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Abstract. We introduce the notion of an approximate Jacobian Newton
diagram which is the Jacobian Newton diagram of the morphism (f (k), f),

where f is a branch and f (k) is a characteristic approximate root of f . We
prove that the set of all approximate Jacobian Newton diagrams is a complete
topological invariant. This generalizes theorems of Merle and Ephraim about
the decomposition of the polar curve of a branch.

1. Introduction.

Every two complex series f, g ∈ C{x, y} such that f(0, 0) = g(0, 0) = 0 define
a germ of a holomorphic mapping (g, f) : (C2, 0) −→ (C2, 0). Assume that the
curves f = 0 and g = 0 share no common component. Then the critical locus of
this mapping is a germ of an analytic curve and its direct image by (g, f) is also
an analytic curve called the discriminant curve. Let D(u, v) = 0 be an equation
of the discriminant curve in the coordinates (u, v) = (g(x, y), f(x, y)). We call the
Newton diagram of D(u, v) the Jacobian Newton diagram of the morphism (g, f)
and denote it NJ(g, f).

Note that if g = 0 is a smooth curve transverse to f = 0 then NJ(g, f) is
the Jacobian Newton diagram of the curve f = 0 introduced in [Te3]. With these
assumptions Teissier proves in [Te1] that NJ(g, f) depends only on the topological
type of the curve f = 0.

Merle in [Me] studies the case of a smooth curve g = 0 transverse to an
irreducible singular curve f = 0. He gives a description of the Jacobian Newton
diagram in terms of other invariants of singularity of a curve f = 0. He also shows
that the datum of the Jacobian Newton diagram determines the equisingularity
class of the curve (or equivalently its embedded topological type). Ephraim in
[Eph] extends Merle’s result to any smooth curve g = 0.

Let f be an irreducible Weierstrass polynomial. In this paper we generalize the
results of Merle to the family {NJ(f (k), f)}k, where f (k) is the k-th characteristic
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approximate root of f introduced in [A-M]. We prove, in two different ways,
that this family is a complete topological invariant of the branch f = 0. Our
computations are based on the decomposition of the critical locus of the mapping
(f (k), f), which is analogous to the decomposition of the polar curve obtained by
Merle in [Me].

2. Plane branches, semigroup and approximate roots.

We mean by the fractional power series the elements of the ring C{x}∗ =⋃
n∈N C{x1/n}. For every two fractional power series δ and δ′ we call the number

O(δ, δ′) = ordx(δ(x)− δ′(x)) the contact order between δ and δ′.
Every convergent power series g(x, y) ∈ C{x, y}, g(0, 0) = 0 has the Newton-

Puiseux factorization

g(x, y) = u(x, y)xN
d∏

i=1

(y − γi(x)),

where u(x, y) ∈ C{x, y}, u(0, 0) 6= 0, N is a nonnegative integer and γi(x) are
fractional power series of positive order. We will call γi the Newton-Puiseux roots
of g and denote the set {γ1, . . . , γd} by Zer g.

Let f(x, y) be an irreducible power series such that ordy(f(0, y)) = n ≥ 1.
Then f has a Newton-Puiseux root of the form γ1(x) =

∑∞
i=1 aix

i/n. The other
Newton-Puiseux roots are γj(x) =

∑∞
i=1 aiω

(j−1)ixi/n for 1 ≤ j ≤ n, where ω ∈ C

is an n-th primitive root of unity. The contact orders between the elements of Zer f

form a set {b1/n, . . . , bg/n}, where b1 < b2 < · · · < bg and gcd(n, b1, . . . , bg) = 1.
We put b0 = n and call the sequence (b0, b1, . . . , bg) the Puiseux characteristic of
f . By convention bg+1 = +∞.

Let A and B be finite sets of fractional power series. The contact cont(A,B) is
by definition max{O(α, β) : α ∈ A, β ∈ B}. If α(x) is a fractional power series and
f(x, y), g(x, y) are irreducible power series co-prime to x then by abuse of notation
we will write cont(α, f) := cont({α},Zer f) and cont(f, g) := cont(Zer f,Zer g).

It is well-known (see for example Lemma 4.3 of [Ca1]) that for every Newton-
Puiseux root α of f we have cont(α, g) = cont(f, g). The contact between irre-
ducible power series has a strong triangle inequality property: if hi ∈ C{x, y}
for i = 1, 2, 3 are irreducible power series co-prime to x then cont(h1, h2) ≥
min(cont(h1, h3), cont(h2, h3)).

In [A-M] the authors introduce the concept of the approximate root as a
consequence of the following proposition:

Proposition 1. Let A be an integral domain. If f(y) ∈ A[y] is monic of
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degree d and p is invertible in A and divides d, then there exists a unique monic
polynomial g(y) ∈ A[y] such that the degree of f − gp is less than d− d/p.

This allows us to define:

Definition 1. The unique monic polynomial of the preceding proposition
is called the p-th approximate root of f .

Let f ∈ C{x}[y] be an irreducible Weierstrass polynomial with Puiseux char-
acteristic (b0, . . . , bg). Put lk := gcd(b0, . . . , bk). In particular lk divides deg f = b0

for all k ∈ {0, . . . , g}. In the sequel for k ∈ {0, . . . , g − 1} we denote f (k) the lk-th
approximate root of f and we call these polynomials the characteristic approximate
roots of f . By convention we put f (−1) = x.

The following proposition is the main one in [A-M] (see also [G-PÃl2] and
[Po]):

Proposition 2. Let f ∈ C{x}[y] be an irreducible Weierstrass polynomial
with Puiseux characteristic (b0, . . . , bg). Then the characteristic approximate roots
f (k) for k ∈ {0, . . . , g − 1}, have the following properties:

1. The polynomial f (k) is irreducible with Puiseux characteristic (b0/lk, . . . , bk/lk).
2. The y-degree of f (k) is equal to b0/lk and cont(f, f (k)) = bk+1/b0.

Example 1. Take the irreducible Weierstrass polynomial f = (y3− 6x3y−
x4)2−9x9 of Puiseux characteristic (6, 8, 11). The characteristic approximate roots
of f are f (0) = y and f (1) = y3−6x3y−x4. The Newton-Puiseux roots of f are of
the form y = ω8x4/3 +2ω10x5/3 +ω11x11/6 + · · · , where ω6 = 1 while the Newton-
Puiseux roots of f (1) are y = ε4x4/3 + 2ε5x5/3 − (8/3)x2 + · · · , where ε3 = 1. One
can check directly that cont(f, f (0)) = 8/6 and cont(f, f (1)) = 11/6.

3. Jacobian Newton diagrams.

In this section we recall the notion of the Jacobian Newton diagrams and we
establish some preliminary results which are necessary for the next.

Write R+ = {x ∈ R : x ≥ 0}. Let f ∈ C{x, y}, f(x, y) =
∑

ai,jx
iyj be a

non-zero convergent power series. Put supp f := {(i, j) : ai,j 6= 0} the support of
f . By definition the Newton diagram of f in the coordinates (x, y) is

∆f := Convex Hull (supp f + R2
+).

An important property of Newton diagrams is that the Newton diagram of
a product is the Minkowski sum of Newton diagrams. One has ∆fg = ∆f + ∆g,
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where ∆f + ∆g = {a + b : a ∈ ∆f , b ∈ ∆g}. In particular if f and g differ by
an invertible factor u ∈ C{x, y}, u(0, 0) 6= 0 then ∆f = ∆g. Thus the Newton
diagram of a plane analytic curve is well defined because an equation of an analytic
curve is given up to invertible factor, where an analytic plane curve is a principal
ideal of the ring of convergent power series C{x, y}, which we will denote by
f(x, y) = 0. We will write ∆f=0 for the Newton diagram of the curve f = 0.

Following Teissier [Te2] we introduce elementary Newton diagrams. For
m,n > 0 we put { n

m} = ∆xn+ym . We put also { n∞} = ∆xn and {∞m} = ∆ym .
Every Newton diagram ∆ ( R2

+ has a unique representation ∆ =
∑r

i=1

{
Li

Mi

}
,

where inclinations of successive elementary diagrams form an increasing sequence
(by definition the inclination of {L

M} is L/M with the conventions that L/∞ = 0
and ∞/M = +∞). We shall call this representation the canonical decomposition
of ∆.

Let σ = (g, f) : (C2, 0) → (C2, 0) be an analytic mapping given by σ(x, y) =
(g(x, y), f(x, y)) := (u, v) and such that σ−1(0, 0) = {(0, 0)}. Then every local
analytic curve h(x, y) = 0 has a well-defined direct image σ∗(h = 0) which is an
analytic curve in the target space (see [Ca2]). The Newton diagram of the direct
image is characterized by two properties:

1. If h is an irreducible power series then ∆σ∗(h=0) =
{

(f, h)0
(g, h)0

}
, where (r, s)0 denotes

the intersection multiplicity of the curves r = 0 and s = 0 at the origin.
2. If h = h1h2 then ∆σ∗(h=0) = ∆σ∗(h1=0) + ∆σ∗(h2=0).

Let jac(g, f) = ∂g/∂x ·∂f/∂y−∂g/∂y ·∂f/∂x be the Jacobian determinant of
the mapping σ. The direct image (see Preliminaries in [Ca2]) of jac(g, f) = 0 by
σ is called the discriminant curve. We will write NJ(g, f) for the Newton diagram
of the discriminant curve and following Teissier (see [Te3]) call it the Jacobian
Newton diagram of the morphism σ = (g, f).

4. Approximate Jacobian Newton diagrams of a branch.

In this section we introduce the notion of the approximate Jacobian Newton
diagrams of an irreducible plane curve and we compute them. In what follows a
branch f(x, y) = 0 will be given by an irreducible Weierstrass polynomial.

Let f be an irreducible Weierstrass polynomial and let f (k), for 0 ≤ k ≤
g−1, be the characteristic approximate roots of f . The Jacobian Newton diagram
NJ(f (k), f) is called the k-th approximate Jacobian Newton diagram of the branch
f(x, y) = 0.

The following result about the factorization of the Jacobian jac(f (k), f) is the
main result of this note:

Theorem 1. Let f ∈ C{x}[y] be an irreducible Weierstrass polynomial with
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Puiseux characteristic (b0, . . . , bg). Let f (k), 0 ≤ k ≤ g − 1, be the k-th character-
istic approximate root of f . Then the Jacobian jac(f (k), f) admits a factorization

jac(f (k), f) = Γ(k+1) · · ·Γ(g),

where the factors Γ(i) are not necessary irreducible, x is co-prime to the product
Γ(k+2) · · ·Γ(g) and such that

1. If α is a Newton-Puiseux root of Γ(k+1) then cont(α, f) < bk+1/b0.
2. If α is a Newton-Puiseux root of Γ(i), k + 2 ≤ i ≤ g then cont(α, f) = bi/b0.
3. The intersection multiplicity (Γ(i), x)0 = n1 · · ·ni−1(ni − 1) for k + 2 ≤ i ≤ g.

The proof of Theorem 1 will be done in Section 5.
The contacts between Newton-Puiseux roots of Γ(k+1) and f are not deter-

mined by the Puiseux characteristic of f as the following example shows.

Example 2. Let f = (y3 − 6x3y − x4)2 − 9x9 be the Weierstrass poly-
nomial from Example 1 and let g = (y3 − x4)2 + x9 − x7y2. Both series f and
g are irreducible with the same Puiseux characteristic (6, 8, 11). The Jacobian
jac(f (1), f) = 243x8(y2−2x3) has two Newton-Puiseux roots α1(x) =

√
2x3/2+· · · ,

α2(x) = −√2x3/2 + · · · and cont(αi, f) = 4/3 < b2/b0 for i = 1, 2.
On the other hand there are four Newton-Puiseux roots β1(x) = 0, β2(x) =

(8/27)x2 + · · · , β3(x) =
√

(21/27)x + · · · , β4(x) = −
√

(21/27)x + · · · of
jac(g(1), g) = x6y(21y3 − 27x2y + 8x4) and cont(βi, g) = 4/3 for i = 1, 2, but
cont(βi, g) = 1 for i = 3, 4.

Further we will use the following property of the intersection multiplicity
which is a consequence of the Noether’s formula (see [G-PÃl2, Proposition 3.3]):

Property 1. Let g(x, y), h(x, y) be irreducible power series co-prime to
x. Then for fixed g, the function h 7→ (g, h)0/(x, h)0 depends only on the contact
cont(g, h) and is a strictly increasing function of this quantity.

Corollary 1. Under assumptions and notations of Theorem 1 the Jacobian
Newton diagram of the mapping (f (k), f) has the canonical decomposition

NJ(f (k), f) =
g∑

i=k+1

{
(f,Γ(i))0

(f (k),Γ(i))0

}
.

Proof. We prove that for every irreducible factor h of jac(f (k), f) the
quotient (f, h)0/(f (k), h)0 depends only on the contact cont(f, h). Indeed there
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are two cases: if cont(f, h) < bk+1/b0 then by the strong triangle inequality
cont(f (k), h) = cont(f, h) hence (h, f (k))0/(x, f (k))0 = (h, f)0/(x, f)0 and we get

(f, h)0
(f (k), h)0

=
(x, f)0

(x, f (k))0
, (1)

if cont(f, h) > bk+1/b0 then also by the strong triangle inequality cont(f (k), h) =
cont(f (k), f) hence (f (k), h)0/(x, h)0 = (f (k), f)0/(x, f)0 and we get

(f, h)0
(f (k), h)0

=
(x, f)0

(f (k), f)0
· (f, h)0
(x, h)0

. (2)

Fix i ∈ {k +1, . . . , g} and write Γ(i) as a product h1 · · ·hr of irreducible factors hj

for 1 ≤ j ≤ r. Then the Newton diagram of the direct image of the curve Γ(i) = 0

is the sum
∑r

j=1

{
(f, hj)0

(f(k), hj)0

}
. Since all elementary Newton diagrams in the above

sum have the same inclination one has

r∑

j=1

{
(f, hj)0

(f (k), hj)0

}
=

{ ∑r
j=1(f, hj)0∑r

j=1(f
(k), hj)0

}
=

{
(f,Γ(i))0

(f (k),Γ(i))0

}
.

We proved that the Jacobian Newton diagramNJ(f (k), f) is the sum of elementary
Newton diagrams from the statement of the Corollary. The inclination of the first
elementary Newton diagram is given by formula (1) which can be written as
(x, f)0/(f (k), f)0 · (f, f (k))0/(x, f (k))0. The inclinations of the remaining elemen-
tary Newton diagrams are given by formula (2). By Property 1 these inclinations
form a strictly increasing sequence. This finishes the proof. ¤

Now our aim is to give an arithmetical formula for NJ(f (k), f).
Put bk := (f, f (k−1))0 for k ∈ {0, 1, . . . , g}. Following Zariski (see [Z]), the

set {b0, b1, . . . , bg} is a minimal system of generators of the semigroup

Γ(f) := {(f, g)0 : f is not a factor of g}

of the branch f(x, y) = 0. This system of generators is uniquely determined
by the Puiseux characteristic of f in the following way: b0 = b0, b1 = b1 and
bq = nq−1bq−1 + bq − bq−1 for 2 ≤ q ≤ g. Recall that ni = li−1/li, where li =
gcd(b0, . . . , bi) = gcd(b0, . . . , bi).

Remember that the Milnor number of a curve g(x, y) = 0 is by definition the
intersection multiplicity (∂g/∂x, ∂g/∂y)0.
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Theorem 2. Let f = 0, where f is an irreducible Weierstrass polynomial,
be a branch with semigroup Γ(f) = 〈b0, . . . , bg〉. Then the canonical decomposition
of the k-th approximate Jacobian Newton diagram of f is

NJ(f (k), f) =
{

lk(µ(f (k)) + m− 1)
µ(f (k)) + m− 1

}
+

g∑

i=k+2

{
(ni − 1)bi

mnk+2 · · ·ni−1(ni − 1)

}
,

where m = bk+1/lk+1, and µ(f (k)) is the Milnor number of f (k) = 0.

Proof. In the course of the proof we shall use the canonical decomposition
of NJ(f (k), f) from Corollary 1. We shall express all intersection multiplicities
(f,Γ(i))0 and (f (k),Γ(i))0 for k + 1 ≤ i ≤ g in terms of the generators of the
semigroup Γ(f).

First consider Γ(i) for k + 2 ≤ i ≤ g. By Theorem 1 the contact of every
irreducible factor of Γ(i) with f equals bi/b0. By Property 1 and Theorem 1:

(f,Γ(i))0 = (x,Γ(i))0
(f,Γ(i))0
(x,Γ(i))0

= (x,Γ(i))0
(f, f (i−1))0
(x, f (i−1))0

= (ni − 1)bi. (3)

By Corollary 1 and equality (2)

(f,Γ(i))0
(f (k),Γ(i))0

=
(f, f (i−1))0

(f (k), f (i−1))0
=

(x, f)0
(f (k), f)0

· (f, f (i−1))0
(x, f (i−1))0

=
li−1bi

bk+1

.

Hence by (3)

(f (k),Γ(i))0 =
bk+1

li−1bi

(f,Γ(i))0 = mnk+2 · · ·ni−1(ni − 1).

In order to compute (f (k),Γ(k+1))0 we use Theorem 3.2 of [Ca1]. We get

(f (k), jac(f (k), f))0 = µ(f (k)) + (f (k), f)0 − 1.

Since (f (k), jac(f (k), f))0 =
∑g

i=k+1(f
(k),Γ(i))0 we have

(f (k),Γ(k+1))0 = µ(f (k)) + (f (k), f)0 − 1−
g∑

i=k+2

mnk+2 · · ·ni−1(ni − 1)

= µ(f (k)) + bk+1 − 1−m(lk+1 − 1) = µ(f (k)) + m− 1.
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Finally by Corollary 1 and equality (1)

(f,Γ(k+1))0
(f (k),Γ(k+1))0

=
(x, f)0

(x, f (k))0
= lk.

Hence (f,Γ(k+1))0 = lk(µ(f (k)) + m− 1). ¤

Remark 1. In the above proof we compute the inclinations of elementary
Newton diagrams of the canonical decomposition of NJ(f (k), f) which are equal
to (li−1bi)/(bk+1) for i ∈ {k + 1, . . . , g}. These inclinations are called Jacobian
invariants.

Example 3. Let f(x, y) = (y2 − x3)2 − x5y. Then f = 0 is a branch
and Γ(f) = 〈4, 6, 13〉. The characteristic approximate roots of f are f (0) = y

and f (1) = y2 − x3. The factorization of jac(f (0), f) described in Theorem 1
is jac(f (0), f) = Γ(1)Γ(2), where Γ(1) = x2 and Γ(2) = 6y2 + 5x2y − 6x3. We
also have jac(f (1), f) = x4(10y2 + 3x3). Finally NJ(f (0), f) = { 8

2 } + {13
3 } and

NJ(f (1), f) = {28
14}.

Corollary 2. The family of the approximate Jacobian Newton diagrams
of a branch only depends on its topological type.

If f is an irreducible Weierstrass polynomial then f (0) = 0 is a smooth curve.
By Smith-Merle-Ephraim (see for example Theorem 2.2 of [GB-G2]) the approxi-
mate Jacobian Newton diagram NJ(f (0), f) determines the topological type of the
branch f = 0. Nevertheless we can also obtain the generators of the semigroup
of the branch f = 0 using the whole family of its approximate Jacobian Newton
diagrams in an easy way: let Γ(f) = 〈b0, . . . , bg〉 be the semigroup of f = 0. It is
clear that b0 is the smallest inclination of NJ(f (0), f). Denote by ι the inclination
of the elementary diagram NJ(f (g−1), f). Put Hr, for r ∈ {0, . . . , g−2}, the height
of the last elementary diagram of NJ(f (r), f), that is the height of the elementary
diagram of NJ(f (r), f) which has the biggest inclination. Then br+1 = ιHr/(ι−1)
for r ∈ {0, . . . , g − 2}. Finally bg = L/(ι − 1), where L is the length of the last
elementary diagram of NJ(f (g−2), f).

Example 4. Consider the branches fi = 0 for i ∈ {1, . . . , 4} with semigroups
Γ(f1) = 〈4, 14, 31〉, Γ(f2) = 〈4, 6, 35〉, Γ(f3) = 〈4, 6, 37〉 and Γ(f4) = 〈6, 10, 31〉.
By Theorem 2 we have NJ(f (1)

1 , f1) = NJ(f (1)
2 , f2) = {72

36} and NJ(f (1)
3 , f3) =

NJ(f (1)
4 , f4) = {76

38}.

Given a branch f = 0, put F its family of approximate Jacobian Newton
diagrams but the first one. The example shows that F is not a complete topological
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invariant of a branch. The curves f3 = 0 and f4 = 0 have the same F but they
have different multiplicities at the origin. The curves f1 = 0 and f2 = 0 have
the same F and the same multiplicity at the origin but in spite of it they have
different topological type.

5. Proof of Theorem 1.

Let τ be a positive rational number and let g(x, y) =
∑

i∈Q,j∈N aijx
iyj ∈

C{x}∗[y]. Put w(x) := 1 and w(y) := τ the weights of the variables x and y.
By definition the weighted order of g is ordτ (g) = min{i + τj : aij 6= 0} and the
weighted initial part of g is inτ (g) =

∑
i+τj=ordτ (g) aijx

iyj .

Lemma 1. Let g(x, y) = u(x, y) · xN
∏d

i=1(y − αi(x)), where u(0, 0) 6= 0,
N ∈ Q, αi(x) = cix

τ + · · · for 1 ≤ i ≤ k and ordx(αi(x)) < τ , for k + 1 ≤ i ≤ d.
Then inτ (g) = cxM

∏k
i=1(y − cix

τ ) for some c ∈ C and some M ∈ Q.

Proof. Observe that inτ (y − αi(x)) = y − cix
τ for 1 ≤ i ≤ k and inτ (y −

αi(x)) = −inταi(x) for k + 1 ≤ i ≤ d. Since the initial part of a product is the
product of the initial parts of every factor we get the lemma. ¤

Lemma 2. Let h1, h2 ∈ C{x}∗[y] and τ ∈ Q+. Assume that the Jacobian
jac(inτ (h1), inτ (h2)) 6= 0. Then inτ (jac(h1, h2)) = jac(inτ (h1), inτ (h2)).

Proof. For all monomials M1 = xi1yj1 and M2 = xi2yj2 we
have jac(M1,M2) = (i1j2 − i2j1)xi1+i2−1yj1+j2−1 hence ordτ (jac(M1,M2)) =
ordτ (M1) + ordτ (M2) − 1 − τ provided i1j2 − i2j1 6= 0. It follows that
jac(inτ (h1), inτ (h2)) is the sum of monomials of the same weighted order
ordτ (inτ (h1)) + ordτ (inτ (h2)) − 1 − τ (that is a quasi-homogeneous polynomial).
Moreover jac(h1, h2) = jac(inτ (h1) + (h1 − inτ (h1)), inτ (h2) + (h2 − inτ (h2))) =
jac(inτ (h1), inτ (h2))+ terms of higher weighted order which proves the lemma. ¤

Recall that Newton-Puiseux roots of an irreducible Weierstrass polynomial
f ∈ C{x}[y], deg f = n form a cycle: if γ(x) =

∑
aix

i/n is a root of f then other
roots of f are γj(x) =

∑
aiω

i
jx

i/n, where ωj is a n-th root of unity. Moreover
ordx(γ(x)− γj(x)) ≥ bk+1/b0 if and only if ωj is a lk-th root of unity (see [Z]).

Let f =
∏n

i=1(y − γi(x)) be an irreducible Weierstrass polynomial with
Puiseux characteristic (b0, . . . , bg) and let f (k)(x, y) =

∏m
j=1(y − δj(x)), where

n = mlk, be the characteristic approximate root of f . Put J(x, y) := jac(f (k), f) =
unity · xα

∏
l(y − σl(x)). In order to prove Theorem 1 we need

Lemma 3. Fix γ ∈ Zer f and τ ∈ Q such that τ ≥ bk+1/b0. Then
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1. if bj/b0 < τ ≤ bj+1/b0, where j ∈ {k+1, . . . , g} then ]{i : O(σi, γ) ≥ τ} = lj−1,
2. if τ = bk+1/b0 then ]{i : O(σi, γ) ≥ τ} = nk+1(lk+1 − 1).

Proof. Let J̃(x, y) := J(x, y + γ(x)), f̃(x, y) := f(x, y + γ(x)) and
f̃ (k)(x, y) := f (k)(x, y + γ(x)). Clearly J̃(x, y) = unity · xα

∏
l(y− (σl(x)− γ(x))).

By Lemma 1 ]{i : O(σi, γ) ≥ τ} = degy(inτ (J̃(x, y))).
Assume first that τ > bk+1/b0 and τ 6= bj/b0 for all j ∈ {k + 2, . . . , g}. The

weighted initial part of f̃(x, y) =
∏n

i=1(y−(γi(x)−γ(x))) is equal to inτ (f̃(x, y)) =
c1x

α1yd(τ), where c1 ∈ C \ {0} and d(τ) := ]{i : O(γi, γ) ≥ τ}. More precisely if
bj/b0 < τ < bj+1/b0 then d(τ) = lj .

Consider the function f̃ (k)(x, y) =
∏m

j=1(y− (δj(x)−γ(x))). Since O(δj , γ) <

τ for every j ∈ {1, . . . , m}, we get by Lemma 1 inτ f̃ (k)(x, y) = c2x
α2 , where

c2 ∈ C \ {0}.
Using Lemma 2 we get

inτ (J̃(x, y)) = jac(c2x
α2 , c1x

α1yd(τ)) = c1c2α2d(τ)xα1+α2−1yd(τ)−1,

so its y-degree is equal to d(τ)− 1 = lj − 1 for bj/b0 < τ < bj+1/b0.
Let us choose τ < bj+1/b0 close enough to bj+1/b0 that no σi satisfies τ ≤

O(σi, γ) < bj+1/b0. Then ]{i : O(σi, γ) ≥ τ} = ]{i : O(σi, γ) ≥ bj+1/b0} and the
proof of statement 1 is done.

Assume now that τ = bk+1/b0. By Lemma 1

inτ f̃(x, y) = xα3
∏

ωlk=1

(
y − a(ωbk+1 − 1)xbk+1/b0

)

= xα3
∏

ωlk=1

[
(y + axbk+1/b0)− aωbk+1xbk+1/b0

]

= xα3
[
(y + axbk+1/b0)nk+1 − (axbk+1/b0)nk+1

]lk+1 ,

where ω ∈ C and a is the coefficient in γ of the term xbk+1/b0 . The last equality
follows from the formula

∏
ωp=1(Z − bωq) = (Zp/gcd(p,q) − bp/gcd(p,q))gcd(p,q).

Moreover and also using Lemma 1 we have inτ f̃ (k)(x, y) = xα4(y + axbk+1/b0)
since there is only one Newton-Puiseux root δj of f (k) such that O(δj , γ) ≥ bk+1/b0

(otherwise if there were two of such roots δj1 , δj2 then by the triangular property
of the contact order we obtain O(δj1 , δj2) ≥ bk+1/b0 which is not possible).

We prove now the equality α3 = α4lk. Note that α3 =
∑

i∈I′ O(γi, γ)
and α4 =

∑
j∈J′ O(δj , γ), where I ′ := {i : O(γi, γ) < bk+1/b0} and J ′ :=

{j : O(δj , γ) < bk+1/b0}. Using Puiseux characteristic of f and after Sec-
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tion 3 in [G-PÃl3] we obtain α3 =
∑

i∈I′ O(γi, γ) =
∑k

l=1 ]{i : O(γi, γ) =
bl/b0} · bl/b0 = (n − l1)b1/b0 + · · · + (lk−1 − lk)bk/b0 and by the same argument
α4 =

∑
j∈J′ O(δj , γ) = (n/lk − l1/lk)b1/b0 + · · ·+ (lk−1/lk − 1)bk/b0.

Finally the initial part of J̃ is

inτ (J̃) = jac(inτ (f̃ (k)), inτ (f̃)) = jac(v, (vnk+1 − ank+1uθ)lk+1),

where v = xα4(y + axbk+1/b0), u = x and θ = nk+1(bk+1/b0 + α4) so inτ (J̃) =
∂inτ (f̃)/∂u · ∂v/∂y and its y-degree is equal to nk+1(lk+1 − 1). ¤

Remark 2. The proof of Merle formula in [G-PÃl1] was based on the equality
∆f̃ = ∆j̃ + {∞1 }, where j̃(x, y) = j(x, y + γ(x)) and j(x, y) := jac(x, f). Note that
the statement of Lemma 3 can be written as degy inτ (J̃(x, y)) = degy inτ (f̃(x, y))−
1 for τ > bk+1/b0. It follows from this equality that ∆̃f̃ = ∆̃J̃ +{∞1 }, where ∆̃J̃ and
∆̃f̃ are the sums of elementary Newton diagrams in the canonical decompositions
of ∆J̃ and ∆f̃ respectively with inclinations bigger than bk+1/b0.

Corollary 3. Keep the above notations and put τi := cont(σi, f). Then

1. if τi ≥ bk+1/b0 then τi ∈ {bk+2/b0, . . . , bg/b0}.
2. The number ]{i : τi = bj/b0} = n1 · · ·nj−1(nj − 1) for j ∈ {k + 2, . . . , g}.

Proof. First take τ such that bj/b0 < τ ≤ bj+1/b0 for k + 1 ≤ j ≤ g. We
shall prove that

]{i : τi ≥ τ} = n− n1 · · ·nj . (4)

In the set Zer f we define the equivalence relation given by

γ∗ ≡ γ′ if and only if O(γ∗, γ′) ≥ bj+1

b0
.

Put Iγ := {i : O(σi, γ) ≥ τ} for γ ∈ Zer f . By Lemma 3 we get ]Iγ = lj − 1. Note
that Iγ′ = Iγ∗ for γ∗ ≡ γ′ and Iγ′ ∩ Iγ∗ = ∅ when γ∗ 6≡ γ′.

Remark that n1 · · ·nj is the number of cosets in the equivalence relation ≡.
Since ]{i : τi ≥ τ} =

⋃
γ∈Zer f Iγ we have ]{i : τi ≥ τ} = n1 · · ·nj · ]Iγ =

n1 · · ·nj(lj − 1) = n− n1 · · ·nj . The equality (4) is proved.
Fix small positive number ε such that

]{i : τi = τ} = ]{i : τi ≥ τ} − ]{i : τi ≥ τ + ε}.
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If τ 6= bj/b0 for all j ∈ {k + 2, . . . , g} the above difference is equal to zero. If
τ = bj/b0 for some j ∈ {k + 2, . . . , g}, then ]{i : τi = bj/b0} = (n− n1 · · ·nj−1)−
(n− n1 · · ·nj) = n1 · · ·nj−1(nj − 1).

Finally using the same argument as before (for τ = bk+1/b0) we have

]

{
i : τi =

bk+1

b0

}
= ]

{
i : τi ≥ bk+1

b0

}
− ]

{
i : τi ≥ bk+1

b0
+ ε

}

= ]

{
i : τi ≥ bk+1

b0

}
− (n− n1 · · ·nk+2)

= nk+1(lk+1 − 1)n1 · · ·nk − (n− n1 · · ·nk+1) = 0. ¤

Proof of Theorem 1. Let k + 2 ≤ j ≤ g. Put Γ(j) =
∏

(y − σi(x)),
where the product runs over σi with cont(σi, f) = bj/b0 and let Γ(k+1) =
jac(f (k), f)/(Γ(k+2) · · ·Γ(g)). It follows from the first statement of Corollary 3 that
for every Newton-Puiseux root α ∈ Zer Γ(k+1) we have cont(α, f) < bk+1/b0. Fi-
nally by the second statement of Corollary 3 we get (Γ(i), x)0 = n1 · · ·ni−1(ni−1)
for k + 2 ≤ i ≤ g. ¤

6. Relation with Michel’s theorem.

In [Mi] the author considered a finite morphism (f, g) : (X, p) −→ (C2, 0),
where (X, p) is a normal germ of complex surface. Michel determined the Jacobian
quotients via a good minimal resolution and pointed out the importance of the
multiplicities of the Jacobian quotients. More precisely and following notation of
[Mi], let R be a good resolution of (f, g) and put E = R−1(p) the exceptional
divisor of R. For every irreducible component Ei of E, denote E′

i the set of points
of Ei which are smooth points of the total transform Ẽ = R−1((fg)−1(0)). Denote
the order of f ◦R (respectively g◦R) at a generic point of Ei v(f,Ei) (respectively
v(g, Ei)). The quotient qi = v(g, Ei)/v(f,Ei) is the Hironaka number of Ei.

Let q be a Hironaka number and put E(q) the union of the E′
i such that

qi = q to which we add Ei ∩ Ej if qi = qj = q. Let {Ek(q)}k be the connected
components of E(q). By definition a q-zone is a connected component of E(q) and
a q-zone is a rupture zone if there exists in it at least one E′

i with negative Euler
characteristic. Then after Theorem 4.8 of [Mi] the set of Jacobian invariants of
the morphism (f, g) is equal to the set of Hironaka numbers q such that there
exists at least one q-zone in E which is a rupture zone.

Consider an irreducible Weierstrass polynomial f with Puiseux characteristic
(b0, b1, . . . , bg), where b0 < b1 (i.e. x = 0 is transverse to f = 0). Below is the
schematic picture of the resolution graph of the curve f (k)f = 0.
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Every Jacobian invariant q ∈ {lk, lk+1bk+2/bk+1, . . . , lg−1bg/bk+1} of the mor-
phism (f (k), f) corresponds to exactly one rupture zone.

The rupture zone for q = lk is the tree with endpoints F0, Fk+1, L1, . . . , Lk.
It yields the factor Γ(k+1) of the Jacobian and by Michel’s theorem (Γ(k+1), h)0 =∑k+1

i=1 v(h, Fi)−
∑k

i=1 v(h,Li)− v(h, F0), where h = f or h = f (k).
Every rupture zone for q = li−1bi/bk+1, where k + 2 ≤ i ≤ g is the bamboo

with endpoints Fi and Li. It yields the factor Γ(i) of the Jacobian and by Michel’s
theorem (Γ(i), h)0 = v(h, Fi)− v(h,Li) for k +2 ≤ i ≤ g, where h = f or h = f (k).

As an illustration we draw the resolution graph of f (0)f = 0, where f is
the Weierstrass polynomial from Example 3. The labels of divisors are Hironaka
numbers written in the form v(f,Ei)/v(f (0), Ei).

There are two rupture zones corresponding to Hironaka numbers 4 and 13/3. It
follows from [Mi] that NJ(f (0), f) = {12

3 } − { 4
1 }+ {26

6 } − {13
3 } = { 8

2 }+ {13
3 }.

Remark 3. Remark that Theorem 1 is also true when we change f (k) for any
irreducible Weierstrass polynomial with the properties of statement of Proposition
2.
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[GB-G2] E. R. Garćıa Barroso and J. Gwoździewicz, A discriminant criterion of irreducibility,

Kodai Math. J., 35 (2012), 403–414.
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Departamento de Matemática Fundamental
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