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Abstract. We determine the singular locus of the holonomic system
of differential equations annihilating Lauricella’s hypergeometric function FC

by the theory of D-modules and of Gröbner bases. We also study the A-
hypergeometric system associated to FC .

1. Introduction.

Lauricella’s hypergeometric function FC with parameters a, b, c1, . . . , cm is defined
by

FC(x) = FC(a, b, c1, . . . , cm;x) =
∑

k∈Zm
≥0

(a)|k|(b)|k|
k!(c1)k1 · · · (cm)km

xk,

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol. Put θi = xi∂i for i = 1, . . . , m

and θ = θ1 + · · ·+ θm. We consider the left ideal I(m) generated by the operators

`i = θi(θi + ci − 1)− xi(θ + a)(θ + b), i = 1, . . . , m, (1)

where a, b, ci ∈ C are parameters. Lauricella’s function FC is annihilated by the left ideal
I(m). We will show, in Theorem 11, that the singular locus of I(m) agrees with the zero
set of

m∏

i=1

xi

∏

εi∈{−1,1}
(1 + ε1

√
x1 + · · ·+ εm

√
xm ). (2)

The proof of this fact occupies Sections 3, 4 and 5. Note that when we expand (2), it
becomes a polynomial of x. In the last section, we study the A-hypergeometric system
associated to the Lauricella FC and determine its singular locus in the complex torus by
utilizing our main theorem.

We have believed that the singular locus of I(m) is well-known among experts, but
we find few literatures on rigorous proofs on these facts. In our knowledge, there are
theses by Kaneko [7] and by Yoshida [15], who prove that the singular locus of I(m) is
contained in the zero set of (2) but they do not discuss the opposite inclusion.
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2. Preliminaries.

Let D = C〈x1, . . . , xm, ∂1, . . . , ∂m〉 be the Weyl algebra of m variables. We take a
2m dimensional integral vector (u, v), u, v ∈ Zm such that ui + vi > 0 for i = 1, . . . , m.
For an element p =

∑
(α,β)∈E cαβxα∂β of D, we define its (u, v)-initial form in(u,v)(p) by

the sum of the terms in p which have the highest (u, v)-weight. In other words, we define

ord(u,v)(p) = max
(α,β)∈E

(α · u + β · v),

in(u,v)(p) =
∑

(α,β)∈E,α·u+β·v=ord(u,v)(p)

cαβxαξβ .

Here, ξi is a new variable which commutes with the other ones (see, e.g., [12, Section
1.1]). When ui + vi = 0, we define the (u, v)-initial form analogously and ξi is replaced
by ∂i in the definition above. Put 0 = (0, . . . , 0),1 = (1, . . . , 1) ∈ Zm. For p ∈ D, its
(0,1)-initial form is called the principal symbol of p. For a given left ideal I of D, its
characteristic ideal in(0,1)(I) is the ideal in C[x, ξ] = C[x1, . . . , xm, ξ1, . . . , ξm] generated
by all principal symbols of the elements of I.

The zero set in C2m of the characteristic ideal is called the characteristic variety,
which is denoted by Ch(I). When the (Krull) dimension of the characteristic variety
Ch(I) is equal to m, D/I and I are called a holonomic D-module and a holonomic ideal,
respectively. The projection of Ch(I)\V (ξ1, . . . , ξm) to the first m-coordinates Cm = {x}
is called the singular locus of I and is denoted by Sing(I) or Sing(D/I), where

V (q1, . . . , qk) =
{
(x, ξ) ∈ C2m | q1(x, ξ) = · · · = qk(x, ξ) = 0

}

for elements q1, . . . , qk in C[x, ξ]. As to these fundamental notions of D-modules, see,
e.g., [2], [9], [12].

Let R = C(x1, . . . , xm)〈∂1, . . . , ∂m〉 be the ring of differential operators with ra-
tional function coefficients. The holonomic rank of I is the dimension of R/RI as a
C(x) = C(x1, . . . , xm) vector space, and is denoted by rank (I). The rank is equal to the
multiplicity of the characteristic ideal at a generic point. In other words, we have

rank(I) = dimCOa/Oa · in(0,1)(I),

where a is a point in Cm \ Sing(I) and Oa = C{ξ1 − a1, . . . , ξm − am}. We also have the
identity

rank(I) = dimC(x) C(x)[ξ]/C(x)[ξ] · in(0,1)(I),

where C(x)[ξ] denotes C(x1, . . . , xm)[ξ1, . . . , ξm]. Let Sol(I) be the constructive sheaf of
holomorphic solutions of the differential system given by I on Cm. That is, Sol(I) is the
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sheafication of the presheaf {f ∈ O | ` · f = 0 for all ` ∈ I}, where O is the sheaf of
holomorphic functions on Cm. The holonomic rank rank(I) is equal to dimC Sol(I)(U)
for any simply connected open set U in Cm \ Sing(I). As to these characterizations of
the holonomic rank, see, e.g., [9], [12, Chapter 1] and the references therein.

3. A variety containing the singular locus.

The singular locus of the system I(m) is π(Ch(I(m)) \ V (ξ1, . . . , ξm)) by definition.
Here, π : C2m −→ Cm is the projection sending (x, ξ) to x. The principal symbol Li of
`i is equal to

Li = x2
i ξ

2
i − xi

( m∑

j=1

xjξj

)2

for i = 1, . . . , m. Since Li ∈ in(0,1)(I(m)), the singular locus Sing(I(m)) is contained in
C ′ = π(V (L1, . . . , Lm) \ V (ξ1, . . . , ξm)).

Let us regard V (L1, . . . , Lm) as an analytic space. When xi 6= 0, Li is factored as

Li =
(

xiξi −√xi

( m∑

j=1

xjξj

))(
xiξi +

√
xi

( m∑

j=1

xjξj

))
(3)

in the extension field C(
√

x1, . . . ,
√

xm ) of C(x). Therefore, the necessary and sufficient
condition that x lies in C ′ ∩ (C∗)m is that there exists ε = (ε1, . . . , εm) such that

xiξi + εi
√

xi

( m∑

j=1

xjξj

)
= 0, i = 1, . . . , m (4)

has a non-trivial solution ξ 6= 0. This condition can be written in terms of the determinant
of the system regarded as a system of linear equations with respect to the variables ξ.

Proposition 1. The determinant of the coefficient matrix of the system of linear
equation (4) is equal to

∏m
i=1 xi

(
1 +

∑m
j=1 εj

√
xj

)
.

Proof. The coefficient matrix of the system (4) is (εixj
√

xi+δijxj)1≤i,j≤m, whose
determinant is equal to

∏m
i=1 xi · det(εi

√
xi + δij)1≤i,j≤m. The matrix

(E + Em,1 + · · ·+ Em,m−1)(εi
√

xi + δij)(E − Em,1 − · · · − Em,m−1)

is of upper half triangle with diagonal components 1, . . . , 1, 1+
∑m

j=1 εj
√

xj , where Eij ∈
Mm(Z) is the (i, j)-matrix unit. The determinants of the matrices E ± (Em,1 + · · · +
Em,m−1) are equal to 1, therefore we get the conclusion. ¤

Theorem 2 ([7], [15]). The singular locus of I(m) is contained in the zero set of
(2).



984 R. Hattori and N. Takayama

Proof. Since xi = 0 are contained in the zero set of (2), we may only consider
the singular locus in (C∗)m. If x ∈ C ′ ∩ (C∗)m, the equation (4) must have a non-trivial
solution ξ 6= 0. By Proposition 1, we get the conclusion. ¤

In the sequel, we want to prove the opposite inclusion C ⊆ Sing(I(m)), where C is
the zero set of (2). If a classical solution of I(m) has singularities on the all irreducible
components of the zero set C, then we have the above assertion. However, as the following
examples show, the singular locus of classical solutions may smaller than the zero set C.

Example 3. Assume m = 2. When a = −1/2, b = −2, c1 = c2 = 1/2, the solution
space of the differential equations is spanned by the following functions

1 + 2x + 2y − 2xy − x2/3− y2/3,
√

x,
√

y,
√

xy(1− x/3− y/3).

Note that the singular locus of these solutions is contained in xy = 0, which is smaller
than the zero set C.

Example 4. Assume m = 2 again. When a = −1/2, b = c1 = c2 = 0, the solution
space is spanned by functions

1, x, y, xyFC(1, 2, 2, 2;x, y).

They do not have singularities along xy = 0.

We close this section with two preparatory propositions.

Proposition 5. The left ideal I(m) is holonomic.

Proof. Since the Bernstein inequality dim Ch(I(m)) ≥ m holds (see, e.g., [2],
[12]), we have only to prove dimCh(I(m)) ≤ m. Let x ∈ (C∗)m. If x does not belong
to the zero set of (2), we have (x, 0) ∈ ((C∗)m × Cm) ∩ V (L1, . . . , Lm). Otherwise
(x, ξ) ∈ ((C∗)m × Cm) ∩ V (L1, . . . , Lm) for some ξ 6= 0 by Proposition 1. We conclude
that the dimension of ((C∗)m×Cm)∩V (L1, . . . , Lm) is equal to m because in (C∗)m×Cm,
the variety defined by (4) coincides with the one given by





(
1 +

m∑

j=1

εj
√

xj

)
ξ1 = 0,

εi
√

xiξi − ε1
√

x1ξ1 = 0, i = 2, . . . , m,

whose dimension is equal to m.
The remaining thing to do is the evaluation of the dimension at the points in

xi = 0. We put I0(m) = 〈L1, . . . , Lm〉, which is contained in the characteristic ideal
in(0,1)(I(m)). We will prove dim I0(m) = m by induction. When m = 1, it is easy to see
that dim I0(m) = 1. Let us assume dim I0(m− 1) = m− 1. We note that

V (I0(m)) ∩ V (xm) =
{
((x′, 0), (ξ′, ξm)) | (x′, ξ′) ∈ V (I0(m− 1)) ⊂ C2(m−1), ξm ∈ C}
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because xmξm = 0 in Li when xm = 0. It follows from the induction hypothesis
dimV (I0(m − 1)) = m − 1 that the dimension of V (I0(m)) at any point in xm = 0
is equal to (m− 1) + 1 = m. ¤

Since the Galois group Gal(C(
√

x1, . . . ,
√

xm )/C(x1, . . . , xm)) is isomorphic to
(Z/2Z)m, we have the following.

Proposition 6. The polynomial

∏

εi∈{+1,−1}
(1 + ε1

√
x1 + · · ·+ εm

√
xm )

is irreducible in C[x1, . . . , xm].

4. The singular locus in the complex torus.

If we can show that L1, . . . , Lm generate the characteristic ideal in(0,1)(I(m)), we
conclude that the singular locus Sing(I(m)) agrees with the zero set C of (2). However,
it seems not to be easy to prove it. Instead of proving it directly, we determine the
characteristic variety in the complex torus in this section.

We consider the left ideal I ′(m) generated by

`′i = yiθi(θi − ci + 1)− (θ − a)(θ − b), i = 1, . . . , m.

Here, θi = yi∂yi
and θ = θ1 + · · · + θm. These operators `′1, . . . , `

′
m are obtained by

applying the change of the coordinates yi = 1/xi, i = 1, . . . , m to `i’s and multiplying yi

to them. The ring of differential operators with respect to the variable y is also denoted
by D as long as no confusion arises. The characteristic varieties of I(m) and I ′(m) agree
in the complex torus (C∗)m under the change of the coordinates yi = 1/xi.

We use the order Âw defined by the first weight vector w(1) = (0,1) and the second
weight vector w(2) = (1,0). In other words, yα∂β Âw yα′∂β′ if and only if

(α, β) · w(1) > (α′, β′) · w(1)

or
(
(α, β) · w(1) = (α′, β′) · w(1) and (α, β) · w(2) > (α′, β′) · w(2)

)

or
(
(α, β) · w(j) = (α′, β′) · w(j) (j = 1, 2) and (α, β) >lex (α′, β′)

)
.

Here, >lex is the lexicographic order. We denote by in≺w(f) the leading monomial of
f ∈ D with respect to the order ≺w. For two elements f, g ∈ D with

in≺w
f = fαβyαξβ , in≺w

g = gα′β′y
α′ξβ′ ,

we define their S-pair sp(f, g) by

sp(f, g) = gα′β′y
γ−α∂δ−βf − fαβyγ−α′∂δ−β′g,
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where

γ =
(
max{α1, α

′
1}, . . . ,max{αm, α′m}

)
, δ =

(
max{β1, β

′
1}, . . . ,max{βm, β′m}

)
.

For a subset G of D, the relation f =
∑

cigi, gi ∈ G is called a standard represen-
tation of f with respect to G when cigi ¹w f holds for all i such that ci 6= 0.

Proposition 7. The characteristic ideal in(0,1)(I ′(m)) is generated by principal
symbols in(0,1)(`′i), i = 1, . . . , m.

Proof. We use the order Âw. Since in≺w
(`′i) = y3

i ξ2
i , we have

sp(`′i, `
′
j) = y3

j ∂2
j `′i − y3

i ∂2
i `′j .

It is expressed as

sp
(
`′i, `

′
j

)
=

(
y3

j ∂2
j − `′j

)
`′i −

(
y3

i ∂2
i − `′i

)
`′j −

(
`′i`

′
j − `′j`

′
i

)

=
(
y3

j ∂2
j − `′j

)
`′i −

(
y3

i ∂2
i − `′i

)
`′j − (2θ − a− b + 1)

(
`′i − `′j

)

=
{
y3

j ∂2
j − `′j − (2θ − a− b + 1)

}
`′i −

{
y3

i ∂2
i − `′i − (2θ − a− b + 1)

}
`′j . (5)

Note that we have used commutation relations

`′i`
′
j − `′j`

′
i = −(2θ − a− b + 1)

(
`′i − `′j

)
,

which are obtained by a straightforward calculation. We have

y3
j ∂2

j `′i = y3
i y3

j ∂2
i ∂2

j − y3
j

{
(−ci + 2)yi∂i +

m∑

k=1

θ2
k + 4(1 + yjθj)

+
∑

k 6=k′
θkθk′ + 4

∑

k 6=j

θk − (a + b)
( m∑

k=1

θk + 2
)

+ ab

}
∂2

j ,

which implies

in≺w
sp

(
`′i, `

′
j

)
= in≺w

{
− y3

j

( ∑

k,k′
ykyk′∂k∂k′

)
∂2

j + y3
i

( ∑

k,k′
ykyk′∂k∂k′

)
∂2

i

}

= y2
1y3

i ξ2
1ξ2

i

for i < j. On the other hand, we have

in≺w

{
y3

i ∂2
i − `′i − (2θ − a− b + 1)

}

= in≺w
{(ci − 2)yiθi + (θ − a)(θ − b)− (2θ − a− b + 1)}
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= in≺w
(θ2)

= y2
1ξ2

1 .

Note that it is independent of the index i. Hence we conclude that

in≺w

{
y3

j ∂2
j − `′j − (2θ − a− b + 1)

}
`′i = y2

1y3
i ξ2

1ξ2
i ,

in≺w

{
y3

i ∂2
i − `′i − (2θ − a− b + 1)

}
`′j = y2

1y3
j ξ2

1ξ2
j ,

which imply that the expression (5) is a standard representation of sp(`′i, `
′
j) with respect

to the set {`′1 . . . , `′m} and the order ≺w. It follows from the Buchberger’s criterion that
it is a Gröbner basis with respect to that order. Therefore the set

{
in(0,1)(`′i) | i = 1, . . . , m

}
=

{
yi(yiξi)2 −

( m∑

j=1

yjξj

)2∣∣∣∣ i = 1, . . . , m

}

is a Gröbner basis of in(0,1)(I ′(m)) by the theorem stated in [9, Section 2] (the condition
on the order can be weakened as in [12, Theorem 1.1.6]). In particular, it is a set of
generators of the characteristic ideal in(0,1)(I ′(m)). ¤

Let us determine the singular locus of I ′(m). The principal symbol L′i of `′i is equal
to

L′i = y3
i ξ2

i −
( m∑

j=1

yjξj

)2

.

When yi 6= 0, it is factored as

L′i =
(

yi
√

yiξi −
m∑

j=1

yjξj

)(
yi
√

yiξi +
m∑

j=1

yjξj

)

in the extension field C(
√

y1, . . . ,
√

ym ) of C(y). We can easily show that the determinant
of the coefficient matrix of the system

yi
√

yiξi + εi

m∑

j=1

yjξj = 0, i = 1, . . . , m

is equal to
( m∏

j=1

yj
√

yj

)(
1 +

m∑

j=1

εj√
yj

)
. (6)

Therefore, the singular locus of I ′(m) is equal to the union of the zero sets of (6) where
εj ’s run over {−1,+1}. Thus, we have the following theorem.
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Theorem 8. The singular locus of I(m) agrees with the zero set of (2) in the
complex torus (C∗)m.

5. Singular locus and the coordinate hyperplanes.

In this section, we prove that the coordinate hyperplanes are contained in the
singular locus Sing(I(m)) of I(m) by discussing the cohomological solution sheaf
Ext1Dan(Dan/DanI(m),Oan). We need a set of generators of the syzygies of I(m)
to describe the first cohomological solutions (as to an algorithmic method to deter-
mine it, see, e.g., [14]). We utilize a Gröbner basis with the order Â(−1,1), which is
given by the weight vector (−1,1) = (−1, . . . ,−1, 1, . . . , 1) and the lexicographic order
∂1 Â · · · Â ∂m Â x1 Â · · · Â xm as the tie-breaker, to determine the syzygies among
generators of I(m).

In order to use the S-pair criterion, we will work in the homogenized Weyl algebra
D(h) = C[h]〈x1, . . . , xm, ∂1, . . . , ∂m〉 (see, e.g., [12, Section 1.2]). The variable h is the
homogenization variable which commutes with all other variables and we have the relation
∂ixi = xi∂i + h2. Put

Si = θi(θi + (ci − 1)h2), Sab =
( m∑

i=1

θi + ah2

)( m∑

i=1

θi + bh2

)

and

Ti = hSi − xiSab, Tij = xjSi − xiSj .

They are homogeneous elements in D(h). The operators Ti and Tij are the homogeniza-
tions of `i and xj`i − xi`j , respectively. For two elements in D(h), their S-pair with
respect to the order Â(−1,1) is defined similarly as in Section 4. We also use the termi-
nology “standard representation” analogously for elements in D(h).

Theorem 9. The set G = {T1, . . . , Tm, T12, T13, . . . , Tm−1,m} satisfies the S-pair
criterion in the homogenized Weyl algebra D(h); G is a Gröbner basis of the ideal gener-
ated by itself with respect to the order Â(−1,1).

Proof. We have the following standard representations of S-pairs in terms of G:

sp(Ti, Tj) = SjTi − SiTj = Sa−1,b−1Tij , (7)

sp(Ti, Tij) = xjTi − hTij = xiTj , (8)

sp(Tj , Tij) = x2
i ∂

2
i Tj − hxj∂

2
j Tij

=
{
xi(x−1

j Sj)− cih
2θi

}
Tj − (2h2θj + cjh

4)Ti + (cjh
3∂j − Sa−1,b−1)Tij , (9)

sp(Tk, Tij) = x2
i xj∂

2
i Tk − hx2

k∂2
kTij

= hSjTki + xkSiTj − cih
2xjθiTk + ckh3θkTij , (10)
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sp(Tij , Tik) = xkTij − xjTik = −xiTjk, (11)

sp(Tij , Tkj) = x2
k∂2

kTij − x2
i ∂

2
i Tkj = SjTik − ckh2θkTij + cih

2θiTkj , (12)

sp(Tij , Tjk) = xjxk∂2
j Tij − x2

i ∂
2
i Tjk

= {Sk + (2− cj)h2xk∂j}Tij + (cj − 2)h4Tik

+ {(2− cj)h2xi∂j + cih
2θi − xiθj∂j}Tjk, (13)

sp(Tij , Ti′j′) = x2
i′xj′∂

2
i′Tij − x2

i xj∂
2
i Ti′j′

= xj′SjTii′ − xi′SiTjj′ − ci′h
2xj′θi′Tij + cih

2xjθiTi′j′ , (14)

where we assume that the indices i, j, k, i′, j′ satisfy i 6= k, j 6= k and {i, j}∩ {i′, j′} = φ.
Note in the above that we regard Tji = −Tij for i < j.

Thus, we have proved that the set G is a Gröbner basis. ¤

By [10, Theorem 9.10], syzygies are generated by the dehomogenizations of the
standard representations of the S-pairs. The following Corollary will be used to complete
the proof of our main theorem.

Corollary 10. The set of relations derived from the standard representations
of the S-pairs gives a set of generators of the syzygies among `i, (i = 1, . . . , m), `ij =
xj`i − xi`j, 1 ≤ i < j ≤ m. For example, (8) yields the syzygy xj`i − `ij − xi`j = 0.

Theorem 11. The singular locus of I(m) is the zero set of (2).

Proof. It follows from the discussions in Section 4 that we may prove only that
xi = 0 are contained in the singular locus. Let gm(x′) be a non-zero solution of I(m− 1)
at a generic point in Cm−1, where I(m− 1) is a left ideal generated by

θi(θi + ci − 1)− xi

( m−1∑

k=1

θk + a

)( m−1∑

k=1

θk + b

)
, i = 1, . . . , m− 1.

This function gm(x′) does not depend on xm. Put g1 = · · · = gm−1 = 0. Then, we have
`i · gm = 0 for i 6= m and `j · gi = 0 for i = 1, . . . , m − 1. Define gij = xjgi − xigj .∑

giei +
∑

gijeij are annihilated by the generators of the syzygies given in Corollary 10.
For instance, we have the syzygy

(θj(θj − 1) + cjθj)`i − (θi(θi − 1) + ciθi)`j − (θ + a− 1)(θ + b− 1)`ij = 0

by the equation (7). For i < j = m, we have

(θj(θj − 1) + cjθj)gi − (θi(θi − 1) + ciθi)gj − (θ + a− 1)(θ + b− 1)gij

= −(θi(θi − 1) + ciθi)gm − (θ + a− 1)(θ + b− 1)(−xigm)

= −(θi(θi − 1) + ciθi)gm + xi(θ + a)(θ + b)gm
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= −
{

(θi(θi − 1) + ciθi)− xi

( m−1∑

k=1

θk + a

)( m−1∑

k=1

θk + b

)}
gm

(since gm = gm(x′) does not depend on xm, we have ∂mgm = 0)

= 0.

When i < j < m, obviously the equation

(θj(θj − 1) + cjθj)gi − (θi(θi − 1) + ciθi)gj − (θ + a− 1)(θ + b− 1)gij = 0

holds.
Let us try to solve `i · f = gi, i = 1, . . . , m and `ij · f = gij , 1 ≤ i < j ≤ m. The

second group of equation is solved when the first group is solved. Put f =
∑∞

k=0 fkxk
m

where fk is a function in x′. The left hand side of `mf can be factored by xm. On the
other hand, the right hand side gm is nonzero and does not depend on xm. Therefore
the system `i · f = gi does not have a holomorphic solution along xm = 0. Therefore,
we have proved that Ext1D(Dan/DanEC ,O) is not zero at a generic point in xm = 0. By
Kashiwara’s theorem [8, Theorem 4.1], Ext1 must be zero if xm = 0 is not a singular
locus. Thus, we have proved that xm = 0 is contained in the singular locus. We can
analogously show that other varieties xi = 0 are also contained in the singular locus. ¤

6. The A-hypergeometric system associated to the Lauricella FC .

The binomial D-modules [3] are introduced to study classical hypergeometric sys-
tems including the Lauricella FC . The contents of the first half part of this section are
implicitly or explicitly explained in [3], but they do not seem to be publicized to people
who study classical Lauricella functions and related topics. The first part of this section
explains how to apply the theory of A-hypergeometric systems and binomial D-modules
to study FC . The second part contains a new result and utilizes the first part; the last
Theorem 14 describes the singular locus of the A-hypergeometric system associated to
FC in the complex torus. The singular locus is the zero set of the principal A-determinant
[5] for the A associated to FC .

We denote I(m), of which elements annihilate the Lauricella function FC , by EC in
this section. For a given Horn system, there exists a corresponding binomial D-module.
In case of EC , the corresponding binomial system is an A-hypergeometric system. Let
us study this system.

Let e1, . . . , em+1, em+2 be the standard basis of Zm+2. Following [11], consider the
set of points

A = {e1 + em+2, e2 + em+2, . . . , em+1 + em+2,

− e1 + em+2,−e2 + em+2, . . . ,−em+1 + em+2}.

We define the matrix A(FC ,m) consisting of these points as column vectors. This matrix
is of type (m + 2)× 2(m + 1). For example, we have
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A(FC , 2) =




1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 1 1 1 1 1


 .

Let HA(β) be the A-hypergeometric system associated to the matrix A(FC ,m), the
parameter βT = (1 − c1, . . . , 1 − cm, b − a,

∑m
j=1 cj − a − b − m) and the independent

variables u1, . . . , um+1, u−1, . . . , u−(m+1). The associated differential operators for uj

and u−j are denoted by ∂j and ∂−j , respectively. For A = A(FC ,m), its toric ideal
IA is defined by IA = {∂u − ∂v | Au = Av, u, v ∈ N2m+2

0 }, which is generated by
∂j∂−j − ∂m+1∂−(m+1) in C[∂1, . . . , ∂m+1, ∂−1, . . . , ∂−m−1] (j = 1, . . . , m).

The left ideal HA(β) is generated by the row vectors of Aθu−β and IA, where θu =
(u1∂1, . . . , um+1∂m+1, u−1∂−1, . . . , u−(m+1)∂−(m+1))T . We denote the i-th row vector of
Aθ − β by Ei − βi.

Theorem 12 ([3]). The isomorphism Sol(EC) ' Sol(HA(β)) holds for any param-
eter. In particular, the holonomic rank of EC = I(m) is equal to 2m.

Proof. Let F be a solution of EC . Following [11], we consider the following
function

f(u) = u−a
m+1u

−b
−(m+1)

m∏

j=1

u
cj−1
−j F

(
u1u−1

um+1u−(m+1)
, . . . ,

umu−m

um+1u−(m+1)

)
. (15)

Let us prove that the function f(u) is a solution of HA(β). It is easy to see that (Ei −
βi) ·f = 0. Put η = u−a

m+1u
−b
−(m+1)

∏m
j=1 u

cj−1
−j and zj = uju−j/(um+1u−(m+1)). We have

θjθ−j · f(u) = θj · ((cj − 1)ηF + ηzjFj)

= (cj − 1)ηzjFj + ηzjFj + ηzjzjFjj

= η θzj
(θzj

+ cj − 1) · F (z), (16)

where Fj denotes the partial derivative of F (z1, . . . , zm) with respect to the variable zj .
Analogously, we get

θm+1θ−(m+1) · f(u) = η

( m∑

i=1

θzi
+ a

)( m∑

i=1

θzi
+ b

)
· F (z). (17)

Put ˜̀
j = uju−jum+1u−(m+1)(∂j∂−j − ∂m+1∂−(m+1)). This is equal to

um+1u−(m+1)θjθ−j − uju−jθm+1θ−(m+1).

It follows from (16) and (17) that we have ˜̀
j · f(u) = 0, which implies that f(u) is a

solution of HA(β). Note that the correspondence from F to f is an injection among
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C-vector spaces of solutions on a simply connected open set.
Conversely, let f be a solution of HA(β). We define new 2m + 2 variables zj by

zj =
uju−j

um+1u−(m+1)
, zm+j = u−1

−j , j = 1, . . . , m, (18)

z2m+1 = u−1
m+1, z2m+2 = u−1

−(m+1).

Note that this gives an isomorphism of the complex tori (C∗)2m+1 = {u} and (C∗)2m+1 =
{z}. The Euler operator θ±uj

= u±j∂±j can be written as a sum of Euler operators with
respect to zi’s. In fact, we have

uj∂j = zj∂zj
, u−j∂−j = zj∂zj

− zm+j∂zm+j
,

um+1∂m+1 = −
m∑

k=1

zj∂zk
− z2m+1∂z2m+1 ,

u−(m+1)∂−(m+1) = −
m∑

k=1

zj∂zk
− z2m+2∂z2m+2 .

Put f ′ = η−1f . The equations (Ei−βi)·f = 0 yield θzj ·f ′ = 0 for j = m+1, . . . , 2(m+1).
This implies that f ′ depends only on z1, . . . , zm. An analogous calculation with (16) and
(17) yields the equation `i · f ′(u(z)) = 0. This means that the map F (z) 7→ f(u) is
surjective. Thus, we have proved Sol(EC) ' Sol(HA(β)).

The correspondence gives the holonomic rank of EC by evaluating the degree of IA

[4]. Since {∂j∂−j − ∂m+1∂−(m+1) | j = 1, . . . , m} is a Gröbner basis of IA, the degree
is equal to that of the monomial ideal generated by ∂j∂−j , j = 1, . . . , m. This degree is
equal to 2m. ¤

An application of this isomorphism is the following irreducibility condition of EC .
We can utilize recent results by Beukers [1] and Schulze and Walther [13] on irreducibility
of A-hypergeometric systems to give a condition of the irreducibility of EC .

Theorem 13 ([1], [13]). The system EC is irreducible if and only if

1
2

( m∑

i=1

ci − a− b−m +
m∑

i=1

εi(1− ci) + εm+1(b− a)
)
6∈ Z

for all combinations of εi ∈ {−1, 1}.

Proof. It follows from the previous theorem that the irreducibility of EC is
equivalent to that of HA(β). In fact, the solution spaces of them are locally isomor-
phic and differential operators with rational function coefficients in z is mapped to
those in u by (18). The primitive integral support functions PJ(s) for A(FC ,m) are
(1/2)

(
sm+2 +

∑
j∈J sj −

∑
j 6∈J sj

)
, J ⊆ [1,m + 1], where sj ’s are the dual basis for the

ei’s [11]. It follows from [1] or [13] that the irreducibility condition is that PJ(β) 6∈ Z
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for all J , which is equivalent to the condition in the theorem. ¤

Finally, we discuss the singular locus of the HA(β) via the correspondence. The
correspondence is not only for the classical solutions as we have seen, but also for some
D-module invariants including the singular locus on the complex torus. In this case, we
utilize our result on the singular locus for FC to derive a result on the A-hypergeometric
system.

Theorem 14. The singular locus of HA(β) in the complex torus is given by the
zero set of

∏

εi∈{−1,1}

(
1 + ε1

√
u1u−1

um+1u−(m+1)
+ · · ·+ εm

√
umu−m

um+1u−(m+1)

)
.

Proof. We denote by D∗
2m+2 the ring of differential operators on the complex

torus

C〈z±1 , . . . , z±2m+2, ∂z1 , . . . , ∂z2m+2〉.

Let I be a left ideal in D∗
2m+2. For a complex number α, we denote by D∗zα

2m+2 the left
C〈z±2m+2∂z2m+2〉-module C〈z±2m+2∂z2m+2〉/〈z2m+2∂z2m+2 − α〉. The outer tensor product
(D∗

2m+2/I) × D∗zα
2m+2 is defined by the restriction of

D∗
2m+3/〈I, z2m+3∂z2m+3 − α〉

to z2m+3 − z2m+2 = 0. In other words,

(D∗
2m+2/I) × D∗zα

2m+2|z2m+2 7→t,∂z2m+2 7→∂t

' D∗
2m+1〈t±, s, ∂t, ∂s〉/

(〈I,−t∂s + s∂s − α〉+ sD∗
2m+1〈t±, s, ∂t, ∂s〉

)
, (19)

where we make replacements

s = z2m+2 − z2m+3, t = z2m+2,

z2m+2∂2m+2 = t∂s + t∂t, z2m+3∂2m+3 = −t∂s + s∂s

in I. Let u = (0, . . . , 0, 1) be the weight vector where 1 stands for the variable s. Then,
b = in(−u,u)(−t∂s +s∂s−α) = −t∂s. Since t is invertible, we have D∗

2m+1〈t±, s, ∂t, ∂s〉b∩
C[s∂s] = 〈s∂s〉. Therefore, by the restriction algorithm (see, e.g., [10]), we can prove
that (19) is isomorphic to

D∗
2m+1〈t±, ∂t〉/

((〈I,−t∂s + s∂s − α〉+ sD∗
2m+1〈t±, s, ∂t, ∂s〉

) ∩D∗
2m+1〈t±, ∂t〉

)
,

of which denominator is called the restriction ideal.
Put τj = zj∂zj . Let I be the hypergeometric ideal HA(β) expressed in terms of the
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variable in zj (18), which is generated in D∗
2m+2 by

τj(τj − τm+j)− zj

( m∑

j=1

τj + τ2m+1

)( m∑

j=1

τj + τ2m+2

)
, j = 1, . . . , m

and

τm+j − (1− cj), j = 1, . . . , m, τ2m+2 − τ2m+1 − (b− a), τ2m+1 − a.

Note that τj(τj−τm+j)−zj

( ∑m
j=1 τj+τ2m+1

)( ∑m
j=1 τj+t∂s+t∂t

)
is in I under the change

of variables from z2m+2, z2m+3 to s, t. Subtracting zj

( ∑
τj + τ2m+1

)(− t∂s + s∂s − α
)

from it, we conclude that the restriction ideal contains

τj(τj − τm+j)− zj

( ∑
τj + τ2m+1

)( ∑
τj + t∂t − α

)
. (20)

We have defined the outer tensor product by D∗zα
2m+2 and studied its properties. We

can make analogous discussions for outer tensor products by other variables in η and we
conclude from (20) that there exists a left ideal I ′ such that

(D∗
2m+2/I) × D∗η−1 ' D∗

2m+2/I ′ (21)

and I ′ ⊇ 〈I(m), ∂zm+1 , . . . , ∂z2m+2〉. Here, I(m) is the left ideal generated by the Lauri-
cella operators (1) (xi’s are replaced by zi’s respectively).

We denote by Sing∗(M) the singular locus of the left D∗ module M in the complex
torus. It follows from (21) that

Sing∗(D∗
2m+2/I) = Sing∗

(
(D∗

2m+2/I) × D∗η−1
)

= Sing∗(D∗
2m+2/I ′) ⊆ Sing∗(D∗/I(m)). (22)

Since Sing∗(D∗/I(m)) is irreducible by Proposition 6, the singular locus of the A-
hypergeometric system Sing∗(D∗

2m+2/I) is empty or agrees with Sing∗(D∗/I(m)). Since
the toric ideal IA is Cohen-Macaulay when A = A(FC ,m), the singular locus of the
A-hypergeometric system HA(β) does not depend on the parameter β by results in [4],
[12, Section 4.3]. Then, we may suppose that HA(β) is irreducible by Theorem 13. By
[6], the A-hypergeometric system is regular holonomic and the irreducibility implies that
the irreducibility of the monodromy representation. If the singular locus in the complex
torus is empty, then the monodromy representation is reducible. Then, the singular locus
is not empty and then we obtain the conclusion. ¤

References

[ 1 ] F. Beukers, Irreducibility of A-hypergeometric systems, Indag. Math. (N.S.), 21 (2011), 30–39.

[ 2 ] S. C. Countinho, A Primer of Algebraic D-Modules, London Math. Soc. Stud. Texts, 33, Cam-

bridge University Press, Cambridge, 1995.



The singular locus of Lauricella’s FC 995

[ 3 ] A. Dickenstein, L. F. Matusevich and E. Miller, Binomial D-modules, Duke Math. J., 151 (2010),

385–429.

[ 4 ] I. M. Gel’fand, A. V. Zelevinsky and M. M. Kapranov, Hypergeometric functions and toral

manifolds, Funct. Anal. Appl., 23 (1989), 94–106.

[ 5 ] I. M. Gel’fand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidi-

mensional Determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994.
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