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Abstract. The enhancement to the Milnor number is an invariant of the
homotopy classes of fibered links in the sphere S2n−1 and belongs to Z/rZ,
where r = 0 if n = 2 and r = 2 if n = 2. Mixed polynomials are polynomi-
als in complex variables z1, . . . , zn and their conjugates z̄1, . . . , z̄n. M. Oka
showed that mixed polynomials have Milnor fibrations under the strongly non-
degeneracy condition. In this present paper, we study fibered links which are
defined by a certain class of mixed polynomials which admit Milnor fibrations
and show that any element of Z/rZ is realized by the enhancement to the
Milnor number of such a fibered link.

1. Introduction.

Let (S2n−1,K) be a link, i.e., K is an oriented codimension-two closed smooth
submanifold in the (2n−1)-sphere S2n−1. A link K is fibered if there are a 2-dimensional
disk bundle neighborhood N(K) of K in S2n−1 with a trivialization φ0 : N(K) → D2

and a fibration of the link exterior E(K) = S2n−1\ Int(N(K)), φ1 : E(K) → S1 such
that φ0|∂N(K) = φ1|∂N(K). This fibration is also called an open book decomposition of
S2n−1. A fibered link K is simple if K is (n− 3)-connected and its fiber surface, which
by definition is a fiber of φ1, is (n− 2)-connected. The Milnor number µ(K) of a simple
fibered link (S2n−1,K) is defined as the rank of the (n − 1)-th homology group of the
fiber of φ1.

A link of an isolated singularity of a complex hypersurface is a typical example
of a simple fibered link. Let f(z) be a complex polynomial of n-complex variables
z = (z1, . . . , zn) such that f(o) = 0, where o = (0, . . . , 0) is the origin of Cn. J. Milnor
proved in [10] that there exists ε > 0 such that

f/|f |: S2n−1
ε \K → S1

is a locally trivial fibration, where S2n−1
ε is the (2n− 1)-dimensional sphere centered at

the origin of Cn of radius ε and K = S2n−1
ε ∩ f−1(0). If the origin is a regular point or

an isolated singularity, K is a simple fibered link and the rank of the (n−1)-th homology
group of the fiber is called the Milnor number. This is the reason why µ(K) is called the
Milnor number in general case.

In [11], [12], [19], W. Neumann and L. Rudolph studied an oriented (2n− 2)-plane
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field in TS2n−1 ⊕ R which is defined as follows: on S2n−1 \N(K) it is the tangent field
to the fibration for K, on K it is the tangent field to K ⊕R and on N(K) it interpolates
between ∂N(K) and K to make a smooth plane field. This plane field defines a map
Λ : S2n−1 → G(2n − 2, 2n), where G(2n − 2, 2n) is the Grassman manifold of oriented
(2n − 2)-planes in R2n. Neumann and Rudolph observed that π2n−1(G(2n − 2, 2n)) is
isomorphic to the direct sum of π2n−1(S2n−1) ∼= Z and π2n−1(S2n−2) ∼= Z/rZ, where r =
0 if n = 2 and r = 2 if n > 2. The homotopy class of Λ has the form ((−1)nµ(K), λ(K))
in Z ⊕ Z/rZ. This pair ((−1)nµ(K), λ(K)) is called the enhanced Milnor number and
λ(K) is called the enhancement to the Milnor number. Note that if K is a simple fibered
link coming from an isolated singularity of a complex hypersurface, λ(K) always vanishes.

In this paper, we study the enhancement λ(K) of a simple fibered link K coming from
a real polynomial map (g, h) : R2n → R2, where g(x,y) and h(x,y) are real polynomials
with variables x = (x1, . . . , xn) and y = (y1, . . . , yn). Two real polynomials g(x,y) and
h(x,y) can define a polynomial with complex and complex-conjugate variables z and z̄

f(z, z̄) := g

(
z + z̄

2
,
z − z̄

2i

)
+ ih

(
z + z̄

2
,
z − z̄

2i

)
,

where zj = xj + iyj (j = 1, . . . , n). The polynomial f(z, z̄) of variables z and z̄ is called
a mixed polynomial. Let Kf be the intersection of S2n−1 and f−1(0). In [14], [15], Oka
introduced several classes of mixed polynomials which are called strongly non-degenerate
and polar weighted homogeneous mixed polynomials. He proved that those polynomials
guarantee the existence of the Milnor fibration. The main theorem in this paper is the
following.

Theorem 1. For any k ∈ Z/rZ, there exists a mixed polynomial f(z, z̄) whose
Milnor fibration f/|f | : S2n−1

ε \Kf → S1 satisfies λ(Kf ) = k, where r = 0 if n = 2 and
r = 2 if n > 2.

This paper is organized as follows. In Section 2 we give the definitions of the en-
hancements to Milnor numbers and mixed polynomials, and introduce several classes of
mixed polynomials which define the fibration S2n−1

ε \Kf → S1. In Section 3 we calculate
the enhancement λ(Kf ) and prove Theorem 1. In Section 4 we make a few comments on
convenient strongly non-degenerate and polar weighted homogeneous mixed polynomials
and the contact structures compatible with their Milnor fibrations S2n−1

ε \Kf → S1.
The author would like to thank Professor Masaharu Ishikawa for precious comments.

2. Preliminaries.

2.1. Enhanced Milnor numbers.
We first introduce the definition of the enhanced Milnor number for n = 2 which was

defined by Neumann and Rudolph in [11], [12], [13], [19]. Let (S3,K) be a fibered link.
To define the enhanced Milnor number, we first construct a nowhere zero vector field
ξ(K) on S3. The construction of ξ(K) is the following. On E(K), ξ(K) is a transverse
field to the fiber surfaces of the fibration, the same direction of the monodromy of the
fibration; on K, ξ(K) is the tangent field of K; on the rest of N(K), ξ(K) interpolates
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reasonably between its values on K and on ∂N(K) to make a smooth vector field on
S3. The reasonable interpolation means that ξ(K) is transverse to any torus parallel to
∂N(K) in IntN(K) \K. As mentioned in [13, Lemma 3.5], the homotopy class of ξ(K)
does not depend on a reasonable choice for this interpolation. So ξ(K) can be taken as
r(∂/∂θ) + (1− r2)(∂/∂φ) on N(K), where (r, θ) are the coordinates of the meridian disk
of N(K) ∼= D2 × S1 and φ is the coordinate of the longitude of N(K).

Next we consider the map p : S3 → CP 1 defined by p(z1, z2) = [z1 : z2]. Since
the 2-sphere S2 is diffeomorphic to CP 1, we obtain a smooth map S3 → S2. This map
is called the Hopf fibration. Let ψ be a vector field which is homotopic to the field of
tangent vectors to the fibers of the Hopf fibration and define two subsets ∆+(K) and
∆−(K) in S3 by

∆±(K) := {x ∈ S3 | ψ(x) = ±t ξ(K)(x) for some t > 0}.

Now we assume ξ(K) and ψ are vector fields on S3 in general position so that ∆±(K)
are compact oriented 1-manifolds in S3.

The orientation of each connected component of ∆±(K) is determined as follows. It
is well-known that S3 is parallelizable. If we fix a trivialization of the tangent bundle of
S3, then each vector field v on S3 can be represented by the map S3 → R3. In particular,
the unit vector fields corresponding to ψ and ξ(K) are represented as p(ψ) : S3 → S2

and p(ξ(K)) : S3 → S2 respectively. We fix a trivialization of the tangent bundle
of S3 such that ψ becomes a constant vector field. In this case, ∆+(K) and ∆−(K)
become the preimages of regular values of p(ξ(K)). Let ∆0 be a connected component
of ∆±(K) and b ∈ S2 a regular value of p(ξ(K)) such that ∆0 = p(ξ(K))−1(b). Take
a point a ∈ p(ξ(K))−1(b). Let TaS3 denote the tangent space to S3 at a and TbS

2 the
tangent space to S2 at b. We fix a Riemannian metric on S3. Let W be the orthogonal
complement of the tangent space Ta∆0 in TaS3. Since b is a regular value of p(ξ(K)),
the induced map dp(ξ(K))a : W → TbS

2 is an isomorphism. Fix the orientation of W

such that dp(ξ(K))a is orientation preserving and then fix the orientation of Ta∆0 such
that the orientation of Ta∆0 × W coincides with that of TaS3, which determines the
orientation of ∆0.

Since ∆+(K) and ∆−(K) are disjoint, we can consider their linking number
link(∆+(K),∆−(K)). We call it the enhancement to the Milnor number and denote
it by

λ(K) := link(∆+(K),∆−(K)) ∈ Z.

The pair (µ(K), λ(K)) is called the enhanced Milnor number of K. Note that, as men-
tioned in [11], λ(K) is regarded as the Hopf invariant of p(ξ(K)) (cf. [19]).

Finally we introduce the definition of the enhanced Milnor number of K as follows.
Let K be a simple fibered link and φ0 ∪ φ1 : S2n−1 → D2 an open book decomposition
of S2n−1 which is determined by K. This map can be extended to a map Λ : D2n → D2

which is a smooth submersion except for an isolated singularity at the origin 0 ∈ D2n

and a corner along ∂N(K) [9]. Such a Λ is called a trivial unfolding. Then the map x 7→
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KerDΛ(x) is continuous on D2n\{0}, where DΛ is differential of Λ and KerDΛ(x) = {v ∈
TxD2n | DΛ(v) = 0}. Since Ker DΛ(x) is an oriented (2n−2)-plane in R2n, we can get a
map k(K) : S2n−1 → Gr(2n−2, 2n) which is defined by the restriction of this map to the
(2n−1)-sphere S2n−1 around 0. This map does not depend on the choice of sphere or the
trivial unfolding. The homotopy group π2n−1(Gr(2n−2, 2n)) is isomorphic to Z⊕Z/rZ,
where r = 0 if n = 2 and r = 2 if n > 2 (cf. [6], [11], [12]). Neumann and Rudolph
showed that the first component of [k(K)] ∈ π2n−1(Gr(2n− 2, 2n)) is (−1)nµ(K), where
µ(K) is the Milnor number of K [11], [12]. Thus the homotopy class [k(K)] has the
form ((−1)nµ(K), λ(K)). We call ((−1)nµ(K), λ(K)) the enhanced Milnor number and
λ(K) the enhancement to the Milnor number.

2.2. Mixed polynomials.
Let f(z, z̄) be a polynomial expanded in a convergent power series of variables

z = (z1, . . . , zn) and z̄ = (z̄1, . . . , z̄n)

f(z, z̄) :=
∑
ν,µ

cν,µzν z̄µ,

where zν = zν1
1 · · · zνn

n for ν = (ν1, . . . , νn) (respectively z̄µ = z̄µ1
1 · · · z̄µn

n for µ =
(µ1, . . . , µn)). z̄j represents the complex conjugate of zj . A polynomial f(z, z̄) of this
form is called a mixed polynomial.

Assume that f(o) = 0, where o is the origin of Cn. We are interested in the topology
of the singularities of maps f(z, z̄) at the origin. The set Kf := S2n−1

ε ∩ f−1(0) is called
the link of f(z, z̄) at o. When o is an isolated singularity of f(z, z̄), then Kf is a
(2n− 1)-manifold [10, Corollary 2.9].

If a mixed polynomial does not have complex-conjugate variables, i.e., it is a complex
polynomial, we have the Milnor fibration

f/|f |: S2n−1
ε \Kf → S1

where S2n−1
ε := {(z1, z2, . . . , zn) ∈ Cn | ∑n

i=1|zi|2= ε}. It is known that such a fibration
also exists for some specific mixed polynomials. Certain restricted classes of polynomials
in the variables z, z̄ which admit a Milnor fibration had been considered by J. Seade,
see for instance [20], [21]. Oka introduced the notation of the Newton boundary for
mixed polynomials and proposed a wide class of mixed polynomials which guarantee the
existence of Milnor fibration.

In this subsection, we introduce several classes of mixed polynomials which admit
Milnor fibrations as given by Oka in [14], [15]. The radial Newton polygon Γ+(f ;z.z̄) is
defined by the convex hull of

⋃

(ν,µ)

{(ν + µ) + Rn
+ | cν,µ 6= 0},

where ν + µ is the sum of the multi-indices of zν z̄µ, i.e., ν + µ = (ν1 + µ1, . . . , νn +
µn). The Newton boundary Γ(f ;z, z̄) is the union of compact faces of Γ+(f ;z, z̄). If
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f(z, z̄) is a complex polynomial, this definition of the Newton boundary of a mixed
polynomial agrees with the definition of the ordinary Newton boundary. The strongly
non-degeneracy is defined from the Newton boundary as follows: let ∆1, . . . ,∆m be the
faces of Γ(f ;z, z̄). For each face ∆k, the face function fPk

(z, z̄) is defined by fPk
(z, z̄) :=∑

(ν+µ)∈∆k
cν,µzν z̄µ, where Pk is the positive vector which is perpendicular to ∆k. If

fPk
(z, z̄) : C∗n → C has no critical point, we say that f(z, z̄) is strongly non-degenerate

for Pk. If f(z, z̄) is strongly non-degenerate for any Pk for k = 1, . . . , m, we say that
f(z, z̄) is strongly non-degenerate. Oka showed that the singular point o of a strongly
non-degenerate mixed polynomial f(z, z̄) has the following fibration.

Theorem 2 ([15]). Let f(z, z̄) : (Cn, O) → (C, 0) be a strongly non-degenerate
mixed polynomial. Then there exists ε > 0 such that

f(z, z̄)/|f(z, z̄)|: S2n−1
ε \Kf → S1

is a locally trivial fibration for any ε with 0 < ε ≤ ε0.

Remark that Kf becomes the fibered link if and only if the singularity o is an
isolated singularity. In this paper, we always assume that f−1

Pk
∩ C∗n is non-empty for

k = 1, . . . , m. If f(0, . . . , 0, zj , 0, . . . , 0) is non-zero for each j = 1, . . . , n, then we say
that f(z, z̄) is convenient. If f(z, z̄) is convenient, Kf is a fibered link [15].

We introduce another class of mixed polynomials which admit an S1-action. Let
p1, . . . , pn be integers such that gcd(p1, . . . , pn) = 1. We define an S1-action on Cn as
follows:

s ◦ z = (sp1z1, . . . , s
pnzn), s ∈ S1.

If there exists a positive integer dp such that the mixed polynomial f(z, z̄) satisfies

f(sp1z1, . . . , s
pnzn, s̄p1 z̄1, . . . , s̄

p1 z̄n) = sdpf(z, z̄), s ∈ S1,

we say that f(z, z̄) is polar weighted homogeneous. This notation was first introduced
by Ruas-Seade-Verjovsky [18] and J. L. Cisneros-Molina [1]. In this case, Kf is fibered
and its monodromy is given by

(z1, . . . , zn) 7→
(

exp
(

2p1πi

dp

)
z1, . . . , exp

(
2pnπi

dp

)
zn

)
,

see [14], [15]. We will use this S1-action to prove Theorem 1.

3. Proof of main theorem.

We divide the proof of Theorem 1 into the 3-dimensional case and high-dimensional
cases.
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3.1. The case of n = 2.
We focus on the following type of mixed polynomials

fp,q,m+,m−(z, z̄) :=
m+∏

j=1

(zp
1 + αjz

q
2)

m++m−∏

j=m++1

(zp
1 + αjz

q
2) (m+ > m−),

where αj 6= αj′ (j 6= j′), zp
1 + αjz

q
2 represents the complex-conjugate of zp

1 + αjz
q
2 and

p and q are coprime positive integers. Since αj 6= αj′ (j 6= j′), the mixed polynomial
fp,q,m+,m−(z, z̄) is strongly non-degenerate. Remark that fp,q,m+,m−(z, z̄) has m+ holo-
morphic factors and m− complex-conjugate factors. Such a type of mixed polynomials is
a special case of polynomials of forms (fḡ, o) studied by A. Pichon and J. Seade in [16],
[17], where (f,o) and (g, o) are complex polynomials with isolated singularities at o and
with no common branches. The origin o is an isolated singularity of fp,q,m+,m−(z, z̄)
and Kfp,q,m+,m− := S3

ε ∩f−1
p,q,m+,m−(0) is an oriented fibered link in the 3-sphere S3

ε . The
S1-action on S3

ε is

s ◦ (z1, z2) = (sqz1, s
pz2), s ∈ S1

and fp,q,m+,m−(z, z̄) satisfies

fp,q,m+,m−(s ◦ z, s ◦ z) = spq(m+−m−)fp,q,m+,m−(z, z̄).

Since m+ > m−, pq(m+−m−) is a positive integer. So fp,q,m+,m−(z, z̄) is polar weighted
homogeneous.

The enhancement λ(Kfp,q,m+,m− ) of this singularity is determined by the following
formula.

Lemma 1. λ(Kfp,q,m+,m− ) = (−pqm− + p + q)m−.

In the proofs in this section, fp,q,m+,m−(z, z̄) is abbreviated to f(z, z̄) for short. We
denote by −K the link obtained by reversing orientation of K.

Proof. To calculate λ(Kf ), we have to determine ∆+(Kf ) and ∆−(Kf ). We
choose ψ to be the vector field on S3

ε which determines the S1-action. That is, ψ is a
tangent field of the orbit of the S1-action. Let B be the orbit space of S3

ε under the
S1-action. Then B is homeomorphic to the 2-sphere [8].

We consider the orbit map S3
ε → B. Since f(z, z̄) is polar weighted homogeneous,

Kf is an invariant set for the S1-action. So the image of the components of Kf by the
orbit map are the points in B. Let p1, . . . , pm++m− be the image of the components of
Kf and D2

j the sufficiently small 2-disk centered at pj . To construct the vector field
ξ(Kf ), we prepare a vector field η(Kf ) on B such that p1, . . . , pm++m− are zero points
as follows. Let N and S represent the North and South poles in B respectively. Since
the Euler characteristic of B is 2, essentially by the theorem of Poincaré-Hopf, we choose
a vector field η(Kf ) on B which satisfies the following properties:
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• N and S are repellor points.
• There exist m+ + m− mutually disjoint disks on B and, on each disk, η(Kf ) has

exactly one attractor point and one saddle point.
• η(Kf ) has no zero points outside these disks except for N and S.

See Figure 1.

Figure 1. The vector field η(Kf ) and a 2-disk which
has one attractor point and one saddle point.

Since ξ(K) is transverse to any torus parallel to ∂N(Kf ) in IntN(Kf ) \ Kf , the
image of ξ(Kf ) by the orbit map is the vector field which has only attractor points as zero
points on D2

j . Thus we choose that p1, . . . , pm++m− are the attractor points of η(Kf ).
Now we construct ξ(Kf ) as follows. ξ(Kf ) is constructed by lifting η(Kf ) to the vector
field on N(Kf ). Then ξ(Kf ) satisfies the following properties on N(Kf ):

• The image of N(Kf ) by the orbit map is a union of disjoint 2-disks
D2

1, . . . , D
2
m++m− each of which has only one attractor point.

• The image of ξ(Kf ) by the orbit map is η(Kf ) on D2
1, . . . , D

2
m++m− .

• ξ(Kf ) is transverse to the fiber surfaces on ∂N(Kf ).

Since f(z, z̄) is polar weighted homogeneous, the monodromy of the fibration of Kf

is given by the S1-action. On E(Kf ), ξ(Kf ) is constructed by a perturbation of ψ

such that it is transverse to the fiber surfaces and its image by the orbit map is η(Kf )
on B \ ⋃m++m−

j=1 IntD2
j . By the construction of ξ(Kf ), ∆+(Kf ) and ∆−(Kf ) are the

preimages of zero points of η(Kf ).
Now we describe the link type of Kf with the orientation. Since Kf is an invariant

set for the S1-action s ◦ (z1, z2) = (sqz1, s
pz2), each component of Kf is a (p, q)-torus

knot as an unoriented link. In [16], Pichon showed that the link of the conjugation of a
holomorphic function is opposite to the orientation of the link of the same holomorphic
function. In our case, Kf has m+ link components defined by the holomorphic factors,
denoted by K+, and m− link components defined by the complex-conjugate factors,
denoted by K− respectively. The orientation of K+ is the same as that of the S1-action
and K− has the opposite orientation given by the S1-action. By the construction, Kf is
contained in ∆±(Kf ) as an unoriented link. In the previous section, we explained how to
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define the orientation of a component ∆0 of ∆±(Kf ). Since Kf corresponds to the points
which are attractors, the orientation of the link components of ∆±(Kf ) corresponding
to Kf coincides with that of the S1-action. Thus ∆+(Kf ) contains K+ and ∆−(Kf )
contains −K− as an oriented link.

By the construction, ξ(Kf ) and ψ are in the same direction along ∆±(Kf ) on E(Kf ).
Thus any component of ∆±(Kf ) contained in E(Kf ) belongs to ∆+(Kf ). On E(Kf ),
∆+(Kf ) corresponds to N , S and the saddle points on η(Kf ). Let ∆+

N ,∆+
S and ∆+

saddle

denote the components of ∆+(Kf ) corresponding to N, S and the saddle points respec-
tively. Since N and S are repellor points, the orientations of ∆+

N and ∆+
S coincide with

that of the S1-action. The orientations of ∆+
saddle are opposite to that of the orbit of the

S1-action.
Thus λ(Kf ) can be calculated as follows:

λ(Kf ) = link(∆+(Kf ),∆−(Kf ))

= link(∆+
N ∪∆+

S ∪∆+
saddle ∪K+,−K−)

= pm− + qm− − pq(m+ + m−)m− + pqm+m−

= (−pqm− + p + q)m−. ¤

Lemma 2. For any integer k less than 2, there exists a mixed polynomial
fp,q,m+,m−(z, z̄) such that λ(Kfp,q,m+,m− ) = k.

Proof. In the case (m+,m−, q) = (2, 1, 2), the enhancement λ(Kf ) is equal to
−p + 2. Since p is a positive integer such that gcd(p, 2) = 1, λ(Kf ) realizes all odd
integers less than 2. In the case (m+,m−, q) = (3, 2, 1), the enhancement λ(Kf ) is equal
to −2p + 2, which realizes all even integers less than 1. The assertion follows. ¤

The remaining integers greater than 1 can be realized by the mirror image of Kf ,
denoted mirKf . This is obtained by conjugating one of the complex variables z, i.e.,
mirKf = Kf◦ι, where ι : Cn → Cn is the smooth map defined by ι(z1, . . . , zn−1, zn) =
(z1, . . . , zn−1, z̄n) and Kf◦ι = S2n−1

ε ∩(f ◦ι)−1(0). In particular, f ◦ι is also a mixed poly-
nomial by definition. The enhancement to the Milnor number of mirKf is represented
as follows.

Lemma 3. λ(mir(Kfp,q,m+,m− )) = (pqm+ − p − q)m+ + 1. In particular, for any
k ≥ 0, there exist p, q, m+,m− such that λ(mirKfp,q,m+,m− ) = k.

Proof. The mixed polynomial f ◦ ι(z, z̄) is represented as

f ◦ ι(z, z̄) =
m+∏

j=1

(zp
1 + αj z̄

q
2)

m++m−∏

j=m++1

(zp
1 + αj z̄

q
2) (m+ > m−).

The S1-action on C2 is defined as
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s ◦ (z1, z2) = (sqz1, s
−pz2)

with parameter s ∈ S1 and we have the equation

f ◦ ι(s ◦ z, s ◦ z) = spq(m+−m−)f ◦ ι(z, z̄).

So f ◦ ι(z, z̄) is also a strongly non-degenerate polar weighted homogeneous mixed poly-
nomial and Kf◦ι = mir Kf is a fibered link in S3

ε .
The enhancement of Kf◦ι can be calculated as in the proof of Lemma 1. Since Kf

is the invariant set for the S1-action, the Euler characteristic of the fiber surface of the
fibration S3

ε \ Kf → S1 is equal to −{pq(m+ + m−) − p − q}(m+ − m−) which can
be calculated from the splice diagram of Eisenbud and Neumann [3]. Thus the Milnor
number µ(Kf ) is equal to {pq(m+ +m−)−p−q}(m+−m−)+1. In [13], [19], Neumann
and Rudolph showed that λ(mirKf ) is equal to µ(Kf ) − λ(Kf ). The enhancement
λ(mirKf ) is calculated as follows:

λ(mirKf ) = µ(Kf )− λ(Kf )

= {pq(m+ + m−)− p− q}(m+ −m−) + 1− (−pqm− + p + q)m−

= (pqm+ − p− q)m+ + 1.

In the case (m+,m−, q) = (2, 1, 1), the enhancement λ(mirKf ) is equal to 2p− 1, which
realizes all odd integers greater than 0. In the case (m+,m−, q) = (1, 0, 2), the enhance-
ment λ(mirKf ) is equal to p − 1. Since p is a positive integer such that gcd(p, 2) = 1,
λ(Kf ) realizes all non-negative even integers. Thus the assertion follows. ¤

Proof of Theorem 1 for n = 2. The theorem follows from Lemma 1, 2 and 3.
¤

3.2. The case of n > 2.
We prove Theorem 1 for n > 2. This fact had been showed by Neumann and

Rudolph [12].

Proof of Theorem 1 for n > 2. Let (S2n−1,K) be a simple fibered link. Neu-
mann and Rudolph showed that the enhancement λ(K) is determined modulo 2 by the
Seifert form LK :

(−1)λ(K) = det((−1)n(n−1)/2LK),

see for instance [11], [12], [13], where the Seifert form LK of K is non-singular bilinear
form

LK : Hn−1(F )×Hn−1(F ) → Z

on the (n− 1)-th homology group Hn−1(F ) of the fiber of the fibration, with respect to
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a basis of Hn−1(F ). Note that LK becomes an invertible integer matrix.
We take two strongly and true non-degenerate mixed polynomials f1(z, z̄) = z2

1 +
· · · + z2

n and f2(z, z̄) = z̄2
1 + z2

2 + · · · + z2
n. Then the links Kf1 and Kf2 are the simple

fibered link and the Seifert forms of K1 and K2 are 1 × 1 matrices (−1)n(n−1)/2 and
−(−1)n(n−1)/2 respectively (cf. [2]).

We calculate the determinants of (−1)n(n−1)/2LKf1
and (−1)n(n−1)/2LKf2

:

(−1)λ(Kf1 ) = (−1)n(n−1)/2 · (−1)n(n−1)/2 = 1

(−1)λ(Kf2 ) = (−1)n(n−1)/2 · (−(−1)n(n−1)/2) = −1.

Thus λ(Kf1) = 0 and λ(Kf2) = 1. Hence the enhancements λ(Kf1) and λ(Kf2) realize
any element of Z/2Z. ¤

4. Remarks.

In this section, let f(z, z̄) be a convenient strongly non-degenerate and polar
weighted homogeneous mixed polynomial. We consider a polynomial map f(z, z̄) : C2 →
C. Then Kf = S3

ε ∩ f−1(0) is a fibered link whose monodromy is given by the S1-action

(z1, z2) 7→ (sqz1, s
pz2),

where (z1, z2) ∈ S3
ε , s ∈ S1 and gcd(p, q) = 1. We denote the number of link components

of Kf whose orientations coincide with (resp. are opposite to) the orientations of the
orbits of the S1-action by m+ (resp. m−). We observe that the enhancement λ(Kf ) is
as in Lemma 1.

Theorem 3. Let f(z, z̄) be a convenient strongly non-degenerate and polar
weighted homogeneous mixed polynomial with m+ > m−. Then λ(Kf ) = (−pqm− +
p + q)m−.

Proof. The link Kf is isotopic to Kfp,q,m+,m− and the monodromy is given by
the same S1-action as that of fp,q,m+,m−(z, z̄) [14], [15]. Thus the proof is analogous to
that of Lemma 1. ¤

Corollary 1. Suppose that f(z, z̄) is a convenient strongly non-degenerate and
polar weighted homogeneous mixed polynomial. Then λ(Kf ) ≤ 1. Moreover, λ(Kf ) = 0
if and only if m− = 0 or (p, q, m−) = (1, 1, 2).

Proof. By Theorem 3, the enhancement λ(Kf ) is equal to (−pqm− + p + q)m−.
If m− = 0 then λ(Kf ) = 0 ≤ 1. In the case m− ≥ 1, we have the inequality

−pqm− + p + q ≤ −pq + p + q = −(p− 1)(q − 1) + 1.

Since p and q are coprime positive integers, we see that λ(Kf ) ≤ 1.
The enhancement λ(Kf ) = 0 if and only if −pqm− + p + q = 0 or m− = 0. In the
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case −pqm−+ p+ q = 0, the integer m− is equal to 1/p+1/q. If 1/p+1/q is an integer,
the pair (p, q) is (1, 1) or (2, 2). Since p and q are coprime positive integers, the pair
(p, q) is (1, 1), and thus m− is equal to 2. ¤

We close this paper with a corollary concerning contact structures compatible with
the fibrations of mixed singularities. We introduce the definition of compatible contact
structures. Let M be a closed, oriented, smooth 3-manifold. A contact structure on
M is the 2-plane field locally given by the kernel of a 1-form α satisfying α ∧ dα 6= 0
everywhere on M . A disk D in M is called overtwisted if D is tangent to kerα at each
point on the boundary of D. If M has an overtwisted disk then we say kerα is overtwisted
and otherwise we say kerα is tight. Two contact structures kerα1 and kerα2 are said to
be contactomorphic if there exists an automorphism of M which maps kerα1 to kerα2.
Such a map is called a contactomorphism.

Suppose that M has an open book decomposition. An open book decomposition of
M is said to be compatible with a contact structure kerα on M if

• the fibered link of the open book decomposition is transverse to kerα;
• dα is a volume form on each fiber surface;
• the orientation of the fibered link coincides with that of kerα determined by α.

It is well known that any open book decomposition of M admits a compatible contact
structure [22]. E. Giroux showed that if two contact structures are compatible with
the same open book decomposition then they are contactomorphic, i.e., there exists an
automorphism which maps one contact structure to the other [5]. Thus the compatible
contact structure is an invariant of the open book decomposition. It is known in [7] that
the contact structure compatible with f(z, z̄) is overtwisted if and only if m− > 0. If the
homotopy class of the 2-plane field corresponds to the non-zero element of Z ∼= π3(S2),
the contact structure which is determined by the 2-plane field is overtwisted [4]. Thus
we can recover this result except for the case (p, q, m−) = (1, 1, 2).

Corollary 2. Suppose that f(z, z̄) is a convenient strongly non-degenerate and
polar weighted homogeneous mixed polynomial with m− > 0 and (p, q, m−) 6= (1, 1, 2).
Then the contact structure compatible with a locally trivial fibration S3

ε \ Kf → S1 is
overtwisted.

Proof. In [4], Y. Eliashberg classified contact structures on S3. He showed that a
tight contact structure on S3 is unique up to contactomorphism and the homotopy class
of the 2-plane field of a tight contact structure on S3 corresponds to 0 ∈ Z ∼= π3(S2).
Since m− > 0 and (p, q, m−) 6= (1, 1, 2), we have λ(Kf ) 6= 0. Thus the contact structure
compatible with S3

ε \Kf → S1 is overtwisted. ¤
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