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Abstract. Let H be the upper half-space of the (n + 1)-dimensional
Euclidean space. Let 0 < a < 1 and m(«) = min{1,1/(2a)}. For o > —m(a),
the a-parabolic Bloch type space Ba(o) on H is the set of all solutions u
of the equation (0/0t + (—=Az)*)u = 0 with finite Bloch norm ||u||z,, (5) of
a weight t7. It is known that 81/2(0) coincides with the classical harmonic
Bloch space on H. We extend the notion of harmonic conjugate functions to
functions in the a-parabolic Bloch type space Ba (o). We study properties
of a-parabolic conjugate functions and give an application to the estimates
of tangential derivative norms on B, (o). Inversion theorems for a-parabolic
conjugate functions are also given.

1. Introduction.

Let n > 1 and let H be the upper half-space of the (n 4+ 1)-dimensional
Euclidean space, that is, H = {X = (z,t) € R"™! 12 = (2q,...,2,) € R", t > 0}.
For 0 < a < 1, the parabolic operator L(® is defined by

L@ =9, + (—A,)%, (1.1)

where 9, = 0/0t, 9; = 9/0zj, and A, = 07 + -+ 02. A continuous function
(real-valued) u on H is said to be L(®-harmonic if L(®u = 0 in the sense of
distributions. (For details, see Section 2.) Put m(a) = min{1,1/(2a)}. For a real
number o > —m(a), let By (o) be the set of all L(®)-harmonic functions u € C''(H)
with the norm

[l By (o) == [u(0, )]+ sup 7 {t"/CY|Vu(x, 1) + t|opu(w, 1)} < oo, (1.2)
(z,t)eH

where V, = (01,...,0,). We call B,(o) the a-parabolic Bloch type space. Since
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B, (o) contains constant functions, we may identify B (c)/R 2= By (), where
B.(0) := {u € By(o) : u(0,1) = 0}.

The a-parabolic Bloch type space B, (¢) is introduced and studied in [4]. In
this paper, we continue to investigate further properties of this space. In particular,
we study properties of conjugate functions on B, (o). In [3], the notion of conjugate
functions on a-parabolic Bergman spaces was introduced and studied (we call them
a-parabolic conjugate functions). For 1 < p < oo and A > —1, the a-parabolic
Bergman space b, () is the set of all L{®)-harmonic functions on H which belong
to LP(H,t \dV'), where dV is the Lebesgue measure on H. In [3], we studied the
existance of a-parabolic conjugate functions V of u € b (\), and we also gave
estimates of the norms of V. Furthermore, as an application, we showed that
tangential derivative norms of u € b (\) are comparable to the norms of u. The
a-parabolic Bloch type space B, (o) can be considered the appropriate limit of the
a-parabolic Bergman space bf (\) as p — oo by [4, Theorem 3|. In this paper,
we also introduce the notion of a-parabolic conjugate functions of u € B,(0),
and we study properties of them. Using these results, we shall give estimates of
the tangential derivative norms of u € B, (o). Moreover, we shall give inversion
theorems, that is, for a function V', we construct a function u € ga(cr) such that
V' is an a-parabolic conjugate function of u.

We describe the main results of this paper. We begin with recalling the
definition of conjugate functions of usual harmonic functions with (n+1)-variables.
For a harmonic function u on H, a vector-valued function V' = (vy,...,v,) on H
is called a harmonic conjugate of u if v; € C*(H) and V satisfies the following
generalized Cauchy-Riemann equations:

Owvj = Oju, Ogvj = 0ju, 1<j, k<m, (1.3)
and
*8,57.14 = Z 8jvj (14)
j=1

(see [9]). When o = 1/2 and o = 0, it is known by [4, Remark 3.3] that B, 2(0)
coincides with the classical harmonic Bloch space of Ramey and Yi [8]. In [8],
properties of harmonic conjugates of u € By/2(0) are studied and estimates of
the tangential derivative norms of u are given. As in the definition of a-parabolic
conjugate functions on b2 () of [3], we introduce the notion of conjugacy to B, (o).
In B, (¢), we can not obtain similar generalization to bE, (A), because the case o = 1
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is critical. However, we shall observe that the case o = 1 is referred to the case
0 < a < 1. First, we give the definition of a-parabolic conjugate functions on
Buo(o) with 0 < a < 1.

DEFINITION 1. Let 0 < o < 1 and o > —m(«). For a function u € B, (o),
we shall say that a vector-valued function V' = (v1,...,v,) on H is an a-parabolic
conjugate function of u if v; € C*(H) and V satisfies the following equations:

thvj = 8ju, ﬁkvj = 8jvk, 1 S j, k S n, (Cl)
and
'Dtl/a_lu = Z 8jvj, (02)
j=1
where Dy = —0; and ’Dt1 /e=1 45 the fractional differential operator defined in
Section 2.

We remark that when a = 1/2, Equations (C.1) and (C.2) coincide with
the generalized Cauchy-Riemann equations (1.3) and (1.4). In [3], the previous
generalization to the a-parabolic Bergman spaces was given by (C.1) and (C.2)
for all 0 < @ < 1. When 0 < a < 1, properties of a-parabolic conjugate functions
are given in Theorem 1.

THEOREM 1. Let 0 < o < 1, 0 > —m(a), and u € Bo(o). Put n =
1/(2a) — 14 0. If n > —1/(2c), then there exists a unique a-parabolic conjugate
function V = (v1,...,v,) of u such that v; € Ba(n). Also, there exists a constant
C =C(n,a,0) > 0 independent of u such that

C M ullato) < D Mojllat < Cllullsa o). (1.5)
j=1

The condition of 7 in Theorem 1 is equivalent to 0 > 1 —1/a. If 0 < @ <
1/2, then this condition is always satisfied for all ¢ > —m(«a). However, when
1/2 < a < 1, we do not know whether Theorem 1 can be extended to the full
range o > —m(a).

When a = 1, we shall introduce the notion of conjugacy to Bi(o). If o = 1,
then the condition n > —1/(2«) is equivalent to ¢ > 0. Thus, when o = 1 and
o > 0, we construct a counterpart of Definition 1.
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DEFINITION 2. Let @« = 1 and o > 0. For a function v € B;(o), we shall
say that a vector-valued function V' = (vi,...,v,) on H is a 1-parabolic conjugate
function of u if v; € C'(H) and V satisfies the following equations:

—Dvj; = 0ju, Okvj = vy, 1<j, k<n, (C1)

and

u— hmuOt Z@UJ (C.2)

We note that lim;_,o u(0,¢) = 0 for u € b? (A), so that (C.2’) can be replaced
by a straightforward generalization v = Z;L=1 O;jv; of (C.2). However, if u €
Bu (o), then lims oo u(z,t) = lims,oo u(0,t) for all x € R™ and yet the limit
need not vanish (see Remark 5.6 and Example 5.7). So, we have to subtract
lim;— oo w(0,t) from u as in the left hand side of (C.2'). We give properties of
a-parabolic conjugate functions on B, (o) for a = 1.

THEOREM 2. Leto >0 andu € By(o). Putn:=1/(2a)—1+0 witho = 1.
Then, there exists a unique 1-parabolic conjugate function V.= (v1,...,v,) of u
such that v; € Bi(n). Also, there exists a constant C = C(n,o) > 0 independent
of u such that

C M ullg, o) < D 105llsy my < Cllulls, (o)- (1.6)
j=1

As an application of Theorems 1 and 2, we give estimates of tangential
derivative norms on B,(c). For a multi-index v = (y1,...,7,) € N7, let
Y = 0" ...0)", where Ny := N U {0}. Furthermore, for a function f on H,
let || f||Le = ess sup{|f(x,t)|: (z,t) € H}.

THEOREM 3. Let 0 < a <1, 0 > —m(a), and u € Bo(c). Then, for each
m € N, there exists a constant C = C(n,«,0,m) > 0 independent of u such that

C M ullpaioy < Y ™/ E* 7 ul| = < Cllulls, (o) (L.7)
[v|=m

We describe the construction of this paper. In Section 2, the definition of L(®)-
harmonic functions is presented. Furthermore, fractional calculus is important
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tool for analysis of a-parabolic conjugate functions. Therefore, we also recall the
definition of fractional differential operators and describe fundamental results of
them. In Section 3, we list basic lemmas which shall be used in later arguments.
In particular, we present some properties of the fundamental solution of L()
and basic results concerning B, (o)-functions. In Section 4, we study a-parabolic
conjugate functions on B, (o) with 0 < o < 1, and give the proof of Theorem 1.
In Section 5, we also prove Theorem 2 which is a counterpart of Theorem 1 to the
case of a = 1. In Section 6, we give estimates of tangential derivative norms on
lgoé(o)7 that is, we give the proof of Theorem 3. In Section 7, we study inversion
theorems. In Theorems 1 and 2, we construct a-parabolic conjugate functions of
B, (0)-functions. In this section, for a vector-valued function V', we construct a
function u € By (o) such that V is the a-parabolic conjugate function of w.
Throughout this paper, C' will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries.

In this section, we describe definitions of L(®)-harmonic functions and frac-
tional differential operators.

Let C°(H) C C(H) be the set of all infinitely differentiable functions on H
with compact support. Then, for 0 < o < 1, the convolution operator (—A,)® is
defined by

(—Az)*P(x,t) = —Ch o lim (V@ +y,t) =, )|y "y (2.1)
ly|>6

for all ¢y € C®(H) and (z,t) € H, where C,, , = —4%7~"/?T((n+2a)/2)/T'(—a) >0.
Let L® := —8, + (=A,)* be the adjoint operator of L(®. Then, a function
u € C(H) is said to be L(®-harmonic if u satisfies L(®u = 0 in the sense of
distributions, that is, [, [u- L(®9|dV < oo and [, u - L®pdV = 0 for all 1 €
C°(H). By (2.1) and the compactness of supp(¢) (the support of ), there exist
0 < t; <ty < 0o and a constant C > 0 such that

supp(L(®y) € S := R™ X [t1, ts] (2.2)
and
|Ly(z, 1) < C(1+|z))~ 2 for (z,t) € S. (2.3)

Hence, the condition [}, |u- L@ y|dV < oo for all ¢ € C°(H) is equivalent to the
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following: for any 0 < t1 < t3 < o0,

/t/ lua, )|(1 4 |2]) =2 dadt < oo. (2.4)

When a = 1, LY = 9, — A, is the usual heat operator. For more details of
L(®)_-harmonic functions, see [6].

We describe the fractional differential operators. Our definition of fractional
differentiation follows that of [5]. Let Ry = (0, 00). For a real number x > 0, let

FC"={peCRy):p(t) = Ot (t — o) for some £’ > kY. (2.5)
For a function ¢ € FC™", we can define the fractional integral D; "¢ of ¢ by

D; "p(t) := ﬁ /000 ™ ro(r +t)dr, teR,. (2.6)

We put FC° := C(R,) and DY := . Moreover, let

FC" = {p: ol € FemIrl=m, (2.7)

where [k] is the smallest integer greater than or equal to k. Then, we can also
define the fractional derivative Dfp of ¢ € FC" by

Dig(t) =D, "7 (—a,)Mp(t), teR,. (2.8)

Clearly, when x € Ny, the operator Dj coincides with the ordinary differential
operator (—0:)". For a real number s, we may call both (2.6) and (2.8) the
fractional derivatives of ¢ with order x. And, we call D} the fractional differential
operator with order k. We use the following lemma in our later arguments.

LEMMA 2.1 ([1, Proposition 2.1] and [2, Proposition 2.2]).  For real numbers
k,v > 0, the following statements hold.

(i) If p e FCTF, then D, "p € C(R4).

(i) If p € FCT"7Y, then Dy "D; Yo =D, " Y.

(iii) If OFp € FC™" for all integers k, 0 < k < [k] — 1 and 8{“3@ €
FC~URI=R=Y “4hen DED; Vo = Dy VD = D V.

(iv) If 3tk+(y]<p e FCWI=) for all integers k, 0 < k < [r] — 1, 8[”1—%90 €
FCURI=R) for all integers ¢, 0 < ( < [v] — 1, and 8[K]+Mgo €
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Fe~Irl=m=(1=1) 4hen DEDYp = DEFY .
(v) If 8tM<p e FCIR1 and limy_.o 0Fp(t) = 0 for all integers k, 0 < k <
[k] — 1, then D; "Dfy = ¢.

3. Basic results.

In this section, we present several basic results, which will be used in later.
We begin with recalling the definition of the fundamental solution of the operator
L@, For z € R", let

W(a)(x’t) — ) (2m)n /Rn exp(—t|§|2a +ix-€)dE (t>0)
’ (t<0),

where z-¢ denotes the inner product on R” and [¢] = (£-€)'/2. The function W ()
is the fundamental solution of L(®) and it is L(®)-harmonic on H. We note that

W >0on H and W (z,t)dz =1 for all 0 < t < oo. (3.1)
Rn

Furthermore, W(®) € C*(H). Several properties of fractional derivatives of W (®)
are presented in the following lemma.

LEMMA 3.1 ([1, Theorem 3.1]). Let 0 < o < 1 and & > —n/(2a). Let
v € Ny be a multi-index. Then, the following statements hold.

(i) The derivatives OYDEW @) and DEOJW ™) can be defined, and the equation
IIDEW (@) = DEIIW @ holds. Furthermore, there exists a constant C' =
C(n,a,v,k) >0 such that

OIDEW ) (2, 1)] < (o 4 o)~/
for all (z,t) € H.
(i) If a real number v satisfies the condition v+ k > —n/(2a), then the deriva-
tive DY OYDEW (@) s well defined, and

DYOIDEW N (2, t) = YDy W@ ()

for all (z,t) € H.
(iii) The derivative 0)DFW @) is L) -harmonic on H.
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We also need the following lemma.

LEMMA 3.2 ([3, Lemma 4.1]). Let 0 < a < 1. Then,
(DY + AW (2,t) =0

for all (z,t) € H.
For a multi-index v € Nj and a real number v > —n/(2a), in view of Lemma
3.1 (i), we define a function w2 on H x H by

Wl (@, t5y,5) = YDYW N (@ —y,t + 5) = DYW N (—y, 1+ 5)

for all (x,t),(y,s) € H. The function w)" shall be used for defining conjugate

functions on B, (o). Several properties of w2 are the following.

LEMMA 3.3 ([4, Lemma 5.6]). Let0<a<1andv>—-n/(2a). Lety € Ny
be a multi-index. Then, the following statements hold.

(i) For every (z,t) € H, there exists a constant C' = C(n,a,vy,v,x,t) > 0 such
that

62 @, 5, < O(1+ 54 [y )= eI =v=m()
for all (y,s) € H.

(i) Let p > =1 and put n := |v|/(2a) + v —p— 1. If n > —m(a), then there
exists a constant C' = C(n, o, 7y, v, p) > 0 such that

/ ’wl’”(m,t;y,sﬂs”dV(y, s) < CFyp(x,t)
H

for all (x,t) € H, where

1+ |o|~29m 4 ¢=n (0>n>-m(a))
Fop(z,t) :== ¢ 14+ 1log(1 + [z]) + |logt| (n=0) (3.2)
14+t (n>0).

We also present basic properties of fractional derivatives of B, (o)-functions.

LEMMA 3.4 ([4, Proposition 5.4]). Let0 < a <1, 0> —m(a), and kK =0
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or k > max{0,—c}. Let v € N be a multi-index. If u € By (o), then the following
statements hold.

(i) The derivatives 97Dfu and DFIJu can be defined, and the equation
O1Dfu = DFOJu holds. Furthermore, if (v,k) # (0,0), then there exists
a constant C' = C(n,a,0,7,k) > 0 such that

’a;ypfu(x7 t)‘ < Ct_(l')’l/(Qo‘)-'rR-‘rU) ||u||3a ()

for all (z,t) € H.
(ii) If v > max{0, —o}, then

DY) Dru(x,t) = 0Y DY o u(x, t) (3.3)

Furthermore, if v < 0, then (3.3) also holds whenever v < ¢ and v + K >
max{0,—o}.
(iii) The derivative 8)Dfu is L) -harmonic on H.

In [4], the following result is also given, which is the reproducing formula by
fractional derivatives on B, (o).

LEMMA 3.5 ([4, Theorem 5.7]). Let 0 < a <1 and 0 > —m(«). If real
numbers k € Ry and v € R satisfy k > —o and v > o, then

21~e+u

u(z,t) — u(0,1) = NCE)

[ Dfu e @t )5 AV () (3)
H

for allu € B,(o) and (z,t) € H. Furthermore, (3.4) also holds for v > max{0, 0}
when k = 0.

As an application of the reproducing formula, estimates of the normal deriva-
tive norms on B, (o) are given.

LEMMA 3.6 ([4, Theorem 5.9]). Let0 < o <1 and o > —m(a). Then, for
every real number k > max{0, —c}, there exists a constant C' = C(n,a,0,k) > 0
independent of u such that

CMullg, (o) < 1" Diull e < Cllulls, (o)

for all u € By(o).
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In our later arguments, we use the following lemma frequently.

LEMMA 3.7 ([7, Lemma 5]). Let6,ceR. If0>—1 and 0 —c+n/(2a)+1<0,
then there exists a constant C' = C(n,«a,0,¢) > 0 such that

]
S
dv , :Cte—c+n/(2a)+1
/Hu+s+|x—y|2a>c ®5)

for all (z,t) € H.

Let b2° be the set of all L(®)-harmonic functions u on H with u € L (H,dV).
We also present the following lemma, which is [6, Theorem 4.1].

LEMMA 3.8 ([6, Theorem 4.1]). Let 0 < o < 1. Then, everyu € by satisfies
the following Huygens property, that is,

n

u(at+9) = [ ule— g WOy = [ )W @ - y.s)dy
holds for all x € R™ and 0 < s, t < co.

4. Conjugate functions on By (o) with 0 < o < 1.

In this section, we study conjugate functions of Ba (o)-functions with 0 <a <1
and give the proof of Theorem 1. First, we consider the integral operator stated
below. Let f be a function on H. For 0 < o < 1, v € N}, v > —n/(2a), and
p € R, the integral operator 117" is defined by

I (e, 1) = / Fly, $)wi (2,6, 5)5"dV (3, 5) 1)
H

for all (z,t) € H, whenever the integral is well defined. The next proposition is
important for investigation of conjugate functions.

PROPOSITION 4.1.  Let0 < a < 1, 0 > —m(«), and u € Bo(c). For vy € Ny,
v>-—n/(2a), and p > =1, put n:=|v|/(2a) +v —p—1. If n > —m(c), then the
following statements hold.

(i) The function TP (57t Dyu) belongs to Bu(n). Furthermore, there exists
a constant C' = C(n,a, 0,7,v, p) > 0 independent of u such that

HHZ/””’(S"HDW < COllullg, (0)-

)HBa(n)
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(ii) Let 8 € N§ and x > 0 be a real number such that k > —n. Then, the
derivatives 0Dy (1P (s"HDyu)) and DEdS (1LY (s T1Dyu)) can be de-
fined, and the equation 02Dy (1LY °(s°HDyu)) = DEOS(LVP (s Dyu))
holds. Furthermore, if (8,k) # (0,0), then there exists a constant C =
C(n,a,0,7,v,p,8,k) >0 such that

|07 D (I (7 Dyw)) (2, 1) | < Ct= BV EOHED |5

for all (z,t) € H.

ProOOF. (i) Put f(y,s) = s°T'Dyu(y,s) for all (y,s) € H. Suppose 1 :=
|vl/(2a) + v — p — 1 > —m(a). Then, by (i) of Lemma 3.3 and Lemma 3.7,
IIy"P f(x,t) is well defined for every (z,t) € H. Furthermore, we show that
m»rf e l:);a(n) and there exists a constant C' > 0 independent of u such that
T2 fllg. oy < Cllulls, (o). In fact, by (ii) of Lemma 3.3, for every 0 < t; <
ty < 0o, we have

to
/ / [T f (a0, 1)] (1 + |2]) "> *dadt
t1 n

ta
< Clulls, o) / / Fo(a, £)(1 + )" ddt < oo,
tl n

where F, , is the function defined in (3.2). Therefore, ITY** f satisfies the condi-
tion (2.4). Thus, by the definition of w¥ (x,t;vy, s), HL* f is L(*®)-harmonic and
Iy»* f(0,1) = 0. Moreover, differentiating through the integral (4.1), we obtain
by Lemma 3.1 (i) that there exists a constant C' > 0 independent of u such that

002w, 0)] < [ 1091105, 020 W e - it 4 5)[s7dV (3.)
H

SP
< Ollul|g, (o) /H G+ 5+ = gPo) D GaT

~dV (y, s)

for all (z,t) € H. Therefore, by the condition n > —m(«) and Lemma 3.7, we
obtain

|0, f(2,1)] < CE= OV CD |yl .

Similarly, we get



498 Y. HisHikAwA, M. NisH1O and M. YAMADA

|01 £ (2,1)] < Ot lu 5, (o)

Hence, we obtain TI"* f € Ba(n) and [T £, () < Cllulls, (o0)-
The second assertion is an immediate consequence of (i) of Lemma 3.4 and
(i) of Proposition 4.1. O

We also show the following proposition.

PROPOSITION 4.2. Let 0 < o < 1, 0 > —m(a), and u € By(0). Put n :=
1/(2a) —=1+40. Ifn > —1/(2a), then there exists a unique (vector-valued) function
V= (v1,...,vn) such that v; € B.(n) and V satisfies Equation (C.1). Also, there
exists a constant C = C(n,a,0) > 0 independent of u such that ||vj|g, ) <
Cllull, (0)-

ProoOF. For 1 < j < n, we can define a function v; € ga(n) by

2U+3
vj(z,t) = U+3 / Diu(y, s )w”’(])’gﬂ(x t;y,s)s U+2dV(y s)
2U+3 v(4),0+1,1( o0+1
= —mﬂa ’ ’ (S Dtu)7 (4.2)

where v(j) = (;1,...,9;n) € Ni and dj; is the Kronecker ¢. In fact, by the
hypothesis ¢ > —m/(a), the condition n = 1/(2a) — 1+ o > —1 always holds.
Therefore, we have n > —m(«a). Hence, (i) of Proposition 4.1 implies that v; €
B, (n) and there exists a constant C' > 0 independent of u such that

10511 B0 (m) < CllullBa(0)- (4.3)

We show that the functions v and V' = (vy,...,v,) satisfy Equation (C.1).
Differentiating through the integral (4.2), we obtain from Lemma 3.5 that

20+3
—Dyv;(x,t) = 7/ Dyuly, 8)0., D W ) (z — y, t + 5)s72dV (y, 5)

= Oju(z,1t).

Since the equation Jyv; = 0Ojui is clearly satisfied by the definition (4.2), the
functions u and v; satisty (C.1).

To show the uniqueness, we suppose that there exists a function U =
(u1, ..., up) with u; € By (n) and that u and U satisfy Equation (C.1). Then,
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for each 1 < j < n, by the first inequality of Lemma 3.6 with x = 1 and Equation
(C.1), we have

||1}j — ujHBa < CHt1+nDt — Uy HL°° = C’Ht“‘"(@ju - @u)”Lm =0.

Since ||-||g,, () is the norm on B, (1), we obtain vj(z,t) = uj(x,t) for all (x,t) € H.
It follows that the existence of the function V' = (v1,...,v,) with v; € By(n)
satisfying Equation (C.1) is unique. d

Now, we give the proof of Theorem 1.

PrOOF OF THEOREM 1. By Proposition 4.2, there exists a unique function
V = (v1,...,v,) such that v; € Ba(n) and V satisfies Equation (C.1). Further-
more, the second inequality of (1.5) has already obtained.

We show that the functions u and V satisfy Equation (C.2). Differentiating
through the integral (4.2), we have

Z dv(x,t)

26+3
To73) / Dyu(y, s)ADITIW ) (2 — y t + 5)s7T2dV (y,5).  (4.4)

Let 1/a—1 ¢ Ny. Then, by the definitions (2.6) and (2.8), Lemma 3.5 also implies

Dl/a_lu(l' £ = 1 20+3 /007(1/%117(1#171)—1
t ’ [([1/a—1] - (1/a—1))T(c + 3)

></ Diuly, S)DP/QAHHQW(“)(x—y,t—i—T—i—s)s‘H‘ZdV(y,s)dT.
H
(4.5)

We claim that we can apply the Fubini theorem to the right-hand side of the
equality (4.5). Indeed, by (i) of Lemma 3.1 and (i) of Lemma 3.4, the condition
17 > 1/(2a) and Lemma 3.7 imply that

S
/ 7_(1/o¢—1"|—(1/o¢—1)—1
0

/ Dy, s)||[DIY T TEPW O (2 — gt 47 4 5)|s7H2dV (y, 5)dr
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< C/OOTH/afl]f(l/afl)fl
0

S
. /H (t+7+ s+ |z —y|2o)n/Qa)t I azllto+2 v (y, s)dr

i 1
n/a«a-11-1/a—-1)-1__...-
<C’/0 T (t )Tl/a 1 a_dT<OO.

Therefore, (4.5) and the Fubini theorem show that

20+3

1/a—
Dt/ 1U($,t> = 0_7%

/ Diu(y, )Dy W (@ =y, t + )72V (y, ).

Hence, by (4.4) and Lemma 3.2, the functions v and V satisfy (C.2). The proof
of the case 1/a — 1 € N is easy. Thus u and V satisfy Equation (C.2).

We show the first inequality of (1.5). By the first inequality of Lemma 3.6
with kK = 1/a — 1 and Equation (C.2), we have

lulls, () < Clle/> oD/ M|
<O [T 00| <O 1)l Ba -
j=1 j=1

Hence, this completes the proof of Theorem 1. O

5. Conjugate functions on By (o) for a = 1.

By Theorem 1, we give properties of conjugate functions on By (o) with 0 <
«a < 1. In this section, we give the proof of Theorem 2. When o = 1, generalization
of conjugacy to Bi(c) is not given by (C.1) and (C.2). For a real number 6 > 0
and a function u on H, let us(x,t) = u(x,t + 0) for (x,t) € H. We show the
following lemmas, which are only used to the case a = 1.

LEMMA 5.1. Let 0 < a <1, 0 >0, u € By(o), and (x,t) € H. Then,
limg_ o u(x, s) exists. Furthermore, if k € N, § > 0, and ¢1, ca > 0, then

us(z,t) — lim u(zx,s)

§— 00

- M/ Dyus(y, c18)W ™ (w =y, t + cas)s" 1V (y, 5). (5.1)
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PRrROOF. First, we show that the integrand in the right-hand side of the
equality (5.1) belongs to L*(H,dV). In fact, (3.1) and (i) of Lemma 3.4 imply
that

[ Pbusty. croW @ — ot + )5t~ av (,5)
H
o0
< C/ (c15+ 0)~(kto)gh—1 W (& — y,t + cos)dy ds
0 R®

< C/ (crs+6)" 1 ds < oo, (5.2)
0

because ¢ > 0. Thus, the Fubini theorem and Lemma 3.8 show that
/H DFus(y, c18)W (2 — y,t + ca5)s" 1V (y, s)
= /000 o DFus(y, c18)W ) (2 — y, t + cps)dy s¥ds
= /Ooo Dhus(x,t + (¢ + ¢2)s)s* ds. (5.3)
We claim that lim,_, o u(z, s) exists and the right-hand side of (5.3) is equal to
T(k)(c1 + c2) % (us(z,t) — limg_ o u(w, s)). In fact, if & = 1, then (5.2) shows that

the right-hand side of (5.3) with & = 1 converges, that is, lims_ ., u(x, s) exists
and

/OO Dyug(x,t + (c1 + c2)s)ds = (c1 + cz) ™ (w(m,t) — lim u(z, s))
0

§—00

For induction, we assume that the right-hand side of (5.3) is equal to I'(k)(c; +
c2) " F(us(x,t) — lims_ o u(z, s)). Then, integrating by parts, we have

/ DFlus(x,t + (1 + co)s)s ds
0
= —(c1+ )t [Dfutg(:at—i— (1 + 62)5)31“]80

+ (a1 + 02)_1k/ DFus(z,t + (c1 + c2)s)s" Lds. (5.4)
0

By (i) of Lemma 3.4, the first term of the right-hand side of (5.4) is equal to 0.
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Therefore, by assumption, we obtain the right-hand side of (5.4) is equal to
D(k 4 1)(e1 + co) ™ D (us(2, t) — lim,_ o u(w, s)). This completes the proof. [

LEMMA 5.2. Let0<a<1,0>0,ué€ B,(o), and (x,t) € H. Then, the
following statements hold.

(i) Ifk, meN, § >0, and c1,c2 > 0, then
us(z,t) — lim u(zx, s)

(et )

Tk + ) / DFus(y, c18)DIW ) (& — y, t + co8)sF ™ LdV (y, 5).

(5:5)
(ii) If K > 0 and v > o, then

u(z,t) — lim u(z,s)

55— 00

2)-c+u
- DK Dl/ () _ k+v—1 ]
7 [ DR D@ — 4 )Y (5). (56

ProoF. (i) Let k, m € N. Then, Lemmas 3.1, 3.4 and 3.7 imply that
/ D us(y, c1s) DI W (@ =y, t + cas)sE+™ =V (y, s)
H

(c1s + (5) (1+0) gm
=0 dv < 0.
/ (t+ cas+ |z — |2a)n/(20¢)+m (y,8) < o0

Hence, the integrand in the right-hand side of the equality (5.5) belongs to
LY(H,dV).

We show the equality (5.5) by the induction on m. Let m = 1 and k € N.
Then, integrating by parts, we obtain from Lemmas 3.1, 3.4 and 5.1 that

/ DEus(y, ers) DIV (@ — g, t + cas)s*dV (y, 5)

/ / DEus(y, c1s)DaW @) (z — y,t + cas)sds dy

1
= - = [Dyus(y, )W (z —y, t+ ca5)s"]

R

o0
o 4y
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C1 i
SO D sl s W oyt cas)shs dy
2 Jrn Jo

k; oo
+— / / DFus(y, c18)W ) (x — y,t + c5)s" Lds dy
C2 n Jo

L'(k+1)

= et (W)~ Jm ().

Let m € N be fixed, and assume that the equality (5.5) holds for all k € N.
Then, integrating by parts, we have from Lemmas 3.1, 3.4 and the assumption
that

/ Dfudy, cls)DZ”HW(a)(a: —y,t+ 025)5k+de(y, s)
H

1
= —— [ [Dlus(y. i) D W (@ — .t + cos)s™ ]
2 JRn

oo

o Y

_ C*1/ / Dy us(y, e18) D' W (@ — y, t + co5)s™ ™ ds dy
Co n JQ

k4+m
+
C2

/ / Dyus(y, c18) D' W (= y, t + ca8)s* ™ ds dy
nJo

= — al(k+m+1) (w(x,t) — lim u(x,s))

62(01 + CQ)k+m+1 5—00

(k+m)T'(k+m) (
CQ(Cl + 02)k+m

ug(x,t) — lim u(x,s))

55— 00

I'(k+m+1 .
- W(w(w,t} - Slilglou(x,s)).

Therefore, we obtain that the equality (5.5) with m -+ 1 holds for all k£ € N.
(ii) First, we claim that for each k € N, m > o, and ¢1,¢2 > 0,

(Cl + C2)k+m
I'(k+m)

= u(x,t) — Slirgo u(z, s). (5.7)

/ DFu(y, c18)DIW ) (2 — y, t + co5)s" ™ LV (y, s)
H
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Indeed, by Lemmas 3.1, 3.4 and 3.7, the equality (5.7) follows from Lemma 5.1
and the dominated convergence theorem.

Let x > 0 and v > o. Suppose that x, v ¢ N. Then, the definitions (2.6) and
(2.8) imply that

/ Diuly, s)Dy W (z — y,t + 5)s" T 1V (y, s)
H

1 /°° (] —k—15 k]
= T D" uly, s + m1)dr
Ll o uly,s ¥ m)dn

L T =@ -1
- D N —y,t dry sV
X F(|—V—| . U) A T2 t W ((E Y, + s +7_2) T2 S V(y,S)

1 X Rl —r—1py[x]
= [ D 1 d
~/HF(’VK’-| _H)~/0 1 t u(yv( +7—1)s) T1
o v|—v—1 v
X m/o T2r | Dt( ]W(a)(a: —y,t+ (1 + 12)s)dr
x sFIHIVI=Lqy (g s).

Furthermore, (i) of Lemma 3.1 and (i) of Lemma 3.4 imply that

/H/O Tl(m]_ﬁ_l‘ptmu(y,(l+7'1>3)’d7'1

X / [’4_”_1|DM Wz —y,t+ 1+ DI sy (y, 5)

]’n] k—1
<C —————d7
[k i

]'V]ul

X/o (o (T a0 + o = g O
oo [k]—r—1 oo [v]—v—1
T T.
=C B 2 g
/0 (1_|_Tl)m+a 7'1/0 (1—|—72)_‘7+M To
—o+[v]-1
dV(y,s).
x /H (t+ 5+ |x — y[2o)n/C+] (v, )

Since 0 > 0, k > 0, and v > o, we have

dry sIF1IHVI=Lqy (. s)
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o) Tl]'n]fnfl
————dn <
/0 (]_ +Tl)(n]+0' T1 o0

and

oo TZ]’V]—V—I
— ——dn <
/0 (1 _|_T2)—o+fy" T2 o0,

respectively. Moreover, by the conditions ¥ > ¢ and ¢ > 0, Lemma 3.7 implies
that

s—o‘+]—u'|—l o
,8) < 00.
/H (t+ s+ [z — y[2o)n/Ce)+1v] (¥,9) <0

Hence, by the Fubini theorem, (5.7) shows that
[ Druts 9D =yt )5 v ()
H

_ 1 o T[n‘lfnfl o T[u‘\fufl
_F([HW*H)F([VW*V)/O ! /o ?

< [ DI Nul (14 ) I @ = g+ (14 7))
H

x sIFIHIRI=Lqy (y s)dr dry

“ st f, A

L([x] + [v]) (
(2 + 71+ 7'2)(”]"!‘[1’}

= %(u(m,t) — lim u(x, 8))

u(z,t) — lim u(w,s))dTldTg

§— 00

§— 00

The proof of the case k € N or v € N is parallel to that of the case k, v ¢ N.
(When x € N and v € N, the assertion follows from (5.7) directly.) O

REMARK 53. Let 0 <a<1,0 >0, and u € B,(c). Then, by the proof of
(ii) of Lemma 5.2, when x > 0 and v > o, we have

/ |Dfu(y, s)||Dt”W(a)(m —y,t+ s)}s“Jr”*ldV(y, §) < 00
H



506 Y. HisHikAwA, M. NisH1O and M. YAMADA

for all (z,t) € H.
We give a counterpart of (C.2) for a = 1.

PROPOSITION 5.4. Let o > 0 and u € B; (0). Let V. = (v1,...,vy) be the

function obtained by Proposition 4.2, then u and V satisfy the following equation
(C.2"):

u—hmu(]t Zavj (C.2")

PRrROOF. As in the proof of Theorem 1, differentiating through the integral,
we have from Lemma 3.2 that

20+3 - "
Z 0jv;(,1) “T(0+3) / Dyu(y, 5)A:DF VWM (z — y, t + 5)s72dV (y, 5)

20+3

= m/ Dyu(y, s )DU+2W (x—y,t+s)s U+2dv(ya s).

On the other hand, Lemma 3.5 and Remark 5.3 imply that

20+3
ue) = gy [ Dl DO @yt 495"V (0.5)
o+3
- 27/ Dyuly, s)D7 W (—y, 1+ 5)s72dV (y, 5).
I'(c+3 ’ ’

Since u € By(0), we have from Lemma 5.2 (i) that

t) = Zajvj(m,t) + Slingo u(0, s).

j=1
Hence, v and V satisfy Equation (C.2). O

Now, we give a counterpart of Theorem 1 to the case @ = 1 and complete the
proof of Theorem 2.

PROOF OF THEOREM 2. Let 0 > 0, 7:= —1/2+4 ¢ and u € B (o). Then,
by Proposition 4.2, there exists a unique function V' = (vy,...,v,) such that
v; € B1(n) and V satisfies Equation (C.1). Furthermore, the second inequality of
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(1.6) has already obtained. Thus, by Proposition 5.4, it suffices to show the first
inequality of (1.6). By Equation (C.2’), we have

llullg, (o) < sup t”+1/2|un(m,t)|+ sup t"+1|8tu(:c,t)|

(z,t)€ (z,t)eH

SZ sup t”+1/2‘vw8jvj(x,t)‘+z sup t7110,0;v;(w,t)|.

=1 (z,t)eH j=1 (z,t)eH

Since v; € By (n), we obtain from (i) of Lemma 3.4 that
V050, (2, )] < CtOFD|v; 15, ¢
for all (x,t) € H. Therefore, since 1 +1n = o + 1/2, we have

sup 17T2|V,050;(x, )| < Cllvs s, (-
(z,t)€EH

Similarly, we get

sup 710,00 (z, t)| < CllvsllB, ()
(x,t)eH

Hence, the first inequality of (1.6) is obtained. O
The following lemma is (2) of [4, Lemma 4.2].

LEMMA 5.5 ((2) of [4, Lemma 4.2]). Let0<a <1, 0> —-m(a), vy €Np,
and k € Ng. Then, for every (z,t) € H, there exists a constant C = C(n,a,7,
k,z,t) > 0 such that

‘agpfu(m, t+s)— 8;Dfu(0, 1+ s)| < COllullg, (o) (1 + s)_"y‘/(h)_k_m(o‘)_”

for all uw € By(o) and s > 0.
We give the following remark.

REMARK 5.6. By Lemmas 5.1 and 5.5, if 0 <« <1, 0 > 0 and u € B,(0),
then lim; o u(x, t) exists and lims—, oo w(2, t) = lims—, o w(0,t) for all x € R™.

For 0 < a < 1 and ¢ > 0, we can construct a function u € B, (o) with
lim; o0 u(0,t) # 0. We give the following example.
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EXAMPLE 5.7. For 0 < o <1 and ¢ > 0, we put k := —n/(2a) + 0. Since

o > 0, we can define the derivative DfW(O‘) by Lemma 3.1. Thus, we define an
L{(®)-harmonic function u on H with u(0,1) = 0 by

u(z,t) = DEW ) (z,t) — DEW((0,1), (z,t) € H.
By Lemma 3.1, we also have
Bu(z,t)| < C(t + |z?*) 70 V) < ooV 1<j<n
and
|Opu(z, t)| < C(t+ |z 7t <oto!
for all (x,t) € H. Therefore, we obtain

lullg, o) = sup t7{t"/CY |V u(z, )] + t|0u(z, )|} < oo,

x,t)€E

that is, u € Bo(0). Since Lemma 3.1 also implies that [DEW (@) (0,¢)] < Ct~7, we
have

lim (0,t) = lim DEW @ (0,t) — DEW((0,1) = —=DEW () (0,1).

t—o0o

Furthermore, as in the proof of Lemma 4.1 of [3], we get

1
(2m)"

so we obtain lim; ., u(0,t) = —DFW ) (0,1) # 0.

DyW ) (z,t) =

|t exp(tigl +i - 6) ds

6. Estimates of tangential derivative norms.

In this section, we estimate tangential derivative norms on ga(a) and give
the proof of Theorem 3. We need the following lemma.

LEMMA 6.1. Let0<a <1, o >—m(a), and u € By(c). Then,

(Dtl/a + Ag)u(z,t) =0
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for all (z,t) € H.
Proor. By Lemma 3.5 with K =1 and v = o + 2, we have

2<T+3

(/ Dyu(y, )l 2(z, ty, )57 2dV (y,5).  (6.1)

Differentiating through the integral (6.1), we get

20+3

Agu(w,t) = T(o+3)

/ Dyuly, s)D7 P2 AW N (@ =y, b+ 5)s72dV (y, 5).

By (ii) of Lemma 3.1 and Lemma 3.2, it suffices to show that

20+3

1/
Dt/ U(Q?,t) = m

/ Dyu(y, s)D/ D W ) (z — y,t + 5)s72dV (y, 5).

(6.2)
In fact, when 1/a € N, (6.2) immediately follows by differentiating through the
integral (6.1). Let 1/a ¢ N. Then, (2.6) and (2.8) imply that

Dl/au(x t) = 1 2043 /Oo LI1/al=1/a—1
Y T T([1a] = 1/a) T(e + 3) Jy

X / Diul(y, s)Dt[l/M DIF2W ) (2 — y t + 7+ 5)s7T2dV (y, s)dr.
H

Since o > —m(a) > —1/a > —[1/a], Lemmas 3.1, 3.4 and 3.7 imply that

/ Hl/aH/a*l/ Duly, s)||DLIDIH2W @ (2 —y, t+7+5)|s7F2dV (y, s)dT
0 H

(o]
[/al-1/a—1 S
= C/o ! /H (t+ 7+ 54 |z — y|2o)n/ Ga)to+2t(1/a] dV(y, s)dr

00 7_]—1/0[\—1/(1—1

Therefore, the Fubini theorem shows (6.2). d

Now, we give the proof of Theorem 3. We begin with showing the second
inequality of (1.7).



510 Y. HisHikAwA, M. NisH1O and M. YAMADA

LEMMA 6.2. Let0 < a <1, 0 > —m(a), and u € By(c). Then, for each
m € N, there exists a constant C = C(n,«,0,m) > 0 independent of u such that

[t/ Gt ol . < Cllulls, o)

for all multi-indices v € N§ with |y| =m

PROOF. Let u € By(0), and 7 € N§ with |y| = m. Then, (i) of Lemma 3.4
implies that

|07 u(z,t)| < Ct=/COFTD |y g () =t~ T y||5 )

for all (z,t) € H. Hence, the desired result immediately follows. O
We show the first inequality of (1.7) when m is an even number.

LEMMA 6.3. Let0 < a <1, 0 > —m(a), and u € By(c). Then, for each
even number m € N, there exists a constant C = C(n,a,0,m) > 0 independent of
u such that

lulls.) < C D Nt/ D70 U] e

[v[=m

PROOF. Let u € B, (). Since m € N is even, there exists k € N such that
m = 2k. Then, by the condition 1/a > m(a) > —o, we have from (ii) of Lemma
3.4 and Lemma 6.1 that

’Dzn/(m)u = Df/au = (Dtl/a)ku = (—1)*Aky = Z : 5'J2ku (6.3)
Jiy--ir=1
Therefore, Lemma 3.6 shows that

il o) < Cem/Er oD/, <o YT e g2 ),

Jis--dk=1

<C ) [ECrotu]
Ivl=m

Hence, we obtain the desired inequality. O
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We give the proof of Theorem 3.

PrOOF OF THEOREM 3. By Lemmas 6.2 and 6.3, it suffices to show the
first inequality of (1.7) when m is an odd number. Therefore, suppose that there
exists k € Ny such that m = 2k + 1 and let u € By(0).

Put v(z,t) = Dyu(x,t) — Diu(0,1) and A = o + 1. Then, by (iii) of Lemma
3.4, v is L(®-harmonic on H. Furthermore, we claim that v belongs to B, ()\) and
there exists a constant C' > 0 independent of u such that

C M ullga (o) < 0llBar) < CllullB,(o)- (6.4)
In fact, (i) of Lemma 3.4 shows that
0j0(z,t)| = |9;Dyu(z,t)| < Ct= W/ COTTD |y () = Ct 7 CD ||y
and
0o (x, )] = | Diu(z, )] < Ct~ T g, (o) = Ct -t ull5, (o)

Hence, v belongs to Ba()\) and lvllB.x) < Cllullg,(s). Moreover, Lemma 3.6
implies that

|ull .0y < C[t7+* D] =C sup t771 - t|0,(Dyu)(x, 1))

UHLQO (z,t)eH

<C sup t”+1{t1/(2a)|vx(7)tu)(x,t)| + t|8t(Dtu)($,t)|}
(z,t)eH

=C sup TtV CINV 0z, )] + o (x, )]} = Cllv]ls, -
(z,t)eH

Therefore, we obtain (6.4).
Moreover, we claim that there exists a constant C' > 0 independent of u such

that

|‘tnn/(2oc)+<7+1a;jyv||LOC _ Htm/(2a)+a+1pt(8;u)”Lm < C||tm/(2a)+aa;u”Loo (65)

with |y| = m. Indeed, (iii) of Lemma 3.4 implies that 9u is L(*)-harmonic on H.
Furthermore, (i) of Lemma 3.4 shows that

]6]»(8;u)(m,t)‘ < Ct_((m+1)/(2“)+”)||U|\Ba(a) — O (m/(2a)+0) ,t—l/(za)HuHBa(U)
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and
0407 u)(z, t)| < Ot~/ COTIF) ly|[ 5 oy = Ct~ M/ COFD) =y 5 ().

Therefore, we have 9Ju € B, (0’), where ¢’ = m/(2a) + 0. Hence, Lemma 3.5
implies that

20 +1 7
O0u(r.t) = 0u(0.1) = s [ Ol el ot )5 0V (0.5),
Differentiating through the integral, we get
|0Yv(z, t)| = | De(07u) (2, 1)]

<c / 107u(y, 5)||DF 2 (& — gt + )]s dV (3, 5)
H

dV(y,s).

m (e} o 1
SCHS /(@) a;“HLoo/H (t+ s+ |z — y[2o)ntm)/2a)rot2

Therefore, Lemma 3.7 implies the inequality (6.5).
Now, we show the first inequality of (1.7). By (6.4) and (6.5), it suffices to
show the inequality

”U”Ba()\) <C Z Htm/(2a)+a+18;v||Lm. (66)
lv[=m

Suppose 0 < « < 1. Then, by Theorem 1, there exists an «a-parabolic
conjugate function V' = (v1,...,v,) of v such that v; € ga(n), where n =
1/2a) =14+ X = 1/2a) +0 > 0 > —1/(2a). Thus, by (ii) of Lemma 3.4
and Equation (C.2), we have

Dt(m+1)/(2a)v _ Df/(x—&—l-&-l/a—lv _ Df/a+1 1/a— 1 Z,Z)k/a+1 ;.

Therefore, Lemma 3.6 implies that

o < CHt(m+1)/(2°‘)+)‘D(mH)/ (2a)

[vll5.x Ol

<Y |/ COoRADE et g | (6.7)
j=1
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Furthermore, since (i) of Lemma 3.4 shows that

k/a+1 — « «@
Dy 00, (w, )| < Ot~ A/ GRS @t TED

= Ct_((erl)/(Qa)“)IIijB (>

we obtain ||t(m+1)/(2a)+)‘pf/a+l8jvjHLW < Cllvjlls, ) for all 1 < j < n. Hence,
(6.7) and Lemma 3.6 imply that

[vllB.(n) < CZ lvillB.m) < CZ Htk/aHJme/aﬂva‘HLw-

j=1 j=1

Since Equation (C.1) implies that D;v; = —0;v, we have from (ii) of Lemma 3.4
and (6.3)

””HBQ(A) < C’Z ||tk/a+1+npf/aajv”Lm

j=1

IO DI Ll R AL PN

J=1741,,Jk=1

SC Z ||tk/o¢+1+776;:yv||LOC —C Z ||tm/(2a)+0+1a;,u||[/oo'

[y|=m [v|=m

Hence, we obtain the inequality (6.6).

Suppose @« = 1. Then, since A = ¢ +1 > 0, Theorem 2 implies that there
exists a function V' = (vi,...,v,) with v; € By (n) such that v and V satisfy
Equations (C.1) and (C.2’), where n = 1/2—1+ X = 0+ 1/2. Therefore, Equation
(C.2") implies that

n

DImHI/2, _ pty,  pitl (U ~ lim U(O,t)) =Y Do,

t—o0
Jj=1

Hence, the remaining proof of the case a = 1 is parallel to that of the case
0 < a < 1. This completes the proof of Theorem 3. O
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7. Inversion theorems.

In this section, we give inversion theorems, that is, for a vector-valued function
V= (v1,...,v,) withv; € B, (1), we construct a function u € B, (o) such that V.
is an a-parabolic conjugate function of w.

Let 0 < a < 1and 5 > —m(a). If v; € By(n), then by (iii) of Lemma 3.4, we
can define an L(®)-harmonic function vy on H by

n
vo(x,t) :== Zﬁjvj(x,t), (z,t) € H. (7.1)
j=1
Furthermore, (i) of Lemma 3.4 implies that

v (@, 8)] < Ct= M+ N oI5 (7.2)
j=1

for all (z,t) € H, where C is independent of v;. The function vy defined by (7.1)
shall be used in the proof of our inversion theorems.
First, we give an inversion theorem when 0 < a < 1.

THEOREM 7.1. Let 0 < o < 1. Suppose that a vector-valued function V =
(vi,...,vn) on H satisfies v; € ga(n) and Orv; = Ojuy, for all 1 < j,k < n. Put
o:=1-1/2«a)+n. If o > 0 (thus, n also satisfies the condition n > —m(c)),
then there exists a unique function u on H such that u € ga(o) and V is an a-
parabolic conjugate function of u. Also, there exists a constant C = C(n,a,n) > 0
independent of V' such that

O sl < Mullsaioy < C D Mvjllsam- (7.3)
j=1 j=1

PROOF. Let vy be the L(®)-harmonic function defined by (7.1). Put s :=
1/a—1 > 0. Then the hypothesis o > 0 implies 1/(2«a)+7n > &, that is, vo(z, - ) €
FC™" for each x € R™. Thus, we can define a function ug on H by

uo(x,t) := Dy "vg(x,t) = D[”(Z@ﬂg(m,?ﬁ)), (x,t) € H. (7.4)

We show that the function ug belongs to B, (o). In fact, let 1 < k < n. Then, by
(i) of Lemma 3.4, vy belongs to C°°(H) and
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oo n o
[ ot + ldr <O ol [ 7 O
0 = 0
= Ct"= TN s g, oy = C DY w5, ) (7.5)
j=1 j=1

for all (z,t) € H, where C is independent of V. Therefore, the derivative dyug
exists, that is,

Orug(z,t) = 1 ) / 5 Opvo (2, T + t)dr (7.6)
0

T(k)

and

|Okuo(z, t)] < CtTDN v |lg, oy = Ct7 -t " oI5, )
j=1 j=1
for all (z,t) € H. Similarly, the derivative dyuq exists and
|Opug(a, )| < Ct=C=HCOIENN 5 () = CE7 471> sl 8oy
j=1 j=1
for all (x,t) € H. Hence, we obtain
[wollBo (@) < C Y 1105115 ) (7.7)
j=1

where C' is independent of V. Since vy belongs to C°(H), so dose ug. We claim
that ug is L(®)-harmonic on H. Indeed, let ¢y € C°(H). Then, there exist
0 < t; <ty < oo and a constant C > 0 which satisfy (2.2) and (2.3). Therefore,
similar calculations to (7.5) show that

[ [l 4l [Ew (. 0]V (2.)
HJO

< C/ ¢~ =1/ @t | L@y (2, £)|dV (, t)
H

IN

ta
c/ / ¢~ =1/ @e+m (1 )72 dedt < oo
t1 "
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Thus, [, |uo - Z(")z/}|dV < oo, and the Fubini theorem implies that
/ Uo(x, t) : z(a)¢($a t)dV(x, t)
H

- %’i) /ooo o /H vola, 7 +1)- Z(a)?/f(x, t)dV (z,t) dr =0,

because vg is L(®)-harmonic on H. Hence, ug is L(®-harmonic on H, so uy €

B.(0).
Put u(x,t) := ug(z,t) — up(0,1). Then, u € B, (o), and (7.7) implies

el (o) = 10l Bator < C D I0illsaimys (7.8)
j=1

where C is independent of v;. We show that u and V satisfy Equations (C.1) and
(C.2). By (7.6), the hypothesis dyv; = d;vi, and Lemma 6.1, we obtain

I -
Oku(z,t) = Opuo(z,t) = %/0 1 Zajﬁkvj(xﬂ' +t)dr
j=1
1

k—1
= — Ay +
I'(x) /o ! ove(, 7+ D)7

1 o 11/

- F=1p t)d
F(:‘i)/o T t Uk(z77-+ ) T

= —D; "D vy (,1).

By the definition (2.8), we have
—kyl/a _ m—rkpy—vpll/a] — DRDV
D, "D, "vk(z,t) = D, "D, "D, vp(z,t) =D, "Dy Yp(a,t), (7.9)

where v := [1/a] — 1/a and ¢(z,t) = D[l/(ﬂ vg(z,t). Since (i) of Lemma 3.4
implies |¢(x,t)] < Ct=UV/l+m) for all (x,t) € H and x + v = [1/a] — 1, (ii) of
Lemma 2.1 shows that

Dy D; ¥ p(x,t) = Dy *Vo(a,t) = Dy 1 Do (a, 1)

_ D;([l/a]71)Dt(1/a171pwk(x’t). (7.10)
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Furthermore, (i) of Lemma 3.4 and (v) of Lemma 2.1 also show
p, [VeI=Dpt/el=1p 4 (2,t) = Dyvy(z, t). (7.11)

Hence, (7.9), (7.10), and (7.11) imply Opu(x,t) = —Dvi(z,t), so v and V satisfy
Equation (C.1). Moreover, by (i) of Lemma 3.4, (iii) of Lemma 2.1, and (7.4), we
also obtain

n

1/06—1 K K KTYy—K

Dt u:Dtu:DtuothDt Vo = Vg = E 8jvj,
J=1

so u and V satisfy Equation (C.2).
We show the inequalities of (7.3). By (7.8), it suffices to show the first in-
equality of (7.3). Indeed, Lemma 3.6 and Equation (C.1) imply that

05 llBon) < ClE " Devs || o = O 7050 o

=C sup t7-t"/CV|9u(z, 1) < Cllullp, (o),
(z,t)eH

where C' is independent of v;. Therefore, we obtain the first inequality of (7.3).
Suppose that a function v on H belongs to B,(c) and V is an a-parabolic
conjugate function of v. Then, Lemma 3.6 and Equation (C.2) imply that

lu— |5, () < C|[t/*" 1D u — )|,

=C tl/“_“”’(zajvj —Zﬁjvj) = 0.
j=1 j=1 Les
Hence, we obtain u© = v. This completes the proof. O

Next, we also give an inversion theorem when o« = 1. We remark that if a = 1,
then m(1) = min{1,1/2} = 1/2. Thus, the condition n > —m(1) is equivalent to
1/2+n>0.

THEOREM 7.2.  Suppose that a vector-valued function V. = (vy,...,v,) on
H satisfies vj € Bi(n) and Okvj = Ojuy, for all1 < j, k <n. Puto :=1/2+4n.
If 0 > 0, then there exists a unique function w on H such that u € gl(o') and u
satisfies Equations (C.1) and (C.2"). Also, there exists a constant C = C(n,n) >0
independent of V' such that
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n n
O lvsllsim < lullsyo) < C Y llvjlls, - (7.12)
Jj=1 j=1

PROOF. Let vy be the L(®)-harmonic function on H define by (7.1). And
put

u(z,t) = vo(x,t) —ve(0,1), (x,t) € H.

Then, (i) of Lemma 3.4 implies that
Ok, t)] < CIDN " vjlls, o = O 472 ojlls, )
j=1 j=1

and

O, t)] < CEVEED Y Mo,y = CE7 17y sl

j=1 j=1
for all (z,t) € H. Hence, we obtain u € By (o) and
lulls, ) < C D lvjlls, s (7.13)
j=1

where C' is independent of V.
We show that u and V satisfy Equations (C.1) and (C.2"). By (7.1), the
hypothesis Orv; = 0;v, and Lemma 6.1, we obtain

aku(xvt) = 8k’00($,t) = Zajakvj (x’t) = szk(xat) = _’Dtvk(xat)a
J=1

so u and V satisfy Equation (C.1). Furthermore, by (7.2), we have

lim wu(z,r) = lim vo(x,r) —vo(0,1) = —vp(0,1)
T—00 T—00

for all x € R™. Thus, by Remark 5.6, we obtain

u(w, t) = vo(x,t) —vo(0,1) = Y djvj(,1) + lim u(0,7),

j=1
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so u and V satisfy Equation (C.2').
Moreover, Lemma 3.6 and Equation (C.1) imply that for every j =1,2,...,n,

[0illB, () < Clt" T "Dyvj || Loe = ClIE 705 Lo

=C sup t7-t29u(z,t)| < Cllulls, (o),
(z,t)eH

where C' is independent of V. Therefore, by (7.13), we obtain the inequalities of
(7.12).

To show the uniqueness, we suppose that a function v on H belongs to gl(a)
and v satisfies Equations (C.1) and (C.2’). Then, Equation (C.2") implies that

n n
lu=llg, o) = || D_ v — Y djv; =0.
j=1 j=1 By (o)
Hence, we obtain u = v. This completes the proof. (I
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