

If S has no cusp, then there exists a sequence of simple closed geodesics $\left\{\sigma_{n}\right\}$ with $\lim _{n \rightarrow \infty} L_{S}\left(\sigma_{n}\right)=0$. Denote by C_{n} the collar of σ_{n} of width 1 . It is well known that $A_{S}\left(C_{n}\right)=2 L_{S}\left(\sigma_{n}\right) \sinh 1$ and $L_{S}\left(\partial C_{n}\right)=2 L_{S}\left(\sigma_{n}\right) \cosh 1$; hence, $\left(2 L_{S}\left(\sigma_{n}\right) \sinh 1\right)^{\alpha} \leq$ $c_{\alpha} 2 L_{S}\left(\sigma_{n}\right) \cosh 1$, which gives a contradiction if $n \rightarrow \infty$.

Theorem 1.4 follows from Proposition 8.1 and [20, Theorem 4.1].

References

[1] V. Alvarez, J. M. Rodríguez and D. V. Yakubovich, Estimates for nonlinear harmonic "measures" on trees, Michigan Math. J., 49 (2001), 47-64.
[2] W. Ballman, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, Birkhäuser, Boston, 1985.
[3] S. Bermudo, J. M. Rodríguez, J. M. Sigarreta and J.-M. Vilaire, Gromov hyperbolic graphs, Discrete Math., 313 (2013), 1575-1585.
[4] L. Bers, An inequality for Riemann surfaces, In: Differential Geometry and Complex Analysis, A Volume Dedicated to the Memory of Harry Ernest Rauch, (eds. I. Chavel and H. M. Farkas), Springer-Verlag, 1985, pp. 87-93.
[5] C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39.
[6] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progr. Math., 106, Birkhäuser, Boston, 1992.
[7] A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Anal., 15 (2001), 199-244.
[8] I. Chavel, Eigenvalues in Riemannian Geometry, Pure Appl. Math., 115, Academic Press, New York, 1984.
[9] I. Chavel, Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives, Cambridge Tracts in Math., 145, Cambridge University Press, Cambridge, 2001.
[10] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Problems in Analysis, Princeton University, 1969, (ed. Robert C. Gunning), Princeton University Press, Princeton, 1970, pp. 195-199.
[11] J. L. Fernández and M. V. Melián, Bounded geodesics of Riemann surfaces and hyperbolic manifolds, Trans. Amer. Math. Soc., 347 (1995), 3533-3549.
[12] J. L. Fernández and M. V. Melián, Escaping geodesics of Riemannian surfaces, Acta Math., 187 (2001), 213-236.
[13] J. L. Fernández, M. V. Melián and D. Pestana, Quantitative mixing results and inner functions, Math. Ann., 337 (2007), 233-251.
[14] J. L. Fernández, M. V. Melián and D. Pestana, Expanding maps, shrinking targets and hitting times, Nonlinearity, 25 (2012), 2443-2471.
[15] J. L. Fernández and J. M. Rodríguez, The exponent of convergence of Riemann surfaces. Bass Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 15 (1990), 165-183.
[16] J. L. Fernández and J. M. Rodríguez, Area growth and Green's function of Riemann surfaces, Ark. Mat., 30 (1992), 83-92.
[17] É. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d'aprés Mikhael Gromov, Progr. Math., 83, Birkhäuser, 1990.
[18] M. Gromov, Hyperbolic groups, In: Essays in Group Theory, (ed. S. M. Gersten), Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, 1987, pp. 75-263.
[19] I. Holopainen and P. M. Soardi, p-harmonic functions on graphs and manifolds, Manuscripta Math., 94 (1997), 95-110.
[20] M. Kanai, Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413.
[21] M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, 38 (1986), 227-238.
[22] M. Kanai, Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, In: Curvature and Topology of Riemannian Manifolds, Katata, 1985, (eds. K. Shiohama, T. Sakai and T. Sunada), Lecture Notes in Math., 1201, Springer-Verlag, 1986, pp. 122-137.
[23] K. Matsuzaki, Isoperimetric constants for conservative Fuchsian groups, Kodai Math. J., 28 (2005), 292-300.
[24] M. V. Melián, J. M. Rodríguez and E. Tourís, Escaping geodesics in Riemannian surfaces with pinched variable negative curvature, submitted.
[25] F. Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl., 7 (1997), 231-236.
[26] D. Pestana, J. M. Rodríguez, J. M. Sigarreta and M. Villeta, Gromov hyperbolic cubic graphs, Cent. Eur. J. Math., 10 (2012), 1141-1151.
[27] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Ann. of Math. Stud., 27, Princeton University Press, 1951.
[28] A. Portilla, J. M. Rodríguez and E. Tourís, Gromov hyperbolicity through decomposition of metrics spaces. II, J. Geom. Anal., 14 (2004), 123-149.
[29] A. Portilla and E. Tourís, A characterization of Gromov hyperbolicity of surfaces with variable negative curvature, Publ. Mat., 53 (2009), 83-110.
[30] B. Randol, Cylinders in Riemann surfaces, Comment. Math. Helv., 54 (1979), 1-5.
[31] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 1994.
[32] J. M. Rodríguez, Isoperimetric inequalities and Dirichlet functions of Riemann surfaces, Publ. Mat., 38 (1994), 243-253.
[33] J. M. Rodríguez, Two remarks on Riemann surfaces, Publ. Mat., 38 (1994), 463-477.
[34] J. M. Rodríguez and E. Tourís, Gromov hyperbolicity through decomposition of metric spaces, Acta Math. Hungar., 103 (2004), 107-138.
[35] J. M. Rodríguez and E. Tourís, Gromov hyperbolicity of Riemann surfaces, Acta Math. Sin. (Engl. Ser.), 23 (2007), 209-228.
[36] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2), 77 (1963), 33-71.
[37] P. M. Soardi, Rough isometries and Dirichlet finite harmonic functions on graphs, Proc. Amer. Math. Soc., 119 (1993), 1239-1248.
[38] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom., 25 (1987), 327-351.
[39] E. Tourís, Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces, J. Math. Anal. Appl., 380 (2011), 865-881.

Alicia Canton
Universidad Politecnica de Madrid Avenida Arco de la Victoria, 4 Ciudad Universitaria 28040 Madrid Spain
E-mail: alicia.canton@upm.es

Ana Portilla

Saint Louis University
Madrid Campus
Avenida del Valle 34
28003 Madrid
Spain
E-mail: aportil2@slu.edu

Ana Granados

Saint Louis University
Madrid Campus
Avenida del Valle 34
28003 Madrid
Spain
E-mail: agranado@slu.edu

Jose M. Rodriguez

Universidad Carlos III de Madrid
Avenida de la Universidad 30
28911 Leganés - Madrid
Spain
E-mail: jomaro@math.uc3m.es

[^0]: 2010 Mathematics Subject Classification. Primary 30F45; Secondary 30F20, 53C20, 31C12.
 Key Words and Phrases. Riemann surface, Poincaré metric, isoperimetric inequality, linear isoperimetric inequality, quasi-isometry.

 The four authors were supported in part by a grant from Ministerio de Ciencia e Innovación (MTM 2009-07800) and by a grant from Ministerio de Economía y Competitividad (MTM 2013-46374-P), Spain.

 The third author was supported in part by a grant from Ministerio de Ciencia e Innovación (MTM 2009-12740-C03-01), Spain.

 The fourth author was supported in part by a grant from CONACYT (CONACYT-UAG 10110/ 62/10), Mexico.

