(©2013 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 65, No. 1 (2013) pp. 277298

doi: 10.2969/jmsj/06510277

On a bound of A and the vanishing of u of Z,-extensions
of an imaginary quadratic field

By Satoshi FuJinn

(Received July 7, 2011)

Abstract. Let p be an odd prime number. To ask the behavior of
A- and p-invariants is a basic problem in Iwasawa theory of Zp-extensions.
Sands showed that if p does not divide the class number of an imaginary
quadratic field k and if the A-invariant of the cyclotomic Zj-extension of k
is 2, then p-invariants vanish for all Zp-extensions of k, and A-invariants are
less than or equal to 2 for Zp-extensions of k in which all primes above p
are totally ramified. In this article, we show results similar to Sands’ results
without the assumption that p does not divide the class number of k. When
p-invariants vanish, we also give an explicit upper bound of A-invariants of all
Zp-extensions.

1. Introduction.

Let k/Q be a finite extension, hy the class number of k& and p a prime number.
In this article, all algebraic extensions of Q are assumed to be contained in a fixed
algebraic closure of Q. Let ko /k be a Zy-extension and k,, its n-th layer, that is,
the unique intermediate field of ko /k such that [k, : k] = p", here we let Z,, the
ring of p-adic integers. By Iwasawa’s class number formula, there are non-negative
integers A(koo/k), p(koo/k) and an integer v(ks /k) depending only on k., /k such
that the p-exponent of hy, is described as

Ao /) + e /R)P™ + 1 (koo /)

for all sufficiently large n. These invariants are called the Iwasawa A-, p- and
v-invariant. Especially, the invariants A and p are important, these are structure
invariants of ideal class groups as Galois modules. Then the following problem has
been considered.
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PROBLEM. For a fixed finite extension k/Q and a prime number p, how do
invariants A(keo/k) and (ks /k) behave as koo runs Zy-extensions of k?

Some studies on the above problem for imaginary quadratic fields have been
done by several authors, for example, Bloom-Gerth [2], Sands [7] and Ozaki [6],
and so on. Let k be an imaginary quadratic field. Then there is a unique Zf)—
extension k of k. Hence there exist infinitely many Z,-extensions of k. Typical
examples of Z,-extensions are:

e The cyclotomic Z,-extension kg .

e The anti-cyclotomic Z,-extension k2, when p is an odd prime number.

e Suppose that p splits in k, that is, p = pp’. Then there are the p- and the
p’-ramified Z,-extensions Ny, and N/_.

When p is an odd prime number, the Z,-extensions £, and kg, are Galois
extensions over Q, and if ko, /Q is a Galois extension then ko, = kS, or k% . Note
that kS /Q is abelian and that k% /Q is non-abelian.

We show here completely determined cases, Sands’ and Ozaki’s results for our
problem.

THEOREM A (Completely determined cases). Let p be an odd prime number
and k an tmaginary quadratic field.

(1) Suppose that p does not split in k and that A\(kS, /k) = 0. Then Mkso/k) =
koo /k) = v(koo/k) = 0 for all Z,-extensions k.

(2) Suppose that p splits in k and that A(kS/k) = 1. Then, M Nx/k) =
ANL/E) =0, Mkoo/k) = 1 for each Z,-extension koo with ke # Noo, N,
and (koo /k) = 0 for all Zy-extensions koo .

Sands [7] stated a part of Theorem A. We will prove Theorem A in the last
section. However, there are no contributions by the author. Theorem A is shown
by combining arguments which are already known.

THEOREM B (Sands [7]). Let p be an odd prime number and k an imaginary
quadratic field in which p splits. Suppose that p 1 hy and that AN(kS, /k) = 2. Then,
Mkoo/k) < 2 for each Zy-extension koo with koo N Noo = koo N N, = k, and
(koo /k) =0 for all Z,-extensions koo .

THEOREM C (Ozaki [6]). Let p be an odd prime number and k an imaginary
quadratic field in which p splits. Suppose that p t hx. Then A(kso/k) = 1 and
koo /k) =0 for all but finite ko .

In this article, we show results similar to Theorem B without the condition
that p 1 hy.
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THEOREM 1. Let p be an odd prime number and k an imaginary quadratic
field.

(1) Suppose that p splits in k and that A(kS,/k) = 2. Then, AMkoo/k) < 2 for each
Zy-extension koo such that koo N kS =k and that ke # Neo, NL.

(2) Suppose that p does not split in k and that A(kS,/k) = 1. Then, Mk /k) <1
for each Zy-extension ko such that koo N kS, = k.

Here we give some remarks.

(1) By Bloom—-Gerth’s result [2], under the assumption on A(kS /k) in Theorem
1, it is known that u(ke/k) = 0 for each ko except for k%, which will be
explained lator.

(2) The proof of Theorem 1 is very similar to a method used in Bloom [1]. By using
the action of the complex conjugation, we can obtain a detailed conclusion.

As a corollary to Theorem 1 and results which had already been obtained by
several authors, we can give a partial answer to our problem.

COROLLARY. Let p be an odd prime number and k an imaginary quadratic
field in which p splits. Suppose that p { hy, and that A\(kS, /k) = 2.

(1) For all Zy-extensions koo, p(kso/k) = 0.

(2) AM(Noo/k) = M(NL k) = 0.

(3) Mkoo/k) =1 for all but finite koo.

(4) For finite exceptional Z,-extensions koo in (3) with koo # Noo,Ni,
Mkoo/k) = 2.

In particular, Mkoo/k) < 2 for all Zy-extensions koo.

The assertion (1) is a part of Theorem B. Let N,, be the unique intermediate
subfield of N /k with [N, : k] = p™ for each non-negative integer n. Since N /k
is totally ramified at p and p { hy, we have p{ hy, . This shows (2). The assertion
(3) is a special case of Theorem C. Suppose that koo 7# Noo, Noo. If koo NEE D K,
then koo N Now = koo NN/, = k since p {1 hg. By Theorem B, A(koo/k) < 2. If
koo Nk% =k, then A(koo/k) < 2 by Theorem 1. This shows (4).

Next we show a result which concern an upper bound of A and the vanishing
of u. If p t hy and AkS,/k) = 2, then we already know u(ks/k) = 0 and
Mkoo/k) < 2 for all Z,-extensions ko, from the above corollary. We then deal
with the case where p | hy.

THEOREM 2. Let p be an odd prime number and k an imaginary quadratic
field in which p splits. Suppose the following conditions:
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(1) Ak /k) = 2.

(2) The p-Hilbert class field Ly, of k is contained in k.

(3) [Gal(k/k) : D] = p, where we denote by D the decomposition group in Gal(k/k)
of a prime lying above p.

Then A(koo/k) < p and p(keo/k) =0 for all Z,-extensions koo .

In fact, we will show a somewhat more general statement including the case
where p does not split in k. One will see that A(ks/k) < p is the best possible
bound if p | hy. We show some examples.

o Let p=3. Let k = Q(v/—461) or Q(v/—743), then the prime 3 splits in k.
We can check that 3 | hy, A(kS,/k) = 2, Ly C k and [Gal(k/k) : D] = 3.
Hence A(koo/k) < 3 and p(keo/k) = 0 for all Zs-extensions k.

e Let p =5 and k = Q(y/—1214), then 5 splits in k. We can check that 5 | hy,
A(ke,/k) = 2, Ly C k and [Gal(k/k) : D] = 5. Hence A(kso/k) < 5 and
p(koo /k) = 0 for all Zs-extensions koo.

2. Preliminaries.

This section consists of notations and affirmations of fundamental properties
of Iwasawa modules. In what follows, let p and k£ be an odd prime number and an
imaginary quadratic field respectively. As mentioned in Section 1, there is a unique
Z2-extension k of k. Note that all Z,-extensions of k are contained in k. Note
also that all primes of k lying above p are ramified in ko /k (not necessary totally
ramified) except for ko, = No or N. . Let Li/k be the maximal unramified
abelian pro-p extension, which is also called the p-Hilbert class field. Let K/k
be a Zy-extension or the Z2-extension and Xg the Galois group Gal(Lg/K) of

the maximal unramified abelian pro-p extension Ly /K. When K = k we put
X = X;. The Galois group Gal(K/k) acts on Xg in the manner g(z) = gazg ',
where we let g € Gal(K/k), © € Xk and 7 a lift of g to Gal(Lk/k). Then the
completed group ring Z,[[Gal(K/k)]] acts on Xk, and it is known that Xg is
a finitely generated torsion Z,[[Gal(K/k)]]-module. For K = k, we set a more
precise notation. We choose a basis of Gal(%/ k) as follows. Since the cyclotomic
Zp-extension kS, and the anti-cyclotomic Z,-extension k%, are disjoint over k, we
know that k = k¢ k% , and hence Gal(k/k) is a direct product of Gal(k/k<,) and
Gal(E/kgo). Let o and 7 be topological generators of Gal(%/kgo) and Gal(%/kgo)
respectively. Put (J) = Gal(k/Q). Then J acts on Gal(k/k) since k/Q is a
Galois extension. The action of J on Gal(k/k) is given by J(z) = JzJ = for
z € Gal(k/k), here J € Gal(k/Q) is a lift of J. Since kS /Q is abelian and
k% /Q is non-abelian, one sees that J(o) = o~ ! and J(7) = 7. We then fix
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an isomorphism between the completed group ring Z,[[Gal(k/k)]] and the formal
power series ring A = Z,[[S, T] in two variables given by ¢ «» 1+S and 7 < 1+T.
So we regard X a A-module. Note that A is a complete noetherian local integral
domain with the maximal ideal (S, T, p). We also use the power series rings Z,|[[.5]]
and Z,[[T]] in one variable as a sub- or a quotient ring of A. For a commutative
ring A, denote by A* the unit group of A. Note that A* = A — (S,T,p) and
Z,[[SN)* = Z,[[S]] — (S,p). Let M be a finitely generated torsion Z,[[S]]-module.
By the structure theorem of Z,[[S]]-modules, M is pseudo-isomorphic to a module
of the form @._, Z,[[S]]/q™, where r and m; (1 < i < r) are non-negative
integers, and q;s are prime ideals of Z,[[S]] of height 1. Then the ideal

charzp[[sn (M) = H qm
=1

is called the characteristic ideal of M.

For a profinite group H and a profinite H-module M, let My be the H-
coinvariant module of M, namely, Mg = M/}, .y (h—1)M. If H = (h), then
My = M/(h — 1)M. Let ko be a Zy-extension and (c®77) the corresponding
subgroup of Gal(%/k:) t0 koo, where (a, ) € Zi —pZI%. Since ¢®7? corresponds to
(14 8)*(1 + T)%, we have

Xeaien) = X/ (@ =1)X = X/(1+9)*(1+T)” - DX.

In this article, we use frequently such coinvariant modules, so we put Y3 =
X

Gal(F /o) for Z,-extensions k.

LEMMA 2.1. Let Foo /F be a Zy-extension of a number field F'.

(1) MFsx/F) = rankz, (XF.,).

(2) u(Fso/F) =0 if and only if Xr is finitely generated over Z,.

(3) Let g € Gal(Q/Q), here Q is a fized algebraic closure of Q. Then A(Fs/F) =
Mg(Feo)/9(F)) and p(Fo /F) = p(9(Fsc)/g(F)).

ProOF. For (1) and (2), see sections 13-2 and -3 of [8]. Let F,, be the n-th
layer of F.,/F for each non-negative integer n. Then g(F},) is the n-th layer of a
Zy-extension g(Fu)/g(F'), and hr, = hyp,). By Iwasawa’s class number formula,
we have

AFoo/F)n+ p(Foo /F)p" + v(Fso [ F)
= AMy(Foo)/9(F))n + p(9(Foo) /g (F))p" + v(9(Foo)/9(F))
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for all sufficiently large n. Since lim,, .. n/p™ = 0, we have

1(Foo/F) = p(9(Foo) /9(F)).
Similarly, it follows that A(Fao/F) = Mg(Fso)/g(F)). O

LEMMA 2.2.  Let p be an odd prime number and k an imaginary quadratic
field. Then Ly Nk is contained in k<.

Proor. Let Cli be the ideal class group of k. Then, by class field theory,
the Artin map induces an isomorphism Cl; ® Z, ~ Gal(Ly/k), in particular,
this isomorphism and the action of the complex conjugation J are compatible.
Since hg = 1, J acts as inverse on Cl; ® Z,, and hence J also acts as inverse
on Gal(Ly/k). Thus Lj N k/Q is a Galois extension and J acts as inverse on
Gal(Ly, Nk/k). This shows that the image from Gal(k/k% ) to Gal(Lj, Nk/k) with
respect to the restriction map is trivial. Hence Ly Nk is fixed by Gal(k/k% ), and
therefore Ly Nk is contained in kS, 0

3. Proof of Theorem 1.

First we show an explicit relation between X and Xj__.

LEMMA 3.1 (See for example Lemma 1 of Ozaki [6]). Suppose one of the
following two conditions.

(1) The prime p splits in k and koo # Noo, N.o.
(2) The prime p does not split in k and ke [k is totally ramified at the prime lying
above p.

Then there is an exact sequence
0— Y. — Xp_ — Gal(kN Ly /kso) — 0

of Zp[[Gal(keo /k)]]-modules. Here, Gal(kN Ly, /keo) is isomorphic to Z, if p splits

in k since k C Ly, and is finite cyclic otherwise.

oo !

REMARK. The cyclotomic Z,-extension kg, satisfies the condition of Lemma
3.1. If p does not split in k and if koo N kL = k, then ko /k is totally ramified.
Indeed, let k1 be the 1-st layer of koo /k. if k1/k is unramified at prime lying above
p, then is unramified at all primes of k. Hence k; is contained in L. Therefore
k1 C k% by Lemma 2.2.
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From Lemma 3.1, we have

rankz, (Y, )+ 1 if p splits in &,

Mkoo/k) =ranky (Xg. )=
(koo /k) 2z (X {rankZP(Ykm) otherwise

for suitable Z,-extensions.

LEMMA 3.2.  Suppose that A\(kS,/k) = 2 if p splits in k, and Mk, /k) =1
otherwise. Then there are a power series f(S) € Z,[[S]] and a surjective morphism
A/(T = f(5)) — X of A-modules.

ProoF. By Lemma 3.1, there is the following exact sequence
0 — Yy — Xy — Gal (L. Nk/kS) — 0

of Zp[[Gal(kS,/k)]]-modules. From the fact that Xpc_ is a free Z,-module of rank
(kS /k) (see for example corollary 13.29 of [8]), we find that Y. = X/SX ~Z,.
By topological version of Nakayama’s lemma, there is x € X such that X =
Zy[[S)]z. Then there is a power series f(5) € Z,[[S]] such that Tz = f(S)z, and
(T — f(S))X = 0. Therefore, there is a surjective morphism

of A-modules. O

Note that the uniqueness of a power series f(S) is unknown, but we fix one
f(S). The uniqueness of f(S) is related to so called Greenberg’s generalized conjec-
ture. The properties of f(.S) are also not known almost. However, we can show at
least that S'{ f(S). Indeed, there is a surjective morphism A/(S, T — f(S)) — Yge_ .
If S| f(S) then Gal(kS,/k) acts on Y trivially. But it is known that Gal(kS, /k)
acts on Yy non-trivially, see for example Lemma 5 of Ozaki [6]. Therefore, S does
not divide f(S). By the p-adic version of Weierstrass preparation theorem, there
are a non-negative integer m, a distinguished polynomial g(S) € Z,[S] and a unit
power series U(S) € Z,[[S]]* such that f(S) = p™g(S)U(S). Here a polynomial
©(S) with coefficients in Z, is called distinguished polynomial if ¢(S) is monic
and (S) = 598 ¢(5) mod p.

Let koo /k be a Zj,-extension. Then there is a pair (a, §) € Z2 — pZ2 such that
koo = kloor?), Suppose that k., satisfies the assumption of Lemma 3.1. Then by
Lemma 3.2, we have an exact sequence
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A+ +T)° —1,T — f(S)) — Xp.. — Gal (L. Nk/koo) — O.
Put
Ing=((1+9)*QA+T)° —1,T — £(S),p).
If In3 = (S,T,p), then
A/l p~Z/p, F(S,T) mod I, 3 — F(0,0) mod p.

This leads the assertion of Theorem 1 by Lemma 2.1. We analyze when I, g =
(S,T,p).

LEMMA 3.3. Ifpta andpfa+ SU(0), then In g = (S,T,p), here U(S) is
a unit power series associated to f(S).

ProoF. Recall f(S) =p™g(S)U(S). We prove by splitting into 2 cases.

(i) Suppose that m > 1. Suppose also that o = p™a’ for some non-negative
integer n and o/ € Z,. Then

Lo = (1 +8)*A+T)7 = 1,T = p™g(S)U(S),p)

= (148”1 +T)° —1,T,p)

0 /

_ (Sp" (Z <‘Z ) SP"““‘”) T, p)
k=1

C (SP",T,p).

Also, if pt a then n =0 and Y ;7 (§)S*! is a unit of Z,[[S]]. Hence, in
this case, I, g = (5,7, p) if and only if pt a.

(ii) Suppose that m = 0. Then f(S) = g(S)U(S). Let d > 1 be the degree of a
distinguished polynomial g(.5). Note that g(S) = S% mod p. Then

(1491 +17)° —1,T - SU(S),p)
(14 8)(1+ SU(S))’ —1,T - S'U(S),p)

<n_1 io ( > < ’ k) SRy sy, T — SdU(S)m)

Mg
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= (s3> (¢ ? Srd=k(d=D=117(gyn=k T _ $47/(S),p ).
(22 (0)(.2) )

n=1k=0
Put h(S) = 300 0o (9)(,2,) S kd=D=117(S)"—*. Since
nd—k(d—1)—1>nd—n(d-1)—1=n-1,

we have

h(0)=>"
k=

0

R

a+BU0) ifd=1,
e if d > 2.

Suppose that pta and p t a+ SU(0). Then A(S) is a unit power series of
Z,[[S]])- Therefore,

Iaﬂ = (Sh(S)vTi SdU(S)7p) = (SvTi SdU(S)7p) = (SaTap)

This completes the proof of Lemma 3.3. O
Recall that ks =k "°™") with (a, 8) € Z2 — pZ2.
LEMMA 3.4. pftaif and only if koo NkE = k.

PROOF. Let k¢ be the 1-st layer of k% /k. Then ko, Nk% = k if and only if
kS € koo since koo /k is a Z,-extension. By the choices of ¢ and 7, k{ is fixed by

7 and o®, whence Gal(k/k%) = (07) & (). This shows that k¢ € ks if and only
if pta. O

Suppose that p 1 «, hence koo N k% = k. When p splits in k, suppose further
that koo # Neo, N.o. Assume that p | 8. Then a + SU(0) = o # 0 mod p, and
hence I, 3 = (S,T,p) by Lemma 3.3. Assume that pt 5. If o+ SU(0) # 0 mod p,
then I, g = (S,T,p) by Lemma 3.3. Suppose that o + SU(0) = 0 mod p. Since
pt afU(0) and p is an odd prime number, we find that —a + SU(0) # 0 mod p.
Recall (J) = Gal(k/Q) and let J € Gal(k/Q) be a lift of J. Then
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T(koo) = T (k77

~= T a1

(oaThy J

Il
o~

ol

From the congruence —a + SU(0) # 0 mod p and Lemma 3.3, we know that
MJ (ko) /k) < 2if psplits in k and A(J (ke )/k) < 1 otherwise. Note that J(ks) #
Noo, N, since J(Nu) = N/_. From Lemma 2.1 (3), we conclude that

2 if p splits in k,
1 otherwise.

Akoo /K) = A(J (koo) /K) < {

This completes the proof of Theorem 1.

4. Proof of Theorem 2.

We show in this section the following.

THEOREM 4.1. Let ® C Gal(%/k’) be the decomposition group of a prime

lying above p. Suppose that Ly C %, and that one of the following two conditions
(S) or (NS) holds.

(S)  p splits in k, A(k%,/k) =2 and © is normal in Gal(k/Q).
(NS) p > 5, p does not split in k and (kS /k) = 1.

Then A(kso/k) < [Gal(k/k) : ®] and p(koo/k) = O for all Z,-extensions k.

Here we give some remarks.

(1) We can show that if p does not split in k and L C k, then A(koo/k) =
p(koo/k) = 0 for each koo with Ly C koo independent with the value A(kS,/k).
To explain this, we need the following formula (see Lemma 4.1 of Chapter 13 in
[4]): Let n be a positive integer and K/F a cyclic extension of degree n. Let
e(K/F) be the product of the ramification indeces in K/F for all primes (finite
and infinite) of F'. Let Clk be the ideal class group of K and Er the unit group
of F. Then we have

#ClGal(K/F) _ e(K/F)hp
K [K : Fl[Ep : Ep N (Ng/pK*)]
here we let Clgal(K/F) = {a € Clg | g(a) = a for all g € Gal(K/F)}. Assume

that p does not split in k and that Ly C k. First, let p = 3 and k£ = Q(v/—3).
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Since 3 1 hy, for each Zg-extension ke /k, koo/k is totally ramified at the prime
lying above 3. Then we have (X )gai(k../k) =~ Cly ® Z3 = 0, and so X3, =0
by Nakayama’s lemma. Hence A(koo/k) = p(ks/k) = 0. Next, suppose that
p>5,0r, p=3and k # Q(v/=3). Let ks /k be a Z,-extension which contains
Ly. Choose a positive integer n with Ly C k,. Since k has only one prime
lying above p and k,,/k is unramified outside primes lying above p, one sees that
e(kn/k) = [kn : k]/[ Lk : k]. Because Ej is finite and k has no primitive p-th roots
of unity in this case, p does not divide [Ey : Ex N (N, ik )]. Hence from the
above formula, we have

kn : K]/[Ly : k)| Ly : K]

[k : K] =1

#(Clk ®Zp)Gal(k"/k) — ([

This implies that Cli, ® Z, = 0 for all sufficiently large n, and hence X _ =
0. Therefore, A(koo/k) = p(koo/k) = 0. Specifically, we have p(kZ /k) = 0.
Suppose further that A(kS /k) = 1. By Bloom—Gerth’s result [2], the number of
Z,-extensions koo with u(keo/k) > 0 is at most A(kS,/k) = 1 since p does not
split in k. Suppose that pu(koo/k) > 0. Then it also holds that u(J(keo)/k) > 0.
It follows that J(keo) = koo, and this implies that k. /Q is a Galois extension.
Hence koo = kS, or k%. But we already know p(kS, /k) = 0, and we have proved
(k% /k) = 0 here. Thus, pu(ke/k) = 0 for all Z,-extensions ko,. Hence, for the
vanishing of p-invariants, there is nothing new when p does not split in k. In
particular, if A(k%,/k) = 1, L C k and [Ly : k] = p, then p(keo/k) = 0 and
AMkoo/k) = 0 for each ko, with koo NEZ # k since Ly N koo = k% N koo from
Lemma 2.2.

(2) Suppose the assumptions of Theorem 2. If further p | hy, then the conditions
of Theorem 4.1 (S) are satisfied. To check this, it suffices to show only that if
Ly Ck, p| hg and [Gal(k/k) : D] = p, then D is normal in Gal(k/Q). Let F be
the fixed field of ©. Then k C F C k and [F : k] = p. Let k% be the 1-st layer
of k% /k. Since p | by, and Ly C k, k%/k is unramified by Lemma 2.2. Assume
that F' # k. Then Fk{/k is the composite of 1-st layers of all Z,-extensions of
k and is unramified at a prime lying above p. This contradicts to the fact that
kS, /k is totally ramified at all primes lying above p since (Fk§) N kS, # k. Hence
F = k¢. Since k§/Q is a Galois extension, D is normal in Gal(k/Q). When p 1 hg,
as mentioned in the above of Theorem 2, we already have a stricter result (see
corollary of Theorem 1.)

From here we start to prove Theorem 4.1. As discussed in the previous section,
since A(kS, /k) = 2 if p splits in k, and A(kS, /k) = 1 otherwise, there are a power
series f(S) = p™g(S)U(S) in Z,[[S]] and a surjective morphism
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AT = f(9)) — X.
PROPOSITION 4.1.  [Gal(k/k) : D] = #Z,/f(0)Z,.
Proor. By isomorphisms

AJ(S) = Zp[[T)] = Zp[[Gal(kS, /k)]],
F(S,T)— F(0,T)— F(0,7 Gal(k/kS.) — 1),

we identify these rings. Recall that Yy =~ Z,. Since

AJ(S, T = f(5)) = A/(S, T = f(0))
=~ Zp[[T)] /(T = f(0))

~ Zyp

as Z,-module, one sees that

AJ(S, T = f(S)) = Z,[[T]]/(T = f(0))

as Zp[[Gal(kS, /k)]]-modules. Applying Lemma 3.1 for kS, there is the following
exact sequence

0 — Zy[[T)]/(T = £(0)) — Xpe — Gal (kN Ly /kS) — 0

of Z,[[Gal(kS, /k)]]-modules. Suppose the conditions (S). Then Gal(k N Ly /
ko) = Gal(k/kS,). Since f(0) # 0 as mentioned the above, it follows that

(Zp[[TN/(T — F(0))F /M =0,

here we let MS1(*5/k) the invariant submodule of a Gal(kS, /k)-module M. Also,
since k/k is abelian, it follows that

Gal (k/ke,) S =" = Gal (k/ke.)

and
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Gal (k/kS,) ~ Gal (k/kS.).

Gal(kg, /k)
Hence we have an exact sequence

0———— X Gal(i/he,)

— 7,/ f(0)Zy, — (ngo)Gal(kgo/k) — Gal(E/kgo) —0

of Z,-modules since Z,[[T]]/(T,T — f(0)) ~Z,/f(0)Z,. By Lemma 4.1 of Okano
[5], we know that X,ial(kg"/k) = Dye_, which is the decomposition group in Xy. =
Gal(Lge_/kS,) of a pgme lying above p. Let My /k be the maximal pro-p abelian
extension unramified outside all primes lying above p and L the fixed field of Ly

by T'Xke . We claim that k=M, = L. By class field theory, see for example
Theorem 13.4 and Corollary 13.6 of [8], there is an isomorphism

Tory, Gal(Mj,/k) ~ Gal(Ly/Ly, N k)

of finite abelian groups, where Torz, Gal(My/k) is the Z,-torsion submodule of
Gal(My/k). By our assumption that Ly C k, it follows that

Torz, Gal(Mj,/k) =~ Gal(Ly/Ly, Nk) = Gal(Ly/Ly) = 0.
This implies that M, = k. It follows from the fact that M /kS, is unramified that
M, C L. Since L/k is abelian and unramified outside all primes lying above p,

we have L C M. Therefore, L = My = k. This shows that (Xke)qal(re, k) =

Gal(k/ kS.). Hence we obtain the following exact sequence
0 — Dy, — Gal(i/kS,) — Z,/F(0)Z, — 0
of Z,-modules. Note that
Image(Dye. — Gal(k/kS,)) =D N Gal (k/kS,)
since Dy is not depending on the choice of a prime lying above p. Since kS, /k

is totally ramified at all primes lying above p, by combining the above arguments,
we have
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(Gal(k/k) : D] = # Gal(k/k)/D
= # Gal(k/kS)D/D
= # Gal(k/kS,)/D N Gal(k/kS,)
— #Cloker(Dge. — Gal(k/kS.))
= %7,/ (0)Z,.

Suppose the conditions (INS). Recall Xjc is isomorphic to Z, as Z,-modules.
Since Yie =~ Z[[T]]/(T — f(0)), it follows that

(Xke)Gal(ke, /k) = Zp/ f(0)Zp.
Since kS, has the unique prime lying above p, we also have
(ngo)Gal(kgo/k) ~ Gal(Lk/k;)

By the condition that p > 5, we have M = k since the completion at the prime
lying above p has no primitive p-th root of unity. It follows that the fixed field of
k by © is Ly by class field theory because the order of the ideal class containing
the prime above is prime to p. Therefore, we have

[Gal(k/k) : D] = # Gal(Ly /k)

= #(Xke_ ) Gal(ke, /k)
= #Zyp/ [(0)Zy.

This completes the proof. O
Let po = [Gal(k/k) : D] and put vy, (S) = ((1+ S)P™ —1)/S.
PROPOSITION 4.2.  f(S) = vy, (S)U(S).

PROOF.  For each non-negative integer n, denote by k7 the n-th layer of
k% . Since ® is normal in Gal(k/Q), the fixed field of © is a Galois extension
over Q, and is unramified over k. This shows that the fixed field is kj;, by Lemma

2.2. Let E;\L; be the composite of all Z,-extensions of kj, . Then it is known that
Gal(kg, /ke ) ~ Z8"°*1, see [3] and Section 5-5 of [8]. We show vy, (S) | f(5).
Suppose the condition (S). Let J,, C Gal(k2 /k; ) be the inertia subgroup
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of a prime of k lying above p. Since the prime number p splits completely in
o/ Q, we have Jno ~ Z,. Also, since k2 /Q is a Galois extension, all primes of

k’a are ramified in k% /k. This shows that J,, N Gal(k:“ /k%) = 1, and hence

k,‘fb o/ kS, is unramified at all primes of kg, because ke o/ kn, is unramified outside

no

the all primes lying above p. Consider the natural surJectlve morphism

Xpa — Gal (kg k%) ~ 272"
Since @g contains k = M, &, we have

Gal (kg /K ) Gay(ae. iy = Gl (/RS-

By isomorphisms

M(T) = Z,[[S]] = Z,[[ Gal(kg /k)]].
F(S,T) F(S,0)— F(o Gal(k/k%) — 1,0),

we identify these rings. Since ka o/ Kn, is abelian, o?" Gal(k/ko) =

1+ 5P

acts on Gal(gi/kgo) trivially. Since also Gal(EgTo/kgo) ~ 7" as Z,-modules, we

have

Gal (kg /k%.) =~ Z,[[S])/((1 + )" — 1).

Recall the characteristic ideal chary, j1s7)(M) of a finitely generated torsion Z[[S]]-

module M. The above isomorphism and the surjective morphism Xya_

Gal( kz“ ,/kS,) implies that
charz (s (Xre ) € (14 5)P" —1).
Also, from the exact sequence
0 — Yya — Xpo — Gal(k/k%) — 0,

we have

—
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charz, 15))(Xks, ) = charz, sy ( Gal(k/kS)) charz, sy (Vi)

= SCharZP[[S]](Ykgo)
C(@+8)" -1
= S(Vno(s))

Since S and v,,(S) are relatively prime, we have charg [g7(Yaa ) € (vn,(95))-
Finally, from the surjective morphism

Zp[[SN)/(f(S)) — Yaa,,

we have (f(S)) C (Vn,(S)) and hence v, (S) divides f(S).

Suppose the condition (NS). Let Jy and J,,, be the inertia subgroups in E/k
and E‘i/ kg2 of a prime of k and k lying above p, respectively. Since kg /k is
unramified, we have J, C Gal(k/ kg,) and Jg is the inertia subgroup in E/kfm-
Also, since there is only one prime of k£ lying above p, Jy is isomorphic to Zz.
Note that J,, maps to Jo surjectively. Let p,, be a prime of £k lying above
p such that J,, is the inertia subgroup of p,, in %/kz() Let U,, be the local
principal unit group at p,,. Since p does not split in & and the all primes lying
above p decomposed completely in ky,,/k, we find that Up,, =~ ZZQ). By class field
theory, there is a surjective map Uy, — Jy,. Hence we find that J,, ~ Zf, and
therefore J,, >~ Jo. This shows that J,,, maps to Gal(%/ k) injectively, and hence
Tng N Gal(?c—gz/%) = 1. Thus E;‘;:/E is an abelian unramified extension. Let L/k%
be the maximal abelian subextension of L;/kg , we then have Gal(L/k) = Yia .
Since E;l:;/kgo is abelian and E;\l; - LE7 we have E;\l; C L. From a surjective
morphism

Gal(L/k) = Yy.. — Gal (kg /k),
it follows that

charg, (15 (Vis, ) C charg, gs)) (Gal(kg, /).

By doing the same argument to the case (S), we have

Gal (kg /k%) = Zy[[S])/(1+ )" — 1)

since p > 5 and M = k. Thus chaer[[SH(Gal(@;/E)) = (Vno(9)), and hence
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charg, s7)(Yia ) C (¥n,(S5)). Therefore we also have vy, (S) | f(S5).

) €
Rewrite f(S) = p™p,(S)g(S)U(S) with a distinguished polynomial ¢(S).
Note that v,,(0) = p™. Then we have

p™ = [Gal(k/k) : D]
= #Zp/f(O)Z
= H#Z,/p™ - p"° - g(0)Zy.

Hence m = 0 and p{ g(0), and therefore f(S) = vy, (S)U(S). O

We finish the proof of Theorem 4.1. Suppose the condition (S). If ko #
Noo, N!_ then

MEoo/k) = rankz, (Vi ) + 1
by Lemma 3.1. Suppose the condition (NS). Let ko be a Zp-extension and L/koo
the maximal abelian subextension of L; /k.. Then Ly _k is contained in L. Hence
there is an exact sequence

Vi, — Xp. — Gal (kN Ly /koo) — 0

of Z,[[Gal(keo/k)]]-modules. Since ® is equal to the inertia subgroup in Gal(k/k)
and [Gal(k/k) : ©] = [Ly, : k] < oo, we find that

(kN Lk : koo] = [Gal(k/koo) : ® N Gal(k/koo)] < oc.
Therefore we have
/\(koo/k) S rankzp (ka)
for all Z,-extensions koo
Let koo = k% and suppose the condition (S). Note that k% = k{7, Then, by
Proposition 4.2,

10,1 - (TJT_ Sp"o—lU(S)7p) = (Sp"o—17T7p)

and A/Iy; ~ (Z/p)P"°~'. This implies u(k% /k) = 0 and
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(kS /k) = rankg, (Yra ) +1 < p™°

from Lemma 2.1. Suppose the condition (NS). Then A(k% /k) = u(k% /k) =0 as
mentioned in the above. In particular, u(ks/k) = 0 for all ks, by Bloom—Gerth
[2] (In fact, we also can show p = 0 by our argument.)

Assume that ko N k% = k. Then

Moo /k) < 2 8),
<°°/>_{1 (NS)

by Theorem 1. Thus M ke /k) < 2 < p™o.

Suppose the condition (S) and let ko, = No. Since Ly C N, we have
A(Noo/k) = u(Noo/k) = 0 by the formula stated in the remark (1) of Theorem
4.1.

Let ks be a Zp-extension such that koo N KL # k, koo # k%, and that
koo # Noo, NI, if p splits in k. Choose («, 8) € Z2 — pZ2 so that k., = loor?).,
Then p | a, so put @ = p*a’ for s € Z>1 and o’ € Z;5. We calculate I, 3.

(1 (1+7)% —1,7 - 8" ~1U(S),p)

(1

_|_
+ 57 (14 8P LU (S))P — 1,7 — SPU(S), p)

((

((

((; < )S’“”S> (g (f) sl@""—”U(S)l) -1,T — SP"“‘lU(S%p)
= (ii ( ) ( )S’fpsﬂnkﬂp"“)U(S)”k,T - SP””lU(S),p).

n=1 k=0

First suppose that p™ — 1 < p°. Note that

kp® + (n—k)(p" — 1) =n(p" — 1) + k(p° — (p" — 1)) = n(p"™ —1).

Thus Y2°°, S50 o (4)(,2,) Sk + (=@ =D ($)nF is divided by SP"°~1. Put

( ) ( p k) G =) ("0 1)~ ("0 ) 7 (g

n=1 k=0

M

Since kp® + (n — k)(p™ — 1) — (p™ — 1) > (n — 1)(p™° — 1), we have
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ho(0)

D

k=0

(D))o -mwo ez

1

o\ (B kp® +(1— k) (p70 —1)— (p"0 —1) 1—k
k 1—k [S ]S:OU(O)

o 9

This shows that

Ia,ﬁ - (Spn()ilho(s)vT - Spno*lU(S)vp)
= (Spno*laTap)7

and hence
NIy g~(Z/p)"° 2.

Therefore A(koo/k) < p™.
Next suppose that p™ — 1 > p®. Since

kp® + (n—k)(p™ — 1) =n(p™ — 1) + k(p® — (p™ — 1))

S S (3 (2SR R =D (§)nF i divided by SP°. Put
N (N (B gm0 1)t gynk
hl(S)—ZZ(k><n_k)S U(S)"*.

n=1 k=0

Since kp® + (n — k)(p™ — 1) — p* > (n — 1)p®, we have

h1(0)

>

a, 6 s _ Y _1)_mS _
(k)<1—k> (St Uy
k=0

(o) s

This shows that
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Ing = (SP"mi(S),T — """ ~'U(S),p)

= (Sps7Tﬂp)7
and hence
AInp =~ (Z/p)P.

Therefore A(koo/k) < p* + 1 < p". This completes the proof of Theorem 4.1. O
As an application to Proposition 4.2, we can obtain the following results.

THEOREM 4.2.  Under the condition (S), Xga =~ Z,[[S]]/((1+S)P™* —1) as
Z,[[S]]-modules.

PROOF. Recall a surjective morphism Xja — Gal(égvo/k:gﬂ) o~ Zgno. It
follows that p" < rankz, (X« ) = rankz, (Yre ) 4 1 and hence we have p™ —1 <
rankz, (Yie ). Recall also a surjective morphism Z,[[S]]/(vn,(S)) — Yga . Since

p" — 1 = rankg, (Z[[S]]/ (v, (5)))
Z rankzp (Ykgo)
=p" =1,

we have Zy[[S]]/(Vn,(S)) =~ Yia ~ Zgno_l, and hence Xja ~ Zgno. Therefore we

have Lya = 75%; and

Xig, = Gal (kg /kS) = Zp[[S])/((1L+8)" —1).

This completes the proof. O

This isomorphism says that k% has only trivially known unramified abelian
pro-p extensions.

COROLLARY 4.1. (T — vy, (S)U(5))X = 0. O

REMARK. As mentioned in the below of Lemma 3.2, the uniqueness of
f(S) is unknown. Under the assumption of Theorem 4.1, we conclude that the
uniqueness of U(S) is unknown, namely, if a power series F'(S) € Z,[[S]] satisfies

Tz = F(S)z, then F(S) = vy, (S)(U(S) + G(S)) with G(S) € (5, p).
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5. Some Discussions.

We give a proof of Theorem A here as mentioned in Section 1. Suppose that
p does not split in k and A(kS, /k) = 0. Since k<, has the unique prime lying above
p and kS /k is totally ramified at the prime lying above p, (X )cai(re /k) =
Gal(Lg/k). It is known that X;. is a finitely generated free Z,-module of rank
(kS /k). Hence Gal(Ly/k) = 0 since A(kS, /k) = 0. Thus (Xi)Gai(ke /k) =
Gal(Ly/k) = 0, and therefore X;__ = 0 for each koo. This shows A(ko/k) =
(koo /k) = v(koo/k) = 0 for each koo

Suppose that p splits in k& and A(kS,/k) = 1. Then by Lemma 3.1, Y =0
and hence X = 0. This shows that X, = Gal(k/koo) ~ Zy, for each ko with
koo # Noo, N. ., and therefore A(koo/k) = 1 and p(koo/k) = 0. Next we show
that A(Noo/k) = AN /k) = p(Neo/k) = u(N. /k) = 0. Since X = 0, one sees
that Gal(LNoo%/E) — 0. Since also k/N4 is ramified at primes lying above p’,
Gal(kN L No../Noo) is finite. From the exact sequence

0 — Gal (Ln_k/k) — Xn. — Gal (Ly._ Nk/Na) — 0,

we conclude that Xy_ is finite. Therefore, A(Noo/k) = 1(Noo/k) = 0. By the
same argument, we also have A(N/_/k) = u(N._ /k) = 0. This completes the proof
of Theorem A.

On the proof of Theorem 1, when p does not split in k, we do not use in-
dividualities of imaginary quadratic fields, it was needed that k has the complex
conjugation J as an automorphism (i.e. k is a CM-field), Xy ~ Z, and that kS,
has only one prime lying above p. Hence we can obtain a more general result.

PROPOSITION 5.1.  Let p be an odd prime number, k a CM-field and k™ the
mazimal totally real subfield of k. Suppose that kS, has the unique prime lying
above p, Xye =~ Z, and that kS, /k is totally ramified at the prime above p. Let
k2 /k be an anti-cyclotomic Z,-extension of k, namely, k% /k* is a Galois exten-
sion such that Gal(k% /k™) is non-abelian. Put K = kS k% . Then koo /k) < 1
for each Zy-extension ko such that koo € K and that koo N kS, = k.

For example, let p = 37,59 or 67. Then the p-th cyclotomic field &k = Q(u,)
satisfies the assumption of Proposition 5.1.
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