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Abstract. Let H be the upper half-space of the (n + 1)-dimensional
Euclidean space. Let 0 < α ≤ 1 and m(α) = min{1, 1/(2α)}. For σ > −m(α),
the α-parabolic Bloch type space Bα(σ) on H is the set of all solutions u
of the equation (∂/∂t + (−∆x)α)u = 0 with finite Bloch norm ‖u‖Bα(σ) of

a weight tσ . It is known that B1/2(0) coincides with the classical harmonic
Bloch space on H. We extend the notion of harmonic conjugate functions to
functions in the α-parabolic Bloch type space Bα(σ). We study properties
of α-parabolic conjugate functions and give an application to the estimates
of tangential derivative norms on Bα(σ). Inversion theorems for α-parabolic
conjugate functions are also given.

1. Introduction.

Let n ≥ 1 and let H be the upper half-space of the (n + 1)-dimensional
Euclidean space, that is, H = {X = (x, t) ∈ Rn+1 : x = (x1, . . . , xn) ∈ Rn, t > 0}.
For 0 < α ≤ 1, the parabolic operator L(α) is defined by

L(α) := ∂t + (−∆x)α, (1.1)

where ∂t = ∂/∂t, ∂j = ∂/∂xj , and ∆x = ∂2
1 + · · · + ∂2

n. A continuous function
(real-valued) u on H is said to be L(α)-harmonic if L(α)u = 0 in the sense of
distributions. (For details, see Section 2.) Put m(α) = min{1, 1/(2α)}. For a real
number σ > −m(α), let Bα(σ) be the set of all L(α)-harmonic functions u ∈ C1(H)
with the norm

‖u‖Bα(σ) := |u(0, 1)|+ sup
(x,t)∈H

tσ
{
t1/(2α)|∇xu(x, t)|+ t|∂tu(x, t)|} < ∞, (1.2)

where ∇x = (∂1, . . . , ∂n). We call Bα(σ) the α-parabolic Bloch type space. Since
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Bα(σ) contains constant functions, we may identify Bα(σ)/R ∼= B̃α(σ), where

B̃α(σ) := {u ∈ B̃α(σ) : u(0, 1) = 0}.

The α-parabolic Bloch type space Bα(σ) is introduced and studied in [4]. In
this paper, we continue to investigate further properties of this space. In particular,
we study properties of conjugate functions on Bα(σ). In [3], the notion of conjugate
functions on α-parabolic Bergman spaces was introduced and studied (we call them
α-parabolic conjugate functions). For 1 ≤ p < ∞ and λ > −1, the α-parabolic
Bergman space bp

α(λ) is the set of all L(α)-harmonic functions on H which belong
to Lp(H, tλdV ), where dV is the Lebesgue measure on H. In [3], we studied the
existance of α-parabolic conjugate functions V of u ∈ bp

α(λ), and we also gave
estimates of the norms of V . Furthermore, as an application, we showed that
tangential derivative norms of u ∈ bp

α(λ) are comparable to the norms of u. The
α-parabolic Bloch type space Bα(σ) can be considered the appropriate limit of the
α-parabolic Bergman space bp

α(λ) as p → ∞ by [4, Theorem 3]. In this paper,
we also introduce the notion of α-parabolic conjugate functions of u ∈ Bα(σ),
and we study properties of them. Using these results, we shall give estimates of
the tangential derivative norms of u ∈ Bα(σ). Moreover, we shall give inversion
theorems, that is, for a function V , we construct a function u ∈ B̃α(σ) such that
V is an α-parabolic conjugate function of u.

We describe the main results of this paper. We begin with recalling the
definition of conjugate functions of usual harmonic functions with (n+1)-variables.
For a harmonic function u on H, a vector-valued function V = (v1, . . . , vn) on H

is called a harmonic conjugate of u if vj ∈ C1(H) and V satisfies the following
generalized Cauchy-Riemann equations:

∂tvj = ∂ju, ∂kvj = ∂jvk, 1 ≤ j, k ≤ n, (1.3)

and

−∂tu =
n∑

j=1

∂jvj (1.4)

(see [9]). When α = 1/2 and σ = 0, it is known by [4, Remark 3.3] that B1/2(0)
coincides with the classical harmonic Bloch space of Ramey and Yi [8]. In [8],
properties of harmonic conjugates of u ∈ B1/2(0) are studied and estimates of
the tangential derivative norms of u are given. As in the definition of α-parabolic
conjugate functions on bp

α(λ) of [3], we introduce the notion of conjugacy to Bα(σ).
In Bα(σ), we can not obtain similar generalization to bp

α(λ), because the case α = 1
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is critical. However, we shall observe that the case α = 1 is referred to the case
0 < α < 1. First, we give the definition of α-parabolic conjugate functions on
Bα(σ) with 0 < α < 1.

Definition 1. Let 0 < α < 1 and σ > −m(α). For a function u ∈ Bα(σ),
we shall say that a vector-valued function V = (v1, . . . , vn) on H is an α-parabolic
conjugate function of u if vj ∈ C1(H) and V satisfies the following equations:

−Dtvj = ∂ju, ∂kvj = ∂jvk, 1 ≤ j, k ≤ n, (C.1)

and

D1/α−1
t u =

n∑

j=1

∂jvj , (C.2)

where Dt = −∂t and D1/α−1
t is the fractional differential operator defined in

Section 2.

We remark that when α = 1/2, Equations (C.1) and (C.2) coincide with
the generalized Cauchy-Riemann equations (1.3) and (1.4). In [3], the previous
generalization to the α-parabolic Bergman spaces was given by (C.1) and (C.2)
for all 0 < α ≤ 1. When 0 < α < 1, properties of α-parabolic conjugate functions
are given in Theorem 1.

Theorem 1. Let 0 < α < 1, σ > −m(α), and u ∈ B̃α(σ). Put η :=
1/(2α)− 1 + σ. If η > −1/(2α), then there exists a unique α-parabolic conjugate
function V = (v1, . . . , vn) of u such that vj ∈ B̃α(η). Also, there exists a constant
C = C(n, α, σ) > 0 independent of u such that

C−1‖u‖Bα(σ) ≤
n∑

j=1

‖vj‖Bα(η) ≤ C‖u‖Bα(σ). (1.5)

The condition of η in Theorem 1 is equivalent to σ > 1 − 1/α. If 0 < α ≤
1/2, then this condition is always satisfied for all σ > −m(α). However, when
1/2 < α < 1, we do not know whether Theorem 1 can be extended to the full
range σ > −m(α).

When α = 1, we shall introduce the notion of conjugacy to B1(σ). If α = 1,
then the condition η > −1/(2α) is equivalent to σ > 0. Thus, when α = 1 and
σ > 0, we construct a counterpart of Definition 1.
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Definition 2. Let α = 1 and σ > 0. For a function u ∈ B1(σ), we shall
say that a vector-valued function V = (v1, . . . , vn) on H is a 1-parabolic conjugate
function of u if vj ∈ C1(H) and V satisfies the following equations:

−Dtvj = ∂ju, ∂kvj = ∂jvk, 1 ≤ j, k ≤ n, (C.1)

and

u− lim
t→∞

u(0, t) =
n∑

j=1

∂jvj . (C.2′)

We note that limt→∞ u(0, t) = 0 for u ∈ bp
α(λ), so that (C.2′) can be replaced

by a straightforward generalization u =
∑n

j=1 ∂jvj of (C.2). However, if u ∈
Bα(σ), then limt→∞ u(x, t) = limt→∞ u(0, t) for all x ∈ Rn and yet the limit
need not vanish (see Remark 5.6 and Example 5.7). So, we have to subtract
limt→∞ u(0, t) from u as in the left hand side of (C.2′). We give properties of
α-parabolic conjugate functions on Bα(σ) for α = 1.

Theorem 2. Let σ > 0 and u ∈ B̃1(σ). Put η := 1/(2α)−1+σ with α = 1.
Then, there exists a unique 1-parabolic conjugate function V = (v1, . . . , vn) of u

such that vj ∈ B̃1(η). Also, there exists a constant C = C(n, σ) > 0 independent
of u such that

C−1‖u‖B1(σ) ≤
n∑

j=1

‖vj‖B1(η) ≤ C‖u‖B1(σ). (1.6)

As an application of Theorems 1 and 2, we give estimates of tangential
derivative norms on B̃α(σ). For a multi-index γ = (γ1, . . . , γn) ∈ Nn

0 , let
∂γ

x := ∂γ1
1 . . . ∂γn

n , where N0 := N ∪ {0}. Furthermore, for a function f on H,
let ‖f‖L∞ = ess sup{|f(x, t)| : (x, t) ∈ H}.

Theorem 3. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Then, for each
m ∈ N, there exists a constant C = C(n, α, σ,m) > 0 independent of u such that

C−1‖u‖Bα(σ) ≤
∑

|γ|=m

‖tm/(2α)+σ∂γ
xu‖L∞ ≤ C‖u‖Bα(σ). (1.7)

We describe the construction of this paper. In Section 2, the definition of L(α)-
harmonic functions is presented. Furthermore, fractional calculus is important
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tool for analysis of α-parabolic conjugate functions. Therefore, we also recall the
definition of fractional differential operators and describe fundamental results of
them. In Section 3, we list basic lemmas which shall be used in later arguments.
In particular, we present some properties of the fundamental solution of L(α)

and basic results concerning Bα(σ)-functions. In Section 4, we study α-parabolic
conjugate functions on B̃α(σ) with 0 < α ≤ 1, and give the proof of Theorem 1.
In Section 5, we also prove Theorem 2 which is a counterpart of Theorem 1 to the
case of α = 1. In Section 6, we give estimates of tangential derivative norms on
B̃α(σ), that is, we give the proof of Theorem 3. In Section 7, we study inversion
theorems. In Theorems 1 and 2, we construct α-parabolic conjugate functions of
B̃α(σ)-functions. In this section, for a vector-valued function V , we construct a
function u ∈ B̃α(σ) such that V is the α-parabolic conjugate function of u.

Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries.

In this section, we describe definitions of L(α)-harmonic functions and frac-
tional differential operators.

Let C∞c (H) ⊂ C(H) be the set of all infinitely differentiable functions on H

with compact support. Then, for 0 < α < 1, the convolution operator (−∆x)α is
defined by

(−∆x)αψ(x, t) := −Cn,α lim
δ↓0

∫

|y|>δ

(
ψ(x + y, t)− ψ(x, t)

)|y|−n−2αdy (2.1)

for all ψ∈C∞c (H) and (x, t)∈H, where Cn,α =−4απ−n/2Γ((n+2α)/2)/Γ(−α)>0.
Let L̃(α) := −∂t + (−∆x)α be the adjoint operator of L(α). Then, a function
u ∈ C(H) is said to be L(α)-harmonic if u satisfies L(α)u = 0 in the sense of
distributions, that is,

∫
H
|u · L̃(α)ψ|dV < ∞ and

∫
H

u · L̃(α)ψdV = 0 for all ψ ∈
C∞c (H). By (2.1) and the compactness of supp(ψ) (the support of ψ), there exist
0 < t1 < t2 < ∞ and a constant C > 0 such that

supp(L̃(α)ψ) ⊂ S := Rn × [t1, t2] (2.2)

and

|L̃(α)ψ(x, t)| ≤ C(1 + |x|)−n−2α for (x, t) ∈ S. (2.3)

Hence, the condition
∫

H
|u · L̃(α)ψ|dV < ∞ for all ψ ∈ C∞c (H) is equivalent to the
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following: for any 0 < t1 < t2 < ∞,

∫ t2

t1

∫

Rn

|u(x, t)|(1 + |x|)−n−2αdxdt < ∞. (2.4)

When α = 1, L(1) = ∂t − ∆x is the usual heat operator. For more details of
L(α)-harmonic functions, see [6].

We describe the fractional differential operators. Our definition of fractional
differentiation follows that of [5]. Let R+ = (0,∞). For a real number κ > 0, let

FC−κ :=
{
ϕ ∈ C(R+) : ϕ(t) = O(t−κ′) (t →∞) for some κ′ > κ

}
. (2.5)

For a function ϕ ∈ FC−κ, we can define the fractional integral D−κ
t ϕ of ϕ by

D−κ
t ϕ(t) :=

1
Γ(κ)

∫ ∞

0

τκ−1ϕ(τ + t)dτ, t ∈ R+. (2.6)

We put FC0 := C(R+) and D0
t ϕ := ϕ. Moreover, let

FCκ :=
{
ϕ : ∂

dκe
t ϕ ∈ FC−(dκe−κ)

}
, (2.7)

where dκe is the smallest integer greater than or equal to κ. Then, we can also
define the fractional derivative Dκ

t ϕ of ϕ ∈ FCκ by

Dκ
t ϕ(t) := D−(dκe−κ)

t (−∂t)dκeϕ(t), t ∈ R+. (2.8)

Clearly, when κ ∈ N0, the operator Dκ
t coincides with the ordinary differential

operator (−∂t)κ. For a real number κ, we may call both (2.6) and (2.8) the
fractional derivatives of ϕ with order κ. And, we call Dκ

t the fractional differential
operator with order κ. We use the following lemma in our later arguments.

Lemma 2.1 ([1, Proposition 2.1] and [2, Proposition 2.2]). For real numbers
κ, ν > 0, the following statements hold.

( i ) If ϕ ∈ FC−κ, then D−κ
t ϕ ∈ C(R+).

( ii ) If ϕ ∈ FC−κ−ν , then D−κ
t D−ν

t ϕ = D−κ−ν
t ϕ.

(iii) If ∂k
t ϕ ∈ FC−ν for all integers k, 0 ≤ k ≤ dκe − 1 and ∂

dκe
t ϕ ∈

FC−(dκe−κ)−ν , then Dκ
t D−ν

t ϕ = D−ν
t Dκ

t ϕ = Dκ−ν
t ϕ.

(iv) If ∂
k+dνe
t ϕ ∈ FC−(dνe−ν) for all integers k, 0 ≤ k ≤ dκe − 1, ∂

dκe+`
t ϕ ∈

FC−(dκe−κ) for all integers `, 0 ≤ ` ≤ dνe − 1, and ∂
dκe+dνe
t ϕ ∈
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FC−(dκe−κ)−(dνe−ν), then Dκ
t Dν

t ϕ = Dκ+ν
t ϕ.

( v ) If ∂
dκe
t ϕ ∈ FC−dκe and limt→∞ ∂k

t ϕ(t) = 0 for all integers k, 0 ≤ k ≤
dκe − 1, then D−κ

t Dκ
t ϕ = ϕ.

3. Basic results.

In this section, we present several basic results, which will be used in later.
We begin with recalling the definition of the fundamental solution of the operator
L(α). For x ∈ Rn, let

W (α)(x, t) :=





1
(2π)n

∫

Rn

exp(−t|ξ|2α + i x · ξ) dξ (t > 0)

0 (t ≤ 0),

where x ·ξ denotes the inner product on Rn and |ξ| = (ξ ·ξ)1/2. The function W (α)

is the fundamental solution of L(α) and it is L(α)-harmonic on H. We note that

W (α) > 0 on H and
∫

Rn

W (α)(x, t)dx = 1 for all 0 < t < ∞. (3.1)

Furthermore, W (α) ∈ C∞(H). Several properties of fractional derivatives of W (α)

are presented in the following lemma.

Lemma 3.1 ([1, Theorem 3.1]). Let 0 < α ≤ 1 and κ > −n/(2α). Let
γ ∈ Nn

0 be a multi-index. Then, the following statements hold.

( i ) The derivatives ∂γ
xDκ

t W (α) and Dκ
t ∂γ

xW (α) can be defined, and the equation
∂γ

xDκ
t W (α) = Dκ

t ∂γ
xW (α) holds. Furthermore, there exists a constant C =

C(n, α, γ, κ) > 0 such that

∣∣∂γ
xDκ

t W (α)(x, t)
∣∣ ≤ C(t + |x|2α)−(n+|γ|)/(2α)−κ

for all (x, t) ∈ H.
( ii ) If a real number ν satisfies the condition ν + κ > −n/(2α), then the deriva-

tive Dν
t ∂γ

xDκ
t W (α) is well defined, and

Dν
t ∂γ

xDκ
t W (α)(x, t) = ∂γ

xDν+κ
t W (α)(x, t)

for all (x, t) ∈ H.
(iii) The derivative ∂γ

xDκ
t W (α) is L(α)-harmonic on H.
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We also need the following lemma.

Lemma 3.2 ([3, Lemma 4.1]). Let 0 < α ≤ 1. Then,

(D1/α
t + ∆x

)
W (α)(x, t) = 0

for all (x, t) ∈ H.

For a multi-index γ ∈ Nn
0 and a real number ν > −n/(2α), in view of Lemma

3.1 (i), we define a function ωγ,ν
α on H ×H by

ωγ,ν
α (x, t; y, s) = ∂γ

xDν
t W (α)(x− y, t + s)− ∂γ

xDν
t W (α)(−y, 1 + s)

for all (x, t), (y, s) ∈ H. The function ωγ,ν
α shall be used for defining conjugate

functions on B̃α(σ). Several properties of ωγ,ν
α are the following.

Lemma 3.3 ([4, Lemma 5.6]). Let 0 < α ≤ 1 and ν > −n/(2α). Let γ ∈ Nn
0

be a multi-index. Then, the following statements hold.

( i ) For every (x, t) ∈ H, there exists a constant C = C(n, α, γ, ν, x, t) > 0 such
that

∣∣ωγ,ν
α (x, t; y, s)

∣∣ ≤ C(1 + s + |y|2α)−(n+|γ|)/(2α)−ν−m(α)

for all (y, s) ∈ H.
( ii ) Let ρ > −1 and put η := |γ|/(2α) + ν − ρ − 1. If η > −m(α), then there

exists a constant C = C(n, α, γ, ν, ρ) > 0 such that

∫

H

∣∣ωγ,ν
α (x, t; y, s)

∣∣sρdV (y, s) ≤ CFα,η(x, t)

for all (x, t) ∈ H, where

Fα,η(x, t) :=





1 + |x|−2αη + t−η (0 > η > −m(α))

1 + log(1 + |x|) + | log t| (η = 0)

1 + t−η (η > 0).

(3.2)

We also present basic properties of fractional derivatives of Bα(σ)-functions.

Lemma 3.4 ([4, Proposition 5.4]). Let 0 < α ≤ 1, σ > −m(α), and κ = 0
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or κ > max{0,−σ}. Let γ ∈ Nn
0 be a multi-index. If u ∈ Bα(σ), then the following

statements hold.

( i ) The derivatives ∂γ
xDκ

t u and Dκ
t ∂γ

xu can be defined, and the equation
∂γ

xDκ
t u = Dκ

t ∂γ
xu holds. Furthermore, if (γ, κ) 6= (0, 0), then there exists

a constant C = C(n, α, σ, γ, κ) > 0 such that

∣∣∂γ
xDκ

t u(x, t)
∣∣ ≤ Ct−(|γ|/(2α)+κ+σ)‖u‖Bα(σ)

for all (x, t) ∈ H.
( ii ) If ν > max{0,−σ}, then

Dν
t ∂γ

xDκ
t u(x, t) = ∂γ

xDν+κ
t u(x, t) (3.3)

Furthermore, if ν < 0, then (3.3) also holds whenever ν < σ and ν + κ >

max{0,−σ}.
(iii) The derivative ∂γ

xDκ
t u is L(α)-harmonic on H.

In [4], the following result is also given, which is the reproducing formula by
fractional derivatives on Bα(σ).

Lemma 3.5 ([4, Theorem 5.7]). Let 0 < α ≤ 1 and σ > −m(α). If real
numbers κ ∈ R+ and ν ∈ R satisfy κ > −σ and ν > σ, then

u(x, t)− u(0, 1) =
2κ+ν

Γ(κ + ν)

∫

H

Dκ
t u(y, s)ω0,ν

α (x, t; y, s)sκ+ν−1dV (y, s) (3.4)

for all u ∈ Bα(σ) and (x, t) ∈ H. Furthermore, (3.4) also holds for ν > max{0, σ}
when κ = 0.

As an application of the reproducing formula, estimates of the normal deriva-
tive norms on B̃α(σ) are given.

Lemma 3.6 ([4, Theorem 5.9]). Let 0 < α ≤ 1 and σ > −m(α). Then, for
every real number κ > max{0,−σ}, there exists a constant C = C(n, α, σ, κ) > 0
independent of u such that

C−1‖u‖Bα(σ) ≤ ‖tκ+σDκ
t u‖L∞ ≤ C‖u‖Bα(σ)

for all u ∈ B̃α(σ).
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In our later arguments, we use the following lemma frequently.

Lemma 3.7 ([7, Lemma 5]). Let θ, c∈R. If θ>−1 and θ−c+n/(2α)+1<0,
then there exists a constant C = C(n, α, θ, c) > 0 such that

∫

H

sθ

(t + s + |x− y|2α)c
dV (y, s) = Ctθ−c+n/(2α)+1

for all (x, t) ∈ H.

Let b∞α be the set of all L(α)-harmonic functions u on H with u ∈ L∞(H, dV ).
We also present the following lemma, which is [6, Theorem 4.1].

Lemma 3.8 ([6, Theorem 4.1]). Let 0 < α ≤ 1. Then, every u ∈ b∞α satisfies
the following Huygens property, that is,

u(x, t + s) =
∫

Rn

u(x− y, t)W (α)(y, s)dy =
∫

Rn

u(y, t)W (α)(x− y, s)dy

holds for all x ∈ Rn and 0 < s, t < ∞.

4. Conjugate functions on B̃α(σ) with 0 < α < 1.

In this section, we study conjugate functions of B̃α(σ)-functions with 0<α≤1
and give the proof of Theorem 1. First, we consider the integral operator stated
below. Let f be a function on H. For 0 < α ≤ 1, γ ∈ Nn

0 , ν > −n/(2α), and
ρ ∈ R, the integral operator Πγ,ν,ρ

α is defined by

Πγ,ν,ρ
α f(x, t) :=

∫

H

f(y, s)ωγ,ν
α (x, t; y, s)sρdV (y, s) (4.1)

for all (x, t) ∈ H, whenever the integral is well defined. The next proposition is
important for investigation of conjugate functions.

Proposition 4.1. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). For γ ∈ Nn
0 ,

ν > −n/(2α), and ρ > −1, put η := |γ|/(2α) + ν − ρ− 1. If η > −m(α), then the
following statements hold.

( i ) The function Πγ,ν,ρ
α (sσ+1Dtu) belongs to B̃α(η). Furthermore, there exists

a constant C = C(n, α, σ, γ, ν, ρ) > 0 independent of u such that

∥∥Πγ,ν,ρ
α (sσ+1Dtu)

∥∥
Bα(η)

≤ C‖u‖Bα(σ).



Conjugate functions 497

( ii ) Let β ∈ Nn
0 and κ ≥ 0 be a real number such that κ > −η. Then, the

derivatives ∂β
xDκ

t (Πγ,ν,ρ
α (sσ+1Dtu)) and Dκ

t ∂β
x (Πγ,ν,ρ

α (sσ+1Dtu)) can be de-
fined, and the equation ∂β

xDκ
t (Πγ,ν,ρ

α (sσ+1Dtu)) = Dκ
t ∂β

x (Πγ,ν,ρ
α (sσ+1Dtu))

holds. Furthermore, if (β, κ) 6= (0, 0), then there exists a constant C =
C(n, α, σ, γ, ν, ρ, β, κ) > 0 such that

∣∣∂β
xDκ

t (Πγ,ν,ρ
α (sσ+1Dtu))(x, t)

∣∣ ≤ Ct−(|β|/(2α)+κ+η)‖u‖Bα(σ)

for all (x, t) ∈ H.

Proof. (i) Put f(y, s) = sσ+1Dtu(y, s) for all (y, s) ∈ H. Suppose η :=
|γ|/(2α) + ν − ρ − 1 > −m(α). Then, by (i) of Lemma 3.3 and Lemma 3.7,
Πγ,ν,ρ

α f(x, t) is well defined for every (x, t) ∈ H. Furthermore, we show that
Πγ,ν,ρ

α f ∈ B̃α(η) and there exists a constant C > 0 independent of u such that
‖Πγ,ν,ρ

α f‖Bα(η) ≤ C‖u‖Bα(σ). In fact, by (ii) of Lemma 3.3, for every 0 < t1 <

t2 < ∞, we have

∫ t2

t1

∫

Rn

∣∣Πγ,ν,ρ
α f(x, t)

∣∣(1 + |x|)−n−2αdxdt

≤ C‖u‖Bα(σ)

∫ t2

t1

∫

Rn

Fα,η(x, t)(1 + |x|)−n−2αdxdt < ∞,

where Fα,η is the function defined in (3.2). Therefore, Πγ,ν,ρ
α f satisfies the condi-

tion (2.4). Thus, by the definition of ωγ,ν
α (x, t; y, s), Πγ,ν,ρ

α f is L(α)-harmonic and
Πγ,ν,ρ

α f(0, 1) = 0. Moreover, differentiating through the integral (4.1), we obtain
by Lemma 3.1 (i) that there exists a constant C > 0 independent of u such that

∣∣∂jΠγ,ν,ρ
α f(x, t)

∣∣ ≤
∫

H

|f(y, s)|∣∣∂xj
∂γ

xDν
t W (α)(x− y, t + s)

∣∣sρdV (y, s)

≤ C‖u‖Bα(σ)

∫

H

sρ

(t + s + |x− y|2α)(n+|γ|+1)/(2α)+ν
dV (y, s)

for all (x, t) ∈ H. Therefore, by the condition η > −m(α) and Lemma 3.7, we
obtain

∣∣∂jΠγ,ν,ρ
α f(x, t)

∣∣ ≤ Ct−(η+1/(2α))‖u‖Bα(σ).

Similarly, we get
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∣∣∂tΠγ,ν,ρ
α f(x, t)

∣∣ ≤ Ct−(η+1)‖u‖Bα(σ).

Hence, we obtain Πγ,ν,ρ
α f ∈ B̃α(η) and ‖Πγ,ν,ρ

α f‖Bα(η) ≤ C‖u‖Bα(σ).
The second assertion is an immediate consequence of (i) of Lemma 3.4 and

(i) of Proposition 4.1. ¤

We also show the following proposition.

Proposition 4.2. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Put η :=
1/(2α)−1+σ. If η > −1/(2α), then there exists a unique (vector-valued) function
V = (v1, . . . , vn) such that vj ∈ B̃α(η) and V satisfies Equation (C.1). Also, there
exists a constant C = C(n, α, σ) > 0 independent of u such that ‖vj‖Bα(η) ≤
C‖u‖Bα(σ).

Proof. For 1 ≤ j ≤ n, we can define a function vj ∈ B̃α(η) by

vj(x, t) = − 2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)ωγ(j),σ+1
α (x, t; y, s)sσ+2dV (y, s)

= − 2σ+3

Γ(σ + 3)
Πγ(j),σ+1,1

α (sσ+1Dtu), (4.2)

where γ(j) = (δj1, . . . , δjn) ∈ Nn
0 and δj` is the Kronecker δ. In fact, by the

hypothesis σ > −m(α), the condition η = 1/(2α) − 1 + σ > −1 always holds.
Therefore, we have η > −m(α). Hence, (i) of Proposition 4.1 implies that vj ∈
B̃α(η) and there exists a constant C > 0 independent of u such that

‖vj‖Bα(η) ≤ C‖u‖Bα(σ). (4.3)

We show that the functions u and V = (v1, . . . , vn) satisfy Equation (C.1).
Differentiating through the integral (4.2), we obtain from Lemma 3.5 that

−Dtvj(x, t) =
2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)∂xjDσ+2
t W (α)(x− y, t + s)sσ+2dV (y, s)

= ∂ju(x, t).

Since the equation ∂kvj = ∂jvk is clearly satisfied by the definition (4.2), the
functions u and vj satisfy (C.1).

To show the uniqueness, we suppose that there exists a function U =
(u1, . . . , un) with uj ∈ B̃α(η) and that u and U satisfy Equation (C.1). Then,
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for each 1 ≤ j ≤ n, by the first inequality of Lemma 3.6 with κ = 1 and Equation
(C.1), we have

‖vj − uj‖Bα(η) ≤ C
∥∥t1+ηDt(vj − uj)

∥∥
L∞ = C

∥∥t1+η(∂ju− ∂ju)
∥∥

L∞ = 0.

Since ‖·‖Bα(η) is the norm on B̃α(η), we obtain vj(x, t) = uj(x, t) for all (x, t) ∈ H.
It follows that the existence of the function V = (v1, . . . , vn) with vj ∈ B̃α(η)
satisfying Equation (C.1) is unique. ¤

Now, we give the proof of Theorem 1.

Proof of Theorem 1. By Proposition 4.2, there exists a unique function
V = (v1, . . . , vn) such that vj ∈ B̃α(η) and V satisfies Equation (C.1). Further-
more, the second inequality of (1.5) has already obtained.

We show that the functions u and V satisfy Equation (C.2). Differentiating
through the integral (4.2), we have

n∑

j=1

∂jvj(x, t)

= − 2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)∆xDσ+1
t W (α)(x− y, t + s)sσ+2dV (y, s). (4.4)

Let 1/α−1 /∈ N0. Then, by the definitions (2.6) and (2.8), Lemma 3.5 also implies

D1/α−1
t u(x, t) =

1
Γ(d1/α− 1e − (1/α− 1))

2σ+3

Γ(σ + 3)

∫ ∞

0

τ d1/α−1e−(1/α−1)−1

×
∫

H

Dtu(y, s)Dd1/α−1e+σ+2
t W (α)(x−y, t+τ +s)sσ+2dV (y, s)dτ.

(4.5)

We claim that we can apply the Fubini theorem to the right-hand side of the
equality (4.5). Indeed, by (i) of Lemma 3.1 and (i) of Lemma 3.4, the condition
η > 1/(2α) and Lemma 3.7 imply that

∫ ∞

0

τ d1/α−1e−(1/α−1)−1

×
∫

H

|Dtu(y, s)|∣∣Dd1/α−1e+σ+2
t W (α)(x− y, t + τ + s)

∣∣sσ+2dV (y, s)dτ
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≤ C

∫ ∞

0

τ d1/α−1e−(1/α−1)−1

×
∫

H

s

(t + τ + s + |x− y|2α)n/(2α)+d1/α−1e+σ+2
dV (y, s)dτ

≤ C

∫ ∞

0

τ d1/α−1e−(1/α−1)−1 1
(t + τ)d1/α−1e+σ

dτ < ∞.

Therefore, (4.5) and the Fubini theorem show that

D1/α−1
t u(x, t) =

2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)D1/α+σ+1
t W (α)(x− y, t + s)sσ+2dV (y, s).

Hence, by (4.4) and Lemma 3.2, the functions u and V satisfy (C.2). The proof
of the case 1/α− 1 ∈ N is easy. Thus u and V satisfy Equation (C.2).

We show the first inequality of (1.5). By the first inequality of Lemma 3.6
with κ = 1/α− 1 and Equation (C.2), we have

‖u‖Bα(σ) ≤ C
∥∥t1/α−1+σD1/α−1

t u
∥∥

L∞

≤ C
n∑

j=1

∥∥t1/α−1+σ∂jvj

∥∥
L∞ ≤ C

n∑

j=1

‖vj‖Bα(η).

Hence, this completes the proof of Theorem 1. ¤

5. Conjugate functions on B̃α(σ) for α = 1.

By Theorem 1, we give properties of conjugate functions on B̃α(σ) with 0 <

α < 1. In this section, we give the proof of Theorem 2. When α = 1, generalization
of conjugacy to B̃1(σ) is not given by (C.1) and (C.2). For a real number δ > 0
and a function u on H, let uδ(x, t) = u(x, t + δ) for (x, t) ∈ H. We show the
following lemmas, which are only used to the case α = 1.

Lemma 5.1. Let 0 < α ≤ 1, σ > 0, u ∈ Bα(σ), and (x, t) ∈ H. Then,
lims→∞ u(x, s) exists. Furthermore, if k ∈ N, δ > 0, and c1, c2 > 0, then

uδ(x, t)− lim
s→∞

u(x, s)

=
(c1 + c2)k

Γ(k)

∫

H

Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)sk−1dV (y, s). (5.1)
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Proof. First, we show that the integrand in the right-hand side of the
equality (5.1) belongs to L1(H, dV ). In fact, (3.1) and (i) of Lemma 3.4 imply
that

∫

H

∣∣Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)sk−1

∣∣dV (y, s)

≤ C

∫ ∞

0

(c1s + δ)−(k+σ)sk−1

∫

Rn

W (α)(x− y, t + c2s)dy ds

≤ C

∫ ∞

0

(c1s + δ)−(1+σ)ds < ∞, (5.2)

because σ > 0. Thus, the Fubini theorem and Lemma 3.8 show that

∫

H

Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)sk−1dV (y, s)

=
∫ ∞

0

∫

Rn

Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)dy sk−1ds

=
∫ ∞

0

Dk
t uδ(x, t + (c1 + c2)s)sk−1ds. (5.3)

We claim that lims→∞ u(x, s) exists and the right-hand side of (5.3) is equal to
Γ(k)(c1 + c2)−k(uδ(x, t)− lims→∞ u(x, s)). In fact, if k = 1, then (5.2) shows that
the right-hand side of (5.3) with k = 1 converges, that is, lims→∞ u(x, s) exists
and

∫ ∞

0

Dtuδ(x, t + (c1 + c2)s)ds = (c1 + c2)−1
(
uδ(x, t)− lim

s→∞
u(x, s)

)
.

For induction, we assume that the right-hand side of (5.3) is equal to Γ(k)(c1 +
c2)−k(uδ(x, t)− lims→∞ u(x, s)). Then, integrating by parts, we have

∫ ∞

0

Dk+1
t uδ(x, t + (c1 + c2)s)skds

= − (c1 + c2)−1
[Dk

t uδ(x, t + (c1 + c2)s)sk
]∞
0

+ (c1 + c2)−1k

∫ ∞

0

Dk
t uδ(x, t + (c1 + c2)s)sk−1ds. (5.4)

By (i) of Lemma 3.4, the first term of the right-hand side of (5.4) is equal to 0.
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Therefore, by assumption, we obtain the right-hand side of (5.4) is equal to
Γ(k + 1)(c1 + c2)−(k+1)(uδ(x, t)− lims→∞ u(x, s)). This completes the proof. ¤

Lemma 5.2. Let 0 < α ≤ 1, σ > 0, u ∈ Bα(σ), and (x, t) ∈ H. Then, the
following statements hold.

( i ) If k, m ∈ N, δ > 0, and c1, c2 > 0, then

uδ(x, t)− lim
s→∞

u(x, s)

=
(c1 + c2)k+m

Γ(k + m)

∫

H

Dk
t uδ(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+m−1dV (y, s).

(5.5)

( ii ) If κ > 0 and ν > σ, then

u(x, t)− lim
s→∞

u(x, s)

=
2κ+ν

Γ(κ + ν)

∫

H

Dκ
t u(y, s)Dν

t W (α)(x− y, t + s)sκ+ν−1dV (y, s). (5.6)

Proof. (i) Let k, m ∈ N. Then, Lemmas 3.1, 3.4 and 3.7 imply that

∫

H

∣∣Dk
t uδ(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+m−1
∣∣dV (y, s)

≤ C

∫

H

(c1s + δ)−(1+σ)sm

(t + c2s + |x− y|2α)n/(2α)+m
dV (y, s) < ∞.

Hence, the integrand in the right-hand side of the equality (5.5) belongs to
L1(H, dV ).

We show the equality (5.5) by the induction on m. Let m = 1 and k ∈ N.
Then, integrating by parts, we obtain from Lemmas 3.1, 3.4 and 5.1 that

∫

H

Dk
t uδ(y, c1s)DtW

(α)(x− y, t + c2s)skdV (y, s)

=
∫

Rn

∫ ∞

0

Dk
t uδ(y, c1s)DtW

(α)(x− y, t + c2s)skds dy

= − 1
c2

∫

Rn

[Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)sk

]∞
0

dy
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− c1

c2

∫

Rn

∫ ∞

0

Dk+1
t uδ(y, c1s)W (α)(x− y, t + c2s)skds dy

+
k

c2

∫

Rn

∫ ∞

0

Dk
t uδ(y, c1s)W (α)(x− y, t + c2s)sk−1ds dy

= − c1Γ(k + 1)
c2(c1 + c2)k+1

(
uδ(x, t)− lim

s→∞
u(x, s)

)

+
kΓ(k)

c2(c1 + c2)k

(
uδ(x, t)− lim

s→∞
u(x, s)

)

=
Γ(k + 1)

(c1 + c2)k+1

(
uδ(x, t)− lim

s→∞
u(x, s)

)
.

Let m ∈ N be fixed, and assume that the equality (5.5) holds for all k ∈ N.
Then, integrating by parts, we have from Lemmas 3.1, 3.4 and the assumption
that

∫

H

Dk
t uδ(y, c1s)Dm+1

t W (α)(x− y, t + c2s)sk+mdV (y, s)

= − 1
c2

∫

Rn

[Dk
t uδ(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+m
]∞
0

dy

− c1

c2

∫

Rn

∫ ∞

0

Dk+1
t uδ(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+mds dy

+
k + m

c2

∫

Rn

∫ ∞

0

Dk
t uδ(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+m−1ds dy

= − c1Γ(k + m + 1)
c2(c1 + c2)k+m+1

(
uδ(x, t)− lim

s→∞
u(x, s)

)

+
(k + m)Γ(k + m)
c2(c1 + c2)k+m

(
uδ(x, t)− lim

s→∞
u(x, s)

)

=
Γ(k + m + 1)

(c1 + c2)k+m+1

(
uδ(x, t)− lim

s→∞
u(x, s)

)
.

Therefore, we obtain that the equality (5.5) with m + 1 holds for all k ∈ N.
(ii) First, we claim that for each k ∈ N, m > σ, and c1, c2 > 0,

(c1 + c2)k+m

Γ(k + m)

∫

H

Dk
t u(y, c1s)Dm

t W (α)(x− y, t + c2s)sk+m−1dV (y, s)

= u(x, t)− lim
s→∞

u(x, s). (5.7)
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Indeed, by Lemmas 3.1, 3.4 and 3.7, the equality (5.7) follows from Lemma 5.1
and the dominated convergence theorem.

Let κ > 0 and ν > σ. Suppose that κ, ν /∈ N. Then, the definitions (2.6) and
(2.8) imply that

∫

H

Dκ
t u(y, s)Dν

t W (α)(x− y, t + s)sκ+ν−1dV (y, s)

=
∫

H

1
Γ(dκe − κ)

∫ ∞

0

τ
dκe−κ−1
1 Ddκet u(y, s + τ1)dτ1

× 1
Γ(dνe − ν)

∫ ∞

0

τ
dνe−ν−1
2 Ddνet W (α)(x− y, t + s + τ2)dτ2 sκ+ν−1dV (y, s)

=
∫

H

1
Γ(dκe − κ)

∫ ∞

0

τ
dκe−κ−1
1 Ddκet u(y, (1 + τ1)s)dτ1

× 1
Γ(dνe − ν)

∫ ∞

0

τ
dνe−ν−1
2 Ddνet W (α)(x− y, t + (1 + τ2)s)dτ2

× sdκe+dνe−1dV (y, s).

Furthermore, (i) of Lemma 3.1 and (i) of Lemma 3.4 imply that

∫

H

∫ ∞

0

τ
dκe−κ−1
1

∣∣Ddκet u(y, (1 + τ1)s)
∣∣dτ1

×
∫ ∞

0

τ
dνe−ν−1
2

∣∣Ddνet W (α)(x− y, t + (1 + τ2)s)
∣∣dτ2 sdκe+dνe−1dV (y, s)

≤ C

∫

H

∫ ∞

0

τ
dκe−κ−1
1

((1 + τ1)s)dκe+σ
dτ1

×
∫ ∞

0

τ
dνe−ν−1
2

(t + (1 + τ2)s + |x− y|2α)n/(2α)+dνe dτ2 sdκe+dνe−1dV (y, s)

= C

∫ ∞

0

τ
dκe−κ−1
1

(1 + τ1)dκe+σ
dτ1

∫ ∞

0

τ
dνe−ν−1
2

(1 + τ2)−σ+dνe dτ2

×
∫

H

s−σ+dνe−1

(t + s + |x− y|2α)n/(2α)+dνe dV (y, s).

Since σ > 0, κ > 0, and ν > σ, we have
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∫ ∞

0

τ
dκe−κ−1
1

(1 + τ1)dκe+σ
dτ1 < ∞

and

∫ ∞

0

τ
dνe−ν−1
2

(1 + τ2)−σ+dνe dτ2 < ∞,

respectively. Moreover, by the conditions ν > σ and σ > 0, Lemma 3.7 implies
that

∫

H

s−σ+dνe−1

(t + s + |x− y|2α)n/(2α)+dνe dV (y, s) < ∞.

Hence, by the Fubini theorem, (5.7) shows that

∫

H

Dκ
t u(y, s)Dν

t W (α)(x− y, t + s)sκ+ν−1dV (y, s)

=
1

Γ(dκe − κ)Γ(dνe − ν)

∫ ∞

0

τ
dκe−κ−1
1

∫ ∞

0

τ
dνe−ν−1
2

×
∫

H

Ddκet u(y, (1 + τ1)s)Ddνet W (α)(x− y, t + (1 + τ2)s)

× sdκe+dκe−1dV (y, s)dτ1dτ2

=
1

Γ(dκe − κ)Γ(dνe − ν)

∫ ∞

0

τ
dκe−κ−1
1

∫ ∞

0

τ
dνe−ν−1
2

× Γ(dκe+ dνe)
(2 + τ1 + τ2)dκe+dνe

(
u(x, t)− lim

s→∞
u(x, s)

)
dτ1dτ2

=
Γ(κ + ν)

2κ+ν

(
u(x, t)− lim

s→∞
u(x, s)

)
.

The proof of the case κ ∈ N or ν ∈ N is parallel to that of the case κ, ν /∈ N.
(When κ ∈ N and ν ∈ N, the assertion follows from (5.7) directly.) ¤

Remark 5.3. Let 0 < α ≤ 1, σ > 0, and u ∈ Bα(σ). Then, by the proof of
(ii) of Lemma 5.2, when κ > 0 and ν > σ, we have

∫

H

∣∣Dκ
t u(y, s)

∣∣∣∣Dν
t W (α)(x− y, t + s)

∣∣sκ+ν−1dV (y, s) < ∞
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for all (x, t) ∈ H.

We give a counterpart of (C.2) for α = 1.

Proposition 5.4. Let σ > 0 and u ∈ B̃1(σ). Let V = (v1, . . . , vn) be the
function obtained by Proposition 4.2, then u and V satisfy the following equation
(C.2′):

u− lim
t→∞

u(0, t) =
n∑

j=1

∂jvj . (C.2′)

Proof. As in the proof of Theorem 1, differentiating through the integral,
we have from Lemma 3.2 that

n∑

j=1

∂jvj(x, t) = − 2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)∆xDσ+1
t W (1)(x− y, t + s)sσ+2dV (y, s)

=
2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)Dσ+2
t W (1)(x− y, t + s)sσ+2dV (y, s).

On the other hand, Lemma 3.5 and Remark 5.3 imply that

u(x, t) =
2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)Dσ+2
t W (1)(x− y, t + s)sσ+2dV (y, s)

− 2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)Dσ+2
t W (1)(−y, 1 + s)sσ+2dV (y, s).

Since u ∈ B̃1(σ), we have from Lemma 5.2 (ii) that

u(x, t) =
n∑

j=1

∂jvj(x, t) + lim
s→∞

u(0, s).

Hence, u and V satisfy Equation (C.2′). ¤

Now, we give a counterpart of Theorem 1 to the case α = 1 and complete the
proof of Theorem 2.

Proof of Theorem 2. Let σ > 0, η := −1/2 + σ and u ∈ B̃1(σ). Then,
by Proposition 4.2, there exists a unique function V = (v1, . . . , vn) such that
vj ∈ B̃1(η) and V satisfies Equation (C.1). Furthermore, the second inequality of
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(1.6) has already obtained. Thus, by Proposition 5.4, it suffices to show the first
inequality of (1.6). By Equation (C.2′), we have

‖u‖B1(σ) ≤ sup
(x,t)∈H

tσ+1/2|∇xu(x, t)|+ sup
(x,t)∈H

tσ+1|∂tu(x, t)|

≤
n∑

j=1

sup
(x,t)∈H

tσ+1/2
∣∣∇x∂jvj(x, t)

∣∣ +
n∑

j=1

sup
(x,t)∈H

tσ+1|∂t∂jvj(x, t)|.

Since vj ∈ B̃1(η), we obtain from (i) of Lemma 3.4 that

|∇x∂jvj(x, t)| ≤ Ct−(1+η)‖vj‖B1(η)

for all (x, t) ∈ H. Therefore, since 1 + η = σ + 1/2, we have

sup
(x,t)∈H

tσ+1/2|∇x∂jvj(x, t)| ≤ C‖vj‖B1(η).

Similarly, we get

sup
(x,t)∈H

tσ+1|∂t∂jvj(x, t)| ≤ C‖vj‖B1(η).

Hence, the first inequality of (1.6) is obtained. ¤

The following lemma is (2) of [4, Lemma 4.2].

Lemma 5.5 ((2) of [4, Lemma 4.2]). Let 0 < α ≤ 1, σ > −m(α), γ ∈ Nn
0 ,

and k ∈ N0. Then, for every (x, t) ∈ H, there exists a constant C = C(n, α, γ,

k, x, t) > 0 such that

∣∣∂γ
xDk

t u(x, t + s)− ∂γ
xDk

t u(0, 1 + s)
∣∣ ≤ C‖u‖Bα(σ)(1 + s)−|γ|/(2α)−k−m(α)−σ

for all u ∈ Bα(σ) and s ≥ 0.

We give the following remark.

Remark 5.6. By Lemmas 5.1 and 5.5, if 0 < α ≤ 1, σ > 0 and u ∈ Bα(σ),
then limt→∞ u(x, t) exists and limt→∞ u(x, t) = limt→∞ u(0, t) for all x ∈ Rn.

For 0 < α ≤ 1 and σ > 0, we can construct a function u ∈ B̃α(σ) with
limt→∞ u(0, t) 6= 0. We give the following example.
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Example 5.7. For 0 < α ≤ 1 and σ > 0, we put κ := −n/(2α) + σ. Since
σ > 0, we can define the derivative Dκ

t W (α) by Lemma 3.1. Thus, we define an
L(α)-harmonic function u on H with u(0, 1) = 0 by

u(x, t) := Dκ
t W (α)(x, t)−Dκ

t W (α)(0, 1), (x, t) ∈ H.

By Lemma 3.1, we also have

|∂ju(x, t)| ≤ C(t + |x|2α)−σ−1/(2α) ≤ Ct−σ−1/(2α), 1 ≤ j ≤ n

and

|∂tu(x, t)| ≤ C(t + |x|2α)−σ−1 ≤ Ct−σ−1

for all (x, t) ∈ H. Therefore, we obtain

‖u‖Bα(σ) = sup
(x,t)∈H

tσ
{
t1/(2α)|∇xu(x, t)|+ t|∂tu(x, t)|} < ∞,

that is, u ∈ B̃α(σ). Since Lemma 3.1 also implies that |Dκ
t W (α)(0, t)| ≤ Ct−σ, we

have

lim
t→∞

u(0, t) = lim
t→∞

Dκ
t W (α)(0, t)−Dκ

t W (α)(0, 1) = −Dκ
t W (α)(0, 1).

Furthermore, as in the proof of Lemma 4.1 of [3], we get

Dκ
t W (α)(x, t) =

1
(2π)n

∫

Rn

|ξ|2ακ exp(−t|ξ|2α + i x · ξ) dξ,

so we obtain limt→∞ u(0, t) = −Dκ
t W (α)(0, 1) 6= 0.

6. Estimates of tangential derivative norms.

In this section, we estimate tangential derivative norms on B̃α(σ) and give
the proof of Theorem 3. We need the following lemma.

Lemma 6.1. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Then,

(D1/α
t + ∆x

)
u(x, t) = 0
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for all (x, t) ∈ H.

Proof. By Lemma 3.5 with κ = 1 and ν = σ + 2, we have

u(x, t) =
2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)ω0,σ+2
α (x, t; y, s)sσ+2dV (y, s). (6.1)

Differentiating through the integral (6.1), we get

∆xu(x, t) =
2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)Dσ+2
t ∆xW (α)(x− y, t + s)sσ+2dV (y, s).

By (ii) of Lemma 3.1 and Lemma 3.2, it suffices to show that

D1/α
t u(x, t) =

2σ+3

Γ(σ + 3)

∫

H

Dtu(y, s)D1/α
t Dσ+2

t W (α)(x− y, t + s)sσ+2dV (y, s).

(6.2)

In fact, when 1/α ∈ N, (6.2) immediately follows by differentiating through the
integral (6.1). Let 1/α /∈ N. Then, (2.6) and (2.8) imply that

D1/α
t u(x, t) =

1
Γ(d1/αe − 1/α)

2σ+3

Γ(σ + 3)

∫ ∞

0

τ d1/αe−1/α−1

×
∫

H

Dtu(y, s)Dd1/αe
t Dσ+2

t W (α)(x− y, t + τ + s)sσ+2dV (y, s)dτ.

Since σ > −m(α) > −1/α > −d1/αe, Lemmas 3.1, 3.4 and 3.7 imply that

∫ ∞

0

τ d1/αe−1/α−1

∫

H

|Dtu(y, s)|
∣∣Dd1/αe

t Dσ+2
t W (α)(x−y, t+τ +s)

∣∣sσ+2dV (y, s)dτ

≤ C

∫ ∞

0

τ d1/αe−1/α−1

∫

H

s

(t + τ + s + |x− y|2α)n/(2α)+σ+2+d1/αe dV (y, s)dτ

≤ C

∫ ∞

0

τ d1/αe−1/α−1

(t + τ)σ+d1/αe dτ < ∞.

Therefore, the Fubini theorem shows (6.2). ¤

Now, we give the proof of Theorem 3. We begin with showing the second
inequality of (1.7).
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Lemma 6.2. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Then, for each
m ∈ N, there exists a constant C = C(n, α, σ,m) > 0 independent of u such that

∥∥tm/(2α)+σ∂γ
xu

∥∥
L∞ ≤ C‖u‖Bα(σ)

for all multi-indices γ ∈ Nn
0 with |γ| = m.

Proof. Let u ∈ B̃α(σ), and γ ∈ Nn
0 with |γ| = m. Then, (i) of Lemma 3.4

implies that

∣∣∂γ
xu(x, t)

∣∣ ≤ Ct−(|γ|/(2α)+σ)‖u‖Bα(σ) = t−(m/(2α)+σ)‖u‖Bα(σ)

for all (x, t) ∈ H. Hence, the desired result immediately follows. ¤

We show the first inequality of (1.7) when m is an even number.

Lemma 6.3. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Then, for each
even number m ∈ N, there exists a constant C = C(n, α, σ,m) > 0 independent of
u such that

‖u‖Bα(σ) ≤ C
∑

|γ|=m

‖tm/(2α)+σ∂γ
xu‖L∞ .

Proof. Let u ∈ B̃α(σ). Since m ∈ N is even, there exists k ∈ N such that
m = 2k. Then, by the condition 1/α > m(α) > −σ, we have from (ii) of Lemma
3.4 and Lemma 6.1 that

Dm/(2α)
t u = Dk/α

t u =
(D1/α

t

)k
u = (−1)k∆k

xu = (−1)k
n∑

j1,...,jk=1

∂2
j1 · · · ∂2

jk
u. (6.3)

Therefore, Lemma 3.6 shows that

‖u‖Bα(σ) ≤ C
∥∥tm/(2α)+σDm/(2α)

t u
∥∥

L∞ ≤ C

n∑

j1,...,jk=1

∥∥tm/(2α)+σ∂2
j1 · · · ∂2

jk
u
∥∥

L∞

≤ C
∑

|γ|=m

∥∥tm/(2α)+σ∂γ
xu

∥∥
L∞ .

Hence, we obtain the desired inequality. ¤
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We give the proof of Theorem 3.

Proof of Theorem 3. By Lemmas 6.2 and 6.3, it suffices to show the
first inequality of (1.7) when m is an odd number. Therefore, suppose that there
exists k ∈ N0 such that m = 2k + 1 and let u ∈ B̃α(σ).

Put v(x, t) = Dtu(x, t) − Dtu(0, 1) and λ = σ + 1. Then, by (iii) of Lemma
3.4, v is L(α)-harmonic on H. Furthermore, we claim that v belongs to B̃α(λ) and
there exists a constant C > 0 independent of u such that

C−1‖u‖Bα(σ) ≤ ‖v‖Bα(λ) ≤ C‖u‖Bα(σ). (6.4)

In fact, (i) of Lemma 3.4 shows that

|∂jv(x, t)| =
∣∣∂jDtu(x, t)

∣∣ ≤ Ct−(1/(2α)+1+σ)‖u‖Bα(σ) = Ct−λ · t−1/(2α)‖u‖Bα(σ)

and

|∂tv(x, t)| =
∣∣D2

t u(x, t)
∣∣ ≤ Ct−(2+σ)‖u‖Bα(σ) = Ct−λ · t−1‖u‖Bα(σ).

Hence, v belongs to B̃α(λ) and ‖v‖Bα(λ) ≤ C‖u‖Bα(σ). Moreover, Lemma 3.6
implies that

‖u‖Bα(σ) ≤ C
∥∥tσ+2D2

t u
∥∥

L∞ = C sup
(x,t)∈H

tσ+1 · t|∂t(Dtu)(x, t)|

≤ C sup
(x,t)∈H

tσ+1
{
t1/(2α)|∇x(Dtu)(x, t)|+ t|∂t(Dtu)(x, t)|}

= C sup
(x,t)∈H

tσ+1
{
t1/(2α)|∇xv(x, t)|+ t|∂tv(x, t)|} = C‖v‖Bα(λ).

Therefore, we obtain (6.4).
Moreover, we claim that there exists a constant C > 0 independent of u such

that

∥∥tm/(2α)+σ+1∂γ
xv

∥∥
L∞ =

∥∥tm/(2α)+σ+1Dt(∂γ
xu)

∥∥
L∞ ≤ C

∥∥tm/(2α)+σ∂γ
xu

∥∥
L∞ (6.5)

with |γ| = m. Indeed, (iii) of Lemma 3.4 implies that ∂γ
xu is L(α)-harmonic on H.

Furthermore, (i) of Lemma 3.4 shows that

∣∣∂j(∂γ
xu)(x, t)

∣∣ ≤ Ct−((m+1)/(2α)+σ)‖u‖Bα(σ) = Ct−(m/(2α)+σ) · t−1/(2α)‖u‖Bα(σ)
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and

∣∣∂t(∂γ
xu)(x, t)

∣∣ ≤ Ct−(m/(2α)+1+σ)‖u‖Bα(σ) = Ct−(m/(2α)+σ) · t−1‖u‖Bα(σ).

Therefore, we have ∂γ
xu ∈ Bα(σ′), where σ′ = m/(2α) + σ. Hence, Lemma 3.5

implies that

∂γ
xu(x, t)− ∂γ

xu(0, 1) =
2σ′+1

Γ(σ′ + 1)

∫

H

∂γ
xu(y, s)ω0,σ′+1

α (x, t; y, s)sσ′dV (y, s).

Differentiating through the integral, we get

∣∣∂γ
xv(x, t)

∣∣ =
∣∣Dt(∂γ

xu)(x, t)
∣∣

≤ C

∫

H

∣∣∂γ
xu(y, s)

∣∣∣∣Dσ′+2
t W (α)(x− y, t + s)

∣∣sσ′dV (y, s)

≤ C
∥∥sm/(2α)+σ∂γ

xu
∥∥

L∞

∫

H

1
(t + s + |x− y|2α)(n+m)/(2α)+σ+2

dV (y, s).

Therefore, Lemma 3.7 implies the inequality (6.5).
Now, we show the first inequality of (1.7). By (6.4) and (6.5), it suffices to

show the inequality

‖v‖Bα(λ) ≤ C
∑

|γ|=m

∥∥tm/(2α)+σ+1∂γ
xv

∥∥
L∞ . (6.6)

Suppose 0 < α < 1. Then, by Theorem 1, there exists an α-parabolic
conjugate function V = (v1, . . . , vn) of v such that vj ∈ B̃α(η), where η =
1/(2α) − 1 + λ = 1/(2α) + σ > 0 > −1/(2α). Thus, by (ii) of Lemma 3.4
and Equation (C.2), we have

D(m+1)/(2α)
t v = Dk/α+1+1/α−1

t v = Dk/α+1
t D1/α−1

t v =
n∑

j=1

Dk/α+1
t ∂jvj .

Therefore, Lemma 3.6 implies that

‖v‖Bα(λ) ≤ C
∥∥t(m+1)/(2α)+λD(m+1)/(2α)

t v
∥∥

L∞

≤ C
n∑

j=1

∥∥t(m+1)/(2α)+λDk/α+1
t ∂jvj

∥∥
L∞ . (6.7)
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Furthermore, since (i) of Lemma 3.4 shows that

∣∣Dk/α+1
t ∂jvj(x, t)

∣∣ ≤ Ct−(1/(2α)+k/α+1+η)‖vj‖Bα(η)

= Ct−((m+1)/(2α)+λ)‖vj‖Bα(η),

we obtain ‖t(m+1)/(2α)+λDk/α+1
t ∂jvj‖L∞ ≤ C‖vj‖Bα(η) for all 1 ≤ j ≤ n. Hence,

(6.7) and Lemma 3.6 imply that

‖v‖Bα(λ) ≤ C
n∑

j=1

‖vj‖Bα(η) ≤ C
n∑

j=1

∥∥tk/α+1+ηDk/α+1
t vj

∥∥
L∞ .

Since Equation (C.1) implies that Dtvj = −∂jv, we have from (ii) of Lemma 3.4
and (6.3)

‖v‖Bα(λ) ≤ C
n∑

j=1

∥∥tk/α+1+ηDk/α
t ∂jv

∥∥
L∞

≤ C
n∑

j=1

n∑

j1,...,jk=1

∥∥tk/α+1+η∂2
j1 · · · ∂2

jk
∂jv

∥∥
L∞

≤ C
∑

|γ|=m

∥∥tk/α+1+η∂γ
xv

∥∥
L∞ = C

∑

|γ|=m

∥∥tm/(2α)+σ+1∂γ
xv

∥∥
L∞ .

Hence, we obtain the inequality (6.6).
Suppose α = 1. Then, since λ = σ + 1 > 0, Theorem 2 implies that there

exists a function V = (v1, . . . , vn) with vj ∈ B̃1(η) such that v and V satisfy
Equations (C.1) and (C.2′), where η = 1/2−1+λ = σ+1/2. Therefore, Equation
(C.2′) implies that

D(m+1)/2
t v = Dk+1

t v = Dk+1
t

(
v − lim

t→∞
v(0, t)

)
=

n∑

j=1

Dk+1
t ∂jvj .

Hence, the remaining proof of the case α = 1 is parallel to that of the case
0 < α < 1. This completes the proof of Theorem 3. ¤
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7. Inversion theorems.

In this section, we give inversion theorems, that is, for a vector-valued function
V = (v1, . . . , vn) with vj ∈ B̃α(η), we construct a function u ∈ B̃α(σ) such that V

is an α-parabolic conjugate function of u.
Let 0 < α ≤ 1 and η > −m(α). If vj ∈ B̃α(η), then by (iii) of Lemma 3.4, we

can define an L(α)-harmonic function v0 on H by

v0(x, t) :=
n∑

j=1

∂jvj(x, t), (x, t) ∈ H. (7.1)

Furthermore, (i) of Lemma 3.4 implies that

|v0(x, t)| ≤ Ct−(1/(2α)+η)
n∑

j=1

‖vj‖Bα(η) (7.2)

for all (x, t) ∈ H, where C is independent of vj . The function v0 defined by (7.1)
shall be used in the proof of our inversion theorems.

First, we give an inversion theorem when 0 < α < 1.

Theorem 7.1. Let 0 < α < 1. Suppose that a vector-valued function V =
(v1, . . . , vn) on H satisfies vj ∈ B̃α(η) and ∂kvj = ∂jvk for all 1 ≤ j, k ≤ n. Put
σ := 1 − 1/(2α) + η. If σ > 0 (thus, η also satisfies the condition η > −m(α)),
then there exists a unique function u on H such that u ∈ B̃α(σ) and V is an α-
parabolic conjugate function of u. Also, there exists a constant C = C(n, α, η) > 0
independent of V such that

C−1
n∑

j=1

‖vj‖Bα(η) ≤ ‖u‖Bα(σ) ≤ C
n∑

j=1

‖vj‖Bα(η). (7.3)

Proof. Let v0 be the L(α)-harmonic function defined by (7.1). Put κ :=
1/α−1 > 0. Then the hypothesis σ > 0 implies 1/(2α)+η > κ, that is, v0(x, · ) ∈
FC−κ for each x ∈ Rn. Thus, we can define a function u0 on H by

u0(x, t) := D−κ
t v0(x, t) = D−κ

t

( n∑

j=1

∂jvj(x, t)
)

, (x, t) ∈ H. (7.4)

We show that the function u0 belongs to Bα(σ). In fact, let 1 ≤ k ≤ n. Then, by
(i) of Lemma 3.4, v0 belongs to C∞(H) and
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∫ ∞

0

τκ−1|∂kv0(x, τ + t)|dτ ≤ C
n∑

j=1

‖vj‖Bα(η)

∫ ∞

0

τκ−1(τ + t)−(1/α+η)dτ

= Ctκ−(1/α+η)
n∑

j=1

‖vj‖Bα(η) = Ct−(1+η)
n∑

j=1

‖vj‖Bα(η) (7.5)

for all (x, t) ∈ H, where C is independent of V . Therefore, the derivative ∂ku0

exists, that is,

∂ku0(x, t) =
1

Γ(κ)

∫ ∞

0

τκ−1∂kv0(x, τ + t)dτ (7.6)

and

|∂ku0(x, t)| ≤ Ct−(1+η)
n∑

j=1

‖vj‖Bα(η) = Ct−σ · t−1/(2α)
n∑

j=1

‖vj‖Bα(η)

for all (x, t) ∈ H. Similarly, the derivative ∂tu0 exists and

|∂tu0(x, t)| ≤ Ct−(2−1/(2α)+η)
n∑

j=1

‖vj‖Bα(η) = Ct−σ · t−1
n∑

j=1

‖vj‖Bα(η)

for all (x, t) ∈ H. Hence, we obtain

‖u0‖Bα(σ) ≤ C

n∑

j=1

‖vj‖Bα(η), (7.7)

where C is independent of V . Since v0 belongs to C∞(H), so dose u0. We claim
that u0 is L(α)-harmonic on H. Indeed, let ψ ∈ C∞c (H). Then, there exist
0 < t1 < t2 < ∞ and a constant C > 0 which satisfy (2.2) and (2.3). Therefore,
similar calculations to (7.5) show that

∫

H

∫ ∞

0

τκ−1|v0(x, τ + t)|dτ
∣∣L̃(α)ψ(x, t)

∣∣dV (x, t)

≤ C

∫

H

t−(1−1/(2α)+η)
∣∣L̃(α)ψ(x, t)

∣∣dV (x, t)

≤ C

∫ t2

t1

∫

Rn

t−(1−1/(2α)+η)(1 + |x|)−n−2αdxdt < ∞.
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Thus,
∫

H
|u0 · L̃(α)ψ|dV < ∞, and the Fubini theorem implies that

∫

H

u0(x, t) · L̃(α)ψ(x, t)dV (x, t)

=
1

Γ(κ)

∫ ∞

0

τκ−1

∫

H

v0(x, τ + t) · L̃(α)ψ(x, t)dV (x, t) dτ = 0,

because v0 is L(α)-harmonic on H. Hence, u0 is L(α)-harmonic on H, so u0 ∈
Bα(σ).

Put u(x, t) := u0(x, t)− u0(0, 1). Then, u ∈ B̃α(σ), and (7.7) implies

‖u‖Bα(σ) = ‖u0‖Bα(σ) ≤ C
n∑

j=1

‖vj‖Bα(η), (7.8)

where C is independent of vj . We show that u and V satisfy Equations (C.1) and
(C.2). By (7.6), the hypothesis ∂kvj = ∂jvk, and Lemma 6.1, we obtain

∂ku(x, t) = ∂ku0(x, t) =
1

Γ(κ)

∫ ∞

0

τκ−1
n∑

j=1

∂j∂kvj(x, τ + t)dτ

=
1

Γ(κ)

∫ ∞

0

τκ−1∆xvk(x, τ + t)dτ

= − 1
Γ(κ)

∫ ∞

0

τκ−1D1/α
t vk(x, τ + t)dτ

= −D−κ
t D1/α

t vk(x, t).

By the definition (2.8), we have

D−κ
t D1/α

t vk(x, t) = D−κ
t D−ν

t Dd1/αe
t vk(x, t) = D−κ

t D−ν
t ϕ(x, t), (7.9)

where ν := d1/αe − 1/α and ϕ(x, t) := Dd1/αe
t vk(x, t). Since (i) of Lemma 3.4

implies |ϕ(x, t)| ≤ Ct−(d1/αe+η) for all (x, t) ∈ H and κ + ν = d1/αe − 1, (ii) of
Lemma 2.1 shows that

D−κ
t D−ν

t ϕ(x, t) = D−κ−ν
t ϕ(x, t) = D−(d1/αe−1)

t ϕ(x, t)

= D−(d1/αe−1)
t Dd1/αe−1

t Dtvk(x, t). (7.10)
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Furthermore, (i) of Lemma 3.4 and (v) of Lemma 2.1 also show

D−(d1/αe−1)
t Dd1/αe−1

t Dtvk(x, t) = Dtvk(x, t). (7.11)

Hence, (7.9), (7.10), and (7.11) imply ∂ku(x, t) = −Dtvk(x, t), so u and V satisfy
Equation (C.1). Moreover, by (i) of Lemma 3.4, (iii) of Lemma 2.1, and (7.4), we
also obtain

D1/α−1
t u = Dκ

t u = Dκ
t u0 = Dκ

t D−κ
t v0 = v0 =

n∑

j=1

∂jvj ,

so u and V satisfy Equation (C.2).
We show the inequalities of (7.3). By (7.8), it suffices to show the first in-

equality of (7.3). Indeed, Lemma 3.6 and Equation (C.1) imply that

‖vj‖Bα(η) ≤ C
∥∥t1+ηDtvj

∥∥
L∞ = C

∥∥t1+η∂ju
∥∥

L∞

= C sup
(x,t)∈H

tσ · t1/(2α)|∂ju(x, t)| ≤ C‖u‖Bα(σ),

where C is independent of vj . Therefore, we obtain the first inequality of (7.3).
Suppose that a function v on H belongs to B̃α(σ) and V is an α-parabolic

conjugate function of v. Then, Lemma 3.6 and Equation (C.2) imply that

‖u− v‖Bα(σ) ≤ C
∥∥t1/α−1+σD1/α−1

t (u− v)
∥∥

L∞

= C

∥∥∥∥t1/α−1+σ

( n∑

j=1

∂jvj −
n∑

j=1

∂jvj

)∥∥∥∥
L∞

= 0.

Hence, we obtain u = v. This completes the proof. ¤

Next, we also give an inversion theorem when α = 1. We remark that if α = 1,
then m(1) = min{1, 1/2} = 1/2. Thus, the condition η > −m(1) is equivalent to
1/2 + η > 0.

Theorem 7.2. Suppose that a vector-valued function V = (v1, . . . , vn) on
H satisfies vj ∈ B̃1(η) and ∂kvj = ∂jvk for all 1 ≤ j, k ≤ n. Put σ := 1/2 + η.
If σ > 0, then there exists a unique function u on H such that u ∈ B̃1(σ) and u

satisfies Equations (C.1) and (C.2′). Also, there exists a constant C = C(n, η) > 0
independent of V such that
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C−1
n∑

j=1

‖vj‖B1(η) ≤ ‖u‖B1(σ) ≤ C
n∑

j=1

‖vj‖B1(η). (7.12)

Proof. Let v0 be the L(α)-harmonic function on H define by (7.1). And
put

u(x, t) = v0(x, t)− v0(0, 1), (x, t) ∈ H.

Then, (i) of Lemma 3.4 implies that

|∂ku(x, t)| ≤ Ct−(1+η)
n∑

j=1

‖vj‖B1(η) = Ct−σ · t−1/2
n∑

j=1

‖vj‖B1(η)

and

|∂tu(x, t)| ≤ Ct−(1/2+1+η)
n∑

j=1

‖vj‖B1(η) = Ct−σ · t−1
n∑

j=1

‖vj‖B1(η)

for all (x, t) ∈ H. Hence, we obtain u ∈ B̃1(σ) and

‖u‖B1(σ) ≤ C
n∑

j=1

‖vj‖B1(η), (7.13)

where C is independent of V .
We show that u and V satisfy Equations (C.1) and (C.2′). By (7.1), the

hypothesis ∂kvj = ∂jvk, and Lemma 6.1, we obtain

∂ku(x, t) = ∂kv0(x, t) =
n∑

j=1

∂j∂kvj(x, t) = ∆xvk(x, t) = −Dtvk(x, t),

so u and V satisfy Equation (C.1). Furthermore, by (7.2), we have

lim
r→∞

u(x, r) = lim
r→∞

v0(x, r)− v0(0, 1) = −v0(0, 1)

for all x ∈ Rn. Thus, by Remark 5.6, we obtain

u(x, t) = v0(x, t)− v0(0, 1) =
n∑

j=1

∂jvj(x, t) + lim
r→∞

u(0, r),
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so u and V satisfy Equation (C.2′).
Moreover, Lemma 3.6 and Equation (C.1) imply that for every j = 1, 2, . . . , n,

‖vj‖B1(η) ≤ C‖t1+ηDtvj‖L∞ = C‖t1+η∂ju‖L∞

= C sup
(x,t)∈H

tσ · t1/2|∂ju(x, t)| ≤ C‖u‖B1(σ),

where C is independent of V . Therefore, by (7.13), we obtain the inequalities of
(7.12).

To show the uniqueness, we suppose that a function v on H belongs to B̃1(σ)
and v satisfies Equations (C.1) and (C.2′). Then, Equation (C.2′) implies that

‖u− v‖B1(σ) =
∥∥∥∥

n∑

j=1

∂jvj −
n∑

j=1

∂jvj

∥∥∥∥
B1(σ)

= 0.

Hence, we obtain u = v. This completes the proof. ¤
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