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and the Whitehead sister link exterior
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Abstract. We denote by δg (resp. δ+
g ), the minimal dilatation for

pseudo-Anosovs (resp. pseudo-Anosovs with orientable invariant foliations)
on a closed surface of genus g. This paper concerns the pseudo-Anosovs
which occur as monodromies of fibrations on manifolds obtained from the
Whitehead sister link exterior W by Dehn filling two cusps, where the fillings
are on the boundary slopes of fibers of W . We give upper bounds of δg for

g ≡ 0, 1, 5, 6, 7, 9 (mod 10), δ+
g for g ≡ 1, 5, 7, 9 (mod 10). Our bounds im-

prove the previous one given by Hironaka. We note that the monodromies of
fibrations on W were also studied by Aaber and Dunfield independently.

1. Introduction.

Let Mod(Σ) be the mapping class group on an orientable surface Σ. An
element φ ∈ Mod(Σ) which contains a pseudo-Anosov homeomorphism Φ : Σ →
Σ as a representative is called a pseudo-Anosov mapping class. There are two
numerical invariants for pseudo-Anosov mapping classes. One is the dilatation
λ(φ) > 1 (or the entropy ent(φ) = log λ(φ)) which is defined to be the dilatation
λ(Φ) of Φ, and the other is the hyperbolic volume vol(φ) = vol(T(φ)) of the
mapping torus T(Φ). It is natural to ask whether there is a relation between
ent(φ) and vol(φ). Computer experiments in [13] tell us that if we fix a surface
Σ, then pseudo-Anosovs with small dilatation have small volume. This is true in
a sense. In fact it is proved in [6] that pseudo-Anosovs on any surfaces with small
dilatation have bounded volume, see Theorem 1.4.

We denote by δg, the minimal dilatation for pseudo-Anosov elements φ ∈
Mod(Σg) on a closed surface Σg of genus g. A natural question is: what is the
value δg? To discuss the minimal dilatations, we introduce the polynomial

f(k,`)(t) = t2k − tk+` − tk − tk−` + 1 for k > 0, −k < ` < k.
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This polynomial has the largest real root λ(k,`) which is greater than 1 (Theorem
3.2 and Lemma 4.4). For any fixed ` > 0, it follows that k log λ(k,`) converges to
log((3+

√
5)/2) if k goes to ∞ (Lemma 4.16). It is easy to show that δ1 = λ(1,0) =

(3 +
√

5)/2. It was proved by Cho-Ham that δ2 = λ(2,1) ≈ 1.72208 [4]. It is open
to determine the values δg for g ≥ 3. Questions on properties of δg were posed by
McMullen and Farb:

Question 1.1 ([23] for (1), [5] for (2)).

(1) Does limg→∞ g log δg exist? What is its value?
(2) Is the sequence {δg}g≥2 (strictly) monotone decreasing?

Related questions are ones for orientable pseudo-Anosovs. A pseudo-Anosov map-
ping class φ is said to be orientable if the invariant (un)stable foliation of a pseudo-
Anosov homeomorphism Φ ∈ φ is orientable. We denote by δ+

g , the minimal di-
latation for orientable pseudo-Anosov elements of Mod(Σg). The minima δ+

g were
determined for g = 2 by Zhirov [31], for 3 ≤ g ≤ 5 by Lanneau-Thiffeault [17],
and for g = 8 by Lanneau-Thiffeault and Hironaka [17], [9]. Those values are
given by δ+

2 = λ(2,1), δ+
3 = λ(3,1) = λ(4,3) ≈ 1.40127, δ+

4 = λ(4,1) ≈ 1.28064,
δ+
5 = λ(6,1) = λ(7,4) ≈ 1.17628 and δ+

8 = λ(8,1) ≈ 1.12876.
Lanneau-Thiffeault obtained the inequality δ+

5 ≤ δ+
6 ([17]) which implies that

{δ+
g }g≥2 is not strictly monotone decreasing. This leads us to ask an alternative

question related to Question 1.1 (2): is the sequence {δ+
g }g≥2 monotone decreas-

ing? Also, one can ask: which g does the inequality δg < δ+
g hold? It is easy to

see that δ1 = δ+
1 . The equality δg = δ+

g holds for g = 2 [4], [31]. We do not know
whether δ3 = δ+

3 holds or not. By work of Lanneau-Thiffeault and Hironaka, it
follows that δg < δ+

g for g = 4, 6, 8 [17], [9].
To discuss Question 1.1 (1), we recall the previous upper bound of δg given

by Hironaka.

Theorem 1.2 ([9]). (1) δg ≤ λ(g+1,3) if g ≡ 0, 1, 3, 4 (mod 6) and g ≥ 3.
(2) δg ≤ λ(g+1,1) if g ≡ 2, 5 (mod 6) and g ≥ 5.

By using Lemma 4.16 and Theorem 1.2, the following asymptotic inequality holds.

Theorem 1.3 ([9]).

lim
g→∞

sup g log δg ≤ log
(

3 +
√

5
2

)
.

This improves the upper bound g log δg ≤ g log δ+
g ≤ log(2 +

√
3) for any g ≥ 2 by

Minakawa [22] and Hironaka-Kin [10]. Since log δg tends to 0 as g tends to ∞,
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Figure 1. (left) 3 chain link C3. (center) (−2, 3, 8)-
pretzel link or Whitehead sister link. (right) link 62

2.

Theorem 1.3 implies that

lim
g→∞

sup |χ(Σg)| log δg ≤ 2 log
(

3 +
√

5
2

)
,

where χ(Σ) is the Euler characteristic of a surface Σ.
Let N be the magic manifold, which is the exterior of the 3 chain link C3

illustrated in Figure 1 (left). This manifold has the smallest known volume among
orientable hyperbolic 3-manifolds having 3 cusps. Many manifolds having at most
2 cusps with small volume are obtained from N by Dehn fillings, see [20]. In
this paper, we study the small dilatation pseudo-Anosov homeomorphisms which
occur as monodromies of fibrations on manifolds obtained from N by Dehn filling
all three cusps. In [6], Farb, Leininger and Margalit introduced small dilatation
pseudo-Anosov homeomorphisms which we recall below.

For any number P > 1, define the set of pseudo-Anosov homeomorphisms

ΨP = {pseudo-Anosov Φ : Σ → Σ | χ(Σ) < 0, |χ(Σ)| log λ(Φ) ≤ log P}.

They call elements Φ ∈ ΨP small dilatation pseudo-Anosov homeomorphisms.
Theorem 1.3 says that if one takes P sufficiently large, then ΨP contains a pseudo-
Anosov homeomorphism Φg : Σg → Σg for each g ≥ 2. By a result by Hironaka-
Kin [10], ΨP also contains a pseudo-Anosov homeomorphism Φn : Dn → Dn on
an n-punctured disk Dn for each n ≥ 3. Let Σ◦ ⊂ Σ be the surface obtained by
removing the singularities of the (un)stable foliation for Φ and Φ|Σ◦ : Σ◦ → Σ◦

denotes the restriction. Observe that λ(Φ) = λ(Φ|Σ◦). The set

Ψ◦P = {Φ|Σ◦ : Σ◦ → Σ◦ | (Φ : Σ → Σ) ∈ ΨP }

is infinite. Let T (Ψ◦P ) be the set of homeomorphism classes of mapping tori by
elements of Ψ◦P .
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Theorem 1.4 ([6]). The set T (Ψ◦P ) is finite. Namely, for each P > 1, there
exist finite many complete, non compact hyperbolic 3-manifolds M1,M2, . . . , Mr

fibering over S1 so that the following holds. Any pseudo-Anosov Φ ∈ ΨP occurs
as the monodromy of a Dehn filling of one of the Mk. In particular, there exists a
constant V = V (P ) such that vol(Φ) ≤ V holds for any Φ ∈ ΨP .

Agol also proved Theorem 1.4 by using periodic splitting sequences of pseudo-
Anosov mapping tori [3]. By Theorem 1.4, one sees that the following sets U , U+

and V are finite.

U =
{
T(Φ|Σ◦) | g ≥ 2, Φ is a pseudo-Anosov homeomorphism

on Σ = Σg such that λ(Φ) = δg

}
,

U+ =
{
T(Φ|Σ◦) | g ≥ 2, Φ is an orientable pseudo-Anosov homeomorphism

on Σ = Σg such that λ(Φ) = δ+
g

}
,

V =
{
T(Φ|Σ◦) | n ≥ 3, Φ is a pseudo-Anosov homeomorphism

on Σ = Dn such that λ(Φ) = δ(Dn)
}
,

where δ(Dn) denotes the minimal dilatation for pseudo-Anosov elements of
Mod(Dn) on an n-punctured disk Dn.

The previous study [15] by the authors implies that N ∈ V. In fact, the
mapping class φ ∈ Mod(D4) represented by the 4-braid σ1σ2σ

−1
3 has the minimal

dilatation δ(D4) [16]. For the pseudo-Anosov representative Φ of this mapping
class φ, the mapping torus T(Φ|Σ◦) is homeomorphic to N [15]. Moreover for each
n ≥ 6 (resp. n = 3, 4, 5), a pseudo-Anosov homeomorphism Φn : Dn → Dn having
the smallest known dilatation (resp. smallest dilatation) occurs as the monodromy
on a particular fibration on a manifold obtained from N by Dehn filling [15]. See
also work of Venzke [29].

Hironaka obtained Theorems 1.2 and 1.3 by viewing the monodromies of fi-
brations on manifolds obtained from the 62

2 link exterior S3\62
2 by Dehn filling two

cusps. (For the link 62
2, see Figure 1 (right) or Rolfsen’s table [24, Appendix C].)

There exists an orientable monodromy: Σ2 → Σ2, with dilatation δ2 = δ+
2 of a fi-

bration on a manifold obtained from S3\62
2 by Dehn filling two cusps. This implies

that S3 \62
2 ∈ U ∩U+ (Lemma 4.24 or [9]). We see that S3 \62

2 is homeomorphic to
N(−1/2) (see [20, Table A.1] for example), where N(r) is the manifold obtained
from N by Dehn filling one cusp along the slope r. As mentioned, computer ex-
periments say that the pseudo-Anosovs with small dilatation have small volume,
and N is the candidate having the smallest volume among orientable 3-manifolds
with 3 cusps. These results led us to see monodromies of fibrations on manifold
obtained from N by Dehn filling.
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In this paper, we investigate the fibrations on manifolds obtained from the
three 2-cusped manifolds N(−1/2), N(−3/2) and N(2) by Dehn filling 2 cusps.
The second one N(−3/2) is homeomorphic to N(−4) and this is the Whitehead
sister link exterior, i.e, the (−2, 3, 8)-pretzel link exterior (see [20, Table A.1]),
see Figure 1 (center). The manifold N(−3/2) and the Whitehead link exterior
have the smallest volume among orientable 2-cusped hyperbolic 3-manifolds [2].
We shall see that N(−3/2) and N(2) are elements of U+ (Lemmas 4.21, 4.36).
Our main result is that N(−3/2) (resp. N(2)) also admits Dehn fillings giving a
sequence of fibers over the circle, with closed fibers Σg of genus g for each g ≥ 3
such that the monodromies associated to the fibrations satisfy the same asymptotic
inequality as Theorem 1.3. More precisely, we shall prove the following.

Theorem 1.5. Let r ∈ {3/−2, 1/−2, 2}. For each g ≥ 3, there exist Σg-
bundles over the circle obtained from N(r) by Dehn filling all two cusps along
the boundary slopes of fibers of N(r). Among them, there exist the monodromies
Φg(r) : Σg → Σg of the fibrations such that

(1) limg→∞ g log λ(Φg(r)) = log((3 +
√

5)/2),
(2) limg→∞ vol(Φg(r)) = vol(N(r)).

Independently, Aaber and Dunfield have investigated Σg-bundles over the circle
obtained from N(−3/2) by Dehn filling two cusps, see [1] and Remark 4.33. They
have obtained similar results on the dilatation to those given in this paper. The-
orem 1.5 in the case r = −3/2 was also established by [1].

By using monodromies on closed fibers coming from N(−3/2), we find an
upper bound of δg.

Theorem 1.6. (1) δg ≤ λ(g+2,1) if g ≡ 0, 1, 5, 6 (mod 10) and g ≥ 5.
(2) δg ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7.

Theorem 1.7. Let g ≡ 2, 4 (mod 10). Suppose that g + 2 6≡ 0 (mod 4641
(= 3 · 7 · 13 · 17)).

(1) δg ≤ λ(g+2,3) if gcd(g + 2, 3) = 1.
(2) δg ≤ λ(g+2,7) if 3 divides g + 2 and gcd(g + 2, 7) = 1.
(3) δg ≤ λ(g+2,13) if 21 (= 3 · 7) divides g + 2 and gcd(g + 2, 13) = 1.
(4) δg ≤ λ(g+2,17) if 273 (= 3 · 7 · 13) divides g + 2 and gcd(g + 2, 17) = 1.

We will verify the bounds in Theorems 1.6, 1.7 are sharper than the ones in
Theorem 1.2 (see Propositions 4.26 (1), (2) and 4.28). Theorems 1.6, 1.7 do not
include the case g ≡ 3, 8 (mod 10). This is because in this case, N(−3/2) can
not give rise to the monodromy on a closed fiber of genus g whose dilatation is
strictly smaller than the one obtained from N(−1/2), see Proposition 4.26 (3),
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(4). However in the case g = 8, 13, we find a sharper upper bound than the one
in Theorem 1.2. Let λ(x,y,z) be the largest real root of the polynomial

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

Proposition 1.8. (1) δ8 ≤ λ(18,17,7) (≈ 1.10403) < λ(9,1) (≈ 1.11350).
(2) δ13 ≤ λ(27,21,8) (≈ 1.07169) < λ(14,3) (≈ 1.07266).

We turn to the study on δ+
g . We record results by Lanneau-Thiffeault.

Theorem 1.9 ([17]). The minimal dilatation δ+
g for g = 6, 7 is not less

than the largest real root of the following polynomial.

(1) f(6,1)(t) = t12 − t7 − t6 − t5 + 1 if g = 6. (δ+
6 ≥ λ(6,1) ≈ 1.17628.)

(2) f(9,2)(t) = (t4− t3 + t2− t+1)(t14 + t13− t9− t8− t7− t6− t5 + t+1) if g = 7.
(δ+

7 ≥ λ(9,2) ≈ 1.11548.)

Lanneau-Thiffeault asked the following.

Question 1.10 ([17]). For g even, is δ+
g equal to the largest real root of

the polynomial

f(g,1)(t) = t2g − tg+1 − tg − tg−1 + 1?

Namely, is δ+
g equal to λ(g,1) for g even?

An upper bound of δ+
g given by Hironaka is as follows.

Theorem 1.11 ([9]). (1) δ+
g ≤ λ(g+1,3) if g ≡ 1, 3 (mod 6).

(2) δ+
g ≤ λ(g,1) if g ≡ 2, 4 (mod 6).

(3) δ+
g ≤ λ(g+1,1) if g ≡ 5 (mod 6).

We do not know whether there exists an orientable pseudo-Anosov homeomor-
phism of genus g having the dilatation λ(g,1) (appeared in Question 1.10) or not
for each g ≡ 0 (mod 6). (For the recent work on the upper bound of δ+

g for g ≡ 0
(mod 6), see [14].) Under the assumption that Question 1.10 is true, the inequal-
ity δ+

g ≤ δ+
g+1 holds whenever g ≡ 5 (mod 6) and δg < δ+

g holds for all even g, see
[9].

We give an upper bound of δ+
g in the case g ≡ 1, 5, 7, 9 (mod 10) using ori-

entable pseudo-Anosov monodromies coming from N(−3/2).

Theorem 1.12. (1) δ+
g ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7.

(2) δ+
g ≤ λ(g+2,4) if g ≡ 1, 5 (mod 10) and g ≥ 5.
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We shall see that the bound in Theorem 1.12 improves the one in Theorem 1.11
(see Proposition 4.34). Theorem 1.12 (1) together with Theorem 1.9 (2) gives:

Corollary 1.13. δ+
7 = λ(9,2).

Independently, Corollary 1.13 was established by Aaber and Dunfiled [1].
The following tells us that the sequence {δ+

g }g≥2 is not monotone decreasing.

Proposition 1.14. If Question 1.10 is true, then δ+
g < δ+

g+1 whenever
g ≡ 1, 5, 7, 9 (mod 10) and g ≥ 7. In particular the inequality δ+

7 < δ+
8 holds.

Our pseudo-Anosov homeomorphisms providing the upper bound of δg in Theorem
1.6 (1) are not orientable (Remark 4.27). This together with the inequality λ(7,1) <

λ(6,1) = δ+
5 implies:

Corollary 1.15. δ5 < δ+
5 .

We have a question:

Question 1.16. Does the magic manifold N satisfy the following (1), (2)
and (3)?

(1) There exist Dehn fillings of N giving an infinite sequence of fiberings over
the circle, with closed fibers Σgi

of genus gi ≥ 2 with gi → ∞, and with
monodromy Φi so that δgi

= λ(Φi).
(2) There exist Dehn fillings of N giving an infinite sequence of fiberings over

the circle, with closed fibers Σgi of genus gi ≥ 2 with gi → ∞, and with
monodromy Φi having the orientable (un)stable foliation so that δ+

gi
= λ(Φi).

(3) There exist Dehn fillings of N giving an infinite sequence of fiberings over the
circle, with fibers Dni

having ni punctures with ni →∞, and with monodromy
Φi so that δ(Dni) = λ(Φi).

The existence of the manifold satisfying each of (1), (2) and (3) is guaranteed from
Theorem 1.4. Question 1.16 asks whether the magic manifold enjoys all (1), (2)
and (3) or not.

The paper is organized as follows. We review basic facts in Section 2. The
fibered faces and the entropy function for N are described in Section 3. The
(un)stable foliation for the monodromy of the fibration on N is discussed in the
section. We prove theorems in Section 4.
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2. Notation and basic facts.

2.1. Pseudo-Anosov.
The mapping class group Mod(Σ) is the group of isotopy classes of orientation

preserving homeomorphisms of an orientable surface Σ, where the group operation
is induced by composition of homeomorphisms. An element of this group is called
a mapping class.

A homeomorphism Φ : Σ → Σ is pseudo-Anosov if there exists a constant
λ = λ(Φ) > 1 called the dilatation of Φ and there exists a pair of transverse
measured foliations Fs and Fu such that

Φ(Fs) =
1
λ
Fs and Φ(Fu) = λFu.

Measured foliations Fs and Fu are called the stable and unstable foliations or
invariant foliations for Φ. In this case the mapping class φ = [Φ] is called pseudo-
Anosov. We define the dilatation of φ, denoted by λ(φ), to be the dilatation of
Φ.

The (topological) entropy ent(f) is a measure of the complexity of a contin-
uous self-map f on a compact manifold, see for instance [30]. The inequality

log sp(f∗) ≤ ent(f)

holds (see [19]), where sp(f∗) is the spectral radius of the induced map f∗ :
H1(S;R) → H1(S;R) on the first homology group. For any pseudo-Anosov home-
omorphism Φ : Σ → Σ, the equality

ent(Φ) = log(λ(Φ))

holds and ent(Φ) attains the minimal entropy among all homeomorphisms which
are isotopic to Φ, see [7, Exposé 10]. We denote by ent(φ), this characteristic
number. If Φ has orientable invariant foliations, then the equality

log sp(Φ∗) = ent(Φ)

holds, see [25]. The converse is true:

Theorem 2.1 ([17]). A pseudo-Anosov homeomorphism Φ is orientable if
and only if sp(Φ∗) = λ(Φ).

If we fix a surface Σ and take a constant c > 1, then the set of dilatations
λ(Φ) < c for pseudo-Anosov homeomorphisms Φ : Σ → Σ is finite, see [11]. In
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particular the set

Dil(Σ) = {λ(φ) | pseudo-Anosov φ ∈ Mod(Σ)}

achieves a minimum δ(Σ).
Thurston’s hyperbolization theorem [27] asserts that φ is pseudo-Anosov if

and only if its mapping torus

T(φ) = Σ × [0, 1]/ ∼,

where ∼ identifies (x, 1) with (f(x), 0) for a representative f ∈ φ, is hyperbolic.
We denote the hyperbolic volume of T(φ) by vol(φ).

Let us suppose that Σ is a compact orientable surface of genus g and we
consider a pseudo-Anosov homeomorphism Φ : Σ → Σ. The stable foliation for Φ
is denote by F . Let x1, . . . , xm be all the singularities for F in the interior int(Σ),
and p(xi) ≥ 3 denotes the number of prongs of F at xi. Let y1, . . . , yn be all the
singularities for F on the boundary ∂Σ, and p(yj) ≥ 1 denotes the number of
prongs of F at yj . The following Euler-Poincaré formula holds:

m∑

i=1

(p(xi)− 2) +
n∑

j=1

(p(yj)− 2) = −2χ(Σg) = 4g − 4

(see [7, Exposé 5] for example). The pair of integers

(p(x1)− 2, p(x2)− 2, . . . , p(xm)− 2, p(y1)− 2, p(y2)− 2, . . . , p(yn)− 2)

is called the singularity data of Φ.

2.2. Thurston norm.
Let M be an irreducible, atoroidal and oriented 3-manifold with boundary ∂M

(possibly ∂M = ∅). We recall the Thurston norm ‖ · ‖ : H2(M, ∂M ;R) → R (see
[26]). The norm ‖·‖ has the property that for any integral class a ∈ H2(M, ∂M ;R),

‖a‖ = min
F
{−χ(F )},

where the minimum is taken over all oriented surface F embedded in M , satisfying
a = [F ], with no components of non-negative Euler characteristic. The surface F

which realizes this minimum is called a minimal representative of a. For a rational
class a ∈ H2(M, ∂M ;R), take a rational number r so that ra is an integral class.
Then ‖a‖ is defined to be
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‖a‖ =
1
|r| ‖ra‖.

The function ‖ · ‖ defined on rational classes admits a unique continuous extension
to H2(M, ∂M ;R) which is linear on the ray though the origin. The unit ball
U = {a ∈ H2(M, ∂M ;R) | ‖a‖ ≤ 1} is a compact, convex polyhedron [26].

The following notations are needed to describe how fibrations of M are related
to ‖ · ‖.

• A top dimensional face in the boundary ∂U is denoted by ∆, and its open
face is denoted by int(∆).

• C∆ is the cone over ∆ with the origin and int(C∆) is its interior.
• The set of integral classes (resp. rational classes) of int(C∆) is denoted by

int(C∆(Z)) (resp. int(C∆(Q))).

Theorem 2.2 ([26]). Suppose that M is a surface bundle over the circle
and let F be a fiber. Then there exists a top dimensional face ∆ satisfying the
following.

(1) [F ] ∈ int(C∆(Z)).
(2) For any a ∈ int(C∆(Z)), a minimal representative of a is a fiber of fibrations

on M .

The face ∆ in Theorem 2.2 is called a fibered face and an integral class a ∈ int(C∆)
is called a fibered class.

2.3. Entropy function.
Let M be a hyperbolic surface bundle over the circle. We fix a fibered face

∆ for M . The entropy function ent : int(C∆) → R introduced by Fried [8] is
defined as follows. The minimal representative Fa for a primitive fibered class
a ∈ int(C∆) is connected and is a fiber of fibrations on M . Let Φa : Fa → Fa

be the monodromy. Since M is hyperbolic, φa = [Φa] is pseudo-Anosov. The
entropy ent(a) and dilatation λ(a) are defined to be the entropy and dilatation
of φa. For r ∈ Q, the entropy ent(ra) is defined by 1/|r| ent(a). Fried proved
that 1/ ent : int(C∆(Q)) → R is concave [8], and in particular it admits a unique
continuous extension ent : int(C∆) → R. Moreover, he proved that the restriction
of ent to int(∆) is proper, that is ent(a) goes to ∞ as a goes to a boundary point of
∂∆. Note that 1/ ent : int(C∆) → R is linear along each ray through the origin by
definition and cannot be strictly concave for this direction. However Matsumoto
and later McMullen proved that it is strictly concave for other directions.

Theorem 2.3 ([21], [23]). 1/ ent : int(∆) → R is strictly concave.
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By definition of ent, Ent = ‖·‖ ent : int(C∆) → R is constant on each ray in int(C∆)
through the origin. We call Ent(a) the normalized entropy of a ∈ int(C∆). By
Theorem 2.3 together with the properness of ent by Fried, Ent admits a unique
minimum at a unique ray through the origin. In other words, if we regard Ent as a
function defined on int(∆), then it has the minimum at a unique point in int(∆).

The following question was posed by McMullen.

Question 2.4 ([23]). On which ray in int(C∆) does Ent attain the mini-
mum? Is the minimum attained on a rational class of int(∆)?

We consider Question 2.4 for N(−3/2), N(−1/2) and N(2), see Proposition 4.13.

3. Magic manifold.

3.1. Fibered face and entropy function.
The magic manifold N is a surface bundle over the circle ([15] for instance).

In this section, we recall the entropy function on a fibered face for N .
Let Kα, Kβ and Kγ be the components of the 3 chain link C3. They bound

the oriented disks Fα, Fβ and Fγ with 2 holes, see Figure 2 (right). Let α = [Fα],
β = [Fβ ], and γ = [Fγ ]. The Thurston unit ball U for N is the parallelepiped
with vertices ±α = (±1, 0, 0), ±β = (0,±1, 0), ±γ = (0, 0,±1), ±(α + β + γ), see
Figure 2 (left). The set {α, β, γ} is a basis of H2(N, ∂N ;Z). The symmetry of C3

tells us that every top dimensional face is a fibered face. We fix a face ∆ with
vertices α = (1, 0, 0), α + β + γ = (1, 1, 1), β = (0, 1, 0) and −γ = (0, 0,−1). Then

int(∆) = {xα + yβ + zγ | x + y − z = 1, x > 0, y > 0, x > z, y > z}.

Hence if xα + yβ + zγ ∈ int(C∆), then

‖xα + yβ + zγ‖ = x + y − z. (3.1)

Figure 2. (left) Thurston norm ball for N . (right) Fα, Fβ , Fγ

[arrows indicate the normal direction of oriented surfaces].



422 E. Kin and M. Takasawa

Let N (L) be the regular neighborhood of a link L in S3. We denote the tori
∂N (Kα), ∂N (Kβ), ∂N (Kγ) by Tα, Tβ , Tγ respectively. Let xα + yβ + zγ be
a primitive fibered class in int(C∆). The minimal representative of this class is
denoted by Fxα+yβ+zγ or F(x,y,z). Let us put ∂αF(x,y,z) = ∂F(x,y,z) ∩ Tα which
consists of parallel simple closed curves on Tα. We define ∂βF(x,y,z), ∂γF(x,y,z) ⊂
∂F(x,y,z) in the same manner.

Lemma 3.1. Let xα + yβ + zγ be a primitive fibered class in int(C∆). The
number of boundary components ](∂F(x,y,z)) is equal to gcd(x, y + z) + gcd(y, z +
x) + gcd(z, x + y), where gcd(0, w) is defined by |w|. More precisely

(1) ](∂αF(x,y,z)) = gcd(x, y + z),
(2) ](∂βF(x,y,z)) = gcd(y, z + x),
(3) ](∂γF(x,y,z)) = gcd(z, x + y).

Proof. We prove (1). The proof of (2), (3) is similar. We have the meridian
and longitude bases {mα, `α} for Tα, {mβ , `β} for Tβ and {mγ , `γ} for Tγ . We
consider the long exact sequence of the homology groups of the pair (N, ∂N). The
boundary map is given by

∂∗ : H2(N, ∂N ;R) → H1(∂N ;R),

α 7→ `α −mβ −mγ ,

β 7→ `β −mγ −mα,

γ 7→ `γ −mα −mβ .

Hence

∂∗(xα + yβ + zγ) = x`α− (y + z)mα + y`β − (z + x)mβ + z`γ − (x + y)mγ . (3.2)

Since F(x,y,z) is the minimal representative, ∂αF(x,y,z) is a union of oriented par-
allel simple closed curves on Tα whose homology class equals x`α − (y + z)mα ∈
H1(Tα;R), see (3.2). Thus the number of components of ∂αF(x,y,z) equals
gcd(x, y + z). This completes the proof. ¤

From the proof of Lemma 3.1, one sees that the boundary slope of each sim-
ple closed curve of ∂αF(x,y,z) equals −(y + z)/x. Similarly the boundary slope
of each component of ∂βF(x,y,z) (resp. ∂γF(x,y,z)) is given by −(z + x)/y (resp.
−(x + y)/z). Let us define

slope(xα + yβ + zγ) =
(−(y + z)

x
,
−(z + x)

y
,
−(x + y)

z

)
. (3.3)
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This notation slope(·) is needed for the study of Dehn fillings of N in Section 4.
One can compute the entropy for any element of int(C∆(Z)) by using the next

theorem.

Theorem 3.2 ([15]). The dilatation λ(x,y.z) of xα + yβ + zγ ∈ int(C∆(Z))
is the largest real root of the polynomial

P (t1, t2, t3) = −t1 − t2 + t3 + t1t2 − t1t3 − t2t3.

Since P (tx, ty, tz) = tz(tx+y−z − tx − ty − tx−z − ty−z + 1), λ(x,y,z) is the largest
real root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

The minimum of Ent : int(C∆) → R is equals to 2 log(2 +
√

3) and it is
attained by α + β [15]. Since the Thurston norm ball of N has a symmetry,
minEnt does not depend on fibered faces of N .

3.2. Invariant foliations.
Let Φ(x,y,z) be the monodromy of the fibration of N associated to a primitive

fibered class xα + yβ + zγ ∈ int(C∆) and let F(x,y,z) be its fiber. We denote the
stable foliation for Φ(x,y,z) by F(x,y,z). We shall compute the number of prongs at
the singularities of F(x,y,z).

Proposition 3.3. The singularity data of Φ(x,y,z) is given by
(

x

gcd(x, y + z)
− 2, . . . ,

x

gcd(x, y + z)
− 2

︸ ︷︷ ︸
gcd(x,y+z)

,

y

gcd(y, x + z)
− 2, . . . ,

y

gcd(y, x + z)
− 2

︸ ︷︷ ︸
gcd(y,x+z)

,

x + y − 2z

gcd(z, x + y)
− 2, . . . ,

x + y − 2z

gcd(z, x + y)
− 2

︸ ︷︷ ︸
gcd(z,x+y)

)
.

More precisely F(x,y,z) is

(1) x/gcd(x, y + z)-pronged at each component of ∂αF(x,y,z),
(2) y/gcd(y, x + z)-pronged at each component of ∂βF(x,y,z),



424 E. Kin and M. Takasawa

(3) (x + y − 2z)/gcd(z, x + y)-pronged at each component of ∂γF(x,y,z), and
(4) F(x,y,z) has no singularities in the interior of F(x,y,z).

Here we recall the formula of the intersection number i([c], [c′]) between isotopy
classes of essential simples closed curves c, c′ on a torus T . Let p/q, r/s be rational
numbers or 1/0 with irreducible forms and suppose that p/q, r/s are slopes on T

which represent isotopy classes [c], [c′] respectively. Then i([c], [c′]) = |ps− qr|.
Proof of Proposition 3.3. Observe that a fiber F = F(1,1,0) associated

to the fibered class α + β is a sphere with 4 boundary components. The mon-
odromy Φ = Φ(1,1,0) : F → F of the fibration on N is represented by the 3-braid
b = σ2σ

−1
1 σ2. In particular S3 \ b is homeomorphic to S3 \ C3 = N , where b is a

union of the closed braid of b and the braid axis, see Figure 3 (right). We define a
homeomorphism H : S3 \N (C3) → S3 \N (b) as follows. Notice that the link illus-
trated in Figure 3 (center) is isotopic to C3. We cut the twice-punctured disk Fα

bounded by the component Kα. Let F ′α and F ′′α be the resulting twice-punctured
disks after cutting Fα. Reglue F ′α and F ′′α after twisting the neighborhood of F ′α
by 360 degrees in the clockwise direction. Then we obtain the link b whose exterior
S3 \ b is homeomorphic to S3 \ C3, see Figure 3. The inverse H−1 is denoted by
h. We set TH

α = H(Tα), TH
β = H(Tβ) and TH

γ = H(Tγ), see Figure 5. (Then
∂N (b) = TH

α ∪ TH
β ∪ TH

γ .)

Figure 3. (left, center) C3. (right) b. (This figure explains how to obtain H.)

The invariant train track τ which carries the stable lamination `s for Φ is
illustrated in Figure 4 (left). The stable foliation F for Φ has 1 prong at each
component of ∂F and it has no singularity in the interior of F . We consider the
suspension flow induced on the mapping torus N = F×[0, 1]/ ∼, where ∼ identifies
(x, 1) with (Φ(x), 0). One obtains the simple closed curve cα ⊂ TH

α which is the
closed orbit of the singularity of F on ∂F ∩ TH

α . Similarly one has the closed
orbits cβ ⊂ TH

β , cγ ⊂ TH
γ , see Figure 5 (right). (One can draw these closed orbits

by using the orbit of each cusp of F \ τ .) Let Ls ⊂ N be the suspended stable
lamination constructed from `s× I ⊂ F × I by gluing `s×{1} to `s×{0} using Φ.
By construction, Ls is carried by the branched surface Bτ which is obtained from
τ×I by gluing τ×{1} to τ×{0} using Φ. Notice that cα, cβ and cγ correspond to
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the branched loci of Bτ . By work of Fried [8] (see also work of Long-Oertel [18]),
we may assume that the fiber F(x,y,z) is transverse to Ls. The stable lamination
`s
(x,y,z) for Φ(x,y,z) is given by the intersection Ls ∩ F(x,y,z) and `s

(x,y,z) is carried
by the train track Bτ ∩ F(x,y,z). This implies that F(x,y,z) has no singularity in
the interior of F(x,y,z) and we finish the proof of (4).

We consider the number of prongs of F(x,y,z) at each component of ∂αF(x,y,z).
The boundary slope of each simple closed curve of ∂αF(x,y,z) is given by
−(y + z)/x. The desired number is equal to the intersection number

i
(
[c−(y+z)/x], [h(cα)]

)
= i

(
[H(c−(y+z)/x)], [cα]

)
,

where cr is a simple closed curve with slope r ∈ Q ∪ {1/0} on Tα. Observe that
h(cα) has the slope 1/0 (see Figure 5). Hence

i
(
[c−(y+z)/x], [h(cα)]

)
=

∣∣∣∣1 ·
x

gcd(x, y + z)
+ 0 · y + z

gcd(x, y + z)

∣∣∣∣ =
x

gcd(x, y + z)
.

This completes the proof of (1).
One verifies that h(cβ) and h(cγ) have slopes 1/0 and −2/1 respectively. By

using a similar argument, one can prove (2), (3). ¤

We consider the orientability of F(x,y,z) using Theorem 2.1. Alexander poly-
nomial of C3 is

A(t1, t2, t3) = t1t2 + t2t3 + t3t1 − t1 − t2 − t3.

The following is a consequence of Proposition 7.3.10 in [12] which tells us the rela-
tion between the Alexander polynomial of links and the characteristic polynomial
of Φ∗ : H1(Σ;R) → H1(Σ;R) on fibers Σ in the link exteriors.

Figure 4. (left) Invariant train track τ for Φ(1,1,0). (right) 1-pronged singularity.
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Figure 5. (left) h(cα), h(cβ), h(cγ). (right) cα, cβ , cγ .

Lemma 3.4. The spectral radius of (Φ(x,y,z))∗ is the largest absolute value
among roots of

A(tx, ty, tz) = tx+y + ty+z + tz+x − tx − ty − tz.

Proposition 3.5. The pseudo-Anosov homeomorphism Φ(x,y,z) is ori-
entable if and only if x and y are even and z is odd.

Proof. (If part.) Suppose that x and y are even and z is odd. Then

P (tx, ty, tz) = A((−t)x, (−t)y, (−t)z).

This implies that λ(Φ(x,y,z)) = sp((Φ(x,y,z))∗). By Theorem 2.1 F(x,y,z) is ori-
entable.

(Only if part.) Suppose that x or y is odd. We may assume that x is odd. The
number of prongs of F(x,y,z) at each component of ∂αF(x,y,z) equals x/gcd(x, y + z)
which is odd. Thus F(x,y,z) can not be orientable. ¤

3.3. Non-hyperbolic Dehn fillings.
Let M be a 3-manifold with boundary tori T0, . . . , Tj and let ri ∈ Q ∪∞ be

a slope on Ti. Then M(r0, r1, . . . , rj) denotes the manifold obtained from M by
Dehn filling along the slope ri for each i, that is M(r0, r1, . . . , rj) is the manifold
attaching a solid torus T̃i to M along Ti in such a way that ri bounds a disk in T̃i.

Martelli and Petronio classified all the non-hyperbolic fillings of the magic
manifold [20, Theorems 1.1, 1.2, 1.3]. We denote by T0, T1, T2, the boundary tori
of N = S3 \ N (C3).

Theorem 3.6 ([20]). (1) N(p/q) is hyperbolic if and only if

p

q
/∈ {∞,−3,−2,−1, 0}.
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(2) N(p/q, r/s) is hyperbolic if and only if

p

q
,
r

s
/∈ {∞,−3,−2,−1, 0} and

(
p

q
,
r

s

)
/∈

{
(1, 1),

(
− 4,

−1
2

)
,

(−3
2

,
−5
2

)}
.

As a corollary of Theorem 3.6 one has:

Corollary 3.7. If N(p/q, r/s, t/u) is hyperbolic, then

p

q
,
r

s
/∈ {∞,−3,−2,−1, 0} and

(
p

q
,
r

s

)
/∈

{
(1, 1),

(
− 4,

−1
2

)
,

(−3
2

,
−5
2

)}
.

Let us consider the monodromy Φ(x,y,z) : F(x,y,z) → F(x,y,z) of the fibra-
tion on N associated to a primitive fibered class xα + yβ + zγ ∈ int(C∆).
Recall that slope(xα + yβ + zγ) = (−(y + z)/x,−(z + x)/y,−(x + y)/z), see
(3.3). By capping each boundary component of F(x,y,z), Φ(x,y,z) extends
to the monodromy Φ(x,y,z) with a closed fiber F (x,y,z) of the fibration on
N(−(y + z)/x,−(z + x)/y,−(x + y)/z). If the stable foliation F(x,y,z) is not
1-pronged at each component of ∂F(x,y,z), then Φ(x,y,z) is pseudo-Anosov and
λ(Φ(x,y,z)) = λ(Φ(x,y,z)). If F(x,y,z) is 1-pronged at a component of ∂F(x,y,z), then
Φ(x,y,z) may not be pseudo-Anosov.

4. Hyperbolic Dehn fillings N(−3/2), N(−1/2) and N(2).

4.1. Thurston norm balls of N(−3/2), N(−1/2) and N(2).
Let N(r) be the manifold obtained from N by Dehn filling the cusp spec-

ified by Tβ along the slope r ∈ Q. Then there exists a natural injection
ιβ : H2(N(r), ∂N(r)) → H2(N, ∂N) whose image equals

Sβ(r) = {(x, y, z) ∈ H2(N, ∂N) | −ry = z + x},

see [14]. By Theorem 3.6(1), N(r) is hyperbolic if and only if r ∈ Q \
{−3,−2,−1, 0}. Choose r ∈ Q \ {−3,−2,−1, 0}, and assume that a ∈ Sβ(r) =
Im ιβ is a fibered class of H2(N, ∂N). Then a = ι−1

β (a) ∈ H2(N(r), ∂N(r)) is also
a fibered class of N(r).

Similarly, when N(r) is the manifold obtained from N by Dehn filling the
cusp specified by Tα or Tγ along the slope r, one has natural injections,

ια : H2(N(r), ∂N(r)) → H2(N, ∂N),

ιγ : H2(N(r), ∂N(r)) → H2(N, ∂N)
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such that their images are

Sα(r) = {(x, y, z) ∈ H2(N, ∂N) | − rx = y + z},
Sγ(r) = {(x, y, z) ∈ H2(N, ∂N) | − rz = x + y}.

We set

a = 2α + 2β + γ, b = α + 2β + 2γ,

p = α + 2β, q = 2β + γ,

r = α + β − γ, s = α− β.

For k, ` ∈ Z, we have

slope(ka + `b) =
(−3k − 4`

2k + `
,
−3
2

,
−4k − 3`

k + 2`

)
,

slope(kp + `q) =
(−2k − 3`

k
,
−1
2

,
−3k − 2`

`

)
,

slope(kr + `s) =
(

`

k + `
,
−`

k − `
, 2

)
, and

(4.1)

ka + `b = (2k + `)α + (2k + 2`)β + (k + 2`)γ ∈ ιβ

(
H2

(
N

(−3
2

)
, ∂N

(−3
2

)))
,

kp + `q = kα + (2k + 2`)β + `γ ∈ ιβ

(
H2

(
N

(−1
2

)
, ∂N

(−1
2

)))
,

kr + `s = (k + `)α + (k − `)β − kγ ∈ ιγ(H2(N(2), ∂N(2))).

(4.2)

It is easy to check that {a, b}, {p, q} and {r, s} are bases of H2(N(−3/2),
∂N(−3/2);Z), H2(N(−1/2), ∂N(−1/2);Z) and H2(N(2), ∂N(2);Z) respectively.

Note that gcd(k, `) = 1 if and only if ka+ `b, kp+ `q and kr+ `s are primitive
integral classes of H2(N, ∂N ;R). All ka + `b, kp + `q, kr + `s are fibered classes
in int(C∆) for k > 0 and −k < ` < k.

We first focus on the topological types of fibers for primitive fibered classes
in int(C∆). Let Σg,p be a compact orientable surface of genus g with p boundary
components.

Lemma 4.1. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) Fka+`b = Σk−2,k+`+6 if gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5. Otherwise
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Fka+`b = Σk,k+`+2.
(2) Fkp+`q = Σk−1,k+`+4 if gcd(k, 3) = 3 or gcd(3, `) = 3. Otherwise Fkp+`q =

Σk,k+`+2.
(3) Fkr+`s = Σk,k+2.

Proof of (1). By Lemma 3.1,

](∂Fka+`b) = gcd(2k + `, 3k + 4`) + gcd(2k + 2`, 3k + 3`) + gcd(4k + 3`, k + 2`)

= gcd(2k + `, 5k) + k + ` + gcd(5`, k + 2`)

= gcd(2k + `, 5) + k + ` + gcd(5, k + 2`).

The last equality holds since gcd(k, `) = 1. The following 3 cases can occur.

(1) gcd(2k + `, 5) = 1 and gcd(5, k + 2`) = 1.
(2) gcd(2k + `, 5) = 5 and gcd(5, k + 2`) = 1.
(3) gcd(2k + `, 5) = 1 and gcd(5, k + 2`) = 5.

In the case (1), the genus g of Fka+`b must satisfy

−(2− 2g − k − `− 2) = ‖ka + `b‖ = 3k + `

(see (3.1)). Thus g = k and Fka+`b = Σk,k+`+2. In the cases (2) and (3), Fka+`b =
Σk−2,k+`+6.

The proof of claims (2), (3) of the lemma is similar. ¤

Lemma 4.2. Suppose that k > 0 and −k < ` < k.

(1) Fka+`b = F`a+kb and λ(ka + `b) = λ(`a + kb).
(2) Fkp+`q = F`p+kq and λ(kp + `q) = λ(`p + kq).

Proof. (1) By the symmetry of the Thurston norm ball of N , it is not
hard to see that the topological type of the minimal representative (resp. the
dilatation) for `a + kb = (2` + k)α + (2` + 2k)β + (` + 2k)γ is the same as the one
for ka + `b = (2k + `)α + (2k + 2`)β + (k + 2`)γ.

The proof of (2) is similar. ¤

We make a remark that it is not true in general that Fkr+`s = F`r+ks and λ(kr +
`s) = λ(`r + ks) for k > 0 and −k < ` < k. We do not use this remark in the rest
of the paper.

Lemma 4.3. Suppose that 0 < ` < k and gcd(k, `) = 1.

(1) The genus of Fka+`b equals the one of Fka−`b.
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(2) The genus of Fkp+`q equals the one of Fkp−`q.
(3) The genera of Fkr+`s and Fkr−`s equal k.

Proof. (1) By Lemma 4.1 (1), the genus of Fka±`b equals k−2 if gcd(2k±
`, 5) = 5 or gcd(5, k ± 2`) = 5. Otherwise its genus equals k. It is easy to check
that

• gcd(2k + `, 5) = 5 if and only if gcd(5, k − 2`) = 5, and
• gcd(2k − `, 5) = 5 if and only if gcd(5, k + 2`) = 5.

This implies the desired claim (1).
By using a similar argument, one can prove (2). The claim (3) is obvious from

Lemma 4.1 (3). ¤

Lemma 4.4. Suppose that 0 < ` < k. Then

λ(ka± `b) = λ(kp± `q) = λ(kr± `s) = λ(k,`).

Proof. We use Theorem 3.2. The dilatations of ka ± `b and kp ± `q are
the largest real root of

f(2k±`,2k±2`,k±2`)(t) = f(k,2k±2`,±`)(t) = (tk±` + 1)(t2k − tk+` − tk − tk−` + 1).

The dilatation of kr± `s is the largest real root of

f(k±`,k∓`,−k)(t) = (tk + 1)(t2k − tk+` − tk − tk−` + 1).

Since the absolute values of all roots of tk±` + 1 and tk + 1 are equal to 1, one
finishes the proof. ¤

By Proposition 3.5 and (4.2), we immediately obtain the following.

Corollary 4.5. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The monodromy of the fibration associated to ka + `b on N is orientable if
and only if k is odd and ` is even.

(2) The monodromy of the fibration associated to kp + `q on N is orientable if
and only if k is even and ` is odd.

(3) The monodromy of the fibration associated to kr+`s on N is orientable if and
only if both k and ` are odd.

The following can be obtained from Proposition 3.3
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Corollary 4.6. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The singularity data of the monodromy of the fibration associated to ka + `b

on N is given by

(
2k + `

gcd(2k + `, 5)
− 2, . . . ,

2k + `

gcd(2k + `, 5)
− 2

︸ ︷︷ ︸
gcd(2k+`,5)

,

2k − `

gcd(5, k + 2`)
− 2, . . . ,

2k − `

gcd(5, k + 2`)︸ ︷︷ ︸
gcd(5,k+2`)

)
.

(2) The singularity data of the monodromy of the fibration associated to kp + `q

on N is given by

(
k

gcd(k, 3)
− 2, . . . ,

k

gcd(k, 3)
− 2

︸ ︷︷ ︸
gcd(k,3)

,
3k

gcd(3, `)
− 2, . . . ,

3k

gcd(3, `)
− 2

︸ ︷︷ ︸
gcd(3,`)

)
.

(3) The singularity data of the monodromy of the fibration associated to kr + `s

on N is given by

(k + `− 2, k − `− 2, 2, . . . , 2︸ ︷︷ ︸
k

).

Remark 4.7. (1) The stable foliation for the monodromy of the fibration
associated to ka+`b (resp. kp+`q) is 2-pronged at each boundary component
on Tβ . (Hence there is no singular leaf on ∂βFka+`b (resp. ∂βFkp+`q).)

(2) The stable foliation for the monodromy of the fibration associated to kr + `s

is 4-pronged at each boundary component on Tγ .

Lemma 4.8. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The stable foliation for the monodromy of the fibration associated to
ka + `b is 1-pronged at a boundary component if and only if (k, `) ∈
{(2,±1), (3,±1), (4,±3)}.

(2) The stable foliation for the monodromy of the fibration associated to
kp + `q is 1-pronged at a boundary component if and only if (k, `) ∈
{(1, 0), (3,±1), (3,±2)}.

(3) The stable foliation for the monodromy of the fibration associated to kr + `s

is 1-pronged at a boundary component if and only if k + ` = 1 or k − ` = 1.
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Figure 6. (left) Thurston norm ball. (right) Open cone int(C∆(r)) [shaded region].

Proof. (1) By Corollary 4.6, the stable foliation of the monodromy for ka+
`b is 1-pronged at a boundary component if and only if (2k+`)/gcd(2k + `, 5) = 1
or (2k − `)/gcd(5, k + 2`) = 1.

Suppose that (2k + `)/gcd(2k + `, 5) = 1. Clearly gcd(2k + `, 5) = 1 or 5. If
gcd(2k + `, 5) = 1, then 2k + ` = 1. Since −k < ` < k, one has −k < −2k + 1 < k

which implies that 1/3 < k < 1. This does not occur since k is an integer. If
gcd(2k + `, 5) = 5, then 2k + ` = 5. Since −k < ` < k, one has −k < 5− 2k < k

which implies 5/3 < k < 5. Hence (k, `) ∈ {(2, 1), (3,−1), (4,−3)}.
Suppose that (2k − `)/gcd(5, k + 2`) = 1. In this case one sees that (k, `) ∈

{(2,−1), (3, 1), (4, 3)}. This completes the proof of (1).
By using the same argument one can prove (2), (3). ¤

Remark 4.9. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1. By
Lemma 4.8 and Corollary 3.7, we see that:

(1) N((−3k−4`)/(2k+`),−3/2, (−4k−3`)/(k+2`)) is non-hyperbolic for (k, `) ∈
{(2,±1), (3,±1), (4,±3)}. Otherwise it is hyperbolic.

(2) N((−2k − 3`)/k,−1/2, (−3k − 2`)/`) is non-hyperbolic for (k, `) ∈
{(1, 0), (3,±1), (3,±2)}. Otherwise it is hyperbolic.

(3) Suppose that k + ` = 1 or k − ` = 1. Then we have the following. N(`/(k +
`),−`/(k − `), 2) is non-hyperbolic if (k, `) ∈ {(2,±1), (3,±2), (4,±3)} and it
is hyperbolic if (k, `) /∈ {(2,±1), (3,±2), (4,±3)}. Suppose that k + ` 6= 1 and
k − ` 6= 1. Then N(`/(k + `),−`/(k − `), 2) is hyperbolic.

For each of N(−3/2), N(−1/2) and N(2), its Thurston norm ball of radius
2 is a rectangle with vertices (k, `) = (±1,±1) illustrated in Figure 6. By using
(3.1) we see that for k, ` ∈ R,

‖ka + `b‖ = ‖kp + `q‖ = ‖kr + `s‖ = max{2|k|, 2|`|}. (4.3)

The following lemma asserts that fibered faces for N(−3/2) and N(−1/2) has
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a symmetry. Thus, for the study of monodromies on fibrations on N(−3/2) (resp.
N(−1/2)), it is enough to consider the open cone over an arbitrary picked fibered
face.

Lemma 4.10. Suppose that k > 0 and −k < ` < k.

(1) Fka+`b = F`a+kb and λ(ka + `b) = λ(`a + kb).
(2) Fkp+`q = F`p+kq and λ(kp + `q) = λ(`p + kq).

Proof. See Lemma 4.2 and Remark 4.7 (1). ¤

Let us fix an open cones

int(C∆(−3/2)) = {ka + `b | k > 0, −k < ` < k} ⊂ H2

(
N

(−3
2

)
, ∂N

(−3
2

)
;R

)
,

int(C∆(−1/2)) = {kp + `q | k > 0, −k < ` < k} ⊂ H2

(
N

(−1
2

)
, ∂N

(−1
2

)
;R

)
,

int(C∆(2)) = {kr + `s | k > 0, −k < ` < k} ⊂ H2(N(2), ∂N(2);R).

Lemmas 4.11 and 4.12 tell us that it is enough to consider the fibered classes of
int(C∆(r)) for 0 < ` < k.

Lemma 4.11. Suppose that 0 < ` < k and gcd(k, `) = 1.

(1) Fka±`b = Σk−2,6 if gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5. Otherwise
Fka+`b = Σk,2.

(2) Fkp±`q = Σk−1,4 if gcd(k, 3) = 3 or gcd(3, `) = 3. Otherwise Fkp+`q = Σk,2.
(3) Fkr±`s = Σk,2.

Proof. The number of components of ∂βFka+`b equals k + `. By Lemma
4.1 (1), we have the desired claim (1). One can prove (2), (3) by using Lemma 4.1
(2), (3) respectively. ¤

Lemma 4.12. Suppose that 0 < ` < k. Then

λ(ka± `b) = λ(kp± `q) = λ(kr± `s) = λ(k,`).

Proof. See Lemma 4.4 and Remark 4.7. ¤

Proposition 4.13. Let r ∈ {−3/2,−1/2, 2}. The minimum of Ent :
int(C∆(r)) → R equals 2 log λ(1,0) = 2 log((3 +

√
5)/2). The minimizer is given

by a if r = −3/2, p if r = −1/2 and r if r = 2.
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Proof. Recall that Ent is constant on each ray thorough the origin and it
attains its minimum at a unique ray. By Lemma 4.12 and (4.3), this ray must
satisfy ` = 0. Using the representative (k, `) = (1, 0), Theorem 3.2 implies that
minEnt = 2 log λ(1,0) = 2 log((3 +

√
5)/2). ¤

Remark 4.14. The monodromies of the fibrations associated to a (resp. p)
on N(−3/2) (resp. N(−1/2)) are intriguing examples.

(1) N(−3/2) admits a fiber of genus 1 with 2 boundary components correspond-
ing to a. The stable foliation of its monodromy Φ : Σ1,2 → Σ1,2 is 2-
pronged at each boundary component. Thus Φ extends to the monodromy
Φ : Σ1,1 → Σ1,1 of the fibration on N(−3/2,−3/2) (which is the figure-8 knot
sister manifold, see [20, Table A.2]) by capping the boundary component of
Σ1,2 on Tα. It is well-known that Φ realizes the minimal dilatation (3+

√
5)/2

among pseudo-Anosovs on Σ1,1.
(2) N(−1/2) admits a fiber of genus 0 with 4 boundary components corresponding

to p. The stable foliation of its monodromy Φ fixes a boundary component,
and hence it can be considered that Φ is a pseudo-Anosov homeomorphism
on a 3-punctured disk D3. This monodromy Φ realizes the minimal dilatation
δ(D3) = (3 +

√
5)/2 among pseudo-Anosovs on D3.

4.2. Property of algebraic integers λ(k,`).
Lemma 4.15. Suppose that 1 < `+1 < k and gcd(k, `) = 1. Then λ(k+1,`) <

λ(k,`) < λ(k,`+1).

Proof. The ray that attains the minimum of Ent : int(C∆(r)) → R satisfies
` = 0. Recall that the function 1/ent(·) : int(C∆(r)(Q)) → R is strictly concave.
Thus one has

log λ(k,k`/(k+1)) < log λ(k,`) < log λ(k,`+1).

The inequality log λ(k+1,`) < log λ(k,`) holds since

log λ(k+1,`) = ent((k + 1)a + `b) =
k

k + 1
ent

(
ka +

k`

k + 1
b

)

=
k

k + 1
log λ(k,k`/(k+1)) < log λ(k,k`/(k+1)).

Hence log λ(k+1,`) < log λ(k,`) < log λ(k,`+1). ¤

Lemma 4.16. For any fixed ` > 0,
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lim
k→∞

k log λ(k,`) = log λ(1,0) = log
(

3 +
√

5
2

)
.

Proof. The ray through ka + `b from the origin goes to the ray through a

if k goes to ∞. Hence

lim
k→∞

Ent(ka + `b) = lim
k→∞

2k log λ(k,`) = Ent(a) = 2 log λ(1,0).

This completes the proof. ¤

Proposition 4.17. If λ(k+1,`) < λ(k,1) for some k ≥ ` ≥ 2, then λ(k+2,`) <

λ(k+1,1).

Proof. We denote the homology class ka + `b by (k, `). Since Ent is con-
stant on each ray thorough the origin, k ent(k, `) = ent(1, `/k). One takes 4 points

p1 =
(

1,
1

k + 1

)
, p2 =

(
1,

1
k

)
, p3 =

(
1,

`

k + 2

)
, p4 =

(
1,

`

k + 1

)
,

see Figure 7. We have 1/(k + 1) < 1/k < 2/(k + 2) ≤ `/(k + 2) < `/(k + 1). Let
us set t, t′ and c as follows.

0 < t =
|p3 − p2|
|p4 − p2| =

(k + 1)(k`− k − 2)
(k + 2)(k`− k − 1)

< 1,

0 < t′ =
|p3 − p2|
|p3 − p1| =

|p4 − p2|
|p3 − p1| t =

(k + 2)(k`− k − 1)
k(k`− k + `− 2)

t < 1,

1 < c =
(k + 2)(k`− k − 1)
k(k`− k + `− 2)

.

(4.4)

(Hence t′ = ct.) Then

|p3 − p2| : |p4 − p3| = t : 1− t,

|p3 − p2| : |p2 − p1| = ct : 1− ct.

These ratios together with Theorem 2.3 imply that

1
(k + 2) ent(k + 2, `)

> (1− t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k + 1, `)

, and (4.5)
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1
k ent(k, 1)

> ct
1

(k + 1) ent(k + 1, 1)
+ (1− ct)

1
(k + 2) ent(k + 2, `)

. (4.6)

By (4.5) and by the assumption ent(k, 1) > ent(k + 1, `),

1
(k + 2) ent(k + 2, `)

> (1− t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k + 1, `)

> (1− t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k, 1)

=
k + 1− t

k + 1
1

k ent(k, 1)

>
k + 1− t

k + 1

{
ct

1
(k + 1) ent(k + 1, 1)

+ (1− ct)
1

(k + 2) ent(k + 2, `)

}
.

The last inequality is given by (4.6). Hence

{
1

k + 2
− (k + 1− t)(1− ct)

(k + 1)(k + 2)

}
1

ent(k + 2, `)
>

(k + 1− t)ct
(k + 1)2

1
ent(k + 1, 1)

,

which gives, by calculation,

(k + 1− t)c + 1
k + 2

1
ent(k + 2, `)

>
(k + 1− t)c

k + 1
1

ent(k + 1, 1)
.

Thus

Figure 7. Four boxes ˜ (from the bottom to the top)
on the line k = 1 indicate p1, p2, p3 and p4.
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ent(k + 2, `) <

{
k + 1

(k + 1− t)c

}{
(k + 1− t)c + 1

k + 2

}
ent(k + 1, 1).

For the proof of the claim it is enough to verify the equality {(k + 1)/(k + 1 −
t)c}{((k + 1− t)c + 1)/(k + 2)} = 1. Clearly,

{
k + 1

(k + 1− t)c

}{
(k + 1− t)c + 1

k + 2

}
= 1

⇔ (k + 1){(k + 1− t)c + 1} = (k + 2)(k + 1− t)c

⇔ (k + 1)(k + 1− t)c + k + 1 = (k + 2)(k + 1− t)c

⇔ k + 1 = (k + 1− t)c

⇔ c =
k + 1

k + 1− t
.

One can verify the last equality c = (k+1)/(k+1−t) by substituting the constants
t and c given by (4.4). ¤

4.3. Fibrations of manifolds obtained from N(−1/2),N(−3/2) and
N(2) by Dehn filling two cusps.

As a consequence of Lemma 4.8, we see the following.

Remark 4.18. If (k, `) /∈ {(2,±1), (3,±1), (4,±3)}, then the monodromy
Φka+`b : Fka+`b → Fka+`b of the fibration associated to ka + `b on N extends to
the monodromy Φka+`b : F ka+`b → F ka+`b of the fibration on N((−3k−4`)/(2k+
`),−3/2, (−4k − 3`)/(k + 2`)) with the dilatation λ(k,`)(= λ(Φka+`b)). Similarly,
if (k, `) /∈ {(1, 0), (3,±1), (3,±2)} (resp. if k + ` 6= 1 and k − ` 6= 1), then the
monodromy Φkp+`q (resp. Φkr+`s) of the fibration associated to kp + `q (resp.
kr + `s) on N extends to the monodromy Φkp+`q (resp. Φkr+`s) of the fibration
on N((−2k − 3`)/k,−1/2, (−3k − 2`)/`) (resp. N(`/(k + `),−`/(k − `), 2)) with
the dilatation λ(k,`).

Let φka+`b, φkp+`q and φkr+`s be elements of Mod(Σg) containing Φka+`b, Φkp+`q

and Φkr+`s as a representative.

Proposition 4.19. For any fixed integer ` > 0, we have the following.

(1) lim
k→∞

gcd(k,`)=1

vol(φka+`b) = vol
(

N

(−3
2

))
≈ 3.66386.

(2) lim
k→∞

gcd(k,`)=1

vol(φkp+`q) = vol
(

N

(−1
2

))
≈ 4.05977.
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(3) lim
k→∞

gcd(k,`)=1

vol(φkr+`s) = vol(N(2)) ≈ 4.41533.

Proof. We will prove the claim (1). The proof of claims (2), (3) is sim-
ilar. The mapping torus T(φka+`b) is homeomorphic to N((−3k − 4`)/(2k +
`),−3/2, (−4k − 3`)/(k + 2`)). Since gcd(−3k − 4`, 2k + `) (resp. gcd(−4k −
3`, k + 2`)) is either 1 or 5, the two points

( −3k − 4`

gcd(−3k − 4`, 2k + `)
,

2k + `

gcd(−3k − 4`, 2k + `)

)
∈ R2,

( −4k − 3`

gcd(−4k − 3`, k + 2`)
,

k + 2`

gcd(−4k − 3`, k + 2`)

)
∈ R2

tend to ∞ as k tends to ∞. Thurston’s hyperbolic Dehn surgery theorem (see
[28]) implies the volume of N((−3k − 4`)/(2k + `),−3/2, (−4k − 3`)/(k + 2`))
converges to vol(N(−3/2)) as k tends to ∞. ¤

Proof of Theorem 1.5 (Case r = −3/2). For the proof of (1), first of all
we find a pair (k(g), `(g)) = (g + k̃(g), `(g)) for each g ≥ 3 satisfying the following:
the both k̃(g) > 0, `(g) > 0 are bounded, and the genus of Fk(g)a+`(g)b equals
g. Next we check that the stable foliation of Φk(g)a+`(g)b has no 1 prong at each
boundary component of Fk(g)a+`(g)b. Then one can extend Φk(g)a+`(g)b to the
pseudo-Anosov homeomorphism Φk(g)a+`(g)b on a closed surface of genus g. This
finishes the proof of (1). In fact, by Lemma 4.16

lim
g→∞

k(g) log λ
(
Φk(g)a+`(g)b

)
= lim

g→∞
k(g) log λ(k(g),`(g)) = log

(
3 +

√
5

2

)
.

On the other hand

lim
g→∞

log λ
(
Φk(g)a+`(g)b

)
= lim

g→∞
1

g + k̃(g)
log

(
3 +

√
5

2

)
= 0.

Thus one obtains

log
(

3 +
√

5
2

)
= lim

g→∞
k(g) log λ

(
Φk(g)a+`(g)b

)

= lim
g→∞

(g + k̃(g)) log λ
(
Φk(g)a+`(g)b

)

= lim
g→∞

g log λ
(
Φk(g)a+`(g)b

)
+ lim

g→∞
k̃(g) log λ

(
Φk(g)a+`(g)b

)

= lim
g→∞

g log λ
(
Φk(g)a+`(g)b

)
+ 0,
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which implies (1).
One sees that the genera of F3a+2b and F4a+b equal 3 and 4 respectively. If

g 6≡ 0 (mod 5) and g ≥ 6, the genus of Fga+5b equals g. In the case g ≡ 2 (mod 5)
and g ≥ 7, the genus of Fga+b equals g − 2 ≡ 0 (mod 5). By Lemma 4.8, one has
the desired equality (1).

The claim (2) on the volume holds by Proposition 4.19 (1).

(Case r = −1/2.) If g ≡ 0, 1 (mod 3) and g ≥ 3, the genus of F(g+1)p+3q

equals g. If g ≡ 2 (mod 3) and g ≥ 3, the genus of F(g+1)p+q equals g. By Lemma
4.8 and Proposition 4.19 (2), one obtains the claims (1), (2).

(Case r = 2.) The genus of Fgr+s equals g. By Lemma 4.8 and Proposition
4.19 (3), one obtains the claims (1), (2). ¤

Remark 4.20. For g ≥ 4 even, there exists a Σg-bundle over the circle with
the dilatation λ(g,1), which is obtained from the extension of the monodromy of
the fibration associated to gr+ s on N . However the invariant foliation associated
to this Σg-bundle over the circle is non-orientable, see Corollary 4.5 and Question
1.10. (In the case g = 2, the monodromy of the fibration associated to 2r + s

cannot extend to the pseudo-Anosov monodromy on a closed fiber, see Remark 4.9
(3).)

For r ∈ Q, Λg(r) (resp. Λ+
g (r)) is defined to be the set of dilatations of

all Σg-bundles (resp. all Σg-bundles with orientable invariant foliations) which
are obtained from N(r) by Dehn filling two cusps along the boundary slopes of
the fibers of N(r). Recall that U and U+ are finite sets of fibered hyperbolic
3-manifolds defined in the introduction.

Lemma 4.21. N(2) ∈ U+.

Proof. One sees that the pseudo-Anosov φ3r+s ∈ Mod(Σ3) is orientable
and has the dilatation λ(3,1)(= δ+

3 ). Hence δ+
3 ∈ Λ+

3 (2). ¤

In the rest of this section, we mainly consider the sets Λ(+)
g (−1/2) and

Λ(+)
g (−3/2). We first recall the number min Λ(+)

g (−1/2).

Proposition 4.22 ([9]). Let g ≥ 3.

(1) λ(g+1,3) = min Λg(−1/2) if g ≡ 0, 1, 3, 4 (mod 6).
(2) λ(g+1,1) = min Λg(−1/2) if g ≡ 2, 5 (mod 6).

Proposition 4.23 ([9]). Let g ≥ 3.

(1) λ(g+1,3) = min Λ+
g (−1/2) if g ≡ 1, 3 (mod 6).
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(2) λ(g,1) = min Λ+
g (−1/2) if g ≡ 2, 4 (mod 6).

(3) λ(g+1,1) = min Λ+
g (−1/2) if g ≡ 5 (mod 6).

Lemma 4.24 ([9]). N(−1/2) ∈ U ∩ U+.

Proof. One sees that φ2p+q ∈ Mod(Σ2) is an orientable pseudo-Anosov
mapping class having dilatation λ(2,1)(= δ2 = δ+

2 ). Hence δ2 = δ+
2 ∈ Λ2(−1/2) ∩

Λ+
2 (−1/2). ¤

We turn to N(−3/2). By Lemma 4.1 (1), if λ ∈ Λg(−3/2), then λ = λ(g+2,`)

for some 1 ≤ ` < g + 2 or λ = λ(g,`′) for some 1 ≤ `′ < g.
It is easy to verify the following by a direct computation.

Lemma 4.25. For integers k and `, gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5
if and only if k and ` are either (1), (2), (3), (4) or (5) in the following table.

k (mod 5) ` (mod 5)

(1) 0 0
(2) 2, 3 1
(3) 1, 4 2
(4) 1, 4 3
(5) 2, 3 4

We compute min Λg(−3/2) for g ≡ 0, 1, 3, 5, 6, 7, 8, 9 (mod 10).

Proposition 4.26. (1) λ(g+2,1) = min Λg(−3/2) < minΛg(−1/2) if g ≡
0, 1, 5, 6 (mod 10) and g ≥ 5.

(2) λ(g+2,2) = min Λg(−3/2) < minΛg(−1/2) if g ≡ 7, 9 (mod 10) and g ≥ 7.
(3) λ(g,2) = min Λg(−3/2) > minΛg(−1/2) if g ≡ 3 (mod 10) and g ≥ 3.
(4) Let g ≡ 8 (mod 10) and g ≥ 8.

(i) λ(g,3) = min Λg(−3/2) > minΛg(−1/2) if g ≡ 8, 28 (mod 30),
(ii) λ(g,5) = min Λg(−3/2) > minΛg(−1/2) if g ≡ 18 (mod 30).

Proof. (1) If k ≡ 2, 3 (mod 5), then gcd(2k+1, 5) = 5 or gcd(5, k+2) = 5.
We set k = g+2. (Hence g ≡ 0, 1 (mod 5) or equivalently g ≡ 0, 1, 5, 6 (mod 10).)
The genus of F(g+2)a+b is equal to g by Lemma 4.1 (1), and hence λ(g+2,1) ∈
Λg(−3/2) by Remark 4.18. One can check that λ(g+2,1) attains min Λg(−3/2) by
Lemma 4.15. In fact for any g > 1, 1 ≤ `′ < g and 1 ≤ ` < g + 2, it follows that

λ(g+2,1) < λ(g+1,1) < λ(g,1) ≤ λ(g,`′) and λ(g+2,1) < λ(g+2,`).
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Thus λ(g,1) = min Λg(−3/2).
By Proposition 4.22, the lower and upper bound of minΛg(−1/2) is given by

λ(g+1,1) ≤ minΛg

(−1
2

)
≤ λ(g+1,3) for any g. (4.7)

Since λ(g+2,1) < λ(g+1,1), one obtains the inequality min Λg(−3/2) <

minΛg(−1/2).

(2) If k ≡ 1, 4 (mod 5), then gcd(2k + 2, 5) = 5 or gcd(5, k + 4) = 5. We
set k = g + 2. (Hence g ≡ 2, 4 (mod 5).) Suppose that gcd(g + 2, 2) = 1. Then
λ(g+2,2) ∈ Λg(−3/2) and g ≡ 7, 9 (mod 10) since g must be odd. One sees that
λ(g+2,1) /∈ Λg(−3/2) since gcd(2k + 1, 5) = 1 and gcd(5, k + 2) = 1. For any g > 1
and 1 ≤ ` < g, it follows that λ(g+1,1) < λ(g,1) ≤ λ(g,`). On the other hand

λ(5,2) ≈ 1.23039 < λ(4,1) ≈ 1.28064

and by Proposition 4.17, one has λ(g+2,2) < λ(g+1,1) holds for any g ≥ 3. Thus
λ(g+2,2) attains min Λg(−3/2). The inequality minΛg(−3/2) < minΛg(−1/2)
holds by (4.7).

(3), (4) Suppose that g ≡ 3 (mod 5), that is g ≡ 3, 8 (mod 10). One observes
that the genus of F(g+2)a+`b equals g + 2 whenever gcd(g + 2, `) = 1. Hence if
λ ∈ Λg(−3/2), then λ = λ(g,`) for some 1 ≤ ` < g. Suppose that g ≡ 3 (mod 10).
By Lemmas 4.1 (1) and 4.25, the genera of Fga+b and Fga+2b are g − 2 and g

respectively. Hence λ(g,2) = min Λg(−3/2).
One has

λ(3,2) ≈ 1.50614 > λ(3,1) = λ(4,3) ≈ 1.40127,

and hence min Λ3(−3/2) > minΛ3(−1/2). By Proposition 4.17 together with the
inequality

λ(4,1) ≈ 1.28064 > λ(5,3) ≈ 1.26123,

one obtains λ(k,1) > λ(k+1,3) for any k ≥ 4. The inequality min Λg(−3/2) >

minΛg(−1/2) holds for g ≡ 3 (mod 10) and g > 3 since

minΛg

(−3
2

)
= λ(g,2) > λ(g,1) > λ(g+1,3) ≥ minΛg

(−1
2

)
.

One completes the proof of (3). Similarly one can prove (4). ¤
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Remark 4.27. The pseudo-Anosov homeomorphism whose dilatation equals
minΛg(−3/2) in the proof of Proposition 4.26 (1) (resp. (2)) is non-orientable
(resp. orientable), see Corollary 4.5.

Proof of Theorem 1.6. See Proposition 4.26 (1), (2). ¤

In the case g ≡ 2, 4 (mod 10), we compute minΛg(−3/2) under certain con-
ditions of g.

Proposition 4.28. Let g ≡ 2, 4 (mod 10) and g ≥ 12. Suppose that g+2 6≡
0 (mod 4641(= 3 · 7 · 13 · 17)).

(1) λ(g+2,3) = min Λg(−3/2) < minΛg(−1/2) if gcd(g + 2, 3) = 1.
(2) λ(g+2,7) = min Λg(−3/2) < minΛg(−1/2) if 3 divides g+2 and gcd(g+2, 7) =

1.
(3) λ(g+2,13) = min Λg(−3/2) < minΛg(−1/2) if 21(= 3 · 7) divides g + 2 and

gcd(g + 2, 13) = 1.
(4) λ(g+2,17) = min Λg(−3/2) < minΛg(−1/2) if 273(= 3 ·7 ·13) divides g +2 and

gcd(g + 2, 17) = 1.

The following will be used for proving Proposition 4.28. Its proof is similar to the
one for Proposition 4.26 (3).

Lemma 4.29. (1) Let g ≡ 2 (mod 10) and g ≥ 12.
(i) Suppose that g ≡ 2, 22 (mod 30). If λ(g,`) ∈ Λg(−3/2), then ` ≥ 3.
(ii) Suppose that g ≡ 12 (mod 30). If λ(g,`) ∈ Λg(−3/2), then ` ≥ 5.

(2) Let g ≡ 4 (mod 10) and g ≥ 14. Then λ(g,1) ∈ Λg(−3/2).

Lemma 4.30. Suppose that g ≡ 2, 4 (mod 10) and g ≥ 12. If gcd(g +2, `) =
1, ` ≡ 2, 3 (mod 5) and 0 < ` < g + 2, then λ(g+2,`) ∈ Λg(−3/2).

Proof. We use Lemma 4.1 (1). We set k = g + 2 (k ≡ 1, 4 (mod 5)). If
` ≡ 2, 3 (mod 5), then gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5. Thus if ` satisfies
that gcd(k, `) = gcd(g + 2, `) = 1 and 0 < ` < g + 2, then one obtains the desired
claim λ(g+2,`) ∈ Λg(−3/2). ¤

One can check the following inequalities.

Lemma 4.31. (1) λ(9,7) ≈ 1.16873 < λ(8,1) ≈ 1.12876.
(2) λ(73,13) ≈ 1.013457447 < λ(72,1) ≈ 1.013457858.
(3) λ(125,17) ≈ 1.007791640 < λ(124,1) ≈ 1.007791898.

Proof of Proposition 4.28. (1) By Lemma 4.30, λ(g+2,3) ∈ Λg(−3/2).
We have shown that λ(k+1,3) < λ(k,1) for any k ≥ 4 in the proof of Proposi-
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tion 4.26 (3), (4). Hence λ(g+2,3) < λ(g+1,1) for any g ≥ 3. By (4.7), we have
minΛg(−3/2) ≤ λ(g+2,3) < λ(g+1,1) ≤ minΛg(−1/2). We can prove that λ(g+2,3)

attains min Λg(−3/2) by using the foregoing argument together with Lemma 4.29
(1).

The claims (2), (3), (4) can be verified by using Lemmas 4.29, 4.30 and 4.31.
¤

Proof of Theorem 1.7. See Proposition 4.28. ¤

Question 4.32. Is it true that δg ≤ minΛg(−3/2) < minΛg(−1/2) for all
g ≡ 2, 4 (mod 10) and g ≥ 12?

Remark 4.33. Independently, Aaber and Dunfield identified the pair
(k(g), `(g)) such that the pseudo-Anosov homeomorphism Φk(g)a+`(g)b : Σg → Σg

which attains min Λg(−3/2) for large g. They proved that under a plausible as-
sumption, the mapping class φk(g)a+`(g)b = [Φk(g)a+`(g)b] has the least volume
among pseudo-Anosov elements of Mod(Σg) for large g, see [1].

We turn to min Λ+
g (−3/2). By Corollary 4.5 (1) and Lemma 4.11 (1), one sees

that if g is even, then there exist no orientable pseudo-Anosov monodromies with a
closed fiber of genus g of fibrations on N(−3/2). Hence in this case Λ+

g (−3/2) = ∅.
We compute minΛ+

g (−3/2) for g odd.

Proposition 4.34. Let g ≥ 5.

(1) λ(g+2,2) = min Λ+
g (−3/2) < minΛ+

g (−1/2) if g ≡ 7, 9 (mod 10).
(2) λ(g+2,4) = min Λ+

g (−3/2) ≤ minΛ+
g (−1/2) if g ≡ 1, 5 (mod 10). The equality

holds if and only if g = 5.
(3) λ(g,2) = min Λ+

g (−3/2) > minΛ+
g (−1/2) if g ≡ 3 (mod 10).

Proof. We use Corollary 4.5 to see whether λ(k,`) ∈ Λg(−3/2) is an element
of Λ+

g (−3/2) or not.

(1) We see that λ(g+2,2) ∈ Λ+
g (−3/2), see Remark 4.27. By Proposition 4.26

(2), we have

λ(g+2,2) = min Λg

(−3
2

)
= min Λ+

g

(−3
2

)
< minΛg

(−1
2

)
≤ minΛ+

g

(−1
2

)
.

(2) It can be shown that λ(g+2,4) = minΛ+
g (−3/2). Since λ(7,4) = λ(6,1),

the equality min Λ+
5 (−3/2) = minΛ+

5 (−1/2) holds. Suppose that g 6= 5. By
Proposition 4.17 together with

λ(8,4) ≈ 1.14555 < λ(7,1) ≈ 1.14879,
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we obtain the inequality λ(k,4) < λ(k−1,1) for any k ≥ 8. Thus minΛ+
g (−3/2) <

minΛ+
g (−1/2).

One can prove (3) by using a similar argument together with Proposition 4.26
(3). ¤

Proof of Theorem 1.12. See Proposition 4.34 (1), (2). ¤

Proof of Proposition 1.14. We have proved the inequality (λ(g+2,2) <

)λ(g+2,4) < λ(g+1,1) for any g ≥ 6 in the proof of Proposition 4.34 (2). By Theorem
1.12 and by the assumption δ+

g+1 = λ(g+1,1), one has

δ+
g ≤ max{λ(g+2,2), λ(g+2,4)} ≤ λ(g+2,4) < λ(g+1,1) = δ+

g+1.

This completes the proof. ¤

Remark 4.35. (1) The (−2, 3, 7)-pretzel knot complement is homeomor-
phic to N(−3/2,−8/3), see [20, Table A.4]. On the other hand, slope(7a +
4b) = (−37/18,−3/2,−8/3). The monodromy Φ7a+4b : Σ5,17 → Σ5,17

of the fibration associated to 7a + 4b on N is orientable (see Corollary
4.5 (1)) and its singularity data is given by (16) (see Corollary 4.6 (1)).
Thus Φ7a+4b : Σ5,17 → Σ5,17 extends to the pseudo-Anosov monodromy
Φ7a+4b : Σ5,1 → Σ5,1 of the fibration on N(−3/2,−8/3) (with the dilata-
tion λ(7,4)) by capping all the boundary components on Tβ ∪ Tγ .

(2) Φ7a+4b : Σ5,1 → Σ5,1 extends to the monodromy: Σ5 → Σ5 of the fibration
on N(−37/18,−3/2,−8/3) with dilatation δ+

5 = λ(7,4). Since this extended
monodromy is orientable, we have δ+

5 ∈ Λ+
5 (−3/2).

By Remark 4.35 (2), we have:

Lemma 4.36. N(−3/2) ∈ U+.

4.4. Fibers of genera 8 and 13.
By using the foregoing discussion one can prove the following which implies

Proposition 1.8.

Proposition 4.37. (1) N(−4/3,−25/17,−5) is a Σ8-bundle over the
circle with dilatation λ(18,17,7) ≈ 1.10403 and with singularity data
(1, . . . , 1︸ ︷︷ ︸

6

, 15, 1, . . . , 1︸ ︷︷ ︸
7

).

(2) N(−29/27,−5/3,−6) is a Σ13-bundle over the circle with dilatation
λ(27,21,8) ≈ 1.07169 and with singularity data (25, 1, . . . , 1︸ ︷︷ ︸

7

, 2, . . . , 2︸ ︷︷ ︸
8

).
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