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Abstract. The concept of behavior spaces introduced by Shiba plays an
important role of systematic investigation of abelian differentials on an open
Riemann surface. A Shiba behavior space consists of harmonic differentials
which satisfy a certain period condition and boundary behavior. In this paper,
for any open Riemann surface of infinite genus we construct Shiba behavior
spaces with arbitrarily prescribed period condition and with specific boundary
behavior.

1. Introduction.

Let R be an open Riemann surface of genus g, 0 ≤ g ≤ ∞. Let Λ be the usual
real Hilbert space of all square integrable complex differentials on R equipped with inner
product

〈ω, σ〉 = <
( ∫∫

R

ω ∧ ∗σ
)

for ω, σ ∈ Λ,

where <(z) is the real part of z ∈ C, σ is the complex conjugate differential of σ and ∗σ
is the conjugate differential of σ. By Λx we denote a subspace of Λ, where ‘x’ designates
the property of the subspace. For example we set

Λh = {λ ∈ Λ | λ is harmonic},

where ‘h’ stands for ‘harmonic’. If Λx is a subspace of Λh, we denote by Λ⊥x the orthogonal
complement of Λx in Λh. For z ∈ C we set zΛx = {zω | ω ∈ Λx}. Observe that
(zΛx)⊥ = zΛ⊥x . Let ∗Λx = {∗ω | ω ∈ Λx}. We use the following subspaces:

Λhse =
{

λ ∈ Λh | λ is semiexact, i.e.,
∫

γ

λ = 0 for every dividing cycle γ

}
,

Λhe =
{

λ ∈ Λh | λ is exact, i.e.,
∫

γ

λ = 0 for every cycle γ

}
,
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Λa = {λ ∈ Λh | λ is analytic},
Λā = {λ ∈ Λh | λ ∈ Λa}.

Moreover, let Λh0 = ∗Λ⊥he and Λhm = ∗Λ⊥hse. We also use the following real subspaces:

Γh = {λ ∈ Λh | λ is real},
Γhse = Γh ∩ Λhse, Γhe = Γh ∩ Λhe,

Γh0 = ∗Γ⊥he, Γhm = ∗Γ⊥hse,

where Γ⊥he and Γ⊥hse are the orthogonal complements taken in Γh of Γhe and Γhse, respec-
tively. Note that the superscript ‘⊥’ is used for two different orthogonal complements;
one is taken in Λh and the other in Γh. We shall write explicitly the space in which
orthogonal complement is taken, unless it can be clearly understood from the context.

Let {Rm}∞m=1 be a canonical exhaustion of R and let {Aj , Bj}g
j=1 be a canonical

homology basis associated with {Rm}∞m=1, i.e.,

i) the restriction {Aj , Bj}p(m)
j=1 of {Aj , Bj}g

j=1 to Rm is a canonical homology basis of
Rm mod ∂Rm (cf. [1]), where p(m) is the genus of Rm,

ii) for each j, Bj crosses Aj from left to right.

Definition 1.1 (Shiba behavior space). Let L = {Lj}g
j=1 be a family of lines

Lj = L(θj) = {reiθj | r ∈ R} passing through the origin in C, where θj ∈ R. A subspace
Λx = Λx(L) of Λhse is said to be a Shiba behavior space associated with L if the following
structure condition and period condition are satisfied:

1) (structure condition) Λx = i∗Λ⊥x ,
2) (period condition) both

∫
Aj

λ and
∫

Bj
λ lie on Lj for every j = 1, . . . , g and λ ∈ Λx.

Shiba behavior spaces play a central role in the formulation of Riemann-Roch’s
and Abel’s theorems for certain classes of abelian differentials with prescribed boundary
behavior.

It is easy to see that if Γx is a subspace such that Γhm ⊂ Γx ⊂ Γhe, then Γx + i∗Γ⊥x
is a Shiba behavior space associated with L = {Lj = L(π/2)}g

j=1. Historically, Kusunoki
[3] gave the theory of abelian integrals on an open Riemann surface by using canonical
semiexact differentials and applied it to the vertical slit mappings (generalization of
Koebe’s uniformization). The canonical semiexact differentials are represented by use
of the space Γhm + iΓhse. The Γhe + iΓho is also typical behavior space which is used
to construct horizontal slit mappings of a planar domain. Yoshida [7] extended these
typical cases by use of so called Γχ-behavior. Shiba [6] introduced the concept of behavior
spaces and showed that the result of Yoshida reduced to the special case of Γx + i∗Γ⊥x
(Γhm ⊂ Γx ⊂ Γhe). As an example of showing the significance of his extension, he
gave a conformal mapping of a compact bordered Riemann surface onto a region on C
with slits whose directions are arbitrarily prescribed. This result can not be represented
by Yoshida’s method. Further he gave an example of a behavior space associated with
L = {Lj = L(0) or L(π/2)}g

j=1.
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Although our assertions are undoubtedly true for Riemann surfaces of finite genus,
let the genus g be infinite for the simplicity of representations. Our main subject is to
construct a Shiba behavior space associated with an arbitrary family of lines passing
through the origin. More precisely we prove the following.

Theorem 1.1. Let L = {Lj}g
j=1 be a family of lines Lj = {reiθj | r ∈ R} pass-

ing through the origin in the complex plane. Then there exists a Shiba behavior space
associated with L.

In fact, we shall construct Shiba behavior spaces which are regarded, roughly speak-
ing, as the form Γx + i∗Γ⊥x with Γhm ⊂ Γx ⊂ Γhe in a neighborhood of ideal boundary,
and then realize our aim for Theorem 1.1 as the limit of a convergent sequence of thus
constructed behavior spaces.

Further we will give more general Shiba behavior spaces. Let K ≥ 2 be an integer,
and suppose K distinct unimodular constants eiϕ1 , eiϕ2 , . . . , eiϕK are given. We will
construct a Shiba behavior space of the form

Cl

( K∑

k=1

eiϕkΓk

)
, where Γk ⊂ Γhse, (1)

which has more general boundary behavior than those constructed in the proof of Theo-
rem 1.1. Observe that Γx + i∗Γ⊥x is represented as above with K = 2, ϕ1 = 0, ϕ2 = π/2,
Γ1 = Γx and Γ2 = ∗Γ⊥x .

Theorem 1.2. Let K ≥ 2 be an integer and suppose K distinct unimodular con-
stants eiϕ1 , eiϕ2 , . . . , eiϕK are given. Let L = {Lj}g

j=1 be a family of lines Lj = {reθj |
r ∈ R} such that {θj}g

j=1 = {ϕ1, . . . , ϕK}. Then there exists a Shiba behavior space of
the form (1) associated with L.

In Section 5 we will show examples of the form (1). One of them is applicable to
the above mentioned slit mapping with arbitrarily prescribed directions. These examples
illustrate the difference between Theorem 1.1 and Theorem 1.2.

2. Pre-behavior space.

A subspace Λx of Λh is said to be a pre-behavior space if Λx = i ∗Λ⊥x . For a sequence
of pre-behavior spaces {Λ(n)}∞n=1, we consider the following subspace:

Λs =
{

λ ∈ Λh | there exists λn ∈ Λ(n) such that lim
n→∞

‖λn − λ‖ = 0
}

.

We say that Λs is the strong limit of {Λ(n)}∞n=1. We give a sequence of Shiba behavior
spaces {Λ(n)}∞n=1 whose strong limit is a Shiba behavior space associated with an infinite
number of lines L = {Lj}g

j=1. In order to show the existence of above {Λ(n)}∞n=1, the
following lemmas may be a key. Since the proof of the first lemma is simple, we omit the
proof.
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Lemma 2.1 (cf. [1]). Let Λx, Λy be closed subspaces of Λh.

(1) If Λx is orthogonal to Λy, then Λx + Λy is a closed subspace of Λh.
(2) If the dimension of Λx is finite, then Λx + Λy is a closed subspace of Λh.

Lemma 2.2. (1) Let {Un}∞n=1 be an increasing sequence of closed subspaces of Λh.
Set U0 = Cl(

⋃∞
n=1 Un), where Cl(X) denotes the closure of a set X. For each

λ ∈ Λh, let λ = ωn + σn be the orthogonal decomposition of λ, where ωn ∈ Un and
σn ∈ U⊥

n . Then {ωn}∞n=1 (resp. {σn}∞n=1) converges to ω0 ∈ U0 (resp. σ0 ∈ U⊥
0 ).

(2) Let {Vn}∞n=1 be a decreasing sequence of closed subspaces of Λh. Set V0 =
⋂∞

n=1 Vn.
For each λ ∈ Λh, let λ = ωn + σn be the orthogonal decomposition of λ, where
ωn ∈ Vn and σn ∈ V ⊥

n . Then {ωn}∞n=1 (resp. {σn}∞n=1) converges to ω0 ∈ V0 (resp.
σ0 ∈ V ⊥

0 ).

Proof. (1) For m > n, the differential σm ∈ U⊥
m belongs to U⊥

n . Note that

σn − σm = (λ− ωn)− (λ− ωm) = ωm − ωn.

Hence ωm − ωn is orthogonal to ωn. We have

〈ωn, ωm〉 = 〈ωn, ωm − ωn + ωn〉 = ‖ωn‖2,
0 ≤ ‖ωn − ωm‖2 = ‖ωn‖2 − 2〈ωn, ωm〉+ ‖ωm‖2

= ‖ωm‖2 − ‖ωn‖2 ≤ ‖ωm‖2 ≤ ‖λ‖2.

Hence {‖ωn‖}∞n=1 is a bounded increasing sequence. It follows that {ωn}∞n=1 is a Cauchy
sequence and converges to an ω ∈ U0. Also {σn}∞n=1 converges to a σ ∈ ⋂∞

n=1 U⊥
n = U⊥

0 .
Since λ = ω0 + σ0 = ωn + σn = ω + σ, we have ω0 = ω, σ0 = σ.

(2) We can apply (1) to Un = V ⊥
n . ¤

Theorem 2.1. Let {Λ(n)}∞n=1 be a sequence of pre-behavior spaces which satisfy
the following : Λ(n) = Un + Vn, where {Un}∞n=1 (resp. {Vn}∞n=1) is an increasing (resp. a
decreasing) sequence of closed subspaces of Λh. Then the strong limit Λs of {Λ(n)}∞n=1 is
a pre-behavior space.

Proof. Let Wn be the orthogonal projection of Vn to U⊥
n . Since Λ(n) = Un+Vn =

Un + Wn is a closed subspace of Λh, we obtain that Wn is also a closed subspace of Λh

and {Wn}∞n=1 is a decreasing sequence in Λh, because {Vn}∞n=1 is decreasing. We can
write each ϕ ∈ Λa in the form

ϕ = λn + i ∗λn, where λn ∈ Λ(n),

and further

λn = ωn + σn, where ωn ∈ Un and σn ∈ Vn.
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Take the orthogonal decomposition of σn = αn +βn, where αn ∈ Un and βn ∈ U⊥
n . Then

βn belongs to Wn and ωn +αn ∈ Un is the orthogonal projection of ϕ to Un. By Lemma
2.2 the sequence {ωn + αn}∞n=1 converges to λ0 ∈ U0 = Cl(

⋃∞
n=1 Un) and λ0 ∈ Λs. By

Lemma 2.2 the sequence {βn}∞n=1 also converges to β0 ∈ W0 =
⋂∞

n=1 Wn. Since Wn is
contained in Λ(n), the differential β0 belongs to Λs. Therefore {λn = ωn + αn + βn}∞n=1

converges to λ0 + β0 ∈ Λs in the sense of Dirichlet norm. We have

ϕ = λ0 + β0 + i ∗(λ0 + β0) ∈ Λs + i ∗Λs and Λa ⊂ Λs + i ∗Λs.

Similarly, we can show Λā ⊂ Λs + i ∗Λs. We get Λh = Λa + Λā ⊂ Λs + i ∗Λs. For
λ, µ ∈ Λs, there exist λn, µn ∈ Λn so that

lim
n→∞

‖λn − λ‖ = 0, lim
n→∞

‖µn − µ‖ = 0.

Hence we have

〈λ, i ∗µ〉 = lim
n→∞

〈λn, i ∗µn〉 = 0.

It follows that i ∗Λs is orthogonal to Λs. As a result, Λs is a pre-behavior space. ¤

3. Proof of Theorem 1.1.

We give a generalization of the behavior space Γx + i∗Γ⊥x (Γhm ⊂ Γx ⊂ Γhe). On a
Riemann surface of genus g, let σγ ∈ Γho denote the period reproducing differential for
a cycle γ, i.e.,

∫

γ

ω = 〈ω, ∗σγ〉 for ω ∈ Γh.

By our choice of a canonical homology basis {Aj , Bj}, we note that

∫

Bk

σAj = 〈σAj ,
∗σBk

〉 = δjk,

∫

Ak

σBj = 〈σBj ,
∗σAk

〉 = −δjk,

∫

Ak

σAj = 〈σAj ,
∗σAk

〉 = 0,

∫

Bk

σBj = 〈σBj ,
∗σBk

〉 = 0,

where δjk is the Kronecker delta.
Let L be a given family of lines {Lj = L(θj)}g

j=1 and

Lm = {Lj | Lj = L(θj) for j ≤ p(m) and Lj = L(π/2) for j > p(m)}.

Take a closed subspace Γx which satisfies Γhm ⊂ Γx ⊂ Γhe, and consider the following
subspaces of Λh:
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Sm =
{ p(m)∑

j=1

(ajσAj
+ bjσBj

)
∣∣∣∣ aj and bj are real

}
,

Sm = Cl

({ g∑

j=p(m)+1

(ajσAj
+ bjσBj

)
∣∣∣∣ aj and bj are real

and only a finite number of {ak, b`} do not vanish
})

,

Sm(L) =
{ p(m)∑

j=1

(
aje

iθj σAj + bje
iθj σBj

)∣∣∣∣ aj and bj are real
}

,

Λ(m)
x = Λ(m)

x (L) = Γx + Sm(L),

Λ(m)
x = Λ(m)

x (L) = Λ(m)
x (L) + i

(∗Γ⊥x ∩ ∗S⊥m
)
,

where S⊥m is the orthogonal complement of Sm in Γh.
We have the following.

Lemma 3.1. The subspace Λ(m)
x is a Shiba behavior space associated with Lm.

Proof. First, we prove the period condition. Note that

Γhse ⊃ ∗Γ⊥x ⊃ Γho ⊃ Sm.

By using period reproducing differentials, we see that

∗Γ⊥x ∩ ∗S⊥m ⊂ ∗S⊥m =
{

ω ∈ Γh

∣∣∣∣
∫

Aj

ω = 0,

∫

Bj

ω = 0 for every j ≤ p(m)
}

,

and each differential ω ∈ Sm(L) satisfies

∫

Aj

ω =
∫

Bj

ω = 0 for j > p(m).

Hence for λ ∈ Λ(m)
x ,

∫

Aj

λ ∈ L(θj) and
∫

Bj

λ ∈ L(θj) for j ≤ p(m),

∫

Aj

λ ∈ L(π/2) and
∫

Bj

λ ∈ L(π/2) for j > p(m).

Second, we prove Λ(m)⊥
x ⊃ i ∗Λ(m)

x . Since the dimension of Sm(L) is finite, by
Lemma 2.1, Λ(m)

x (L) = Γx + Sm(L) is a closed subspace. Let ω ∈ Γx, σ ∈ Sm(L) and
λ ∈ Γ⊥x ∩ S⊥m. We have 〈ω + σ, λ〉 = 0, because the real part of σ belongs to Sm. It
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follows that Λ(m)
x is orthogonal to Γ⊥x ∩ S⊥m. The subspace Γx (⊂ Γhe) is orthogonal to

i ∗Γx and i ∗Sm(L). By using period reproducing differentials we have

〈
eiθj σAj , ie

iθk ∗σAk

〉
= −<(

iei(θj−θk)
)〈σAj ,

∗σAk
〉 = 0,

〈
eiθj σBj , ie

iθk ∗σAk

〉
= −<(

iei(θj−θk)
)〈σBj ,

∗σAk
〉 = 0,

〈
eiθj σBj , ie

iθk ∗σBk

〉
= −<(

iei(θj−θk)
)〈σBj ,

∗σBk
〉 = 0.

Hence Sm(L) is orthogonal to i ∗Sm(L). It follows that Λ(m)
x is orthogonal to i ∗Λ(m)

x .
The space i(∗Γ⊥x ∩ ∗S⊥m) is clearly orthogonal to Γ⊥x ∩ S⊥m. Thus Λ(m)

x is orthogonal to
i ∗Λ(m)

x , i.e., Λ(m)⊥
x ⊃ i ∗Λ(m)

x .
Finally, we show Λ(m)⊥

x ⊂ i ∗Λ(m)
x . Suppose λ ∈ Λh is orthogonal to i ∗Λ(m)

x . Then
for 1 ≤ j ≤ p(m)

0 =
〈
λ, ieiθj ∗σAj

〉
= <

(
− ie−iθj

∫

Aj

λ

)
,

0 =
〈
λ, ieiθj ∗σBj

〉
= <

(
− ie−iθj

∫

Bj

λ

)
.

Hence there exist real numbers aj , bj which satisfy

∫

Aj

λ = aje
iθj and

∫

Bj

λ = bje
iθj .

Set

λ0 =
p(m)∑

j=1

(− aje
iθj σBj

+ bje
iθj σAj

)
.

Then, by the property of reproducing differentials, we have

∫

Aj

(λ− λ0) =
∫

Bj

(λ− λ0) = 0 for j ≤ p(m).

We see that λ − λ0 is orthogonal to ∗Sm and i ∗Sm. By assumption, λ is orthogonal to
i ∗Γx and so is λ0 ∈ Sm(L). Hence λ − λ0 is orthogonal to i ∗Γx. By Sm ⊂ ∗Γ⊥x ∩ ∗S⊥m
we have i ∗Λ(m)

x ⊃ Γ⊥x ∩ S⊥m ⊃ ∗Sm. It follows that

0 = 〈λ, ∗σAj
〉 = <

( ∫

Aj

λ

)
, 0 = 〈λ, ∗σBj

〉 = <
( ∫

Bj

λ

)
for j > p(m).

Since
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0 = 〈λ0,
∗σAj

〉 = <
( ∫

Aj

λ0

)
, 0 = 〈λ0,

∗σBj
〉 = <

( ∫

Bj

λ0

)
for j > p(m),

we get <(λ − λ0) = σ ∈ Γhe. The real part of λ0 belongs to Sm. Since λ is orthogonal
to Γ⊥x ∩ S⊥m = (Γx + Sm)⊥, the real part of λ belongs to Cl(Γx + Sm). The subspace
Sm is of finite dimension and, by Lemma 2.1, Γx + Sm is a closed subspace. It follows
that σ ∈ (Γx + Sm) ∩ Γhe = Γx. Let η be the imaginary part of λ − λ0. Since λ − λ0

and σ are orthogonal to i ∗(Sm + Γx), so is iη. We see η ∈ ∗Γ⊥x ∩ ∗S⊥m. Therefore
λ = σ+λ0+iη ∈ Γx+Sm(L)+i(∗Γ⊥x ∩∗S⊥m) = Λ(m)

x . This shows that (i ∗Λ(m)
x )⊥ ⊂ Λ(m)

x ,
i.e., Λ(m)⊥

x ⊂ i ∗Λ(m)
x . Thus we have Λ(m)

x = i ∗Λ(m)⊥
x . ¤

Theorem 1.1 is represented as the following Theorem.

Theorem 3.1. Let L = {Lj}g
j=1 be an arbitrarily given family of lines. The strong

limit Λxs of {Λ(m)
x }∞m=1 is a Shiba behavior space associated with L.

Proof. We note that the sequence {Λ(m)
x }∞m=1 is clearly an increasing sequence of

closed subspaces of Λh. Let Wm be the orthogonal projection of i(∗Γ⊥x ∩ ∗S⊥m) to Λ(m)⊥
x .

Then Λ(m)
x = Λ(m)

x + Wm. Thus we see that Wm is a closed subspace of Λh and that
{Wm} is decreasing. By Theorem 2.1 we have the strong limit Λxs of {Λ(m)

x }∞m=1 is a
pre-behavior space. For λ ∈ Λxs it is clear that

∫

Aj

λ ∈ Lj ,

∫

Bj

λ ∈ Lj .

Therefore Λxs is a Shiba behavior space associated with L. ¤

4. Proof of Theorem 1.2.

On a Riemann surface of infinite genus, we already know that the period condition
gives an influence to the boundary behavior of concerned differentials. In the case that
the period condition contains at least three lines in a neighborhood of the ideal boundary,
the Shiba behavior space has not been given except [4]. The boundary behavior of Λ(m)

x

is, roughly speaking, stipulated by Γx.
In this section we construct Shiba behavior spaces under a suitable condition different

from those in Section 3. For this purpose, we rearrange the period condition of a Shiba
behavior space. We divide the set of numbers J = {1, 2, . . . , g} to K divisions J =
{Jk}K

k=1 (K ≤ ∞), i.e., J =
⋃K

k=1 Jk, Jk ∩ J` = ∅ for k 6= `. Let L(J) = {Lk}K
k=1 be

a family of lines passing through the origin in C. We call a subspace Λx = Λx(L(J)) of
Λhse a Shiba behavior space associated with L(J) if the following structure condition and
period condition are satisfied:

1) (structure condition) Λx = i ∗Λ⊥x ,

2) (period condition)
∫

Aj

λ ∈ Lk,

∫

Bj

λ ∈ Lk, for j ∈ Jk, λ ∈ Λx.
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For K = 1 we can easily construct a Shiba behavior space. Take a closed subspace
Γx which satisfies Γhm ⊂ Γx ⊂ Γhe, and set Λ(1) = Γx + i ∗Γ⊥x . Then i ∗Λ(1)⊥ = Λ(1).
By Γhm ⊂ Γx, we have Γhse ⊃ ∗Γ⊥x and Λ(1) ⊂ Λhse. From Γx ⊂ Γhe, every λ ∈ Λ(1)
is able to have only imaginary period for an arbitrary cycle. Hence Λ(1) is a Shiba
behavior space associated with L(J) = {L1 = L(π/2)}. This case corresponds to the
result of Yoshida [7].

For a finite K, we construct a pre-behavior space. Let L(J) = {Lk = L(θk)}K
k=1,

where Lj ∩ Lk = {0} if j 6= k. Take a set of closed subspaces {Γ(k) ⊂ Γh}K
k=1 and set

Λ(K) =
∑K

k=1 eiθkΓ(k).

Proposition 4.1. Suppose Γ(j) is orthogonal to ∗Γ(k) (k 6= j) and ∗Γ(1)⊥ =∑K
k=2 Γ(k). Then Cl(Λ(K)) is a pre-behavior space.

Proof. When Λx is a pre-behavior space, eiθΛx is a pre-behavior space. By a
simple argument we may assume that θ1 = 0.

First, we show that Λ(K)⊥ ⊃ i ∗Λ(K).
For σ =

∑K
k=1 eiθkσk ∈ Λ(K) and ω =

∑K
`=1 eiθ`ω` ∈ Λ(K), where σk ∈ Γ(k),

ω` ∈ Γ(`), we have

〈σ, i ∗ω〉 =
〈 K∑

k=1

eiθkσk, i ∗
( K∑

`=1

eiθ`ω`

)〉
= −

K∑

k=1

K∑

`=1

<(
iei(θk−θ`)

)〈σk, ∗ω`〉 = 0.

This shows Λ(K) is orthogonal to i ∗Λ(K) and Cl(Λ(K)) is also orthogonal to
i ∗Cl(Λ(K)).

By Lemma 2.1, Cl(Λ(K)) + i ∗Cl(Λ(K)) is closed. It follows that

Cl(Λ(K)) + i ∗Cl(Λ(K)) = Cl(Λ(K) + i ∗Λ(K)).

Next, we show that (Λ(K) + i ∗Λ(K))⊥ ∩ Λa = {0}.
For ϕ ∈ (Λ(K)+ i ∗Λ(K))⊥∩Λa = Λ(K)⊥∩ i ∗Λ(K)⊥∩Λa, we denote by ω the real

part of ϕ. Since ϕ is orthogonal to Γ(1), ω is also orthogonal to Γ(1). By assumption, we
have a representation

ω = ∗
( K∑

k=2

αk

)
∈ ∗

( K∑

k=2

Γ(k)

)
, where αk ∈ Γ(k).

Since ϕ is orthogonal to eiθj Γ(j), we have

e−iθj ϕ = cos θjω + sin θj
∗ω + i(− sin θjω + cos θj

∗ω)

and cos θjω + sin θj
∗ω is orthogonal to Γ(j). Hence

µj = cos θjω + sin θj
∗ω = cos θj

∗
( K∑

k=2

αk

)
− sin θj

( K∑

k=2

αk

)
∈ Γ(j)⊥.
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We get

0 = 〈µj , αj〉 =
〈

cos θj
∗
( K∑

k=2

αk

)
− sin θj

( K∑

k=2

αk

)
, αj

〉
,

0 = cos θj〈∗αj , αj〉 − sin θj

〈 K∑

k=2

αk, αj

〉
= sin θj〈∗ω, αj〉.

Since sin θj 6= 0 for j 6= 1, we have 〈∗ω, αj〉 = 0 and

〈∗ω, ∗ω〉 =
〈
∗ω,−

K∑

j=2

αj

〉
= −

K∑

j=2

〈∗ω, αj〉 = 0.

It follows that ω = 0 = ϕ and Λ(K)⊥ ∩ i ∗Λ(K)⊥ ∩ Λa = {0}.
Analogously we can show that Λ(K)⊥ ∩ i ∗Λ(K)⊥ ∩ Λā = {0}. It follows that

Λ(K)⊥ ∩ i ∗Λ(K)⊥ ∩ Λh = {0}

and

Λh = Cl(Λ(K) + i ∗Λ(K)) = Cl(Λ(K)) + i ∗Cl(Λ(K)).

Therefore Cl(Λ(K)) is a pre-behavior space. ¤

Remark 4.1. The subspace Λ(2) is always a closed subspace so that Λ(2) =
i ∗Λ(2)⊥. Let {eiθ1ωn + eiθ2σn}∞n=1 be a convergent sequence in Λ(2), where ωn ∈
Γ(1) and σn ∈ Γ(2) = ∗Γ(1)⊥. Then {ωn + ei(θ2−θ1)σn}∞n=1 and its imaginary part
{sin(θ2 − θ1)σn}∞n=1 are Cauchy sequences. This shows that {σn}∞n=1 is a Cauchy se-
quence converging to σ ∈ Γ(2). Hence {ωn}∞n=1 is a Cauchy sequence converging to
ω ∈ Γ(1). Therefore {eiθ1ωn + eiθ2σn}∞n=1 converges to eiθ1ω + eiθ2σ ∈ Λ(2). We see that
Λ(2) is closed. Thus, by Proposition 4.1, the subspace Λ(2) is a pre-behavior space.

We set, for J = {Jk}K
k=1,

S(Jk) = Cl

({ ∑

j∈Jk

(ajσAj
+ bjσBj

)
∣∣∣∣ aj and bj are real

and only a finite number of {ak, b`} do not vanish
})

⊂ Γh.

In order to prove Theorem 1.2, it is sufficient to show the following Theorem.

Theorem 4.1. Suppose Γ(1),Γ(2), . . . ,Γ(K)(K < ∞) are closed subspaces of Γh

such that
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(1) Γ(j) ⊂ ∗Γ(k)⊥ (j < k),

(2) ∗Γ(1)⊥ =
K∑

k=2

Γ(k),

(3) S(Jk) ⊂ Γ(k) ⊂ Γhse (k = 1, . . . , K).

Set Λ(K) =
∑K

k=1 eiθkΓ(k). Then Cl(Λ(K)) is a Shiba behavior space associated with
L(J).

Proof. We note that for j < k

Γ(k) ⊂ ∗Γ(j)⊥ ⊂ ∗S(Jj)⊥.

By Proposition 4.1 Cl(Λ(K)) is a pre-behavior space. Since Γ(k) is contained in Γhse, we
see that Λ(K) ⊂ Λhse. For ω ∈ Γ(k) ⊂ ∗S(Jj)⊥ (j 6= k) and ` ∈ Jj , we have

∫

A`

ω = 〈ω, ∗σA`
〉 = 0, and

∫

B`

ω = 〈ω, ∗σB`
〉 = 0.

For ω ∈ Γ(k) and ` ∈ Jk, we have

∫

A`

ω,

∫

B`

ω ∈ R, and
∫

A`

eiθkω,

∫

B`

eiθkω ∈ Lk.

For λ =
∑K

j=1 eiθj ωj ∈ ΛK , where ωj ∈ Γ(j), we have

∫

A`

λ =
K∑

j=1

∫

A`

eiθj ωj ∈ Lk, and
∫

B`

λ =
K∑

j=1

∫

B`

eiθj ωj ∈ Lk for ` ∈ Jk.

The subspace Λ(K) satisfies the period condition, so does Cl(Λ(K)). Hence Cl(Λ(K))
is a Shiba behavior space associated with L(J). ¤

Corollary 4.1 (cf. [5]). For closed subspaces Γx and Γ(1), assume that

Γhm ⊂ Γx ⊂ Γhe and Γx + S(J1) ⊂ Γ(1) ⊂ ∗Γ⊥x ∩
( K⋂

j=2

∗S(Jj)⊥
)

.

Set 1Γ = ∗Γ(1)⊥, Γ(2) = 1Γ ∩ (
⋂K

j=3
∗S(Jj)⊥), 2Γ = ∗Γ(2)⊥, and Γ(k) = (

⋂k−1
j=1 jΓ) ∩

(
⋂K

j=k+1
∗S(Jj)⊥), kΓ = ∗Γ(k)⊥, k = 3, . . . , K.

If
∑K−1

j=1 Γ(j) is closed, then Cl(Λ(K)) is a Shiba behavior space associated with
L(J).

Proof. We show that the assumption in Theorem 4.1 is satisfied.

(1) For j < k, we have Γ(k) ⊂ jΓ = ∗Γ(j)⊥. Hence Γ(j) is orthogonal to ∗Γ(k).
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(2) From Γ(K) = (
⋂K−1

j=1 jΓ), we get ∗Γ(K)⊥ = Cl(
∑K−1

j=1 Γ(j)) =
∑K−1

j=1 Γ(j).

(3) By the assumption we have for each ` (≥ 2)

Γ(`) ⊂ 1Γ ⊂ Cl

(
Γx +

K∑

j=2

S(Jj)
)
⊂ Γhse,

and so we get

`Γ = Cl

( `−1∑

j=1

Γ(j) +
K∑

j=`+1

S(Jj)
)
⊂ Γhse.

We have also

S(J1) ⊂ Γ(1) ⊂ ∗Γ⊥x ⊂ Γhse, 1Γ ⊃ Γx +
K∑

j=2

S(Jj).

It follows that

K∑

j=k

S(Jj) ⊂
k−1⋂

`=1

`Γ.

Hence

Γ(k) =
( k−1⋂

j=1

jΓ
)
∩

( K⋂

j=k+1

∗S(Jj)⊥
)
⊃ S(Jk).

By Theorem 4.1 the conclusion follows. ¤

5. Examples of Shiba behavior spaces in Section 4.

We show examples of Shiba behavior space different from those in Section 3.

Example 1. Let

Jmk = {j | (j ∈ Jk) and (j ≤ p(m))},
Jm

K = {j | (j ∈ JK) or (j > p(m) and j /∈ J1)},
Jm = {J1, Jm2, . . . , Jm(K−1), J

m
K },

S(Jmk) =
{ ∑

j∈Jmk

(ajσAj + bjσBj )
∣∣∣∣ aj and bj are real

}
,
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S(Jm
K ) = Cl

({ ∑

j∈Jm
K

(ajσAj + bjσBj )
∣∣∣∣ aj and bj are real

and only a finite number of {ak, b`} do not vanish
})

,

and {Γhm,k}K
k=2 be closed subspaces of Γhm such that

∑K
k=2 Γhm,k = Γhm and the

dimension of each Γhm,k (k = 2, . . . , K − 1) is finite. Set

Γ(1)
m = Γhse ∩

( K−1⋂

k=2

∗S(Jmk)⊥
)
∩ ∗S(Jm

K )⊥,

Γ(k)
m = Γhm,k + S(Jmk) (k = 2, 3, . . . , K − 1),

Γ(K)
m = Cl(Γhm,K + S(Jm

K )).

Then we have the following:

(1) For k (k = 2, . . . , K − 1)

∗Γ(k)⊥
m = ∗Γ⊥hm,k ∩ ∗S(Jmk)⊥ ⊃ Γhse ∩ ∗S(Jmk)⊥ ⊃ Γ(j)

m (j 6= k),

and

∗Γ(K)⊥
m = ∗Γ⊥hm,K ∩ ∗S(Jm

K )⊥ ⊃ Γhse ∩ ∗S(Jm
K )⊥ ⊃ Γ(j)

m (j 6= K).

(2) ∗Γ(1)⊥
m = Cl

(
Γhm +

K−1∑

k=2

S(Jmk) + S(Jm
K )

)

=
K−1∑

k=2

(Γhm,k + S(Jmk)) + Cl(Γhm,K + S(Jm
K )) =

K∑

k=2

Γ(k)
m ,

because the dimension of
∑K−1

k=2 (Γhm,k + S(Jmk)) is finite.
(3) For k (k = 2, . . . , K − 1)

S(Jmk) ⊂ Γhm,k + S(Jmk) = Γ(k)
m ⊂ Γhse,

S(Jm
K ) ⊂ Γhm,K + S(Jm

K ) ⊂ Γ(K)
m ⊂ Γhse,

and

S(J1) ⊂ Γ(1)
m ⊂ Γhse.

Setting Λ(K)(m) =
∑K

k=1 eiθkΓ(k)
m , we have by Lemma 2.1,
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Cl(Λ(K)(m)) = Cl

( K∑

k=1

eiθkΓ(k)
m

)
=

K−1∑

k=2

eiθkΓ(k)
m + Cl

(
eiθ1Γ(1)

m + eiθK Γ(K)
m

)
,

and, by the same argument as in Remark 4.1, Cl(eiθ1Γ(1)
m + eiθK Γ(K)

m ) = eiθ1Γ(1)
m +

eiθK Γ(K)
m . Hence Cl(Λ(K)(m)) = Λ(K)(m). By Theorem 4.1, we see that Λ(K)(m) is a

Shiba behavior space associated with L(Jm), where Λ(K)(m) has the period condition
containing two lines in a neighborhood of the ideal boundary. Further the closed space
Um =

∑K−1
k=2 eiθkΓ(k)

m is increasing and Vm = eiθ1Γ(1)
m +eiθK Γ(K)

m is decreasing. Therefore,
by Theorem 2.1, the strong limit Λs(K) of {Λ(K)(m)} is a Shiba behavior space associated
with L(J), which is different from those given in Section 3.

Example 2. Let Γ(1)
hm = Cl(Γhm + S(J1)) and {Γhse,k}K

k=2 be closed subspaces of
Γhse such that

S(Jmk) ⊂ Γhse,k ⊂ Γhse ∩ ∗S(J1)⊥ ∩
( K⋂

j=2,j 6=k

∗Γ⊥hse,j

)

and

K∑

k=2

Γhse,k = Γhse ∩ ∗S(J1)⊥ = ∗Γ(1)⊥
hm .

Then

∗S(Jmk)⊥ ⊃ ∗Γ⊥hse,k ⊃ Γhm + S(J1) +
K∑

j=2,j 6=k

Γhse,j .

By Theorem 4.1 Cl(eiθ1Γ(1)
hm +

∑K
k=2 eiθkΓhse,k) is a Shiba behavior space associated

with L(J). This type of behavior spaces may contain, for the interior of a compact bor-
dered Riemann surface, the behavior spaces which give the slit mapping with arbitrarily
prescribed directions, see [4] and [6].

Now, we give an example of {Γhse,k}K
k=2. Let a Riemann surface R have a regular

partition {βk}K
k=2 of the Kerékjártó-Stöılow ideal boundary ∆ and Uk be a neighborhood

of βk on R∗ = R ∪∆ such that Uj ∩ Uk = ∅ for j 6= k. Take an RN whose complement
is contained in

⋃K
k=2 Uk. Set

J1 = {j | 1 ≤ j ≤ p(N)}

and for 2 ≤ k ≤ K

Jk = {j | Aj , Bj ⊂ (R−RN ) ∩ Uk}.

Let Γ1
k be a subspace of C1 differentials {ω} such that ω is exact on (R − RN ) ∩ Uk
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and for an n > N depending on ω is 0 on (R − Rn) ∩ Uk. Set Γhse,k = Γh ∩ ∗Γ1⊥
k . For

σ ∈ S(Jk) and ω ∈ Γ1
k, we see that 〈∗σ, ω〉 = 0 and S(Jk) ⊂ Γhse,k. Since the closed

subspace Cl(Γ1
k) contains Γhm +

∑
j 6=k S(Jj), we have

Γhse,k ⊂ Γhse ∩
( ⋂

j 6=k

∗S(Jj)⊥
)

.

Every differential ω ∈ Γhse,k is exact on R− ((R−RN ) ∩ Uk) and is orthogonal to ∗Γ1
k.

The ω = df on R− ((R−RN )∩Uk) is approximated by dfn which is 0 on a neighborhood
of

⋃
j 6=k βj . Hence we see that Γhse,k ⊂ Cl(Γ1

j ) (j 6= k). It follows that

Γhse,k ⊂ Γhse ∩ ∗S(J1)⊥ ∩
( K⋂

j=2,j 6=k

∗Γ⊥hse,j

)
.

Since any differential in Γhse ∩ ∗S(J1)⊥ restricted to (R − RN ) ∩ Uk is extended to a
differential in Γhse,k + Γeo, it also can be showed that

K∑

k=2

Γhse,k = Γhse ∩ ∗S(J1)⊥.

Every differential in the behavior space of this example is, roughly speaking, Lk-
valued along βk.

Finally, we decompose a Shiba behavior space. Under a suitable condition we can
reconstruct it from the decomposition by the method in Section 4. Let K < ∞, J =
{Jk}K

k=1 be a division of numbers {1, 2, . . . , g} and L(J) = {Lk = L(θk)}K
k=1, where

Lj ∩ Lk = {0} for j 6= k. Let Λx be an arbitrary Shiba behavior space associated with
L(J). We set

kΓ = {Imaginary part of e−iθkω | ω ∈ Λx}, Γ(k) = ∗(kΓ⊥)

and

Λ̃x =
K∑

k=1

eiθkΓ(k).

Theorem 5.1. If ∗Γ(1)⊥ ⊂ ∑K
k=2 Γ(k), then Cl(Λ̃x) = Λx.

Proof. For λ ∈ Λx and σk ∈ Γ(k)(k = 1, 2, . . . , K), we have

〈λ, ieiθk ∗σk〉 = 〈e−iθkλ, i ∗σk〉 = 〈Imaginary part of e−iθkλ, ∗σk〉 = 0

and
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〈
λ, i ∗

( K∑

k=1

eiθkσk

)〉
= 0.

This shows that Λx is orthogonal to i ∗Λ̃x i.e. i ∗Λ̃⊥x ⊃ Λx = i ∗Λ⊥x . Hence Λ̃x ⊂ Λx. For
σj ∈ Γ(j) and σk ∈ Γ(k) (j 6= k), differentials eiθj σj and eiθkσk belong to Λ̃x. We have

0 = 〈eiθj σj , ie
iθk ∗σk〉 = <(−iei(θj−θk))〈σj ,

∗σk〉.

Since <(−iei(θj−θk)) 6= 0, it holds 〈σj ,
∗σk〉 = 0. Therefore Γ(j) is orthogonal to ∗Γ(k).

Particularly, Γ(1)⊥ ⊃ ∑K
k=2

∗Γ(k). By assumption we get ∗Γ(1)⊥ =
∑K

k=2 Γ(k). It follows,
by Proposition 4.1, that Cl(Λ̃x) is a pre-behavior space and Cl(Λ̃x) = i ∗Cl(Λ̃x)⊥ ⊃ Λx.
Therefore Cl(Λ̃x) = Λx. ¤
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