Sharp lower bound on the curvatures of ASD connections over the cylinder

By Masaki Tsukamoto

(Received Sep. 1, 2012)

Abstract

We prove a sharp lower bound on the curvatures of non-flat ASD connections over the cylinder.

1. Introduction.

The purpose of this note is to calculate explicitly a universal lower bound on the curvatures of non-flat ASD connections over the cylinder $\mathbb{R} \times S^{3}$.

First we fix our conventions. Let $S^{3}=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\} \subset \mathbb{R}^{4}$ be the unit 3 -sphere equipped with the Riemannian metric induced by the Euclidean metric on \mathbb{R}^{4}. Set $X:=\mathbb{R} \times S^{3}$. We give the standard metric on \mathbb{R}, and X is equipped with the product metric.

Let \mathbb{H} be the space of quaternions. Consider $S U(2)=\{x \in \mathbb{H}| | x \mid=1\}$ with the Riemannian metric induced by the Euclidean metric on \mathbb{H}. (Hence it is isometric to S^{3} above.) We naturally identify $s u(2):=T_{1} S U(2)$ with the imaginary part $\operatorname{ImH}:=$ $\mathbb{R} i+\mathbb{R} j+\mathbb{R} k$. Here i, j and k have length 1 .

Let $E:=X \times S U(2)$ be the product $S U(2)$-bundle. Let A be a connection on E, and let F_{A} be its curvature. F_{A} is an $s u(2)$-valued 2-form on X. Hence for each point $p \in X$ the curvature F_{A} can be considered as a linear map

$$
F_{A, p}: \Lambda^{2}\left(T_{p} X\right) \rightarrow s u(2) .
$$

We denote by $\left|F_{A, p}\right|_{\text {op }}$ the operator norm of this linear map. The explicit formula is as follows: Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the normal coordinate system on X centered at p. Let $A=$ $\sum_{i=1}^{4} A_{i} d x_{i}$. Each A_{i} is an su(2)-valued function. Then $F(A)_{i j}:=F_{A}\left(\partial / \partial x_{i}, \partial / \partial x_{j}\right)=$ $\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]$. Since $\partial / \partial x_{i} \wedge \partial / \partial x_{j}(1 \leq i<j \leq 4)$ form an orthonormal basis of $\Lambda^{2}(T X)$ at p, the norm $\left|F_{A, p}\right|_{\text {op }}$ is equal to

$$
\sup \left\{\left|\sum_{1 \leq i<j \leq 4} a_{i j} F(A)_{i j, p}\right| \mid a_{i j} \in \mathbb{R}, \sum_{1 \leq i<j \leq 4} a_{i j}^{2}=1\right\}
$$

Let $\left\|F_{A}\right\|_{\text {op }}$ be the supremum of $\left|F_{A, p}\right|_{\text {op }}$ over $p \in X$. The main result is the following.

[^0]THEOREM 1.1. The minimum of $\left\|F_{A}\right\|_{\text {op }}$ over non-flat $A S D$ connections A on E is equal to $1 / \sqrt{2}$.

Note that we don't assume $F_{A} \in L^{2}$ in this statement. As far as I know, this kind of explicit calculations have never been done in Yang-Mills theory. (See Remark 1.3 below.) The above minimum value $1 / \sqrt{2}$ is attained by the following BPST instanton ([1]).

Example 1.2. We define an $S U(2)$ instanton A on \mathbb{R}^{4} by

$$
A:=\operatorname{Im}\left(\frac{\bar{x} d x}{1+|x|^{2}}\right), \quad\left(x=x_{1}+x_{2} i+x_{3} j+x_{4} k\right)
$$

By the conformal map

$$
\mathbb{R} \times S^{3} \rightarrow \mathbb{R}^{4} \backslash\{0\}, \quad(t, \theta) \mapsto e^{t} \theta
$$

the connection A is transformed into an ASD connection A^{\prime} on E over $\mathbb{R} \times S^{3}$. Then

$$
\left|F_{A^{\prime},(t, \theta)}\right|_{\mathrm{op}}=\frac{2 \sqrt{2}}{\left(e^{t}+e^{-t}\right)^{2}}
$$

Hence

$$
\left\|F_{A^{\prime}}\right\|_{\mathrm{op}}=\frac{1}{\sqrt{2}}
$$

Remark 1.3. The essential point of the statement of Theorem 1.1 is the explicitness of $1 / \sqrt{2}$. Indeed the following general statement is easy to prove: Let Y be a closed Riemannian 3-fold, and assume that all flat $S U(2)$ connections ρ on Y satisfy the non-degeneracy condition $H_{\rho}^{1}=0$. (See [2, p. 25, Definition 2.4]. S^{3} satisfies this condition. More generally lens spaces S^{3} / \mathbb{Z}_{p} satisfy it.) Then the infimum of $\left\|F_{A}\right\|_{\mathrm{op}}$ over non-flat $S U(2)$ ASD connections A on $\mathbb{R} \times Y$ is positive. The proof is just a direct application of [2, p. 81, Proposition 4.4]. But it is difficult to determine the value of $\inf \left\|F_{A}\right\|_{\text {op }}$ explicitly.

Theorem 1.1 is a Yang-Mills analogy of the classical result of Lehto [7, Theorem 1] in complex analysis. (The formulation below is due to Eremenko [4, Theorem 3.2]. See also Lehto-Virtanen $\left[\mathbf{8}\right.$, Theorem 1].) Consider $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ with the length element $|d z| /|z|$. We give a metric on $\mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}$ by (naturally) identifying it with the unit 2-sphere $\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$. For a map $f: \mathbb{C}^{*} \rightarrow \mathbb{C} P^{1}$ we denote its Lipschitz constant by $\operatorname{Lip}(f)$. Then Lehto [7, Theorem 1] proved that the minimum of $\operatorname{Lip}(f)$ over nonconstant holomorphic maps $f: \mathbb{C}^{*} \rightarrow \mathbb{C} P^{1}$ is equal to 1 . The function $f(z)=z$ attains the minimum. Eremenko [4, Section 3] discussed the relation between this result of Lehto and a quantitative homotopy argument of Gromov [6, Chapter 2, 2.12. Proposition]. Our proof of Theorem 1.1 is inspired by this idea.

2. Preliminaries: Connections over S^{3}.

In this section we study the method of choosing good gauges for some connections over S^{3}. The argument below is a careful study of [5, pp. 146-148]. Set $N:=(1,0,0,0) \in$ S^{3} and $S:=(-1,0,0,0) \in S^{3}$. Let $P:=S^{3} \times S U(2)$ be the product $S U(2)$-bundle over S^{3}. For a connection B on P we define the operator norm $\left\|F_{B}\right\|_{\text {op }}$ in the same way as in Section 1.

Let $v_{1}, v_{2} \in T_{N} S^{3}$ be two unit tangent vectors at $N . \quad\left(\left|v_{1}\right|=\left|v_{2}\right|=1.\right)$ Let $\exp _{N}: T_{N} S^{3} \rightarrow S^{3}$ be the exponential map at N. Since $\left|v_{1}\right|=\left|v_{2}\right|=1$, we have $\exp _{N}\left(\pi v_{1}\right)=\exp _{N}\left(\pi v_{2}\right)=S$. We define a loop $l:[0,2 \pi] \rightarrow S^{3}$ by

$$
l(t):= \begin{cases}\exp _{N}\left(t v_{1}\right) & (0 \leq t \leq \pi) \\ \exp _{N}\left((2 \pi-t) v_{2}\right) & (\pi \leq t \leq 2 \pi)\end{cases}
$$

Lemma 2.1. Let B be a connection on P. Let $\operatorname{Hol}_{l}(B) \in S U(2)$ be the holonomy of B along the loop l. Then

$$
d\left(\operatorname{Hol}_{l}(B), 1\right) \leq 2 \pi\left\|F_{B}\right\|_{\mathrm{op}}
$$

Here $d(\cdot, \cdot)$ is the distance on $S U(2)$ defined by the Riemannian metric.
Proof. This follows from the standard fact that curvature is an infinitesimal holonomy [3, p. 36]. (2π is half the area of the unit 2 -sphere.) The explicit proof is as follows: Take a unit tangent vector $v_{3} \in T_{N} S^{3}$ orthogonal to v_{1} such that there is $\alpha \in[0, \pi]$ satisfying $v_{2}=v_{1} \cos \alpha+v_{3} \sin \alpha$. Consider (the spherical polar coordinate of the totally geodesic $S^{2} \subset S^{3}$ tangent to v_{1} and v_{3}):

$$
\Phi:[0, \alpha] \times[0, \pi] \rightarrow S^{3}, \quad\left(\theta_{1}, \theta_{2}\right) \mapsto \exp _{N}\left\{\theta_{2}\left(v_{1} \cos \theta_{1}+v_{3} \sin \theta_{1}\right)\right\}
$$

Let Q be the pull-back of the bundle P by Φ. Since $\Phi([0, \alpha] \times\{0\})=\{N\}$ and $\Phi([0, \alpha] \times\{\pi\})=\{S\}, Q$ admits a trivialization under which the pull-back connection $\Phi^{*} B$ is expressed as $\Phi^{*} B=B_{1} d \theta_{1}+B_{2} d \theta_{2}$ with $B_{1}=0$ on $[0, \alpha] \times\{0, \pi\}$.

We take a smooth map $g:[0, \alpha] \times[0, \pi] \rightarrow S U(2)$ satisfying

$$
g\left(\theta_{1}, 0\right)=1 \quad\left(\forall \theta_{1} \in[0, \alpha]\right), \quad\left(\partial_{2}+B_{2}\right) g=0
$$

We have $\operatorname{Hol}_{l}(B)=g(\alpha, \pi)^{-1} g(0, \pi)$. Then $F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right) g=\left[\partial_{1}+B_{1}, \partial_{2}+B_{2}\right] g=-\left(\partial_{2}+\right.$ $\left.B_{2}\right)\left(\partial_{1}+B_{1}\right) g$. From $B_{1}=0$ on $[0, \alpha] \times\{0, \pi\}$ and Kato's inequality $\left|\partial_{2}\right|\left(\partial_{1}+B_{1}\right) g \mid \leq$ $\left|\left(\partial_{2}+B_{2}\right)\left(\partial_{1}+B_{1}\right) g\right|=\left|F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right) g\right|$,

$$
\begin{aligned}
\left|\partial_{1} g\left(\theta_{1}, \pi\right)\right| & =\left|\left(\partial_{1}+B_{1}\right) g\left(\theta_{1}, \pi\right)\right|-\left|\left(\partial_{1}+B_{1}\right) g\left(\theta_{1}, 0\right)\right| \\
& \leq \int_{\left\{\theta_{1}\right\} \times[0, \pi]}\left|\partial_{2}\right|\left(\partial_{1}+B_{1}\right) g| | d \theta_{2} \leq \int_{\left\{\theta_{1}\right\} \times[0, \pi]}\left|F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right)\right| d \theta_{2} .
\end{aligned}
$$

Then

$$
d\left(\operatorname{Hol}_{l}(B), 1\right)=d(g(0, \pi), g(\alpha, \pi)) \leq \int_{[0, \alpha] \times[0, \pi]}\left|F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right)\right| d \theta_{1} d \theta_{2}
$$

$F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right)=F_{B}\left(d \Phi\left(\partial / \partial \theta_{1}\right), d \Phi\left(\partial / \partial \theta_{2}\right)\right)$. The vectors $d \Phi\left(\partial / \partial \theta_{1}\right)$ and $d \Phi\left(\partial / \partial \theta_{2}\right)$ are orthogonal to each other, and $\left|d \Phi\left(\partial / \partial \theta_{1}\right)\right|=\sin \theta_{2}$ and $\left|d \Phi\left(\partial / \partial \theta_{2}\right)\right|=1$. Hence $\left|F_{\Phi^{*} B}\left(\partial_{1}, \partial_{2}\right)\right| \leq\left\|F_{B}\right\|_{\text {op }} \sin \theta_{2}$. From $0 \leq \alpha \leq \pi$,

$$
d\left(\operatorname{Hol}_{l}(B), 1\right) \leq\left\|F_{B}\right\|_{\mathrm{op}} \int_{[0, \alpha] \times[0, \pi]} \sin \theta_{2} d \theta_{1} d \theta_{2}=2 \alpha\left\|F_{B}\right\|_{\mathrm{op}} \leq 2 \pi\left\|F_{B}\right\|_{\mathrm{op}}
$$

Let $\tau<1 / 2$. Let B be a connection on P satisfying $\left\|F_{B}\right\|_{\mathrm{op}} \leq \tau$. We construct a good connection matrix of B.

Fix $v \in T_{N} S^{3}$. By the parallel translation along the geodesic $\exp _{N}(t v)(0 \leq t \leq \pi)$ we identify the fiber P_{S} with the fiber P_{N}. Let g_{N} and g_{S} be the exponential gauges (see [$\mathbf{5}$, p. 146] or [3, p. 54]) centered at N and S respectively:

$$
g_{N}:\left.P\right|_{S^{3} \backslash\{S\}} \rightarrow\left(S^{3} \backslash\{S\}\right) \times P_{N}, \quad g_{S}:\left.P\right|_{S^{3} \backslash\{N\}} \rightarrow\left(S^{3} \backslash\{N\}\right) \times P_{N}
$$

(In the definition of g_{S} we identify P_{S} with P_{N} as in the above.) By Lemma 2.1, for $x \in S^{3} \backslash\{N, S\}$,

$$
d\left(g_{N}(x), g_{S}(x)\right) \leq 2 \pi\left\|F_{B}\right\|_{\mathrm{op}} \leq 2 \pi \tau<\pi
$$

The injectivity radius of $S U(2)=S^{3}$ is π (this is a crucial point of the argument). Hence there uniquely exists $u(x) \in \operatorname{ad} P_{N}(\cong s u(2))$ satisfying

$$
|u(x)| \leq 2 \pi\left\|F_{B}\right\|_{\mathrm{op}}, \quad g_{S}(x)=e^{u(x)} g_{N}(x)
$$

We take and fix a cut-off function $\varphi: S^{3} \rightarrow[0,1]$ such that $\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is equal to 0 over $\left\{x_{1}>1 / 2\right\}$ and equal to 1 over $\left\{x_{1}<-1 / 2\right\}$. We can define a bundle trivialization g of P all over S^{3} by $g:=e^{\varphi u} g_{N}$. Then the connection matrix $g(B)$ satisfies

$$
|g(B)| \leq C_{\tau}\left\|F_{B}\right\|_{\mathrm{op}}
$$

Here C_{τ} is a positive constant depending on τ.

3. Proof of Theorem 1.1.

In this section we denote by t the standard coordinate of \mathbb{R}. Let A be an ASD connection on E satisfying $\left\|F_{A}\right\|_{\mathrm{op}}<1 / \sqrt{2}$. We will prove that A must be flat. Set $\tau:=\left\|F_{A}\right\|_{\text {op }} / \sqrt{2}<1 / 2$.

The ASD equation implies that F_{A} has the following form:

$$
F_{A}=-d t \wedge\left(*_{3} F\left(\left.A\right|_{\{t\} \times S^{3}}\right)\right)+F\left(\left.A\right|_{\{t\} \times S^{3}}\right),
$$

where $\left.A\right|_{\{t\} \times S^{3}}$ is the restriction of A to $\{t\} \times S^{3}$ and $*_{3}$ is the Hodge star on $\{t\} \times S^{3}$. Hence

$$
\left|F_{A,(t, \theta)}\right|_{\mathrm{op}}=\sqrt{2}\left|F\left(\left.A\right|_{\{t\} \times S^{3}}\right)_{\theta}\right|_{\mathrm{op}} .
$$

Therefore

$$
\left\|F\left(\left.A\right|_{\{t\} \times S^{3}}\right)\right\|_{\mathrm{op}} \leq \tau<\frac{1}{2} \quad(\forall t \in \mathbb{R}) .
$$

Thus we can apply the construction of Section 2 to $\left.A\right|_{\{t\} \times S^{3}}$.
Fix a bundle trivialization of E over $\mathbb{R} \times\{N\}$. (Any choice will do.) Then the construction in Section 2 gives a bundle trivialization g of E over X satisfying

$$
|g(A)|_{\{t\} \times S^{3}} \mid \leq C_{\tau}\left\|F\left(\left.A\right|_{\{t\} \times S^{3}}\right)\right\|_{\mathrm{op}} \quad(\forall t \in \mathbb{R}) .
$$

Set $A^{\prime}:=g(A)$. We consider the Chern-Simons functional

$$
c s\left(A^{\prime}\right):=\operatorname{tr}\left(A^{\prime} \wedge F_{A^{\prime}}-\frac{1}{3} A^{\prime 3}\right) .
$$

For $R>0$

$$
\begin{align*}
\int_{[-R, R] \times S^{3}}\left|F_{A}\right|^{2} d \mathrm{vol} & =\int_{\{R\} \times S^{3}} c s\left(A^{\prime}\right)-\int_{\{-R\} \times S^{3}} c s\left(A^{\prime}\right) \quad \text { (because } A \text { is ASD) } \\
& \leq \operatorname{const}_{\tau}\left(\left\|F\left(\left.A\right|_{\{R\} \times S^{3}}\right)\right\|_{\mathrm{op}}+\left\|F\left(\left.A\right|_{\{-R\} \times S^{3}}\right)\right\|_{\mathrm{op}}\right) . \tag{1}
\end{align*}
$$

Here we have used $\left|A^{\prime}\right|_{\{ \pm R\} \times S^{3}} \mid \leq C_{\tau}\left\|F\left(\left.A\right|_{\{ \pm R\} \times S^{3}}\right)\right\|_{\text {op }}$ and $\left\|F\left(\left.A\right|_{\{ \pm R\} \times S^{3}}\right)\right\|_{\text {op }} \leq \tau$. Let $R \rightarrow+\infty$. Then we get

$$
\int_{X}\left|F_{A}\right|^{2} d \mathrm{vol}<+\infty
$$

This implies that the curvature F_{A} has an exponential decay at the ends (see [2, Theorem 4.2]). In particular

$$
\left\|F\left(\left.A\right|_{\{ \pm R\} \times S^{3}}\right)\right\|_{\mathrm{op}} \rightarrow 0 \quad(R \rightarrow+\infty) .
$$

By the above (1)

$$
\int_{X}\left|F_{A}\right|^{2} d \mathrm{vol}=0
$$

This shows $F_{A} \equiv 0$. So A is flat.

References

[1] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B, 59 (1975), 85-87.
[2] S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, With the Assistance of M. Furuta and D. Kotschick, Cambridge Tracts in Math., 147, Cambridge University Press, Cambridge, 2002.
[3] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford Math. Monogr., Oxford Science Publications, Oxford University Press, New York, 1990.
[4] A. Eremenko, Normal holomorphic curves from parabolic regions to projective spaces, Purdue University, 1998, arXiv:0710.1281.
[5] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, 2nd ed., Math. Sci. Res. Inst. Publ., 1, Springer-Verlag, New York, 1991.
[6] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates, Progr. Math., 152, Birkhäuser, Boston, 1999.
[7] O. Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv., 33 (1959), 196-205.
[8] O. Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A. I., no. 240 (1957).

Masaki Tsukamoto
Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
E-mail: tukamoto@math.kyoto-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 53C07.
 Key Words and Phrases. ASD connection, curvature.
 The author was supported by Grant-in-Aid for Young Scientists (B) (21740048) from JSPS.

