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Abstract. We study ‘nondegenerate’ SDE’s with jumps. These include
SDE satisfying ‘point-wise positive’ condition and that satisfying (nonstation-
ary) Hormander’s condition. We show that solutions of these SDE’s have
hypoelliptic properties. Our result is based on the Malliavin calculus on the
Wiener-Poisson space. In case of continuous SDE, it extends and refines works
based on the Malliavin calculus on the Wiener space.

1. Introduction and main results.

We will study a nonstationary (time-dependent) jump-diffusion on Euclidean
space associated with a stochastic differential equation (SDE) with jumps on R?
written by

g, = b(&_ t)dt + o (&, )dW (1) +/ g(&_,t, 2)N(dtdz), (1.1)
R

where W (t) is an m-dimensional standard Brownian motion and N(dtdz) is a
compensated Poisson random measure on Rj* = R™ — {0} with intensity measure
dtv(dz), which are mutually independent. Here, v is a Lévy measure having finite
moments of any order. Coefficients b(z,t) = (b'(z,t)), o(z,t) = (6% (z,t)) are
smooth in z and coefficients g(z,t,2) = (¢*(z,t,2)) is smooth in z, z, as will be
stated in Section 2.1.

The solution is a nonstationary jump-diffusion. Its generator is given by

1 .. ,
Alt)p =5 D a7 (@ t)pi; + ) b (2, )i
i i

+ /Ran {w(x +9(z,t,2)) — p(x) — Zi:gi(g;, t, z)%(a:)}u(dz), (1.2)
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where a' (z,t) =Y, 0™*(z,t)07% (x, ).

In the previous papers [8] and [9], we studied a ‘uniformly positive’ jump-
diffusion. Let us recall some facts stated in these papers. We assume that v is
a Lévy measure satisfying the order condition with exponent o € (0,2), namely,
the function o(p) := f‘ |z|?v(dz), p > 0 satisfies liminf, o p(p)/p® > 0. For
p > 0, we set

z|<p

- (e

Let B be a symmetric nonnegative m x m-matrix such that the matrix inequality
B < B, (positive definite order) holds for all 0 < p < pg, where py is a certain pos-
itive number. Such B is not unique. It will be fixed in this paper. Associated with
the jump coefficients, we set 6% (x,t) = 0., 9" (2., 2)|.=0 and &(z,t) = (6 (x,t))
(d x m-matrices). We define a matrix by

C(x,t) := o(x,t)o(z, )T + &(x,t)Bs(z,t)7. (1.4)

A uniformly positive condition is stated as follows:

Condition (UP). There exists ng € N and ¢ > 0 such that

T Co
v Oz, t)v > ————
(@10 2 G gy

lv?, Vz,t,v. (1.5)
Note that the above condition does not mean that coefficient matrix (a%(z,t)) of
the integro-differential operator A(t) is positive definite. Hence the operator A(t)
might not be elliptic. However, the following hypoelliptic properties I and II hold
([8] and [9]).

1. Analytic property. Let c¢(x,t) be a bounded smooth function and let T > 0
be a terminal time. Consider the Cauchy problem of the backward heat equation:

<(;9s +A(s) + c(a:,s>>“(w,s> =0, 0<s<T zeR

hTHTI u(z, s) = f(x), (terminal condition).

(1.6)

1. For any slowly increasing continuous function f, the equation has a unique
slowly increasing C'°°1-solution u(z, s).
2. Tt has a fundamental solution: There exists a function p(s,z;t,y) satisfying the
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following properties. i) For any ¢, y, it is a C°!-function of (x,s) and satisfies

(38 + A(8)y + c(z, s))p(sw;t, y) =0, 0<s<t, xR (1.7)
s

ii) For any z,s < t, it is a rapidly decreasing C'*°-function of y and satisfies

u(z, 5) = / p(s,2:T,y) f(y)dy. (18)

II. Probabilistic property. Let &s+(x), t > s be the solution of the SDE start-
ing from x at time s. Define the Feynman-Kac operator Py, f by

Prusa)i= B[ ep { [ cleuuto) i} i) (19)

1. The solution of the Cauchy problem (1.6) is given by u(z, s) = P¢rf(z).

2. The Feynman-Kac operator P, f(x) can be extended from a smooth function
f of polynomial growth to any tempered distribution ®. The extended function
u(z,s) = P, ®(x) is of C**!-class with respect to (z,s) € R?x(0,t) and satisfies
the backward heat equation

0

<as + A(s) + c(z, s)) u(z, s) = 0. (1.10)

3. The function p(s, x;t,y) := P50, (x) is the fundamental solution of the Cauchy
problem (1.6).

In this paper, we will show that hypoelliptic properties I and II are valid for
a wider class of SDE’s. An SDE is called nondegenerate if the family of solutions
{&,t(x);]z| < N} is uniformly nondegenerate for any s < t and N > 1, i.e, the
Malliavin covariances II(x) of & () are invertible and satisfies

sup sup E[(v"H(z)v) Poel] <oo, Vp>1,
|[z|<N veSgq_1,ucA(1)k

for any s < t and k € N (For the precise meaning, see Section 2). We will
show in Section 2 that any nondegenerate SDE has hypoelliptic properties 1 and 11
(Theorem 2.1).

In Sections 3-5, we will study nondegenerate SDE more explicitly. We will
relax the above Condition (UP) as follows.
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Condition (P). The matriz C(z,t) is positive definite for any x,t.
Instead, we assume that the growth of jumps are not too big:

Condition (G). g and its derivative are of uniformly linear growth: There
exists a positive constant K such that

|g(a?,t,z)| + |Vg(x,t7z)|
su <K, a.e z(v). 1.11
up T+ ] < () (1.11)

We will show in Section 3 that any SDE satisfying Conditions (P) and (G) is
nondegenerate (Theorem 3.1).

In Sections 4 and 5, we will study SDE’s which do not satisfy Condition (P).
Associated with matrix functions o(x,t) and &(x,t), we define time-dependent
vector fields:

Vi(z,t) = o (a,t), j=1,...,m, (1.12)
Vi, t)=> ¥, t)my, j=1,...,m, (1.13)
k

where (73;) is a symmetric nonnegative definite square root of the matrix B. Then
SDE satisfies Condition (P) if and only if the family of time-dependent vector fields

o= {V;®),V;(t),j =1,....,m}, (1.14)

spans R? for any z,t. Now, assuming that

bo(z,t) = ;ig(l) . 6g(m,t,z)u(dz) (1.15)
z[>

exists, we define another time-dependent vector field by

Volz,t) = b(z,t) — % > aggig’%lj(w, t) — bo(z, ). (1.16)
Lj

Then, we define families of time-dependent vector fields for k =1,2,... by
X = {‘/t(t) + [%(t)v V(t)]a [ij(t)a V(t)]v [ j(t)v V(t)]’ j=1...,m, V(t) € Ekfl}a

where V;(t) is the derivative of V(t) with respect to ¢ and [, ] denotes the Lie
bracket.
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The (time-dependent) strong Hormander condition is stated as follows.

Condition (SH). There exists ng € N such that the family of time-dependent
vector fields | J;2 o X spans R? for all x,t.

One of our goals is to prove that an SDE is nondegenerate if it satisfies Condi-
tion (SH) and Condition (G). It will be completed at Section 5. For this purpose,
we will introduce in Section 4 other types of Hormander conditions called modified
strong Hérmander condition etc. The nondegenerate property will be proved for
SDE’s with modified strong Hérmander condition etc, making use of estimates of
Norris type for a certain semimartingale with jumps. A main result is Theorem
4.1. Then, in Section 5, we apply the theorem for proving the nondegenerate
property for SDE’s stated above. See Theorem 5.1.

In Section 6, we will consider an SDE where the Lévy measure is lacking the
order condition, together with a continuous SDE. For such an SDE, we neglect
vector fields Vj(z,t) of (1.13). Define ¥ = {V;(t),j =1,...,m} and

Sk = Vi) + Vo), VIOLIV;(8), V(); j=1,...,m,V(t) € Ey1}.

Then Conditions (SH) is defined similarly, using 35,k = 0, 1. .. instead of Xy, k =
0,1,.... It will be shown that hypoelliptic properties I and II are valid under
Condition (SH) and Condition (G).

If the SDE is continuous, the condition for hypoelliptic properties I and II is
relaxed. It can be shown under the Hérmander condition:

Condition (H).  The family of time-dependent vector fields | Jp-_, Sk spans RY
for all z,t.

See Theorem 6.3. Our result extends and refines some well known results for
stationary continuous SDE. If coefficient vector fields V;,j = 1,...,m of the con-
tinuous SDE do not depend on time ¢ (stationary), the above X is rewritten
as

Se={Vo, V], [Vj, V]; G =1,...,m,V € 5,1},

Then Condition (ﬁ) coincides with the usual Hérmander condition. Under this
condition, the existence of the C'°°-density for a stationary continuous SDE was
shown by Kusuoka-Stroock [10], [11] and others: The existence of the fundamental
solution was pointed out by Watanabe [21], making use of the composition of a
smooth functional and a tempered distribution. These results are now extended to
time-dependent case. It seems to be new that the fundamental solution p(s, x;t,y)
is smooth with respect to s,z and satisfies equation (1.7).
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Taniguchi [20] may be the first work on the Malliavin calculus for nonstation-
ary continuous SDE. He proved the existence of the smooth density for the law of
the solution under the restricted Hérmander condition. See Section 5.

In the final section (Appendix), we will give an estimate of Norris’ type,
making use of Komatsu-Takeuchi’s estimate of semimartingale with jumps [5]. The
estimate stated in Theorem 7.1 is much simpler than the corresponding estimate
of Norris’ type given in [6].

The study of the smooth densities for jump processes satisfying the uniform
Hormander’s condition was initiated by Léandre [13]. His approach is based on
Bismut’s work on Malliavin calculus for jump process [1], where the smooth density
of the Lévy measure is assumed. The author [6] studied the similar problem for
canonical SDE with jumps. The latter approach is based on the Malliavin calculus
on the Wiener-Poisson space due to Picard [18], [19] and Ishikawa-Kunita [4]. Our
Theorem 5.1 will cover these works.

2. Nondegenerate functionals on Wiener-Poisson space and non-
degenerate SDE with jumps.

2.1. Smooth functionals on Wiener-Poisson space.

Let T be a positive number and let T = [0,7]. Let W be the set of all
continuous maps w : T — R™ such that w(0) = 0 and let B(W) be the smallest
o-field of W with respect to which {w(t),t € T} are measurable. Let P; be a
probability measure on (W, B(W)) such that
(1) W(t) := w(t) is a standard Brownian motion.

Let R* = R™ — {0} and let B(R}") be its Borel field. By a point function on
R§* we mean a map g : D, — R, where Dy is a countable subset of T. A counting
measure of the point function ¢ is defined by

N(EaQ) = ﬁ{t € Dq : (t7q(t)) € E}a

where E is a Borel subset of U = T x Rjj’. Let = be the set of all point functions on
Ry*. We denote by B(E) the smallest o-field with respect to which N(E), E € B(U)
are measurable.

Let n be a measure on U given by n(E) = [, dtv(dz), where v is a Lévy
measure on RY' satisfying [ |z]2/(1 + |z|*)v(dz) < co. A probability measure P
on (2,B(E)) is called a Poisson measure with characteristic n, if the following
conditions are satisfied.

(2) If Ey,..., E, are disjoint, N(E1),..., N(E,) are independent.
(3) f 0 < n(F) < 0o, N(E) is Poisson distributed with intensity n(E).
Let @ = W x Z and B = B(W) ® B(Z). Elements of Q are denoted by
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w = (w,q). A probability measure on (2, B) is called a Wiener-Poisson measure
with characteristic n, if w and ¢ are independent and satisfies (1)—(3). We denote
by F the completion of B. The triple (2, F, P) is again called a Wiener-Poisson
space with characteristic n. P is given by P; X Ps.

In the following, through the paper, we will fix a Wiener-Poisson space
(Q, F, P) with characteristic dn = dsdv, and we will discuss functionals defined
over it.

We will introduce some notations following [4], [8] and [9]. Let Dy, t € T
be the Malliavin-Shigekawa’s derivative operator acting on the first variable w.
For t = (t1,...,t;) € T/, we set Dy = D] = Dgl 7777 t; = Dt -+ Dy;. We shall
introduce difference operators Dy, uel, acting on the Poisson space. For each
u = (t,2) € U, we define a transformation & : = — = by setting D_y, = D, U {t}
and

(‘C::qu)(s) = Q(S)v if s e qu s 7£ t,

=z, if s =1t.

It is extended to w = (w, q) by setting efw = (w, e, q). The difference operators
D, for a smooth Poisson functional Y is defined after Picard [18] by

D,)Y =Yoel -V,

Let w = (uq,...,ug) = ((t1,2%),..., (ty, 2%)) = (£, 2). We definee =ef o---0e

and D,, = ﬁﬁ =D, ﬁuk

For k,1 € Nand p > 1, Sobolev’s norms | |5, over Wiener-Poisson function-
als are defined making use of derivative operators Dé,, 0 <!’ <[ and the difference
operators Dﬁl, 0 <k <k. We set

| X kip = { Z ZZ:E{/EIk, (/Tl,

=01'=0

U Mk’
Dt Du

() 2dt>p/2mk/(du)} }UP’

where

¥ (u ) Lo, (Juh)n(du)

A ST e

g (du) = m(duy) - - - m(duy),

and y(u) = v(z) = |2!| - |2¥|. The set of functionals G such that |G|, < oo
is denoted by Dy, ;. We set Do = Mg Dk1,p and denote the d-fold product of
D, by D%, Elements of D, or D are called smooth functionals. See [4].
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We denote by ﬁgo the set of all F € D% satisfying the following properties:
i) Dy F' is twice differentiable with respect to z and derivativers are uniformly
continuous in z € {z € Rf"; |z| < 1}. ii) the functional

m m
q) F = 3 82D zF + - 828ZD ZF
( ) ; |Z|;li€€'lf | o | i;l |Z|zli,€€’]r | 1Yz Mt |

satisfies sup,e 41y E[|®(F) 0 € [P] < oo for any k € N and p > 1, where A(1) =
{u=(t,z) € U;|z] < 1}.

2.2. Nondegenerate smooth functional and its law.

In the following, throughout Sections 2-5, we will assume that the Lévy mea-
sure associated with the Poisson random measure satisfies the order condition. Let
F be a smooth functional in D% . In [4], we defined the Malliavin covariance of
F. In this paper, we present a slightly simpler Malliavin’s covariance. It is defined
by

T T
nt = / (D,F)(D,F)Tdt + / (0D;oF)B(dD; o F) dt, (2.1)
0 0

where B is a lower bound of B,,0 < p < pp and

3Dt OF = hm (821 .Dt z . 5‘ Dt 2z )

F € D% is called nondegenerate if its Malliavin covariance is invertible a.s. and
the inverse (vII¥v)~1 (v # 0) satisfies

sup E[(UHFU)*” oet] < o0 (2.2)
vESg_1,u€A(1)F

for any p > 1 and k£ € N. Our definition of a nondegenerate functional is slightly
stronger than that adopted in [4] and [8].

Let us recall some facts about nondegenerate functionals following [8]. Sup-
pose that F' € b,ffo is a nondegenerate functional and let G € D,. We will consider
the (inverse) Fourier transform of the signed measure ug(dy) = E[Glpeqy]. It is
written as

pe(v) = / ¢V g (dy) = Bl G (2.3)
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We call it the weighted characteristic function of the random variable F with
respect to G. We are interested in the property of the polynomial decay of the
weighted characteristic function as |v| — oo. The property of the polynomial
decay will imply that the signed measure pug has a rapidly decreasing C'°°-density
function.

The polynomial decay of the weighted characteristic function was studied in
[8]. We will quote an estimate given in [8], Theorem 2.5. For any given n € N,
there exist k = k,, [ =1, € N, p=p, > 1 and C,, > 0 such that the inequality

|E[e"™ PG| < Co(1+ [0]*) "™ 2|G4,1,pOn(F), YveR? (2.4)

holds for any G € D, and any nondegenerate I’ € ﬁgo Here gp > 0 is an absolute
constant determined from the exponent of the order condition of the Lévy measure.
The last term ©,(F) is finite for any n, if F' is nondegenerate. Thus we get the
polynomial decay of ¢g(v).

In later discussions, we want to show the polynomial decay property for
F(z) = &s,+(x), uniformly with respect to parameter z, where & +(x) is the flow of
solutions of SDE. For this purpose, we will write down ©,,(F) explicitly.

@n(F) = |F|i11,l+1,2(l+1)(k+1)p

2k 1/8(k+1)gy n
<11 (1 + E{ / ()2 (414 e;mi(dui)} )
=1

2k

% H <1 + sup E{/(UTHFU)S(Z+1)(IC+1)? o quml(dw)

i1 vESg_1

)

:| 1/4(k+1)p\ n

(2.5)

where ¢ > 1 is a certain constant.

2.3. SDE with jumps.

Let us return to SDE (1.1). We will use the following notations. For a
function f(z) on RY, we set Vf(z) = (0z,f(x),...,0:,f(x)) and for a vector
function f(x) = (fi(x),..., fe(z)), we set Vf(x) = (O, f;(z)). For a multi-index
a = (aq,...,aq4) of nonnegative integers, we set V* = (0/0;,)* -+ (9/0y,)** if
a#(0,...,0). A function f(z,t), z € R%, t € T is said to be a C°-function, if it is
infinitely continuously differentiable with respect to z and V*f(z,t) are bounded
continuous in (z,t) for all a.

A function g(z,t,2), x € R4, t € T, 2 € R™ is said to belong to the class
C;°(0) or to be a Cp°(0)-function, if it satisfies
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i) For any z, it is a Cp°-function.
ii) For any a, V%g(x,t, z) is twice continuously differentiable with respect to z, of
linear growth with respect to z and satisfies V®g(z,t,0) = 0.

For the coefficients of the equation, we assume that b, o are C;°-functions and
g is a C;°(0)-function. For the Lévy measure v, we assume [ |z|Pv(dz) < oo for
any p > 2. We set

X(z,t) = /Ot b(x, s)ds + /Ota(x,s)dW(s) + /Ot /5" g(x,s,2)N(dsdz).  (2.6)

Let {F;} be the filtration of sub o-fields of F generated by the Brownian motion
W (t) and the Poisson random measure N. Given an F; -measurable random
variable &, an {F;}-adapted cadlag process &, t € [to,T] with values in R? is
called a solution of equation (1.1) starting from &y at time tg, if it satisfies

t
S=&+ [ X(&-,dr), t>t. (2.7)

to

Equation (2.7) has a unique solution. The solution such that & = = and ¢y = s
is denoted by &4(z). Then for any s < ¢, maps & : R? — RY are C°°-maps
a.s. Further it satisfies &, = &, 0 &5 for any s < ¢ < w a.s. {& .} is called a
nonstationary Lévy flow associated with X (z,t) of (2.6).

For fixed s, z, the stochastic process & = &; () is a jump-diffusion with gen-
erator A(t) given by (1.2). Let c¢(z,t) be a bounded Cp°-function. The transition
operator weighted by ¢ or Feynman-Kac operator Pg,¢(x) is defined by (1.9) for
any C*°-function ¢ of polynomial growth. For any 0 < ¢t < T, it is a C°!-function
of (z,5) € RYx (0,t). Further, u(z,s) = P¢,p(x) satisfies Kolmogorov’s backward
equation (1.10). See [9].

2.4. Nondegenerate SDE with jumps and its hypoelliptic proper-
ties.
It is known ([8], [9]) that for any s < t and z, F(z) = & 4(z) belongs to D%
and the Malliavin covariance II(x) of F'(x) is written by

M(x) = / Vs (2)C(Enrn (), 1)V o () du, (2.8)

where C(z,t) is a matrix function defined by (1.4). The SDE is called nondegen-
erate if the family of solutions {£, ((x); |z| < N} is ‘uniformly’ nondegenerate for
any s < tand N > 1, i.e., if the following inequality holds.
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sup sup E[(v"H(z)v) Poel] < oo, (2.9)
|z|<N veSgq_1,ucA(1)k

forany N >1,p>1and k € N.

We should remark that nondegenerate SDE in this paper is more general
than nondegenerate SDE in [8] and nondegenerate Lévy flow in [9]. Indeed, these
coincide with SDE satisfying Condition (UP) in this paper.

LEMMA 2.1.  Let & 4(x) be solutions of a nondegenerate SDE. For anyn € N,
there exist k,l € N and p > 1 such that the family of solutions {&s.(z); |z] < N}
(s,t being fized) satisfies

‘sllgv|E[ei(“’5-*v"(””))GH <Cn(+ o)™ P"2|Glsp, Yo, VG € Diyp,  (2.10)

for any N > 1, where Cn is a positive constant.

PrOOF. We will apply inequality (2.4) to F' = F(z) = &,+(x). We can check
by a direct computation that the first and the second terms of ©,,(F(z)) given by
(2.5) involving F(x) and ®(F(x)), respectively, are bounded for |z| < N. Further
we have from (2.9)

sup E[/(vTﬂ(m)v)_S(l+l)(k+l)p o b my(du;)| < oo. (2.11)
‘z|§N,’U€Sd,1

Therefore ©,,(F(z)) is bounded for |z| < N. Then inequality (2.10) follows from
(2.4). O

Now, let S be the space of rapidly decreasing C*°-functions on R equipped
with seminorms

1/2
lolls = ([, 3 @bl - arewPar) . j=12..

a+p<j

Denote the completion of S by the norm || ||2; by Sa;. Let S_g; be the dual space
of Sp; equipped with the dual norm |[| [|—2;. Then 8" = (J; S—2; coincides with the
space of tempered distributions.

The formula (2.10) of polynomial decay enables us to get the estimate of
Feynman-Kac operator (1.9): For any s < t, j € N, @ and N > 1, there exists a
positive constant C' such that
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sup |VOPL,o(x)| < Cllgll—2;, Vo €S,
2| <N

See Lemma 7.1 in [9]. Therefore the domain of the operator P, can be extended
to S_y; and the extended function P, ®(x) is a C*°-function of = for any ® € S_»;.
The extended function Pg,®(x) satisfies for s < s+h <t

s+h
P,y () — PE(x) = - / (A(w) + (o, ) PE () du,

since the equality is valid for a smooth function ¢ = ®. Therefore the extended
function u(z, s) = P¢,®(x) is a C°!-function of (z,s) € R? x (0,) and it satisfies
the backward heat equation (1.10).

THEOREM 2.1 ([9]). Any nondegenerate SDE has hypoelliptic properties I
and 11 stated in Section 1.

Proor. Consider first P¢,®(x). Let us take a continuous function f of
polynomial growth in place of ®. Then u(z, s) := P f(w) satisfies the backward
heat equation (1.10) together with the terminal condition limgr u(z,s) = f(x).
Hence u(x, s) ia a solution of the Cauchy problem (1.6).

We will show the uniqueness of the solution of equation (1.6). Suppose that
v(z, s) is a C°!-function of polynomial growth satisfying (1.6) with the terminal
condition v(z,T) = 0. We want to prove that v(z,s) = 0. Our discussion is close
to [7]. Let & be a solution of the SDE. Then in view of It6’s formula, we have for
any t > s,

efst c(§u7u)duv(§t’ t)

t
= U(fsa 3) + / efsu c(&u,u)du (A(u) 4+ c(u) + i)v(fu,u)du + M; — M,

where M; is a local martingale. Let ¢t = T. Then we have v({p,T) = 0. Since
v(x,t) satisfies equation (1.6), we get the equality

0=v(&,s)+ Mp — M.

Since M, is a local martingale, we get v(§s,s) + My — My, =0 for any s <t < T.
This implies v(&,, s) = 0 for any s. Now take £5_j () in place of & and take the
expectation. Then we have E[v(§s_p s(), s)] = 0 for any s, h,z. Let h tend to 0.
Then we get v(z, s) = 0 for any x, s, proving the uniqueness of the solution of the
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Cauchy problem.
The fact that p(s,z;t,y) = P5,0,(x) is the fundamental solution will be
obvious. We have thus shown hypoelliptic property I.
Hypoelliptic property II has already been proved. O
3. SDE with positive condition.

3.1. Stopping time of order h.

In this section, we want to show that any SDE satisfying Conditions (P) and
(G) is nondegenerate. We begin with a discussion of certain stopping times which
will help us to prove this. Let & (z) = &y +(x) be the flow associated with the SDE
(1.1). For a given N > 1, let 7(z) be the stopping time such that

7(x) =inf{t > 0; |&(z)]| > N+ 1} AT.

If &(x) is a diffusion process, for any h € N there exists a positive constant
¢ = cp, > 0 such that the inequality holds

sup P(1(x) <€) <ece, 0<Ve< 1. (3.1)
lz]<N

See Nualart [17]. However, such an inequality does not hold for jump-diffusion.
We will modify it as follows.

LEMMA 3.1.  Assume Condition (G). Let N > 1,k € N be given numbers.
Define for any h € N the stopping time Ty (x) = Th N i (z) by

Trn(z) = inf{t € [0,T); |&(x) — x| > My, or |V&(z)—1I|> M} AT, (3.2)
where

My, = My yj:= (N +1)(K + 1)k+h, (3.3)

and K is a constant given by (1.11). Then there exists a positive constant ¢ = cp,
such that

sup P(Th(z)oef <€) < ce, 0 < Ve< 1. (3.4)
|z|<N,ucA(1)*

We call Tj,(x) a stopping time of order h (with respect to N, k).
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PROOF. Define a sequence of stopping times for & = &(x) by 79 = 0 and

m=inf {t € [0,T);|& — x| > 1, or [V& —I| > 1} AT,

75, = inf {t € [mh-1,T); & — &7y | > 1, or V& — V&, | > 1} AT.
Then if t < 74, 0 €, we have

sup [& o€V sup V& o] < M. (3.5)
ucA(1)k u€A(1)k

Therefore we have T}, (z) o € > 7, 0 € a.s.

For the proof of (3.4), it is sufficient to prove that there exists a positive
constant ¢ such that for any |z| < N, u € A(1)¥, the inequality

P(thoel <e)<ce", 0<Ve<1 (3.6)

holds. In the following, we drop €} for the simplicity. Since

h

{Th < 6} - m H|£T] - gTj—1|]‘Tj77j—1<€ > 1}
j=1

U {|V§TJ - ngj—1|17j77j71<5 > 1}],

we have, by using the strong Markov property of &,

h
P(mh, <€) H (1€, = & lry—ryi<ce > 1)
j=1

+P(|V§TJ - ngj_1|1'rj—'rj_1<e > 1)}

|§TJ ETj—1|21TJ_Tj—1<€:|

'::l?

J:1

E[|V§T] - véij1 |217'j_7—j71 <6]] .

Note

sl ([ ) o ([ o) o ([ frvas))

J J—
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and note that the functionals |b|, |o], [ |g|?v(dz) are bounded by a positive constant
c¢1 on each time intervals (7;_1,7;). Then we have the inequality

E“fr, &ry |2 Lyjrj_ 1<e] <60?E[( —Ti- 1)]‘7'_j—7'_7‘—1<€] < 6cfe.

A similar estimate is valid for E[|VEr, — V&, [*1,,_r,_ <]. Then we get the
inequality (3.6). O

3.2. Estimate of the Malliavin covariance.
A goal of this section is to prove the following.

THEOREM 3.1.  Any SDE (1.1) satisfying Conditions (P) and (G) is nonde-
generate.

The proof will be divided into two cases. In the first case, we assume:

Condition (D). There exists 0 < ¢ < 1 such that
IVg(z,t,2)| <e, Va,t,z.

The above condition is stronger than Condition (G). In the next lemma, we
will prove the assertion of the theorem under Condition (D). Then the condition
will be relaxed to Condition (G) in Section 3.3.

Under Condition (D), the maps ¢; .(z) := x + g(x,t,2); RY — R? are diffeo-
morphsims for all ¢,z. Then, the solution &, ; defines a flow of diffeomorphisms.

Further, Jacobian matrices V& (x) are invertible and ¥y = V& (z)"L o et
= ((t1,2%),..., (tg, 2¥)) satisfies a linear SDE;

t
Umi(t) =1 +/ U (r)\VZ(&s r—(x),dr),
where

VZ(x,t) = / (VoVol —Vb)(z,s)ds —/ Vo(x,s)dW(s)

/ /Vh z,s,z)N(dsdz) ZVha: ti, 2" )1, ()

and (I + Vg(z,s,2))"t =1 — Vh(s,z,z). Then we get the estimate
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sup E[|V§S,t(x)_1 ) e;ﬂp] < 00, (3.7)
|z|<N,ucA(1)k

for any p > 1. See Section 3 in [8].

LEMMA 3.2.  Assume Conditions (P) and (D). Then the SDE is nondegen-
erate.

PrROOF. We will give the proof of (2.9) in the case where s =0 and ¢t = T.
We first take arbitrary N > 1 and k € N. For any h € N, there exists ¢y > 0 such
that vC(z,t)vT /|v]? > ¢o holds for any |z| < M), = My, k.

To avoid complicated notations, we will drop the transformations oe}l. Given
h € N, let T}, (z) be the stopping time of order i with respect to N, k, defined in
Lemma 3.1. Then we have

1@ WIVE, 2 C (&, 1) (V) 0] 2
TH >/ r,T L) r,T Tv ; dr.
v (z)v > ; Ve 2 |v £ 7T| r

It holds for r < Th(x),

|'UTV§T,TC(€T ) T) (v&“,T)TU‘

VTV, 1] =
T T
T T 1 [v* Véo,r| _ |v" Vé,r
V| = 0TVE rVETE > 21> iy
[T VEnr| = 0TV eV | 2 T T 2 R
Therefore we have
M, +1)2
(W T (z)v) " < wwgoj(x)*lﬁn(x)*l. (3.8)

colv[?
Consequently, by Holder’s inequality, we have for any v € Sg_1,

E[(vT(x)v) 0 ) ~"?] < CE[|Véor(z) b o e /2]

B(Ti(x) o )%,
Since E[(Th(z) o €f)~3"/4]2/3 is bounded for |z| < N, u € A(1)* by Lemma 3.1,
we get the inequality (2.9) for p < h/2. O

3.3. A method of perturbation.

In this subsection, we want to remove Condition (D) in Lemma 3.2. We recall
that the Lévy flow {£,.(x)} is the solution of SDE (2.7), where X (x,t) is a Lévy
process with spatial parameter defined by (2.6). For 0 < ¢ < 1, there exists a
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positive number d¢ such that sup, , |Vg(z,t,2)| < ¢ holds for any |z| < dp. Let
0 < 6 < &y and let X°(x,t) be a Lévy process with spatial parameter z given by

X‘s(x,t):/otb‘;(x,t)dt+/0t (2, )W (¢ //||<5 (2,4, )N (dtdz),  (3.9)

where

V(x,t) = bx,t) —/ g(x,t, 2)v(dz).

|z|>6
Let {&2,(x)} be the Lévy flow associated with X°(x,t). It has the same drift
and the same diffusion coefficients as that of {{¢(x)}. Since the function g1;<s
satisfies Condition (D), {fg,t(a:)} is a flow of diffeomorphisms.
Given a point process g, let ¢” be the restriction of ¢ to the subdomain

Dy = {t € Dg;|q(t)] > 6}. It is a discrete subset and we may write it as {0 <
T < Ty < } :Dq//. It holds

X(z,t) = X%(x,t) 0 € = X (x,t) + Z g(z, 7, 4" (1))

437 <t

Therefore, the solution & ;(z) associated with X (z,t) is decomposed as

Eunle) = €, () o

§ §
= ngflat © qz)"'rn—hq”(Tn—l) 0r-+0 ¢Ti7q"(7'i) © gs,n (Z‘),

where 7,1 < s < 7 and 7,1 < t < 7,. Consequently we may regard that
&s,t(z) is obtained from §§’t(m) by the perturbation of adding jumps g(z, 75, ¢" (7)),
i < j < n to the solution & ,(z). We call £ ,(z) as a truncated process of & 4(x).
It is independent of the point process q”.

PrOOF OF THEOREM 3.1. Let TI°(z) be the Malliavin covariance of the
truncated random variable §g,T(x). Take arbitrary N > 1 and k € N. Let T} (z)
be the stopping time of order h with respect to IV, k associated with the process
€ (x). Then it holds II(x) = I1°(z) oeq+,, and Ty, (z) = T} () oeq+,, a.s. Consequently
we have by (3.8)

E[(v"I(z)v) "? o ef] < B[0TI’ (z)v) "? o€} o€l

_ 2/3
< CE[|VE& r(z) 1|3h/206:';o€;:/] 13 E[(T}(z) o € oeh)” sh/4] 3,
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We can show

sup E[|VE&r(z) ' PM? o cf o€h] < oo,
|z|<N,w€Sa—1,u€A(1)F

See the proof of Lemma 3.4 in [8]. Further, since T} (z) o€, o e;r,, =Th(x)oel as.,

sup E[(T} () o€l o ej}r,,)—Sh/zl] < 00
|| <N,veSa_1,u€A(1)k

holds by Lemma 3.1. Then we get the inequality (2.9) for p < h/2. O

REMARK. If jumps do not satisfy Condition (G), the above perturbation
might (or might not) break hypoelliptic properties. However, if Condition (UP)
is satisfied, the above perturbation does not break it even if jumps do not satisfy
Condition (G). See [9]. In Section 5, we will prove the similar fact for SDE
satisfying Condition (UH).

4. SDE with conditions of Hormander’s type.

4.1. SDE with modified strong Hérmander’s condition.

In this section, we assume that coefficients b(z,t),o0(z,t) and g(z,t,z) of
SDE (1.1) are infinitely differentiable with respect to ¢ and derivatives 0]'b(z,t),
0y o(z,t) are Cp°-functions and 07g(x,t,z) belongs to the class Cp°(0) for any
n=20,1,....

We are interested in SDE’s which do not satisfy Condition (P) but may have
hypoelliptic properties. We shall first rewrite equation (1.1). As was shown in
Section 3.3, there exists §p > 0 such that maps ¢ .(7) := x + g(z,t, 2); R? — RY
are diffeomorphisms for any ¢ € T and 0 < |z| < §p. We will fix such §y. We will
take 0 < § < &y and define an another time-dependent vector field Vi by

Wu¢>b@@éEj&g$”H%a0/>ﬁwm@wwy (11)

g
Then, using these vector fields, equation (1.1) is rewritten as

& = Vg (&, t)dt + Y V;(&,t) 0 AW (t)

J

+/0 ‘ <6g(§t,t,z)N(dtdz)+/ g(&_,t,2)N(dtdz), (4.2)

|z|>6



Nondegenerate SDE with jumps 1011

where V; o dW7(t) are Stratonovitch integrals.

Associated with a diffeomorphism 1 of R, the pull-back 1*V of a smooth
vector field V is defined by ¢*V f(z) = V(f o) (¢~ (z)). We define a linear map
L% of a space of time dependent vector fields into itself by

LoV (1) = Va(t) + [V (1), V()] + % Z[Vj(t), Vi (@), V(©)ll

" / Leyvo-ve - Vol @3)

where V;(t) = (d/dt)V (t) and [V1, V3] is the Lie bracket of two vector fields Vi, Vs,
and V,(t) are vector fields such that their coefficients coincide with g(z,t, 2).

We set T = 3. For k =1,2,... we define families of time-dependent vector
fields by

)= {LV),[V;(), VLIV, V@] j=1,...mVeTi }.  (44)

A modified uniform Hérmander’s condition and modified strong Hérmander’s
condition are stated as follows, respectively.
Condition (MUH)s. There exists ny € N and ¢; > 0 such that

ny
Z Z TV (2, )| > c1|vf?, Va,t,v. (4.5)

k=0 Ve’rz

Condition (MSH)s. There exists n1 € N such that L, T3 spans R? for
all x,t.

A main result of this section is the following.

THEOREM 4.1.  Consider SDE (4.2). 1) If it satisfies Conditions (G) and
(MSH)s for some 0 < 6 < dg, then it is nondegenerate.
2) If it satisfies (MUH);s for some 0 < § < &g, then it is nondegenerate.

Another type of modified Hérmander condition was introduced in Komatsu-
Takeuchi [5], where they discussed the existence of the smooth density for the law
of the solution of an SDE.

For the proof of the theorem, we need estimates of Malliavin’s covariance. In
Sections 4.2 and 4.3, we assume Condition (D). Then solutions &, ¢(z) of the SDE
define a flow of diffeomorphisms of R<.
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A modified Malliavin covariance of & ¢(x) is defined by

(1]

=3 / €V (@, r)(E) V(. r)dr, (4.6)

veryYs

where (£, 7)*V(z) is the pull back of V by the diffeomorphism &, /. Then the

s,t
Malliavin covariance II(z) of &, ;(z) is computed by the formula

II(z) = st,t(x)E(I)V§S7t(x)T. (4.7)
If the modified Malliavin’s covariance satisfies the inequality

sup sup E[(vTE(z)v) " oel] < o0 (4.8)
|[z|<N veSq_1,ucA(1)k

for some p > 1, then the Malliavin covariance II(z) satisfies

sup sup E[(v"H(z)v) P oel] < oco. (4.9)
|z| <N veSq_1,ucA(1)k

Indeed, (4.8) implies sup E[|det Z(z)|2*/? 0 €] < 0o. Since
|det TI(z)| = | det V&, ¢|?| det Z(x)],
and sup E[| det V&, +(x)|7*/? o e/] < oo holds, we get the inequality

sup  sup E[|det (z)|7P/40 €n] < o0.
o] <N weA(1)r

This is equivalent to (4.9).

In Section 4.2, we will get a chain rule for (fs_tl)*V(t) with respect to ¢. In Sec-
tion 4.3, it will be applied for getting estimates of modified Malliavin covariance.
The proof of Theorem 4.1 will be given at Section 4.4.

4.2. An Itd’s formula for time dependent vector fields.

LEMMA 4.1 (c.f. Lemma 3.1 in [6]). Assume Condition (D). Let V(t) be
a time-dependent C'*°-vector field, differentiable with respect to t. Then the pull
back (& 1)V (x,t) = (.1)*V (x,t) satisfies

s,t



Nondegenerate SDE with jumps 1013
(&) V(w,t) = V(n,s) + / (€71 LV (2, r)dr
+ 3 [ WV l@ar)
t N AR A (o —V(x,r)YN(drdz
+/[}J@)ﬁ%»VMﬂ V()}V (drdz)

//||>§ ) V(z,r) = V(z,r)}N(drdz), (4.10)

for any 0 < 6 < .

PROOF. In view of It6’s formula for semimartingale with jumps, we have

V(Ent) = V(z,s) + / V(6 r)dr + / TV (& )V (€ r)dr
V(pro0&,r) =V (&, —‘N/z )V (&, T drdv(z
o R U R R R AT A

+Z/ YV (&, 7)Vj(Er,) 0 AW (7)

+/s /0<|Z|S6(V(¢r,zo§r, r) = V(& m)N(drdz)

+f /Z>5(V(¢r,zOEr_,r)—V(Er_,r))N(drdz)_

Further, the inverse matrix (V&)™ satisfies a.s.
t
(Ve =1~ [ (96) IV ()
t ~
[ e Tonale) ! — 1+ VT ardn(2)
<|z|<é

—Z/ (VE)TIVV (&) 0 dW(7)
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t B L
+ / /<|Z<6(v€r—) {Vor (&) I}N (drdz)

[T T bale) T~ 1N ).

Apply It6’s formula to the product of two semimartingales X; = (V&)™ ! and
= V(&,t). Then we get

(V&) WV (€ 1) = Vi) + / (V&) LV (&, r)dr

S

=3 [ (V) W 0. VOl naw )

t -1 —1\*
+~/s /|Z<5(V§r_) {(¢T,Z) V(fr_, ) §r T }N deZ)

+/S /|z>5(V€r-)‘ {(6; )V (&—,7) = V(&—,7)}N(drdz).

It is rewritten as (4.10). O

4.3. Estimate of modified Malliavin’s covariance.

In the following, we will fix a constant 3 such that § > max{4/(2 — «), 8},
where 0 < o < 2 is the exponent of the order condition for the Lévy measure. We
first take arbitrary N > 1, k € N and h € N. Let M) = M}, v be the positive
number given by (3.3). In view of Condition (MSH)s, there exists n; € N and
c1 > 0 such that

:nzl Z V(z, )V (x,t)" (4.11)

k=0ver?

satisfies

oTH(z,to > er|of?, Vx| < My, V.

Let Ty (z) be the stopping time of order h with respect to N,k associated with
&t(x). Then it satisfies

sup P(Tp(z)oef <) <cpe, 0<Ve< 1 (4.12)
lz| SN ueA(L)k
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by Lemma 3.1.

LEMMA 4.2.  Assume Conditions (D) and (MSH)s for some 0 < § < dp.
Then the modified Malliavin’s covariance Z(x) is invertible a.s. Further, for any
N,k and sufficiently large h, it satisfies the inequality (4.8) for all 1 < p <

(1/2)372"1h.

PrROOF. We will prove (4.8) in the case s =0 and t =T
Step 1: We will first prove the inequality (4.8) in the case where k = 0,
namely the inequality:

sup sup E[v'E(z)v) %] < cc. (4.13)
|z| <N vESq_1

For a given time dependent vector field V' (z,t), we set
Yor(t) = ot (6 V().

Let €; = ming<i<p, (1/ki)5(2i+1), where k; is the number of elements of the set Tf.
For |z| < N and 0 < € < €1, we define events by

T .
EZ:EZ“”:{ Z/ |Y$7”(t)2dt<e’82l}, i=0,1,2,...,n.
0

ver?

Then we have the decomposition
Ey=(EoNEf)U(E1NES)U---U(E,_1NE; )UF,

where F'= EqoNE;N---N E,,. Therefore,

71171
P(Ey) < Y P(EiNEf,)+ P(F).
1=0

We claim that for any h € N there exist C' > 0, C’ > 0 such that

sup P(E;NE{ ) <Ce, i=0,...,n1 —1, (4.14)
|z|<N,weSq_1

sup  P(F)<C'é® ", (4.15)

|z|<N,v€ESq_1
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hold for any 0 < € < ¢7. If the above n; + 1 inequalities are verified, then we get

—2n
sup  P(Fp) < C"? M Y0 <e< €.
|z|<N,weS4_1

Since Ey = {vE(x)v < €}, the above will imply (4.13) for any p < (1/2)372"h.

We will first prove (4.14). Our discussion is close to Lemmas 4.2 and 4.3 in
Kunita [6]. We need an inequality of Norris type, which will be discussed in Section
7, Appendix. Note that the semimartingale Y{7""(¢) is represented by (4.10). It
may be rewritten as (7.1), where coefficients of the drift term, diffusion term and
jump term of the semimartingale Y{7""(¢) are given by

ay”(s) = ay(s) = v (61) LV (2, 5),

f7(s) = fu(s) = (W1 (€7 Va(s), V()(@), ..., 0T (€7) Vin(5), V())(2)),
9y (s5,2) = gv(s,2) =0T (&) {(6:2) "V (2, 5) = V(z,5)},

respectively. Let gi/"(s) = gv(s) be the process given by (7.4). Then we have

v (s)* =3 "€ i), V)l

Now for a given V € Tf, we set for 0 < € < ¢

Ay (e) = { /0 : |fv () [Pdt < ﬁ}
BMO={AﬂmﬁVﬁ+ATﬁﬁﬁﬁ+ATmﬁWﬁ<£Mmij,

T T T .
ovio={ [ lvpas [ irvopas [Cavopa<e
0 0 0
Then we have the relation

E;nE, C | Av(nBy(ec | Av(enCy(e)”.
Vers vers

Set é = ¢ """, Then we have & = ¢? ~'. We can apply the inequality (7.7) in
Section 7 for two sets A(€) := Ay () and B(€) := Cy (¢) for any p = % *1h. Then
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we have

sup P(Av(e) N Oy (e)°) < ce? <ece, V0 <e<e.
‘zlSN,’UGSd,1

Therefore,

sup .P(.EZ N (EH,l)C) é Cﬁh,

|z|<N,weSq_1

proving (4.14).
We shall next prove (4.15). Set

n1 T

1(:1(@ﬂ0::§:/" >t (4.16)
=00 ver?

If we F = F", then K(z,v) < (ng + 1)e® ™. Therefore, we have F*V C

{K(z,v) < (n1 +1)e’ """ }. On the other hand, we have

T (z)
K(z,v) Z/O v (V& () H (&(2), 1) (VE(x) ) Tvdt

T (x)
zq/ W TVE, (x) Y2t
0
> C1(Mh + 1)72Th(5€),

where Ty, (z) is the stopping time of order h with respect to N and k = 0. Therefore,
if we take v such that (n; + 1)6572”1 = c1(My, + 1)72, we have {K(z,v) <
(ny + 1) ™"} € {Th(x) < 7}. Consequently we have

P(F®°) < P(T(z) <v) < ey = C'66727L1h7

for all |z| < N, v € Sg_1. This proves (4.15).

Step 2: We shall next prove (4.8) in the case k = 1. Let u = (s1,21) and
consider a semimartingale Yi7'* () := o7 (& ")*V (z,t) o €. Set

o {

T X
Z/ |Y$’”(t)|2dt<eﬁz’}7 i=0,1,2,...,n1.
0

vers
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It holds

T(¢—1yx( 1—1\* i
Pz (s = {v (& @) V(wt), if s <t,

V(&) V (@, 1), if 51>,
and for s; < t,
& (6 V(x,t)

= () (63) V(1) + / (€7 L2 (67 Y)V (1)

# X [ @ w0Vl @ar ()
| ) (0r) (@) —1yx .
w [ e { e vien - @ vien b

+ /t /lzw(&rf)*{(%i)*(%l)*wx,r) = (qbul)*V(x,r)}N(drdz).

Then we can show similarly as in Step 1 that for any N there exists C' > 0 such
that

sup sup P(EJY N (EFY)) <Ce', i=0,...,n1 — 1, (4.17)
2| <N,vESa_1 u€A(1)

holds for any 0 < € < €.
Next, set F™* = E""' N ---N E%Y. We want to prove

sup sup P(F™") < e "h, (4.18)
|z|<N,vESa—1 uEA(L)

Set K (z,v) = [ |Y*?(t)]2dt. Then we have

Ry > [ (Ve ) @), 0 (Vew) ) ot
0

Th(x)
T / o(V(du 0 &) (@)

1ATh ()
X H(py 0 & (), )((V(gu 0 &-) (@) 1) T vdt.
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Two integrands of the above integrals dominates c|v|?,¢ > 0 for ¢t < T} (x). Then
we get (4.18) similarly as in Step 1. Therefore the inequality (4.8) holds in the
case k = 1.

We can verify (4.8) for any k € N similarly. O

4.4. Nondegenerate properties.
The first assertion of Theorem 4.1 is immediate from the following Lemma.

LEMMA 4.3.  Assume Conditions (G) and (MSH)s for some 0 < § < dg.
Then the Malliavin covariance I1(x) is invertible a.s. It satisfies the inequality
(4.9) for any N > 1, k € N and p > 1.

PROOF. We first consider the case where the additional Condition (D) is
satisfied. For given N, k,p, choose h such that h > 2p3?™ and apply Lemma 4.2.
Then we find that the modified Malliavin’s covariance =(z) satisfies (4.8).

Now if Condition (D) is not satisfied, we can verify (4.9) by the method of
perturbation as in Section 3.3. O

We shall next consider the case where Condition (G) is not satisfied. Instead,
we assume Condition (MU H )s. The second assertion of Theorem 4.1 follows from
the next lemma.

LEMMA 4.4.  Assume Condition (MUH)s for some 0 < § < §y. Then the
Malliavin covariance is invertible a.s. and its inverse satisfies (4.9) for any N > 1,
keNandp>1.

PROOF. We shall only prove the inequality (4.9) in the case s =0,t =T
and k = 0, i.e., the inequality

sup sup E[(vT(x)v)"P] < co. (4.19)
|z|<N vESq—1

We will apply a method of perturbation discussed in Section 3.3. Let gg’t(x) be
the truncated Lévy flow generated by X?(x,t) of (3.9). Let us recall the argument
in the proof of Lemma 4.2. Denote events E; and F associated with §§7t(x) by
E;(6) and F(6), respectively. Instead of (4.14) we have for any h € N

sup sup P(E;(6) o 6q+,, N (Ei+1(0) o ej,,)c) < Cet. (4.20)
|[z|<N veSg_1,ucA(1)k

Let K°(x,v) be the functional for & = & ,(x) given by (4.16). Since it satisfies
Condition (MUH );, we have the inequality
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T
K°(z,v) > cl/ T (VEH T dt, a.s.,
0
where ¢ is the constant in Condition (MU H )s. This implies

- 1 g
K‘S(m,v) ! < W/O |V§f|2dt a.s.

Therefore, we have for any A > 1,

1 1 r
J —1gt § ot
P o> 1) < ot | () 196 e

in view of Chebyschev’s inequality. Since

F(5) C {K°(z,0) < (1 + 1)’ "}
holds as in the proof of Lemma 4.2, we get from the above

P(F() 0 c) < PR (x,v) 0 6 < (m + 1) ™)

2nyp,
)

< C;EB_
for any |z] < N,v € Sq_1. Two inequalities (4.20) and (4.21) imply

sup  sup E[(vTE‘s(x)v)dp o 62_//] < 00,
|z|]<N v€Sq_1

if p < (1/2)372"h. Then we get

sup , sup E[(vTH‘S(m)v)_p oej,,] < 00,
|z]<N v€Saq—1

9 h
dt) }eh,

(4.21)

if p < (1/2)372"1h. Since I1°(z) o ej,, = II(z) holds a s., we get the inequality
(4.19) for the above p. Finally, since we can take any h € N, inequality (4.19)

holds for any p > 1.

O
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5. SDE with strong Hormander condition.

We assume that the Lévy measure associated with SDE (1.1) has a mean
vector in the wide sense, i.e.,

m := lim zv(dz) exists. (5.1)
5§—0 |z|>6

If the exponent « of the order condition for the Lévy measure v is greater than
1, then its mean vector m exists and is finite. If the exponent « is less than or
equal to 1, we may have f\2|>0 |z|v(dz) = co. However if the Lévy measure v is
symmetric, the mean vector m exists and is equal to 0.

We will show that the function by (z,t) given by (1.15) exists and it is a C§°-
function. We may rewrite the coefficient g(x,t, z) for |z| < g as

g(z,t,2) = szé‘zjg(x,t,z)\zzo +r(z,t, 2),
J

where r(z,t,2)/|2|? is bounded for |z| < &y. Then r(z,t, 2) is integrable for |z| < o
and lelééo r(z,t, 2)v(dz) is a Cp°-function. Therefore the by(z,t) exists and is a
Cpe-function.

We define a time-dependent vector field Vy(x,t) by (1.16). Then it is also a
Cpo-function. Equation (4.2) can be rewritten as

& = Vo(&, t)dt + ) V(& t) 0 dW (1) + lim g(&_,t,2)N(dtdz), (5.2)
j=1 —VJ|z|>6
using the Stratonovitch integral. Families of vector fields g,k = 0,1,... are

defined in Section 1.
A (nonstationary) uniform Hérmander condition and strong Hormander con-
dition for jump-diffusion is defined as follows.

Condition (UH). There exists ng € N and ¢ > 0 such that

no
Z Z TV (2, 1) > colvf?, Va,t,v. (5.3)

k=0 Ve,

Condition (SH). There exists ng € N such that the family of time-dependent
vector fields |J2y Xk spans R? for all x,t.

We shall consider the relation between modified Hérmander conditions and
Hormander conditions.
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LEMMA 5.1.  Consider SDE (5.2).

1) Suppose that it satisfies Condition (SH). Then for any M > 1 there ewists
0 < dp < 6o such that, for any 0 < § < oy, inooﬂ T‘S spans RY for all
|x] < M, t.

2) Suppose that it satisfies Condition (UH). Then Condition (MUH); s satisfied
for any 0 < § < .

PrROOF. We give the proof of the first assertion only, since the second asser-
tion can be verified more easily. In the first step of the proof, we consider another
families of time-dependent vector fields T%, k =0,1,2,.... These are defined as
(4.4), replacing L of (4.3) by the following £°:

LOV(t) = Vi(t) + [Vo(t) Z V(®)]]- (5-4)

l\J\H

It holds for any n € N,

linear span of U 3k C linear span of 261 Y. (5.5)
k=0 k=0
Indeed, if V€ ¥g = Ty, then
L 3
Vi + [Vo, V] = LoV — 5 ;[Vj[vj, V]] € linear span of kszo 9.

Therefore, linear span of ¥y U 31 C linear span of Ui:o T9. Repeating this argu-
ment inductively, we get (5.5).

Now, suppose that Condition (SH) holds. Then 2"°+1 Y9 spans R? for all
x,t. Since L5V converges to LoV uniformly as § tend to O we find that for any
M > 1 there exists 0 < dpr < dp such that for any 0 < § < dpy U%OJr1 T5 spans
R for all |z| < M, t. O

THEOREM 5.1.  Consider SDE (5.2), whose Lévy measure has a finite mean
vector. 1) If it satisfies Conditions (SH) and (G), it is nondegenerate. 2) If it
satisfies Condition (UH), it is nondegenerate.

PrRoOOF. The latter assertion of the theorem is immediate from Theorem 4.1,
(2) and Lemma 5.1, (2). We will prove the first assertion, assuming Conditions
(SH) and (D). Though property 2) of Lemma 5.1 is slightly weaker than Condition
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(MSH);s, we can proceed our arguments in the same way as in Theorem 4.1.
Indeed, given N > 1, k, h € N, choose M}, as (3.3). There exists dp,, > 0 such
that, for any 0 < 6 < dpy,, iZOOH Y? spans R? for any t, |z| < M. Therefore

there exists ¢; > 0 such that

1
SO WV, > alvl?, Vo] < Myt (5.6)
k=0ver?

holds. Then the assertion of Lemma 4.2 is valid, i.e., the modified Malliavin’s
covariance =(x) satisfies (4.8) if 1 < p < (1/2)37 2™ h. Hence the Malliavin co-
variance II(x) satisfies (4.9) if 1 < p < (1/2)37 2" h. Since we can take any h € N,
inequality (4.9) holds for any p > 1. Therefore the SDE is nondegenerate.

We can relax Condition (D) to Condition (G) again by the method of pertur-
bations. (]

Finally, we shall introduce other two classes of time-dependent vector fields.
Set ¥ = ¥ and for k = 1,2, ..., set

Sk = {Vo. VI, [V, V), [V, VI®); 4 =1,...,m, V() € k4 ).

A homogeneous strong Hormander’s condition may be defined as follows.

Condition (HSH). There exists ng € N such that | J;2, Ei spans R? for any
x,t.

If the associated vector fields Vj, ..., V,, of the SDE are time independent,
it holds X! = %;. Therefore Condition (SH) and Condition (HSH) coincide each
other. However, if the vector fields are time-dependent, these two conditions are
different. Condition (HSH) does not imply hypoelliptic properties, in general.
Instead, we will introduce a restricted homogegenous strong Hormander condition.
We set X = ¥y and for k =1,2,.. ., set

Sp={[V;,VI(t),[V;,VI(t); G =1,...,m,V(t) € Sh_ }.

Condition (RHSH).  There exists ng € N such that |J;°, S} spans R? for
any x,t.

If Condition (RHSH) is satisfied, it satisfies Condition (SH), obviously. There-
fore the associated SDE is nondegenerate. See Taniguchi [20].

We will give some examples which satisfy Conditiion (SH) but do not satisfy
Condition (RHSH).
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EXAMPLE. Let Z(t) be a one dimensional Lévy process represented by

Z(t) = cot + a1 W(t) + 02/0 /R—{O} zN(dsdz), (5.7)

where W(t) is a standard Brownian motion and N(dtdz) is a Poisson random
measure, independent of W (t), whose Lévy measure v satisfies the order condition
and has a mean vector in the wide sense. We assume |c1| + |c2| > 0. Then the
Lévy process Z(t) is nondegenerate and its law has a C°°-density.

1) We consider an SDE defined on R? as follows.

{dﬁtl =dZ(1), (5.8)

de? = tdZ(t).

Vector fields of coefficients are given by Vo(t) = co(1,t) and Vi(t) = c1(1,¢)
and Vi(t) = cy(1,t). Suppose ¢; # 0. Then we have dV;/dt = ¢1(0,1) and
[Vo(t),Vi(t)] = 0. Then it satisfies Condition (UH). Suppose next ¢; = 0 and
o # 0. Then we have dV; (t)/dt = ¢5(0,1). Therefore it satisfies Condition (UH).
Consequently in any case the SDE is nondegenerate. This example does not satisfy
Condition (HSH).

If the second coponent of the equation (5.8) is changed to dé? = cdZ(t), where
¢ is a constant, then the SDE is homogeneous (stationary) but its law is singular
with respect to the two dimensional Lebesgue measure.

2) We next consider a homogeneous SDE with drift term such that

de? = ghdt. )

{d&l = dZ(t),
In the case where Z(t) is a standard Brownian motion, it is known as Kolmogorov’s
example of hypoelliptic SDE. We have Vj = (¢o, ), V1 = (¢1,0) and Vi = (¢2,0).
It holds [V4, Vo] = (0,¢1) and [V4, V] = (0,¢z). Therefore it satisfies Condition
(UH) and it is nondegenerate.

We saw that Condition (UH) is stronger than Condition (MUH )s. The uni-
form Hormander condition is stated in terms of a drift vector fields V;; and vector
fields Vj, f/j, j =1,...,m only. It does not care jump coefficient g(z,t,z) if
0.9(x,t,2)|,=0 = 0. On the other hand, the modified uniform Hoérmander con-
dition may take care of such jump coefficients. Thus Condition (UH) is truly
stronger than Condition (MUH)s. We will give an example.
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EXAMPLE. 3) We consider a homogeneous SDE on R? for & = (&}, £2);

{dﬁtl =dZ(t), (5.10)

A€} = & [, 1<y 22N (dtdz).

Note that the drift part ¢}dt in equation (5.9) is replaced by a pure jump part
&l fIZISI 22N (dtdz) in (5.10). We will show that the equation is again nondegen-
erate. We frirst consider the case ¢; # 0. We have V3 = (¢1,0) and LV, =
(0, —c4 12]<6 22v(dz)). Hence V; and L£°V; span R? for any z,t so that the SDE
satisfies (MUH)s for any 0 < § < dg. Thus it is nondegenerate. However, since
0.9(x,t,2)| =0 = 0, X9 = {V1} and X = {0} for & = 1,2,.... Therefore it does
not satisfy Condition (UH). The same fact can also be shown for the case co # 0.

6. SDE lacking order conditions and continuous SDE.

In this section we do not assume the order condition for the Lévy measure.
A typical case is that the Lévy measure is a bounded measure. The Malliavin
covariance of F' € DY is defined by

T
" = / DF(D.F)Tadt,
0

where D, is the Malliavin-Shigekawa’s derivative. F' is called nondegenerate if g
are invertible a.s. and for any p > 1, E[(v"TI¥v) "] is bounded for v € Sy_;. We
will refer an estimate of polynomial decay of the weighted characteristic function
of a nondegenerate functional ([8, Theorem 2.1]). For any n € N, there exists a
positive constant C,, such that the inequality

Bl PG| < Cu(L +[0*)7/2|Glo,n,20+2On(F) (6.1)

holds for any nondegenerate F' € D% and G € D, where
On(F) = |F|3,n+1,2n+2|(”TﬁFU)71|g,n72n+2- (6.2)
Let us consider again SDE (1.1). We assume that coefficients of the SDE
satisfies the same condition as in Section 2. Let &, .(z) be the solution starting

from x at time s. It is a smooth functional. Its Malliavin covariance denoted by
II(z) is written by
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fux>=m/ Vbt (2) A€ (), 1) V4 ()Tt (6.3)

where A(x,t) = o(x,t)o(z,t)T.
The SDE is called nondegenerate, if the family of solutions {&;(x);|z| < N}
is uniformly nondegenerate for any N > 1,s < t, i.e., the inequality

sup  sup E[(TT(z)v)P] <o, Vp>1 (6.4)
|z|<N vESq—1

holds for any N > 1, s < t. If an SDE is nondegenerate, its weighted characteristic
function is of polynomial decay: For any n € N and N > 1, there exists a positive
constant C' = Cs ¢y such that

sup | B[S NG| < C(1L+ o) 2|Gloanes, Vo
|z|<N

holds. Then the following theorem can be verified similarly as Theorem 2.1.

THEOREM 6.1.  Any nondegenerate SDE has hypoelliptic properties I and I1.

We showed in [8] that if the matrix A(z,t) is uniformly positive, i.e., the in-
equality (1.5) holds for C(x,t) = A(x,t), then the SDE is nondegenerate. Further,
we can show that if A(z,t) is positive definite for any z,¢ and Condition (G) is
satisfied, the SDE is nondegenerate, similarly as in Section 3.

We next assume that coefficients of the SDE are smooth with respect to t as
in Section 4. If v does not satisfy the order condition, f\z\gp |2]2v(dz) < p® holds
for any o € (1,2). Then it has a finite mean vector m. Hence equation (1.1) is
rewritten as (5.2), using time-dependent vector fields Vi (), Vi (t), ..., Viu(t). Given
0 < 8 < &, let £% be the linear map of time dependent vector fields defined by
(4.3). We introduce families of time-dependent vector fields Yz, k=0,1,2,... by
induction as

TS = {(Vi(t),..., Vim()}, (6.5)
T = {LV @), [V;(t), V)] j=1,....m,V € Ti_, }.
Then, the modified uniform Hoérmander condition and the modified strong
Hormander condition given in previous sections, can also be defined in the present

setting, replacing Ti to Yg We will denote these conditions as (M UH )s and
(MSH);, respectively. We can show similarly as in Section 4 that the SDE is
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nondegenerate if either Condition (M UH )s for some 0 < 0 < g or the pair of

Condition (G) and Condition (M:S’H)(S for some 0 < § < dp is satisfied. Here, we

should use Theorem 7.2 instead of Theorem 7.1. Details are left to the reader.
Further, we set

XAJ():{ij(t)mj: ]-7"'7m}7

Sk = {Vi(t) + Vo (), VO [V;(8), V)]s 5=1,...,m,V(t) € S}

Replacing ), by ¥ in Conditions (UH) and (SH), we define Condition (UAH)
and Condition (SH), respectively. Then similarly as in the previous section, we
have:

THEOREM 6.2.  Consider SDE (4.2) lacking the order condition. It is non-
degenerate if any one of the following four conditions is satisfied.

1) Condition (MTA]H)(; for some 0 < § < dp.

2) Conditions (MSH)é for some 0 < § < &y and (G).
3) Condition (UAH)

4) Conditions (SH) and (G).

ExaMPLE. 4) We give a hypoelliptic example, which satisfies Condition
(MUH)1, but does not satisfy Condition (UH). Consider a two dimensional SDE

(6.6)
g} = LN (1),

{dftl = dZ(t),
where Z(t) is a one dimensional Lévy process of the form (5.7) such that ¢; # 0,
and N(t) is Poisson process independent of Z(t). Note that the drift part &}dt
of (5.9) is replaced by the pure jumps & dN(t). Drift and diffusion vector fields
are given by Vy = (cg,0) and Vi = (c1,0), respectively. It holds £V} = (0, —cy),
similarly as in Example 3) in Section 5. Then it satisfies Condition (M UH ); and
hence it is nondegenerate.

6.1. Continuous SDE. )
Finally we will consider a continuous SDE. We may relax Condition (SH) to
the following Hérmander condition.

Condition (H). U, Sk spans R for all x,t.

THEOREM 6.3.  Any continuous SDE satisfying Condition (H) is nondegen-
erate.
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PROOF. Suppose Condition (ﬁ ). Then for any N > 1, there exists nj € N
and ¢j > 0 such that

n}
SN VP =P, Vel <N+ 1t
k=0vyets

Associated with the above N, let 7(x) be the stopping time such that
7(x) =inf{t > 0; |&(x)| > N+ 1} AT.

Then, for any h > 1 there exists a positive constant C}, > 0 such that the inequality
sup|, <y P(7(z) <€) < Cre™ holds for 0 < € < 1. Tt is close to the inequality of
stopping time T}, (z) given by (3.4). Then, using the stopping time 7(x) instead
of Ty, (), we can proceed in the argument in the proof of Lemma 4.2. Then we
obtain sup|, <y SUPyes, , E[(vTE(z)v) %] < 0o if p < (1/2)572"1h, where § is a
positive constant greater than 8. Therefore, the SDE is nondegenerate. O

7. Appendix: Another estimate of Norris’ type.

In [6], we discussed Norris’ type estimate for a semimartingale with jumps.
The estimate was complicated, since it was intended for the direct application
to canonical SDE with jumps. In this section we will give two less complicated
estimates for it (Theorems 7.1 and 7.2). These two estimates are used in Sections
4 and 6, respectively for the proof of the nondegenerate properties of SDE’s.

We consider a d-dimensional semimartingale Y7(t), ¢t € T with parameter
defined by

Vi =y [ @it Y [ Heavie)

—&-/Ot/MS(Sg’Y(S,Z)N(aisclz)—l—/ot/z>($g'y($’Z)N(dsdz)7 (7.1)

where a?(s), f;(s) and g7(s,2) are d-dimensional left continuous predictable
processes, continuous with respect to parameter v € I', where I' is a compact
space. We set f7(s) = (f{(s),...,f7(s)). We assume that g7(s,z) is twice
continuously differentiable with respect to z and ¢7(s,0) = 0. We denote by
097(s) = (0197 (s),...,0mg" (s)), where 0;¢7(s) is the partial derivatives of g7 (s, z)
at z = 0 with respect to z;.
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We assume further that the drift coefficient a”(¢) is a semimartingale repre-
sented by

t)=a"+ /b” ds+Z/ s)dW (s

+/ot/zSgh’y(s’z)d]v—i_/Ot/zbéh’y(s’z)dN’ r2)

where b7(s),e](s),h7(s, z), s > 0 are processes which have the same properties as
those of a7(s ,b’Y( ) and ¢7(s, z) in (7.1), respectively. We set

07 = [la” |12+ 07112 + LS 12 + e1? + llg™|1* + (A7)
+110g7 12 + [1ORY]* + |7 /2|1 + |Is7 /121, (7.3)
where 17 = g7 — 37, 2;0;97, 7 = hY — 32, 2;0;h7, |[f7]| = supo<;<r |f7(¢)] and
971l = supg<i<7,j21<5 197 (¢, 2)] ete.
We will first assume that the Lévy measure v satisfy the order condition with
exponent 0 < o < 2. Let B,, 0 < p < pg be the correlation matrices of the Lévy

measure v defined in Section 1. Let B be a a lower bound of B,, 0 < p < py and
VB = () be a square root of B. We set

§7(t) = 997 () VB. (7.4)

Let 3 be a positive number such that § > max{4/(2—«), 8}. We shall consider
two events for € > 0:

A7(e) = {/OT Y7 Pt < sﬁ}, (7.5)

B() = { [0 0R +100F + 570 yar < } (7.6)

We show that the probability where both A7(e) and B7(e)¢ occur simultane-
ously is small if € is small.

THEOREM 7.1.  The order condition is assumed for the Lévy measure. As-
sume that sup., E[(67)P] < oo holds for any p > 1. Then for any p > 1, there
exists a positive constant Cp, such that the inequality
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sup P(AY(e) N BY(€)¢) < Cpe? (7.7)
v
holds for any semimartingale Y7 (t) represented by (7.1) and (7.2) and for any
€ > 0.

In order to prove the above theorem, we need the following estimate due to
Komatsu-Takeuchi [5].

KOMATSU-TAKEUCHI'S ESTIMATE ([5, Theorem 3]). Let v be an arbitrary
number such that 0 < v < 1/4. There exist a positive random variable (A, )
with E[E(A,~)] < 1 and positive constants C, Cy, Cy, Cy independent of A,~ such
that the inequality

T[) 1
)\4/0 Y7 ()2 A T+ AVlogE(N,y) +C
TO TU
ZCOAH‘“/ |a7(t)|2dt+01)\2*2“/ |f7(t))%dt
0 0

Tg 1
+ CpAT /0 / l97(t,2)” A 5z dtv(dz) (7.8)

holds on the set A = {§7 < A%V} for all A > 1 and Y.

PROOF OF THEOREM 7.1. We will choose positive constants 0 < v < 1/8
and 0 < n < 1 such that

4
2—a(l+n)—2v>—.

g
Then choose r > 1 such that
I} 1 1
- >Tr> \Y .
17" 2—a(l+n)—2v 1—4v

We first consider the last term of (7.8). We expand g¢? (¢, z) around the origin
as g7 (t,z) = 097 (t)z + r7(t, z). Note the inequality

1 1 1
(a+b)2/\)\222(a2/\)\2> —b2.

Then it holds for any 0 < k < A,
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, (7.9)

where (p) = le|<p |z]?v(dz) and fi.(dz) is a probability measure such that

ﬂe(dz) = (|Z|2/90(6))1|2|<6V(d2)'

Now set A =¢e~" and k = &”". Then x/\ = e and @(k/\) > Cyet+m"
by the order condition for the function ¢. Since ||r7/|z]2||? < 1/k < A" holds on

the set {87 < A2}, the last term of (7.9) dominates

Cue® 7| 9g7 () Beasmr 097 (1) | — Crere)ttmr

on the set {#7 < A\?Y}. Note B_u+n» > B. Then Komatsu-Takeuchi’s inequality

(7.8) implies
To
g4 / Y7 ()2 Ae?dt +e"" logE(e™",v) + C
0

To To
> Coert=4) / a7 (t)[Pdt + Cre™ "2 / LfY()[2dt
0 0

To
4 CyCye 220 ol / 1097 (1)BAg (1) |dt
0

_ 02055—7"(2—21))6(2+a)(1+n)7'.

Set p = rmin{(1 — 4v), (2 — 2v) — a(1 +n)} — 1. Then it holds p > 0. Since

|0g7 () BogY (t)T] = |7 (t)|?, the above inequality yields
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To
g4r / Y2 Ae?dt + e logE(e™",v) + C
0
T ,
> o) [T O £ P O #1770 - G (70
0

on the set {67 < e V"}, where Cg = min{Cy, C1,C2C4}, C7 = C2C5 and 7/ > 1.
Now we define two events by

= {0 > ),
To
T — Y < VT Y2 A 2r 3
By ={0"< }ﬂ{/o Y | Ae dt<5}
To
ﬂ{/o (|a7(t)|2+|f7(t)|2+|§7(t)|2)dt>s}.

Then it holds
AY(e)NBY(e)¢ C E] UE].

Therefore, the probability of (7.7) is dominated by P(E]) + P(EJ). We shall get
estimates of P(E}),i = 1,2. In view of our assumption of the theorem, the first
one is estimated as

sup P(E]) < s”E{(sup 0’7)”/“} < cpel. (7.11)
v v

For the estimate of P(EY), we remark that (7.10) implies

v

EY c{&(e7) Zexp (=P 4 G — Cre P L - O) ).

Therefore, by Chebyschev’s inequality

vr

P(EY) < eCexp (P74 4+ Cre e’ L — CeP)E[E(e7, 7).

We have e#~4" 4 Crere” ~1 < Cs/2)e™? holds for ¢ < g9 with some ¢y > 0.

vr

(
Further it holds E[€(e7",7)¢ ] < 1 since 0 < e < 1 for small e. Therefore for
any p > 1,
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Y C 06 —p !/ _p
P(Ej) <e“exp| — 5 € < e (7.12)

for any € < g9 and 7. Two inequalities (7.11) and (7.12) prove (7.7). O

Finally we will consider the case where the Lévy measure may not satisfy the
order condition. Instead of 87 given by (7.3), we consider the following

07 = lla”1* + 15711 + 17112 + eI + g™ + 1R

Let 8 be a positive number such that § > 8. We shall consider two events for
e> 0

AV(e) = { /OTO Y7 () 2dt < aﬁ}, (7.13)

BY(e) = { i a0 + 1P < 5}. (7.14)

THEOREM 7.2.  Assume sup., E[(67)P] < oo holds for any p > 1. Then for
any p > 1, there exists a positive constant C}, such that the inequality

sup P(A"(e) N B (€)¢) < CpeP (7.15)

holds for any semimartingale Y7 (t) represented by (7.1) and (7.2) and for any
e> 0.
PrROOF. Neglecting the last term of Komatsu-Takeuchi estimate (7.8), the

inequality

T() 1
)\4/ Y7 (1)]2 A ﬁdﬂ—)\_“ logE\, ) +C
0

Z CO)\1_4U /
0

holds on the set A = {67 < A2V} for all A > 1 and Y. Using this inequality, we
can get the inequality (7.15), similarly as in the proof of Theorem 7.1. (I

To To
a7 (1) Pt + CyA2—2 / () 2dt (7.16)
0
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