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Abstract. In this article we develop a new approach to the problem of
the stability of locally conformally Kähler structures (l.c.k structures) under
small deformations of complex structures and deformations of flat line bundles.
We show a cohomological criterion for the stability of l.c.k structures. We
apply our approach to generalizations of Hopf manifolds to obtain the stability
of l.c.k structures which do not have potential in general. We give an explicit
description of the cohomological obstructions of the stability of l.c.k structures
on Inoue surfaces with b2 = 0.

1. Introduction.

Let X be a compact complex manifold with complex structure J and a Hermitian
2-form ω on X. If there is a d-closed 1-form η such that dω = η ∧ ω, then ω is called
a locally conformally Kähler structure (l.c.k structure) on X with Lee form η. An l.c.k
structure yields a Kähler metric on the universal covering of X. Many interesting l.c.k
structures on non-Kähler manifolds have been constructed. Hopf surfaces admit l.c.k
structures [12], [1]. Vaisman metrics [23] are l.c.k structures with parallel Lee form,
which are constructed on the quotients of the cones of Sasakian manifolds [2]. Ornea
and Vebitsky [20] studied the class of l.c.k structures with potential which is the one
admitting global Kähler potential on the universal covering of X. Tricerri [22] gave l.c.k
structures on certain Inoue surfaces with b2 = 0 [13], which do not have potential. Fujiki
and Pontecorvo [6] used the Twistor theory to provide l.c.k structures on the certain
complex surfaces of type VII including hyperbolic Inoue and parabolic Inoue surfaces.
Brunella constructed l.c.k structures on Kato surfaces which are complex surfaces of type
VII with global spherical shell [3], [4].

Kodaira and Spencer [17] showed that Kähler structures are stable under small de-
formations of complex structures. More precisely, if X is Kählerian, then any small de-
formation Xt of X = X0 is also Kählerian. Contrast to Kähler structures, l.c.k structures
by Tricerri on certain Inoue surfaces with b2 = 0 are not stable under small deformations
of complex structures [1]. On the other hand, it turns out that l.c.k structures with
potential are stable [20]. This suggests the need for further research on the stability of
l.c.k structures under deformations.

The purpose of this paper is to obtain the cohomological criterion for the stability of
l.c.k structures. We apply the method developed on deformations of generalized Kähler
geometry [7], [8], [9], [10], [11]. An l.c.k structure ω gives a flat line bundle L over X
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which we call the corresponding flat line bundle to ω. Then using flat line bundle L-valued
differential forms ∧•⊗L, we have the L-valued de Rham cohomology groups H•(X, L) of
L-valued de Rham complex (∧•⊗L, dL) and the L-valued Dolbeault cohomology groups
Hp,q(X, L) of the L-valued Dolbeault complex (∧p,• ⊗ L, ∂L) (see Section 1 for more
detail). The ∂∂-lemma for L-valued forms is the following:

Definition 2.1. Let X be a complex manifold and L a flat line bundle over X.
Then we say that (X, L) satisfies the ∂∂-lemma at degree (p, q) if there is an L-valued
form γ of type (p− 1, q − 1) such that

∂L∂Lγ = ∂Lα ∈ Γ(X, L⊗ ∧p,q),

for every ∂L-closed L-valued form α of type (p− 1, q).

Then we have the following criterion for the stability of l.c.k structures (see Theorem
2.2.): If L is a flat line bundle corresponding to an l.c.k structure ω0 on X and (X, L)
satisfies the ∂∂-lemma at degree (1, 2), then the stability of l.c.k structures holds, that
is, every small deformation Xt of X admits an l.c.k structure ωt, where L is still the
corresponding flat line bundle to the deformed structure ωt.

We also consider deformations of flat line bundle {Ls} and try to construct a family
of l.c.k structures {ωs} such that Ls is the corresponding line bundle to ωs. Then an
obstruction to deformations appears as a cohomology class in H3(X, L) (Theorem 2.4).
We further obtain the criterion for the stability under deformations of flat line bundles
(Theorem 2.3).

In Section 2, we give preliminary results of l.c.k structures and show our main
theorems. In Section 3, we prove the main theorems. Deformations of l.c.k structures are
constructed as formal power series. In Section 4, we show the convergence of the formal
power series. In Section 5, we discuss the stability of l.c.k structures on generalizations
of Hopf manifolds. They satisfy the ∂∂-lemma at degree (1, 2) for a class of flat line
bundles. The L-valued Bott-Chern cohomology groups are calculated on them. When the
L-valued Bott-Chern cohomology group is not trivial, there are l.c.k structures which do
not have potential. Even for the class of l.c.k structures which do not have potential, our
theorems can be applied to obtain deformations of the l.c.k structures. Professor Ornea
and Professor Verbitsky conjectured that every l.c.k metric on a Vaisman manifold is an
l.c.k with potential (c.f. Conjecture 6.3 in [21]). Our results show that their conjecture
does not hold (see Proposition 5.7 and 5.8). In Section 6, we give the stability on the
class of complex surfaces with effective anti-canonical line bundle. In Section 7, we
discuss obstructions to deformations of l.c.k structures on Inoue surfaces with b2 = 0.
There are three classes of Inoue surfaces: SM , S

(+)
N,p,q,r;t and S

(−)
N,p,q,r. It is known that

both Inoue surfaces SM and S
(−)
N,p,q,r are rigid and the Inoue surface S

(+)
N,p,q,r;t admits

1-dimensional deformations of complex structures which are parameterized by complex
numbers t ∈ C. Belgun [1] showed that both SM and S

(−)
N,p,q,r have l.c.k structures and

yet S
(+)
N,p,q,r;t admits an l.c.k structure for only real numbers t ∈ R. Thus the stability

theorem of l.c.k structures does not hold on S
(+)
N,p,q,r;t. We show that the obstruction
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to the stability appears as a non-trivial cohomology class (Proposition 7.2). Further
together with Belgun’s result, we show that the corresponding flat line bundle to every
l.c.k structure on S

(+)
N,p,q,r;t must be the canonical line bundle (Proposition 7.3). We also

show there are obstructions to the stability of l.c.k structures under deformations of flat
line bundles on Inoue surfaces with b2 = 0. It is shown that the l.c.k structures on SM ,
S

(+)
N,p,q,r;t and S

(−)
N,p,q,r are not stable under deformations of flat line bundles (Proposition

7.3, 7.5).

2. Stability theorem of locally conformally Kähler structures.

Let X = (M, J) be a compact complex manifold of dimension n, where M is the
underlying differential manifold and J is an integrable complex structure on M . Let ω

be a locally conformally Kähler structure (l.c.k structure) on X = (M, J) with Lee form
η. The Lee form η gives the cohomology class [η] ∈ H1(M,R). The exponential map
exp : R → R>0 induces the map exp∗ : H1(M,R) → H1(M,R∗) and then the image of
the class [−η] by exp∗ yields a real flat line bundle L ∈ H1(M,R∗) which is called the
corresponding flat line bundle to ω. In order to give an explicit description of L as a
Čech cocycle, we take a covering {Ui}i∈Λ of M such that Hp(Ui1 ∩ · · · ∩ Uiq

,R) = 0, for
all p > 0 and i1, . . . , iq ∈ Λ. Then there is a function fi such that η|Ui = dfi, on each
Ui and fi − fj = λij is a constant on Ui ∩ Uj . Then {e−λij}i∈Λ is a representative of L

which gives the class the first R∗-valued Čech cohomology group Ȟ1(M,R∗). Thus the
flat line bundle L has a trivialization on Ui with locally constant transition functions
{(e−λij , Ui ∩ Uj)}. The vector bundle of L-valued k-forms is denoted by ∧k ⊗ L. An
L-valued k-form α̃ is a section of ∧k ⊗ L which is also given by a set of k-forms {αi}
such that α̃i = e−λij α̃j for all i, j. Then the exterior derivative d induces the differential
operator dL acting on L-valued forms which yields the L-valued de Rham complex:

· · · dL−→ ∧k ⊗ L
dL−→ ∧k+1 ⊗ L

dL−→ · · · .

We denote by H•(X, L) the L-valued de Rham cohomology groups. Let dη be the
differential operator d − η which acts on differential forms. The η-twisted cohomology
groups H•

η (X) are the cohomology groups of the η-twisted complex:

· · · dη−→ ∧k dη−→ ∧k+1 dη−→ · · · .

The trivialization {e−fi}i∈Λ is denoted by e−f which is a section of L. Then by tensoring
the section e−f , a k-form α is regarded as an L-valued k-form α̃ := e−f⊗α = {e−fiα}i∈Λ.
This gives an isomorphism between complexes (∧•, dη) ∼= (∧• ⊗ L, dL) since dη = efi ◦
d ◦ e−fi on Ui. Thus we have an isomorphism Hk

η (X) ∼= Hk(X, L). We also denote
by ∧p,q ⊗ L the vector bundle of L-valued forms of type (p, q) on a complex manifold
X = (M, J). Then we have the decomposition dL = ∂L + ∂L, where

∂L : ∧p,q ⊗ L −→ ∧p+1,q ⊗ L,

∂L : ∧p,q ⊗ L −→ ∧p,q+1 ⊗ L.
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Then we have the Dolbeault complex of L-valued forms

· · · ∂L−→ ∧p,q ⊗ L
∂L−→ ∧p,q+1 ⊗ L

∂L−→ · · · .

We denote by Hp,q(X, L) the L-valued Dolbeault cohomology groups. The Lee form η is
decomposed into η1,0 and η0,1, where η1,0 ∈ ∧1,0 and η0,1 ∈ ∧0,1. Let ∂η be the operator
∂−η1,0 and ∂η = ∂−η0,1 the its complex conjugate. Then we have the twisted Dolbeault
cohomology groups Hp,q

η (X) of the twisted Dolbeault complex:

· · · ∂η−→ ∧p,q ∂η−→ ∧p,q+1 ∂η−→ · · · .

As in before, we have an isomorphism Hp,q
η (X) ∼= Hp,q(X, L).

For an l.c.k structure ω, we have the L-valued Kähler form ω̃ = e−f ⊗ω. Conversely,
an L-valued Kähler form ω̃ yields an l.c.k structure ω and L is the corresponding flat
line bundle to ω. The inclusion R∗ → O∗X induces the map H1(X,R∗) −→ H1(X,O∗X).
Then the real flat line bundle L gives the holomorphic line bundle L over X. Note that L
is a topologically trivial complex line bundle. Let Hq(X, Ωp⊗L) denote the cohomology
group of Ωp ⊗ L, where Ωp is the vector bundle of holomorphic p forms. Then we have
Hq(X, Ωp ⊗ L) ∼= Hp,q(X, L) by the standard Dolbeault theorem.

Definition 2.1. Let X = (M, J) be a complex manifold and L a flat line bundle
over X. Then we say that (X, L) satisfies the ∂∂-lemma at degree (p, q) if there is an
L-valued form γ of type (p− 1, q − 1) such that

∂L∂Lγ = ∂Lα ∈ Γ(X, L⊗ ∧p,q)

for every ∂L-closed, L-valued form α of type (p− 1, q).

Note that if Hp−1,q(X, L) = {0}, then (X, L) satisfies the ∂∂-lemma at (p, q). In
particular, the vanishing H0,2(X, L) = {0} yields the ∂∂-lemma at degree (1, 2).

Theorem 2.2. Let X = (M, J) be a compact, complex manifold with a locally
conformally Kähler structure ω (l.c.k structure). We denote by L the corresponding flat
line bundle to the l.c.k structure ω. We assume that (X, L) satisfies the ∂∂-lemma at
degree (1, 2). Let {Jt} be deformations of complex structure J which analytically depend
on t and J0 = J , where |t| < ε, for a constant ε > 0. Then there is a positive constant
ε′ < ε and an analytic family of 2-forms {ωt} which satisfies the followings:

( i ) ω0 = ω,
( ii ) ωt is an l.c.k structure on (M, Jt) for all t,
(iii) The line bundle L is the corresponding flat line bundle to ωt for all t,

where |t| < ε′.

Next we consider deformations of the flat line bundle L on a complex manifold
X = (M, J) with an l.c.k structure ω. Small deformations of the flat line bundle L
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are parametrized by the first cohomology group H1(X,R). Let {Ls} be deformations
of flat line bundles with L0 = L which are parametrized by the real number s. Then
deformations {Ls} is given by a family of d-closed 1-forms {ηs} which are representatives
of H1(M,R). We have the following criterion for the stability of l.c.k structures under
deformations of flat line bundles

Theorem 2.3. Let {Ls} be deformations of flat line bundles which analytically
depend on s and L0 = L, where |s| < ε for a constant ε > 0. If (X, L) satisfies the
∂∂-lemma at degree (1, 2) and H3(X, L) = {0}, then there is a positive constant ε′ < ε

and an analytic family of 2-forms {ωs} which satisfies the followings:

( i ) ω0 = ω,
( ii ) ωs is an l.c.k structure on (M, J) for all s,
(iii) The line bundle Ls is the corresponding flat line bundle to ωs for all s,

where |s| < ε′.

For a family of d-closed 2-forms ηs, we denote by η̇0 := (d/ds)ηs|s=0 the infinitesimal
tangent of deformations of {Ls} at s = 0 which gives the class [η̇0] ∈ H1(X,R). Then
the class [η̇0 ∧ ω] ∈ H3(X, L) is regarded as the first obstruction to the existence of a
smooth family of l.c.k structures {ωs} such that Ls is the corresponding flat line bundle
to ωs.

Theorem 2.4. If the class [η̇0 ∧ ω] ∈ H3(X, L) does not vanish, then X does not
admit a smooth family of l.c.k forms {ωs} such that Ls is the corresponding flat line
bundle to ωs for sufficiently small s.

In Section 7, we shall show that the obstruction does not vanish for Inoue surfaces
with b2 = 0. Combining the above two theorems, we obtain the following theorem:

Theorem 2.5. Let {Jt} be deformations of complex structure J and {Ls} defor-
mations of flat line bundles as in Theorems 2.2 and 2.3. If (X, L) satisfies the ∂∂-lemma
at degree (1, 2) and H3(X, L) = {0}, then there is a positive constant ε′ < ε and an
analytic 2-parameter family of 2-forms {ωs,t} which satisfies the followings:

( i ) ω0,0 = ω,
( ii ) ωs,t is an l.c.k structure on (M, Jt) for all t,
(iii) The line bundle Ls is the corresponding flat line bundle to ωs,t for all s,

where |s|, |t| < ε′.

3. Proof of main theorems.

This section is devoted to proof of theorems 2.2, 2.3, 2.4 and 2.5. We use the same
notation as in the previous section. We have already shown that an l.c.k structure ω on
X = (M, J) with a corresponding flat line bundle L is equivalent to the L-valued Kähler
form ω̃. Thus Theorem 2.2 is reduced to the following theorem:

Theorem 3.1. Let (X, L) and {Jt} be as in Theorem 2.2. Then there is a positive
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constant ε′ < ε and an analytic family of L-valued 2-forms {ω̃t} which satisfies the
followings:

( i ) ω̃0 = ω̃,
( ii ) ω̃t is an L-valued Kähler form on (M, Jt) for all t,

where |t| < ε′.

From now on, we denote by ω an L-valued Kähler form on X = (M, J) in stead of
ω̃ in this section.

The decomposition of the complex tangent bundle TCM = T 1,0 ⊕ T 0,1 on M gives
the decomposition of the bundle of complex endmorphism End(TCM) = ∧1 ⊗ TCM :

End(TCM) = E0 ⊕ E1,

where E0 := (∧1,0 ⊗ T 0,1) ⊕ (∧0,1 ⊗ T 1,0) and E1 := (∧1,0 ⊗ T 1,0) ⊕ (∧0,1 ⊗ T 0,1). We
denote by ERi the real part of Ei for i = 0, 1. Then we have the decomposition of the
bundle of real endomorphisms End(TM) = ER0 ⊕ ER1 . An endmorphism a ∈ End(TM)
acts on the complex structure J by the adjoint, i.e., adaJ := [a, J ]. The exponential
ea is regarded as an element of GL(TM) for a ∈End(TM) which acts on the complex
structure J = J0 by the adjoint action, i.e., Adea J := ea ◦ J ◦ e−a. The linear action of
ea ∈GL(TM) on the L-valued Kähler form ω is denoted by ea · ω. We also denote by
a ·ω the action of End(TM) on ω which is the action of the Lie algebra. We assume that
there is a family of complex structures {Jt} as in Theorem 3.1. Then there is a family
of endomorphisms {a(t)} with a(t) ∈ ER0 such that

Jt = Adea(t) J, (3.1)

where a(t) is an analytic family (cf. Proposition 2.6 page 541 in [9]),

a(t) = a1t + a2
t2

2!
+ · · · .

Since Adeb J = J for b ∈ ER1 , the action of ER1 preserves the complex structure J . We
assume that there is a family of endomorphisms {b(t)} with b(t) ∈ ER1 such that

dL(ea(t) ◦ eb(t) · ω) = 0 (3.2)

By the Campbel-Hausdorff formula, there is a section z(t) ∈End(TM) such that

ez(t) = ea(t) ◦ eb(t).

Then it turns out that ez(t) ·ω is an L-valued Kähler form on (M, Jt) for each t. In fact,
the diagonal action of ez(t) on the pair (J, ω) yields a family of pairs (Adez(t) J, ez(t) ·ω),
where ez(t) · ω is an L-valued Hermitian form of type (1, 1) with respect to the complex
structure Adez(t) J . Then we have
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Adez(t) J = Adea(t) ◦Adeb(t) J (3.3)

= Adea(t) J = Jt. (3.4)

Thus it follows from (3.2) that (Jt, e
z(t) · ω) is an L-valued Kähler form on (M, Jt). We

shall construct a formal power series {b(t)} with b(t) ∈ ER1 which satisfies (3.2). The
action of ER1 on ω gives L-valued real forms of type (1, 1) and the action of ER0 on ω yields
L-valued real forms of type (0, 2) and type (2, 0). Since ω is a non-degenerate 2-form
at each point, it turns out that every form of type (1, 1) is written as b · ω for a section
b ∈ ER1 . Thus L-valued real forms ∧1,1

R ⊗ L of type (1, 1) are given by {b · ω | b ∈ ER1 }
and we also have (∧2,0 ⊕ ∧0,2)R ⊗ L = {a · ω | a ∈ ER

0 }, where (∧2,0 ⊕ ∧0,2)R is the real
part of ∧2,0 ⊕ ∧0,2.

Lemma 3.2. We assume that (X, L) satisfies the ∂∂-lemma at degree (1, 2). If
dLα is a real dL-exact form of (∧2,1 ⊕ ∧1,2)R ⊗ L for a real α ∈ ∧2 ⊗ L, then there is a
real L-valued form β of type (1, 1) such that dLβ = dLα, where β is written as b · ω for
b ∈ ER1 .

Proof. Let α = α2,0+α1,1+α0,2 be the decomposition of α, where αp,q ∈ ∧p,q⊗L

and α2,0 = α0,2, since α is real. Since dLα consists of forms of type (2, 1) and (1, 2), we
have ∂Lα0,2 = 0 and ∂Lα2,0 = 0. Since (X, L) satisfies the ∂∂-lemma at degree (1, 2),
there is an L-valued form γ of type (0, 1) such that

∂L∂Lγ = ∂Lα0,2.

Then it follows that ∂L∂Lγ = ∂Lα2,0. We define β ∈ ∧1,1
R ⊗L by β = −∂Lγ−∂Lγ +α1,1.

Then β satisfies that

dLβ = dLα. ¤

In order to obtain an estimate of β which satisfies dLβ = dLα, we use the Hodge
theory of the following L-valued complex:

∧1,1
R ⊗ L

dL−→ (∧2,1 ⊕ ∧1,2)R ⊗ L
dL−→ (∧3,1 ⊕ ∧2,2 ⊕ ∧1,3)R ⊗ L

dL−→ · · · . (3.5)

The complex (3.5) is elliptic at the terms (∧2,1⊕∧1,2)R⊗L and (∧3,1⊕∧2,2⊕∧1,3)R⊗L.
We take a Riemannian metric on M and a hermitian metric on L. Then we have the
formal adjoint d∗L of dL and the Laplacian 4L and the Green operator GL which acts on
the term (∧2,1 ⊕ ∧1,2)R ⊗ L. Then we define β ∈ ∧1,1

R ⊗ L by

β = d∗LGdLα.

Then it follows from Lemma 3.2 that dLα is contained in the image dL(∧1,1
R ⊗ L). Thus

by applying the Hodge theory to the elliptic complex (3.5), we obtain dLβ = dLα and
by using the elliptic estimate, we have
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‖β‖s ≤ C‖α‖s,

where ‖ ‖s denotes the Sobolev norm for sufficiently large s > 0. We shall use this
estimate to show the convergence of the power series in next section.

Proof of Theorem 3.1 and Theorem 2.2. We shall obtain a power series b(t)
by the induction on the degree k of t. The first term a1 ∈ ER0 is decomposed into a1

′

and a′′1 , where a′1 ∈ ∧0,1 ⊗ T 1,0 and a′′1 = a′1. The component a′1 is ∂-closed which gives
the Kodaira-Spencer class [a′1] ∈ H1(X, T 1,0) of deformations {Jt}. Let dL(ez(t) · ω)[k]

be the term of dL(ez(t) · ω) of degree k in t. The first term is given by

dL(ez(t) · ω)[1] := dL(a1 · ω) + dL(b1 · ω) = 0 (3.6)

Since ∂a′1 = 0 and a′′1 = a′1, we have dL(a1 ·ω) ∈ (∧2,1⊕∧1,2)R⊗L. Then it follows from
Lemma 3.2 that there is a β ∈ ∧1,1

R ⊗L such that dL(a1 ·ω)+dLβ = 0. Then β is written
as b1 · ω for b1 ∈ ER1 . Thus we obtain that dL(a1 · ω) + dL(b1 · ω) = 0. Next we consider
an operator e−z(t) ◦ dL ◦ ez(t) acting on L-valued differential forms. It follows that the
operator e−z(t) ◦ dL ◦ ez(t) is locally written as a composition of the Lie derivative and
the interior, the exterior product

e−z(t) ◦ dL ◦ ez(t) =
∑

j

θj ∧ LvJ
+ Nj , (3.7)

where θj is the exterior product by a 1-form θj and Lvj is the Lie derivative by the vector
vj and Nj is an element of ∧2⊗TM which acts on differential forms by the interior and the
exterior product (cf. [7, Lemma 2.4 and 2.7, page 221–223] and Definition 2.2 in [8] for
more detail). We take an open covering {Uα} of M such that there is a nowhere-vanishing
holomorphic n-form Ωα on each Uα. We denote by Φα the pair (Ωα, ω) consisting of Ωα

and ω. Then the diagonal action of the Lie derivative of the pair Φα by a vector vj is
given by

Lvj
Φα = (Lvj

Ωα,Lvj
ω) = (aα,j · Ωα, aα,j · ω),

for aα,j ∈ End(TM) = ∧1 ⊗ TM . Thus it follows from (3.7) that there is a section
hα ∈ ∧2 ⊗ TM such that

e−z(t) ◦ dL ◦ ez(t) · Φα = (hα · Ωα, hα · ω),

where hα =
∑

j θj ∧ aα,j + Nj ∈ ∧2 ⊗ TM . Since Jt = Adez(t) J , we see that ez(t) ·Ωα is
a form of type (n, 0) with respect to the complex structure Jt. Since Jt is integrable, it
turns out that d ez(t) · Ωα is a form of type (n, 1) with respect to the complex structure
Jt. Thus we have that e−z(t) ◦ dL ◦ ez(t) · Ωα ∈ ∧n,1 with respect to J . It follows that
the component of hα in ∧0,2 ⊗ T 1,0 must vanish. Since hα is real, the component of
hα in ∧2,0 ⊗ T 0,1 vanishes also. Thus hα · ω is contained in (∧2,1 ⊕ ∧1,2)R ⊗ L and it
implies that e−z(t) ◦ dL ◦ ez(t) · ω = hα · ω ∈ (∧2,1 ⊕ ∧1,2)R ⊗ L. We assume that we
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already have b1, . . . , bk−1 ∈ ER1 such that dL(eb(t) · ω)[i] = 0, for all 0 ≤ i ≤ k − 1, where
b(t) =

∑
i bi(ti/i!). Since ez(t) = ea(t) ◦ eb(t), we have

dL(ez(t) · ω)[k] =
∑

i+j=k

ßi,j≥0

(
e−z(t)

)
[j]

dL

(
ez(t) · ω)

[i]

=
(
e−z(t) ◦ dL ◦ ez(t) · ω)

[k]

Then it follows that dL(ez(t) ·ω)[k] = (hα ·ω)[k] is of type (2, 1) and (1, 2). The kth term
dL(ez(t) · ω)[k] is written as the sum of the linear term and the non-linear term Obk

dL(ez(t) · ω)[k] =
1
k!

dL(bk · ω) + Obk,

where Obk depends only on a(t) and b1, . . . , bk−1 which is dL-exact. Thus it follows from
Lemma 3.2 that there is a bk ∈ ER1 such that dL(ez(t) ·ω)[k] = (1/k!)dL(bk ·ω)+Obk = 0.
By our assumption of the induction, we have a solution b(t) in the form of the formal
power series. We shall show that the b(t) is a convergent series which gives a smooth
family of L-valued Kähler forms {ωt} = {ez(t) · ω} by the same method as in [7], [9],
[10], [11] in next section. Thus the result follows.

As in the proof of Theorem 2.2, Theorem 2.3 is equivalent to the following:

Theorem 3.3. Let (X, L), ω and {Ls} be as in Theorem 2.3. Then there is a
positive constant ε′ < ε and an analytic family of Ls-valued 2-forms {ωs} which satisfies
the followings:

( i ) ω0 = ω,
( ii ) ωs is an Ls-valued Kähler on (M, J) for all s,

where |s| < ε′.

Proof of theorem 3.3 and Theorem 2.4. Deformations of flat line bundles
{Ls} are given by a family of elements in H1(X,R) which are written as a family of
smooth d-closed 1-forms {ηs} with η0 = 0. Then dL + ηs is the differential operator and
a flat section of Ls is given by a section σ of L with (dL + ηs)σ = 0. As before, we
see that an Ls-valued Kähler form is given by an L-valued Hermitian form ωs such that
(dL + ηs)ωs = 0.

Thus we shall obtain a family of section b(s) with b(s) ∈ ER1 such that (dL+ηs)(eb(s) ·
ω) = 0. The first term of the equation is given by

dL(b1 · ω) + η1 · ω = 0.

Thus the class [η1 ·ω] = [η1 ∧ω] ∈ H3(X, L) must vanish if there is a family of Ls-valued
Kähler forms. Hence Theorem 2.4 is proved.

From our assumption in Theorem 3.3, we have H3(X, L) = {0}. Thus it follows
that η1 ∧ ω is dL-exact real form of type (2, 1) and (1, 2). Then applying Lemma 3.2,



1384 R. Goto

we obtain b1 ∈ ER1 such that dLb1 · ω + η1 · ω = 0. We shall use the induction on k.
We assume that we already have b1, . . . , bk−1 such that (dL + ηs)(eb(s) · ω)[i] = 0 for all
0 ≤ i < k. Then we have

(dL + ηs)(eb(s) · ω)[k] =
(
e−b(s) ◦ (dL + ηs) ◦ eb(s) · ω)

[k]

Since b(s) ∈ ER1 , there is a hα on each open set Uα as before such that e−b(s)◦dL◦eb(s)·ω =
hα · ω ∈ (∧2,1 ⊕ ∧1,2)R ⊗ L. Further e−b(s) ◦ ηs ◦ eb(s) is also a 1-form and then we see
that (dL + ηs)(eb(s) ·ω)[k] ∈ (∧2,1 ⊕∧1,2)⊗L. The term (dL + ηs)(eb(s) ·ω)[k] is given by

(dL + ηs)(eb(s) · ω)[k] =
1
k!

dLbk · ω + Obk(ηs).

It follows from our assumption that (dLeb(s)·ω)[j] = −(ηs∧eb(s)·ω)[j] for j = 0, 1, . . . , k−1.
Since ηs is a d-closed 1-form and its degree is greater than or equal to one, we have

dL ◦ (dL + ηs)
(
eb(s) · ω)

[k]
= −(

ηs ∧ dLeb(s) · ω)
[k]

(3.8)

= −
∑

i+j=k

i≥1

(ηs)[i]
(
dLeb(s) · ω)

[j]
(3.9)

=
∑

i+j=k

i≥1

(ηs)[i] ∧
(
ηs ∧ eb(s) · ω)

[j]
(3.10)

=
(
ηs ∧ ηs ∧ eb(s)

)
[k]

= 0. (3.11)

Thus Obk(ηs) is dL-closed which gives a class of H3(X, L). From our assumption
H3(X, L) = {0}, Obk(ηs) is a dL-exact form of type (2, 1) and (1, 2). Then applying
Lemma 3.2, we have bk ∈ ER1 such that (1/k!)dLbk + Obk(ηs) = 0. Thus from our as-
sumption of the induction, we have a solution b(s) in the form of the formal power series
which can be shown to be a convergent series. We obtain a smooth family of Ls-valued
Kähler forms {ωs}. ¤

Theorem 2.5 is also equivalent to the following:

Theorem 3.4. Let (X, L), {Jt} and {Ls} as in Theorem 2.5. Then there is a
positive constant ε′ < 1 and an analytic 2-parameter family of Ls-valued 2 form {ωs,t}
which satisfies the followings:

( i ) ω0,0 = ω,
( ii ) ωs,t is an Ls-valued Kähler on (M, Jt) for all s,

where |s|, |t| < ε′.

Proof of Theorem 3.4. We shall use the same method as before. Deformations
of complex structures {Jt} is given by a family of endomorphisms {at} with at ∈ ER0 and
deformations of flat line bundles {Ls} is also described by a family of d-closed 1-forms
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{ηs}. Then we shall construct a 2-parameter family of {b(s, t)} with b(s, t) ∈ ER1 such
that (dL + ηs)(ea(t) ◦ eb(s,t) · ω) = 0. The first term of the equation in t is given by

dL(a1 · ω) + dL(b1 · ω) + η1 ∧ ω = 0

Since dLa1 · ω ∈ ∧2,1 ⊕∧1,2 and [η1 ∧ ω] = 0 ∈ H3(X, L) and η1 ∧ ω ∈ (∧2,1 ⊕∧1,2)R, we
have a solution b1 ∈ ER1 of the first equation from Lemma 3.2. We also have a solution
bk of the kth term of the equation and the solution b(t) by the same method as in the
proof of Theorem 3.1. ¤

Remark 3.5. If an l.c.k structure is given as an L-valued Kähler form with po-
tential:

ω =
√−1∂L∂Lφ,

for an L-valued function φ, then obstructions to deformations vanish. In fact, we can
solve the equation (3.6) explicitly. It follows from ∂a′1 = 0 and a′′1 = a′1 that we have

dL(a1 · ω) =
√−1dL(a′1 + a′′1) · ∂L∂Lφ (3.12)

=
√−1dL

(
∂La′1∂Lφ− ∂La′′1∂Lφ

)
. (3.13)

Thus b1 =
√−1(∂La′1∂Lφ − ∂La′′1∂Lφ) ∈ ∧1,1

R ⊗ L gives a solution of (3.6). This is
consistent with the result by Ornea and Verbitsky [20] that l.c.k structures with potential
are stable under small deformations of complex structures.

Remark 3.6. It is worth to note that our method gives a proof of the stability
of Kähler structures which is different from the original proof by Kodaira-Spencer. The
method by Kodaira-Spencer depends on the fact that a Kähler form is harmonic and they
applied the harmonic projection to obtain the stability of Kähler structures. An l.c.k
structure is, however not harmonic and we can not apply the method by Kodaira-Spencer
to obtain the stability of l.c.k structures.

4. The convergence.

This section is devoted to show that both power series b(t) and z(t) in Proof of
Theorem 3.1 of Section 3 are convergent series. We will use the almost same method as
in [9] to apply the elliptic estimate of the Green operator. We develop an estimate of
the obstruction Ob in Section 3 which includes the higher order term. (Note that the
obstruction term in the Kodaira-Spencer theory is quadratic.) We will use the induction
on the degree k of the power series in t. At first we will estimate the first terms b1 and
z1 of power series b(t) and z(t) in (3.6). Next we assume that b(t) and z(t) satisfy the
following inequalities (4.12) and (4.13) respectively. Then we will show that b(t) satisfies
the inequality (4.4) and then obtain the inequality (4.5).

We shall fix our notation. We denote by ‖f‖s = ‖f‖Cs,α the Hölder norm of a section
f of a bundle with respect to a metric. Then we have an inequality, ‖fg‖s ≤ Cs‖f‖s ‖g‖s,
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where f, g are sections and Cs is a constant. We denote by (K•, dL) the elliptic complex
(3.5) in Section 3:

K1 dL−→ K2 dL−→ K3 dL−→ · · · ,

where K1 = ∧1,1
R ⊗ L,K2 = (∧2,1 ⊕ ∧1,2)R ⊗ L and K3 = (∧3,1 ⊕ ∧2,2 ⊕ ∧1,3)R ⊗ L.

We use the Schauder estimates of the elliptic operators with respect to the complex
(K•, dL) with a constant CK . Let P (t) be a formal power series in t. We denote
by (P (t))[k] the kth coefficient of P (t) and given two power series P (t) and Q(t), if
(P (t))[k] < (Q(t))[k] for all k, we denote it by P (t) ¿ Q(t). For a positive integer k, if
(P (t))[i] < (Q(t))[i] for all i ≤ k, then we write it by P (t) ¿

k
Q(t). We also consider a

formal power series f(t) in t whose coefficients are sections of a bundle. Then we put
‖f(t)‖s =

∑
i ‖(f(t))[i]‖st

i. We define a convergent power series M(t) by

M(t) =
∞∑

ν=1

1
16c

(ct)ν

ν2
=

∞∑
ν=1

Mνtν ,

where c is a constant. The series M(t) is used in [15] and it turns out that the series
M(t) satisfies

Lemma 4.1. M(t)2 ¿ (1/c)M(t).

We put λ = 1/c. Then it follows from lemma 4.1 that (1/l!)M(t)l ¿
(1/l!)λl−1M(t) = (λl/l!)(1/λ)M(t). Hence we have

Lemma 4.2. eM(t) ¿ (1/λ)eλM(t).

As in Section 3, the power series z(t) is defined by the Campbel-Hausdorff formula,

ez(t) = ea(t)eb(t),

where z(t) =
∑∞

l=0(t
l/l!)zk and ez(t) =

∑∞
j=0(1/j!)z(t)j . The norm of a(t) in (3.1) is

written as ‖a(t)‖s =
∑∞

l=1(1/l!)‖ak‖st
l. Then we can assume that ‖a(t)‖s satisfies

‖a(t)‖s ¿ K1M(t), (4.1)

for a non-zero constant K1 and λ if we take a(t) sufficiently small. We will show that
there exist constants K1, K2 and λ such that we have the following inequalities,

‖b(t)‖s ¿ K2M(t), (4.2)

‖z(t)‖s ¿ M(t) (4.3)

for sufficiently small a(t). Note that K1, K2 and λ are determined by a(t), the complex
structure J and ω which do not depend on b(t) and z(t). The inequalities (4.2) and (4.3)
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are reduced to the infinitely many inequalities on degree k

‖b(t)‖s ¿
k

K2M(t), (4.4)

‖z(t)‖s ¿
k

M(t) (4.5)

We will show both inequalities (4.4) and (4.5) by the induction on k. In this section we
denote by Ci constants which do not depend on z(t), b(t) and k but depend on a(t), J

and ω. For k = 1, as in (3.6) of Section 3, b1 · ω satisfies the equation,

dL(b1 · ω) + dL(a1 · ω) = 0, (b1 · ω ∈ K1)

Then it follows from Lemma 3.2 that b1 · ω is given by

b1 · ω = −dL
∗GL(dLa1 · ω), (4.6)

where d∗L is the adjoint operator and GL is the Green operator of the complex (K•, dL).
If follows from the Schauder estimate of the elliptic operators that

‖b1 · ω‖s ≤ CK‖a1 · ω‖s ≤ CKCs‖a1‖s‖ω‖s ≤ 1
16

C1K1, (4.7)

where ‖a1‖s ≤ K1M1 = K1/16 and C1 = CKCs‖ω‖s. Let kerω be the subbundle of ER1
which is defined by kerω = {γ ∈ ER1 | γ · ω = 0}. We define b1 to be a section of the
orthogonal complement (kerω)⊥ of kerω in ER1 . Then we have

‖b1‖s ≤ C2‖b1ω‖. (4.8)

Substituting (4.7) into (4.8), we have

‖b1‖s ≤ 1
16

C1C2K1 = M1C1C2K1 (4.9)

Thus if we take K2 with C1C2K1 < K2, then we have

‖b1‖s ≤ K2M1, (4.10)

Since z1 = a1 + b1, if we take K1 and K2 satisfying K1 + K2 < 1, we have

‖z1‖s ≤ ‖a1‖s + ‖b1‖s

≤ K1M1 + K2M1

= (K1 + K2)M1 < M1 (4.11)

It follows from (4.10), (4.11) that we have inequalities (4.4) and (4.5) for k = 1.
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We assume that the following inequalities hold

‖b(t)‖ ¿
k−1

K2M(t) (4.12)

‖z(t)‖ ¿
k−1

M(t). (4.13)

Let Obk be the higher order term in Section 3. Then we have

Lemma 4.3. Obk = Obk(a1, . . . , ak−1, b1 . . . , bk−1) satisfies the following inequal-
ity,

‖Obk ‖s−1 ≤ C(λ)Mk,

where C(λ) satisfies limλ→0 C(λ) = 0.

Proof. The obstruction Obk is given by

Obk =
k∑

l=2

1
l!

(
adl

z(t) dL

)
ω.

We also have ‖[dL, z(t)]ω‖s−1 ¿ 2‖z(t)ω‖s. Since (adl
z(t) dL) = [adl−1

z(t) dL, z(t)], we find
that

∥∥(
adl

z(t) dL

)
[k]

ω
∥∥

s−1
≤ 2(2Cs)l(‖z(t)‖l

s ‖ω‖s)[k] (4.14)

Hence it follows that

‖Obk ‖s−1 =
k∑

l=2

1
l!

∥∥(
adl

z(t) dL

)
[k]

ω
∥∥

s−1
(4.15)

≤
k∑

l=2

1
l!

2(2Cs)l
(‖z(t)‖l

s ‖ω‖s

)
[k]

(4.16)

Since the degree of z(t) is greater than or equal to 1, it follows from our assumption
(4.13) and l ≥ 2 that we have

(‖z(t)‖l
s

)
[k]
≤ (M(t))l

[k]. (4.17)

(Note that (‖z(t)‖l
s)[k] consists of the term ‖zi‖s, for i < k.) Substituting (4.17) into

(4.16) and using lemma 4.2, we obtain
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‖Obk ‖s−1 ≤
k∑

l=2

1
l!

2(2Cs)l(M(t)l)[k]‖ω‖s, (4.18)

≤ C3

k∑

l=2

1
l!

(2Cs)lλl−1Mk (4.19)

≤ C3λ
−1(e2Csλ − 1− 2Csλ)Mk (4.20)

= C(λ)Mk.

where C3 = 2‖ω‖s. Then it follows the constant C(λ) satisfies

lim
t→0

C(λ) = 0. ¤

Lemma 4.4. ‖b(t)‖s ¿
k

K2M(t).

Proof. In Section 3, bk is defined as the solution of the equation,

1
k!

dL(bk · ω) +
1
k!

dL(ak · ω) + Obk = 0 (4.21)

In fact bk · ω is given by

1
k!

bk · ω = −GLd∗L(Obk)−GLd∗L

(
1
k!

ak · ω
)

(4.22)

Thus it follows from (4.8) and the Schauder estimate that

∥∥∥∥
1
k!

bk

∥∥∥∥
s

≤ C2CK‖Obk ‖s−1 + C2CK

∥∥∥∥
1
k!

ak · ω
∥∥∥∥

s

(4.23)

Applying lemma 4.3 and (4.1) to (4.23), we have

∥∥∥∥
1
k!

bk

∥∥∥∥
s

≤ C2CKC(λ)Mk + CsC2CKK1Mk‖ω‖s

≤ (C4C(λ) + C5K1)Mk (4.24)

where C4 = C2CK and C5 = CsC2‖ω‖s. Then from (4.9) and (4.24) if we take K2 as

K2 := max{C2C1K1, (C4C(λ) + C5K1)}, (4.25)

then we have the inequality,

‖b(t)‖s ¿
k

K2M(t) (4.26)
¤
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Finally we estimate zk. It follows that

(z(t))[k] =
1
k!

zk =
(

ez(t) − 1−
k∑

p=2

1
p!

z(t)p

)

[k]

.

Hence we have

∥∥∥∥
1
k!

zk

∥∥∥∥
s

≤ ∥∥(ez(t) − 1)[k]

∥∥
s
+

k∑
p=2

1
p!

∥∥(z(t)p)[k]

∥∥
s

(4.27)

From our assumption and (4.26),

‖a(t)‖s ¿ K1M(t), ‖b(t)‖s ¿
k

K2M(t).

Then it follows from Lemma 4.1 and Lemma 4.2 that

∥∥ea(t) − 1
∥∥

s
¿ 1

λ

(
eK1λ − 1

)
M(t). (4.28)

We also have

∥∥eb(t) − 1
∥∥

s
¿
k

1
λ

(
eK2λ − 1

)
M(t) (4.29)

Then we obtain

Lemma 4.5. ‖z(t)‖s ¿
k

M(t).

Proof. It follows from Lemma 4.2 and Lemma 4.1 that we have

‖ea(t)‖s¿ 1
λ

eK1λM(t).

Then substituting (4.28) and (4.29) into (4.30), we have

∥∥(ez(t) − 1)
∥∥

s
¿
k

∥∥ea(t)(eb(t) − 1)
∥∥

s
+

∥∥ea(t) − 1
∥∥

s
(4.30)

¿
k

1
λ

eK1λM(t)
1
λ

(
eK2λ − 1

)
M(t) +

1
λ

(
eK1λ − 1

)
M(t) (4.31)

Applying lemma 4.1 again, we have

∥∥(ez(t) − 1)
∥∥

s
¿
k

(
eK1λ 1

λ
(eK2λ − 1) +

1
λ

(eK1λ − 1)
)

M(t) (4.32)

¿
k

C(K1,K2)M(t) (4.33)
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where C(K1,K2) is a constant which depends only on K1 and K2. Since (z(t))p
[k] consists

of terms zi for i < k, it follows from our assumption of the induction that the second
term of (4.27) satisfies

k∑
p=2

1
p!

∥∥(z(t)p)[k]

∥∥
s
≤

k∑
p=2

1
p!

((CsM(t))p)[k] (4.34)

≤ 1
λ

(
eCsλ − 1− Csλ

)
Mk (4.35)

= C1(λ)Mk, (4.36)

where limλ→0 C1(λ) = 0. Thus if we take K1,K2, λ which satisfy

C(K1,K2) + C1(λ) ≤ 1, (4.37)

it follows from (4.27) that

1
k!
‖zk‖s ≤ (C(K1,K2) + C1(λ))Mk ≤ Mk (4.38)

Thus ‖z(t)‖s ¿
k

M(t). ¤

If we take a(t) sufficiently small, we can take K1, K2 and λ with K1 + K2 < 1
which satisfy (4.25) and (4.37). Hence by the induction, it turns out that b(t) and z(t)
in section 3 are convergent series. Note that the convergence of the power series in the
proof of Theorem 3.3 and Theorem 3.4 can be shown by the same method.

5. The stability of l.c.k structures on generalizations of Hopf manifolds.

5.1. Lλ-valued Dolbeault cohomology groups.
Let B be a compact Kähler manifold with semi-positive anti-canonical line bundle

−KB . We denote by E a negative holomorphic Hermitian line bundle over B. Let E\{0}
be the complement of the zero section of E on which C× acts by the multiplication on each
fibre. We define a compact complex manifold X to be the quotient of the complement
E\{0} by the group of automorphisms generated by the multiplication of the real constant
α, where α 6= 0, 1. Thus we have a principal fibre bundle π : X → B with fibre elliptic
curve C∗/Z. The complex manifold X is regarded as a generalization of the standard
Hopf manifolds. In fact, the tautological line bundle over the complex projective space
CPn−1 gives rise to the standard Hopf manifolds as the quotients Cn\{0}/Z. Let h be
a Hermitian metric on E such that the curvature form of the Chern connection of h is
negative. We have the function γ := ‖σ‖2h on the total space of E, where σ is a section
of the line bundle E. Then an l.c.k metric ωλ on X is given by

ωλ =
−1
2i

∂∂γλ

γλ
, (5.1)
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for a positive real number λ. In fact, ωλ is positive-definite since E is a negative line
bundle (Note that the curvature form is negative which is given by −i∂∂ log γ for a local
non-zero holomorphic section σ of E.) The Lee form of ηλ of the l.c.k form ωλ is given
by

ηλ = −λ
dγ

γ
.

We denote by dη the differential operator d−η. Then we have dηλ
ωλ = 0. We also define

operators ∂ηλ
and ∂ηλ

, respectively by ∂ηλ
= ∂−η1,0, ∂ηλ

= ∂−η0,1, where we are using
the decomposition η = η1,0 + η0,1 and η1,0 is a form of type (1, 0) and η0,1 = η1,0. Let
ρλ : Z→ R× be the representation of Z ∼= {αn | n ∈ Z} which is given by ρλ(αn) 7→ αnλ,
where λ ∈ Z. Then the real flat line bundle Lλ over X is defined to be the quotient by
the representation ρλ:

Lλ = E\{0} ×ρλ
R.

Then we see that ωλ gives the Lλ-valued Kähler form ω̃λ = (−1/2i)∂∂γλ. Let ρ̂λ : C× →
C× be the representation given by ρ̂λ(w) = wλ, where w ∈ C×. Then the complex line
bundle LB,λ over B is defined by

LB,λ = E\{0} ×ρ̂λ
C.

We denote by Lλ the holomorphic line bundle given by the real flat line bundle Lλ. Then
we see that Lλ = π∗LB,λ since ρ̂λ is restricted to ρλ.

Proposition 5.1. Let λ be a positive real number. Then we have

H0,k(X, Lλ) = Hk(X,Lλ) = {0}, (k ≥ 2)

Proof. In order to obtain cohomology groups Hk(X,Lλ), we apply the Leray
spectral sequence of the fibre bundle π : X → B. The E2-term is given by

Ep,q
2 = Hp(B,Rqπ∗Lλ), (k = p + q).

Then it turns out that Rqπ∗Lλ = 0 if λ is not an integer. Thus we obtain H0,k(X, Lλ) =
{0} if λ is not an integer. If λ is an integer, we already have that Lλ = π∗LB,λ. It follows
from the projection formula that

Rqπ∗Lλ = Rqπ∗OX ⊗ LB,λ.

(Note that Lλ and LB,λ are regarded as sheaves of holomorphic sections.) Since the fibre
is an elliptic curve, Rqπ∗Lλ = 0 for q 6= 0, 1. The form η0,1 on X is ∂-closed which gives
a global nowhere-vanishing section of R1π∗OX . It implies that R1π∗OX = OB . Thus
it follows that the Leray spectral sequence degenerates at the E2-term. It follows that
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LB,−λ is negative for λ > 0. Since −KB is semi-positive, KB ⊗ LB,−λ is negative also
for λ > 0. Thus applying the Kodaira vanishing theorem, we have that Hk(B,LB,λ) ∼=
Hn−1−k(B,LB,−λ⊗KB) = {0} and Hk−1(B,LB,λ) ∼= Hn−k(B,LB,−λ⊗KB) = {0}, for
k = 2, . . . , n. (Note that dimB = n− 1.) Thus we have Hk(X,Lλ) = {0} for k ≥ 2. ¤

5.2. Bott-Chern cohomology groups.
A real function f on a complex manifold X is pluriharmonic if ∂∂f = 0. Let P be

the sheaf of real pluriharmonic functions. Then we have the short exact sequence:

0 −→ R −→ OX −→ P −→ 0, (5.2)

where R denotes the real constant sheaf which is a subsheaf of the structure sheaf OX of
X and the surjection OX → P is given by taking the imaginary part of a holomorphic
function. Let L be a real flat line bundle over X. The tensor product by L of the short
exact sequence (5.2) induces a short exact sequence:

0 −→ L −→ L −→ P ⊗ L −→ 0

We put P(L) := P ⊗ L. Then we have the long exact sequence:

· · · −→ H1(X, L) −→ H1(X,L) −→ H1(X,P(L)) −→ H2(X, L) −→ · · · (5.3)

Let ∧p,q(L) be the sheaf of L-valued C∞ forms of type (p, q) on X. We denote by ∧p,p
R (L)

the real part of ∧p,p(L). Then we have the exact sequence of sheaves:

0 −→ P(L) −→ ∧0,0
R (L) i∂L∂L−−−−→ ∧1,1

R (L) dL−→ ( ∧2,1 (L)⊕ ∧1,2(L)
)
R

dL−→ · · · ,

where (∧2,1(L)⊕∧1,2(L))R denotes the real part of (∧2,1(L)⊕∧1,2(L)). Thus the coho-
mology group H1(X,P(L)) coincides with the real Bott-Chern cohomology group:

H1(X,P(L)) =
{α ∈ Γ(X,∧1,1

R (L)) | dLα = 0}
{i∂L∂Lf |f ∈ Γ(X,∧0,0

R (L)} ,

where Γ(X,∧1,1
R (L)) is the set of L-valued real C∞ forms of type (1, 1) and Γ(X,∧0,0

R (L))
is the set of L-valued C∞ real functions on X*1.

We recall Definition of Vaisman metric:

Definition 5.2. A Vaisman metric is an l.c.k metric g whose Lee form is parallel
with respect to the g.

Let H•(Y, L) be the cohomology groups of the complex (∧• ⊗ L, dL) on a compact
differential manifold Y with a real flat line bundle L over Y . It was shown [18] that
Hk(Y, L) vanishes for all k on a locally conformally symplectic manifold Y if Y admits a

*1The author is grateful to Prof. Fujiki for this description of the Bott-Chern cohomology groups
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compatible Riemannian metric on which the Lee form is parallel. Thus it is pointed out
in [20] that

Theorem 5.3 ([18]). Let Y be a compact complex manifold with a Vaisman metric
and L the corresponding flat line bundle. Then we have

Hk(Y, L) = {0}, for all k

Thus from the long exact sequence (5.3), we obtain

Proposition 5.4. Let Y be a compact complex manifold with a Vaisman metric.
Then the L-valued Bott-Chern cohomology group is given by

H1(Y,P(L)) = H1(Y,L) ≡ H0,1(Y, L),

where H0,1(Y, L) denotes the L-valued Dolbeault cohomology group.

We shall apply Proposition 5.4 to the principal fibre bundle π : X → B in Subsection
5.1. We already show that the Leray spectral sequence degenerates at the E2-term and
R1π∗OX is trivial (see Proof of Proposition 5.1). The E2-term of weight 1 is given by

E1,0
2

∼= H1(B,LB,λ), E0,1
2

∼= H0(B,LB,λ)

We already see that λ is a positive integer and LB,λ is a positive line bundle over B.
Then applying the Kodaira vanishing theorem, we have H1(B,LB,λ) ≡ Hn−2(B,KB ⊗
LB,−λ) = {0}. Thus we have H1(X,L) ∼= H0(B,LB,λ). Then it follows from Proposition
5.4 that

Proposition 5.5. Let X be the complex manifold as in Subsection 5.1. Then we
have

H1(X,P(Lλ)) ≡ H1(X,Lλ) ∼= H0(B,LB,λ).

Remark 5.6. In our case that M is a fibre bundle π : M → B with fibre S1

and η gives a generator of the first cohomology group of each fibre, we directly see that
Hk(X, L) = {0}. In fact, applying the Leray spectral sequence to p : M → B, we obtain
that the E2-terms vanishes since Rkπ∗L = {0} for all k.

As before, the cohomology group H1(X,P(Lλ)) is written as

H1(X,P(L)) =
{α ∈ ∧1,1

R | dηλ
α = 0}

{∂ηλ
∂ηλ

f |f ∈ C∞(X,R)} .

We see that ωλ+α is an l.c.k form for a sufficiently small representative α of H1(X,P(L)).
Thus, if the class [α] ∈ H1(X,P(L)) does not vanish, the l.c.k structure ωλ + α does not
have any potential. Then it follows from Proposition 5.5 that we have
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Proposition 5.7. If H0(B,LB,λ) does not vanish, then the complex manifold X

as in Subsection 5.1 admits l.c.k structures which do not have potential.

In particular, if X is a standard Hopf manifold, LB,λ is the line bundle O(λ) over
CPn−1. Then we have

dimH1(X,P(Lλ)) = dimH0(Pn−1,O(λ)) =
(

λ + n− 1
n− 1,

)

where λ is a positive integer. Thus even a standard Hopf manifold admits a l.c.k structure
which does not have potential.

Since H3(X, Lλ) = {0} and H2(X,Lλ) = {0}, it follows from Theorem 2.5 that we
have the stability theorem of l.c.k structures on X.

Proposition 5.8. Let ω := ωλ + α be the l.c.k structure on X, where ωλ is
the l.c.k structure in (5.1) of Subsection 5.1 and α is a representative of a class of the
Lλ-valued Bott-Chern cohomology group H1(X,P(L)). Let {Ls} be deformations of flat
line bundles and {Jt} deformations of complex structures on X as in Theorem 2.5. Then
there is an analytic 2-parameter family of 2-forms {ωs,t} such that ωs,t is an l.c.k struc-
ture on (X, Jt) with the corresponding flat line bundle Ls.

Remark 5.9. Professor Ornea and Professor Verbitsky conjectured that every
l.c.k. metric on a Vaisman manifold is an l.c.k. with potential (c.f. Conjecture 6.3 in
[21]). Proposition 5.7 and Proposition 5.8 show that their conjecture does not hold.

6. Complex surfaces with effective anti-canonical line bundle.

Let ω be a locally conformally Kähler structure on a compact complex surface S and
L the corresponding flat line bundle to ω. We denote by L the holomorphic line bundle
given by L. By the Serre duality, we have H2(S,L) ∼= H0(S,K ⊗ L−1).

Proposition 6.1. We assume that the anti-canonical line bundle −K is effective
and H0(X,L−1) = {0}. Then an l.c.k structure ω is stable under small deformations of
S, that is, every small deformation of S admits a locally conformally Kähler structure.

Proof. It suffices to show that H2(S,L) = {0}. Since −K is effective, K is
an ideal sheaf and we have the injective map H0(S,K ⊗ L−1) → H0(S,L−1). Since
H0(S,L−1) = {0}, we have H0(S,K ⊗ L−1) ∼= H2(S,L) = {0}. Thus the result follow
from Theorem 2.3. ¤

7. Inoue surfaces with b2 = 0.

These non-Kähler surfaces, called Inoue surfaces, were introduced by Inoue [13]. An
Inoue surface S satisfies the following two conditions:

( i ) The first Betti number b1(S) is equal to one and the second Betti number b2(S)
vanishes,

( ii ) S contains no curves.
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There are three kinds of Inoue surfaces: SM , S
(+)
N,p,q,r;t and S

(−)
N,p,q,r, all of them being

compact quotients of H×C by discrete groups of holomorphic automorphisms, where H
denotes the upper half plane of the complex numbers C.

7.1. Inoue surfaces S
(+)
N,p,q,r;t.

Inoue surface S
(+)
N,p,q,r;t is the quotient of H× C by discrete group G

(+)
N,p,q,r;t

S
(+)
N,p,q,r;t = H× C/G

(+)
N,p,q,r;t

We denote by (w, z) holomorphic coordinates of H × C, where w = w1 +
√−1w2 ∈ H

and z = z1 +
√−1z2 ∈ C. The group G

(+)
N,p,q,r;t is generated by the following analytic

automorphisms:

φ0 : (w, z) 7→ (αw, z + t) (7.1)

φi : (w, z) 7→ (w + ai, z + biw + ci), i = 1, 2 (7.2)

φ3 : (w, z) 7→
(

w, z +
(b1a2 − b2a1)

r

)
(7.3)

where ai, bi, ci, r are real constants which are obtained by choosing a unimodular matrix
N = (nij) ∈ SL(2,Z) with two real eigenvalues α > 1 and 1/α, and two real eigenvectors
(a1, a2) and (b1, b2) corresponding to α and 1/α, respectively, and three integers p, q, r

(r 6= 0). Two constants c1 and c2 are defined to be a solution of the following equation:

(c1, c2) = (c1, c2)N t + (e1, e2) +
(b1a2 − b2a1)

r
(p, q),

where ei = (1/2)ni,1(ni,1 − 1)a1b1 + (1/2)ni,2(ni,2 − 1)a2b2 + ni,1ni,2b1a1, for i = 1, 2.
Note that constants α, ai, bi, ci, r are real. Then the action of G

(+)
N,p,q,r;t on H × C is

properly discontinuous and has no fixed points. We have a basis {θ1, θ2} of invariant
1-forms of type (1, 0) under the action of G

(+)
N,p,q,r;t:

θ1 =
dw

w2
, θ2 =

z2

w2
dw − dz, (7.4)

Note that θ1 and θ2 are not holomorphic. We also have a basis of invariant vectors of
type (1, 0) under the action of G

(+)
N,p,q,r;t:

X1 = w2
∂

∂w
+ z2

∂

∂z
, X2 = − ∂

∂z
(7.5)

Then we have

dθ1 = −dw2

w2
∧ θ1 = −θ1 − θ

1

2i
∧ θ1 =

1
2i

θ
1 ∧ θ1 (7.6)
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dθ2 = θ1 ∧ 1
2i

(
θ2 − θ

2)
(7.7)

We define ω by ω = (1/i)(θ1 ∧ θ
1

+ θ2 ∧ θ
2
). Then we have

dω =
dw2

w2
∧ ω (7.8)

Thus ω is an l.c.k structure with Lee form η = dw2/w2 [22]. We denote by dη the
operator d−η. Then dηω = 0. We define ω̃ by ω̃ = (1/w2)ω. Then we have φ∗0ω̃ = α−1ω̃,
φ∗i ω̃ = ω̃ for i = 1, 2, 3 and dω̃ = 0. Thus ω̃ is a flat line bundle L-valued Kähler form. A
holomorphic 2-form Ω := dw ∧ dz satisfies φ∗0Ω = αΩ and φ∗i Ω = Ω for i = 1, 2, 3. Thus
Ω gives a nowhere-vanishing L−1-valued holomorphic 2-form. Hence we see that K = L.
For simplicity, we denote by S

(+)
t the Inoue surface S

(+)
N,p,q,r;t. Then we obtain

Lemma 7.1. H0,2(S(+)
t , L) ∼= C.

Proof. Since K = L, we have

H0,2(S(+)
t , L) ∼= H0(S(+)

t ,K ⊗ L−1) ∼= H0(S(+)
t ,O) ∼= C. ¤

The Inoue surface S
(+)
t admits a 1-dimensional deformations of complex structures

and then the Kodaira-Spencer class is given by

[
X2 ⊗ θ

1]
=

[
∂

∂z
⊗ dw

w2

]
∈ H1

(
S

(+)
t ,Θ

)

The following complex is a key point of deformations of l.c.k structures which is equivalent
to the complex (3.5). The obstruction to the stability of l.c.k structures arises as a
cohomology class at the term (∧2,1 ⊕ ∧1,2)R:

∧1,1
R

dη−→ (∧2,1 ⊕ ∧1,2)R
dη−→ (∧3,1 ⊕ ∧2,2 ⊕ ∧1,3)R

dη−→ · · · (7.9)

The Kodaira-Spencer class [X2 ⊗ θ
1
] ∈ H1(S(+)

t ,Θ) acts on ω by

(
X2 ⊗ θ

1) · ω =
1
i

(
θ
1 ∧ θ

2)
(7.10)

Then we have

dη

(
(X2 ⊗ θ

1
) · ω)

=
2

i(w2)2
dw2 ∧ dw ∧ dz (7.11)

= θ1 ∧ θ
1 ∧ θ

2
(7.12)

= iθ1 ∧ θ
1 ∧ i(dz1 − idz2) (7.13)
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Then the real part and the imaginary part of dη((X2 ⊗ θ
1
) · ω) give classes of the coho-

mology group of the complex (7.9), respectively.

Proposition 7.2. The class [iθ1∧θ
1∧dz1] vanishes, that is, the form iθ1∧θ

1∧dz1

is written as dηα for α ∈ ∧1,1
R . However the class [iθ1 ∧ θ

1 ∧ dz2] does not vanish, where
we are considering the cohomology classes of the complex (7.9).

This reflects the result by Belgun that the Inoue surface S
(+)
N,p,q,r;t admits l.c.k metrics

for t ∈ R, however does not admit l.c.k metric for t ∈ C\R.

Proof. Since we have

dη

(
θ1 ∧ θ

2)
= dη

(
θ
1 ∧ θ2

)
=

1
i
θ1 ∧ θ

1 ∧ dz1,

the class [iθ1 ∧ θ
1 ∧ dz1] vanishes. We apply the Hodge theory to the complex (7.9). Let

(dη)∗ be the formal adjoint of the differential operator ∧1,1
R

dη−→ (∧2,1 ⊕ ∧1,2)R in terms
of the Hermitian metric ω. Then the formal adjoint (dη)∗ is given by

(dη)∗ = −π∧1,1 ◦ (∗−1d−η∗),

where π∧1,1 denotes the projection to forms of type (1, 1) and note that d−η = d + η.
Thus we have (dη)∗(iθ1 ∧ θ

1 ∧ dz2) = 0. Since the form iθ1 ∧ θ
1 ∧ dz2 is harmonic, the

class [iθ1 ∧ θ
1 ∧ dz2] does not vanish. ¤

The surface S
(+)
t admits a 1-dimensional family of flat line bundles since b1(S

(+)
t ) is

equal to 1. We already see that the corresponding flat line bundle L to the l.c.k structure
ω on S

(+)
t by Tricerri is the canonical line bundle K. It is natural to ask whether there

is an l.c.k structure which admits a different corresponding flat line bundle. However we
have

Proposition 7.3. Let ω′ be an l.c.k structure on the Inoue surface S := S
(+)
N,p,q,r;t.

Then the corresponding flat line bundle L′ to ω′ must be the canonical line bundle.

Proof. Since the Inoue surface S admits no curves, H0(S,K ⊗ (L′)−1) = {0}. If
ω′ gives a flat line bundle L′ 6= K, then H2(S,L′) ∼= H0(S,K ⊗ (L′)−1) = {0}. Then we
can apply the stability theorem to obtain a family of l.c.k structures {ωt}, where t ∈ C
is a parameter of deformations of complex structures. However it follows from Belgun’s
result that there is no such family of l.c.k forms. Thus L′ must be K. ¤

7.2. Inoue surfaces SM .
The Inoue surfaces SM are also the quotient surfaces SM = H×C/GM , whereH is the

upper half plane of the complex numbers C and GM is a group of analytic automorphisms
of H×C. Let M ∈ SL(3,Z) be a unimodular matrix with a real eigenvalue α > 1 and two
complex conjugate eigenvalues β 6= β. Let (a1, a2, a3) be a real eigenvector corresponding
to α and (b1, b2, b3) a eigenvector corresponding to β. Then GM is the group generated
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by the following automorphisms:

φ0(w, z) 7→ (αw, βz) (7.14)

φi(w, z) 7→ (w + ai, z + bi), for i = 1, 2, 3. (7.15)

Then the action of GM is properly discontinuous and has no fixed points. Thus SM =
H × C/GM is a compact complex surface which is differentially a fibre bundle over the
circle S1 with the 3-torus as fibre. On SM , an l.c.k form ω is defined by

ω = −i

(
dw ∧ dw

(w2)2
+ w2dz ∧ dz

)
.

A basis of invariant forms of type (1, 0) is given by θ1 = dw/w2, θ2 = (w2)1/2dz. Then ω

is written as ω = −i(θ1 ∧ θ
1
+ θ2 ∧ θ

2
). By using dθ1 = (1/2i)θ

1 ∧ θ1, dθ2 = (1/2)((θ1 −
θ
1
)/2i) ∧ θ2, we have

d
(
θ1 ∧ θ

1)
= 0, d

(
θ2 ∧ θ

2)
= η ∧ θ2 ∧ θ

2
, (7.16)

Thus ω is an l.c.k structure with Lee form η = dw2/w2.
We put dη = d− η. Then we have dηω = 0. As in the previous section, we have the

complex by using the operator dη:

· · · dη−→ ∧k dη−→ ∧k+1 dη−→ · · ·

The cohomology group of the complex is denoted by Hk
η (SM ). Then we already see that

Hk
η (SM ) ∼= Hk(SM , L). Then we obtain

Lemma 7.4.

[η ∧ ω] 6= 0 ∈ H3
η (SM ) ∼= H3(SM , L).

Proof. We apply the Hodge theory to the complex (∧•, dη). Let d∗η be the formal
adjoint operator of dη with respect to the Hermitian form ω. Then d∗η is given by

d∗η = (−1)k ∗−1 (d−η)∗ = (−1)k ∗−1 (d + η)∗

where d∗η acts on k-forms. Note that η changes into −η. Then we obtain

∗(η ∧ ω) = ∗
(

dw2

w2
∧ ω

)
= −dw1

w2
(7.17)
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d−η ∗ (η ∧ ω) = −(d + η)
dw1

w2
(7.18)

=
dw2

w2
∧ dw1

w2
− dw2

w2
∧ dw1

w2
= 0 (7.19)

Thus η ∧ ω is a harmonic form and the class [η ∧ ω] ∈ H3
η (SM ) does not vanish. ¤

Thus we apply Theorem 2.4 and obtain

Proposition 7.5. Let ω be the l.c.k structure on SM and L the corresponding flat
line bundle to ω. We denote by {Ls} deformations of flat line bundles with L0 = L which
is given by d-closed 1-forms {ηs}, where [η] 6= 0 ∈ H1(SM ). Then SM does not admit a
smooth family of l.c.k structures {ωs} such that Ls is the corresponding flat line bundle
to ωs.

7.3. Inoue surfaces S
(−)
N,p,q,r.

As in the previous section, the surfaces S
(−)
N,p,q,r are defined as quotient complex man-

ifolds H×C/G
(−)
N,p,q,r. The group G

(−)
N,p,q,r is generated by the following automorphisms:

φ0 : (w, z) 7→ (αw,−z), (7.20)

φi : (w, z) 7→ (w + ai, z + biw + ci), i = 1, 2 (7.21)

φ3 : (w, z) 7→
(

w, z +
(b1a2 − b2a1)

r

)
, (7.22)

where real constants α, ai, bi, ci, r are the same as in the subsection of S
(+)
N,p,q,r;t. Then

we have a following basis of forms of type (1, 0) on H× C:

θ1 =
dw

w2
, θ2 =

z2

w2
dw − dz

The forms θ1 and θ2 are invariant under the action of φi for i = 1, 2 and φ3. Yet we have
φ∗0θ

1 = θ1 and φ∗0θ
2 = −θ2. Thus ω = −i(θ ∧ θ

1
+ θ2 ∧ θ

2
) is an invariant form which is

an l.c.k structure on S
(−)
N,p,q,r, that is,

dω =
dw2

w2
∧ ω.

The l.c.k form ω gives the corresponding flat line bundle L. Deformations of flat line
bundles {Ls} with L0 = L are given by a class [sη] ∈ H1(S(−)

N,p,q,r,R). Then we have

Proposition 7.6. The Inoue surface S
(−)
N,p,q,r does not admit a smooth family of

l.c.k structures {ωs} such that Ls is the corresponding flat line bundle to ωs.

Proof. Since η ∧ ω is harmonic as in the proof of Lemma 7.4, it follows that the
class [η ∧ ω] ∈ H3

η (S(−)) does not vanish. Then the result follows from Theorem 2.4. ¤
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Boston, Inc., Boston, MA, 1998.

[ 6 ] A. Fujiki and M. Pontecorvo, Anti-self-dual bihermitian structures on Inoue surfaces, J. Differ-

ential Geom., 85 (2010), 15–71.

[ 7 ] R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, G2 and Spin(7)

structures, Internat. J. Math., 15 (2004), 211–257.

[ 8 ] R. Goto, On deformations of generalized Calabi-Yau, hyperKähler, G2 and Spin(7) structures,

arXiv:math.DG/0512211.

[ 9 ] R. Goto, Deformations of generalized complex and generalized Kähler structures, J. Differential

Geom., 84 (2010), 525–560.

[10] R. Goto, Poisson structures and generalized Kähler submanifolds, J. Math. Soc. Japan, 61 (2009),

107–132.

[11] R. Goto, Unobstructed K-deformations of generalized complex structures and bi-Hermitian struc-

tures, Adv. Math., 231 (2012), 1041–1067.

[12] P. Gauduchon and L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst.

Fourier (Grenoble), 48 (1998), 1107–1127.

[13] M. Inoue, On surfaces of Class VII0, Invent. Math., 24 (1974), 269–310.

[14] M. Ise, On the geometry of Hopf manifolds, Osaka Math. J., 12 (1960), 387–402.

[15] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Grundlehren Math.

Wiss., 283, Springer-Verlag, New York, 1986.

[16] K. Kodaira and D. C. Spencer, On deformations of complex, analytic structures. I, II, Ann. Math.

(2), 67 (1958), 328–466.

[17] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III, stability

theorems for complex structures, Ann. Math. (2), 71 (1960), 43–76.
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