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Abstract. We construct a Gibbs measure for the nonlinear Schrödinger
equation (NLS) on the circle, conditioned on prescribed mass and momentum:

dµa,b = Z−11{RT |u|2=a}1{i
R
T uux=b}e

±1/p
R
T |u|p−1/2

R
T |u|2dP

for a ∈ R+ and b ∈ R, where P is the complex-valued Wiener measure on
the circle. We also show that µa,b is invariant under the flow of NLS. We

note that i
R
T uux is the Lévy stochastic area, and in particular that this is

invariant under the flow of NLS.

1. Introduction.

We consider the periodic nonlinear Schrödinger equation (NLS) on the circle:

iut + uxx = ±|u|p−2u, (x, t) ∈ T× R (1.1)

where T = R/Z. Recall that (1.1) is a Hamiltonian PDE with Hamiltonian:

H(u) =
1
2

∫

T
|ux|2 ± 1

p

∫

T
|u|p. (1.2)

Indeed, (1.1) can be written as

ut = i
∂H

∂ū
. (1.3)

Recall that (1.1) also conserves the mass M(u) =
∫ |u|2 and the momentum P (u) =

i
∫

uux. Moreover, the cubic NLS (p = 4) is known to be completely integrable
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[ZS], [GKP] in the sense that it enjoys the Lax pair structure and thus there exist
infinitely many conservation laws for (1.1). For general p 6= 4, the mass M , the
momentum P , and the Hamiltonian H are the only known conservation laws. Our
main goal in this paper is to construct an invariant Gibbs measure conditioned on
mass and momentum.

First, consider a Hamiltonian flow on R2n:

ṗi =
∂H

∂qj
, q̇i = −∂H

∂pj
(1.4)

with Hamiltonian H(p, q) = H(p1, . . . , pn, q1, . . . , qn). Then, Liouville’s theorem
states that the Lebesgue measure

∏n
j=1 dpjdqj on R2n is invariant under the flow.

Then, it follows from the conservation of the Hamiltonian H that the Gibbs mea-
sure e−H(p,q)

∏n
j=1 dpjdqj is invariant under the flow of (1.4). Now note that if

F (p, q) is any (reasonable) function that is conserved under the flow of (1.4), then
the measure dµF = F (p, q)e−H(p,q)

∏n
j=1 dpjdqj is also invariant.

By viewing (1.1) as an infinite dimensional Hamiltonian system, one can con-
sider the issue of invariant Gibbs measures for (1.1). Lebowitz-Rose-Speer [LRS]
constructed Gibbs measures of the form

dµ = Z−1e−H(u)
∏

x∈T
du(x) = Z−1e∓1/p

R
T |u|p e−1/2

R
T |ux|2

∏

x∈T
du(x)

︸ ︷︷ ︸
= Wiener measure P

(1.5)

as a weighted Wiener measure on T. In the focusing case, i.e. with the plus sign
in (1.5), the result holds only for p ≤ 6 with an L2-cutoff 1{R |u|2≤B}, where B is
any positive number when p < 6 and B < ‖Q‖2L2(R) when p = 6. Here, Q is the
ground state of the following elliptic equation:

(p− 2)Q′′ − (p + 2)Q + Qp−1 = 0. (1.6)

By analogy with the finite dimensional case, we expect such a Gibbs measure µ

is invariant under the flow of (1.1). (Recall that the L2-norm is conserved.) In
addressing the question of invariance of µ, we need to have a well-defined flow on
the support of µ. However, as a weighted Wiener measure, the regularity of µ is
inherited from that of the Wiener measure, i.e. µ is supported on Hs(T)\H1/2(T),
s < 1/2. In [B1], Bourgain proved local well-posedness of (1.1)

• in L2(T) for (sub-) cubic NLS (p ≤ 4),
• in Hs(T), s > 0, for (sub-)quintic NLS (4 < p ≤ 6),
• in Hs(T), s > 1/2− 1/p, for p > 6.
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Using the Fourier analytic approach, he [B2] continued the study of Gibbs mea-
sures and proved the invariance of µ under the flow of NLS.

Once the invariance of the Gibbs measure µ is established, we can regard
the flow map of (1.1) as a measure-preserving transformation on an (infinite-
dimensional) phase space, say H1/2−ε, equipped with the Gibbs measure µ. Then,
it follows from Poincaré recurrence theorem that almost all the points of the phase
space are stable according to Poisson [Z], i.e. if St denotes a flow map of (1.1):
u0 7→ u(t) = Stu0, then for almost all u0, there exists a sequence {tn} tending to
∞ such that Stn

u0 → u0. Moreover, such dynamics is also multiply recurrent in
view of Furstenberg’s multiple recurrence theorem [F]: let A be any measurable
set with µ(A) > 0. Then, for any integer k > 1, there exists n 6= 0 such that
µ(A ∩ SnA ∩ S2nA ∩ · · · ∩ S(k−1)nA) > 0. Note that this recurrence property
is known to hold only in the support of the Gibbs measure, i.e. not for smooth
functions.

Then, one of the natural questions, posed by Lebowitz-Rose-Speer [LRS] and
Bourgain [B4], is the ergodicity of the invariant Gibbs measure µ, i.e. is the
phase space irreducible under the dynamics, or can it be decomposed into disjoint
subsets, where the dynamics is recurrent within each disjoint component? In order
to ask such a question, one needs to prescribe the L2-norm since it is an integral of
motion for (1.1). It is not difficult to see that the momentum is also finite almost
surely on the support of the Gibbs measure. Indeed, if u is distributed according
to the Wiener measure, then it can be represented as1

u(x) =
∑

n 6=0

gn

2πn
e2πinx, (1.7)

where {gn}n 6=0 is a family of independent standard complex-valued Gaussian ran-
dom variables, i.e. its real and imaginary parts are independent Gaussian random
variables with mean zero and variance 1. Then, we can write the momentum as

P (u) = i

∫
uux =

∑

n 6=0

|gn(ω)|2
2πn

=
∑

n≥1

|gn(ω)|2 − |g−n(ω)|2
2πn

.

Thus, we have E[(P (u))2] .
∑

n≥1 n−2 < ∞.2 Hence, |P (u)| < ∞ a.s. In the
following, we construct invariant Gibbs measures with prescribed L2-norm and
momentum as the first step in studying finer dynamical properties of the NLS

1We ignore the zero-frequency issue here. See (1.9) below.
2We use A . B to denote an estimate of the form A ≤ CB for some C > 0. Similarly, we use

A ∼ B to denote A . B and B . A.
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flow equipped with the invariant Gibbs measure, viewed as an infinite-dimensional
dynamical system with a measure-preserving transformation.

Remark 1.1. Recall that the cubic NLS (p = 4) is completely integrable.
Hence, it makes sense to pose a question of ergodicity only for p 6= 4. See [LRS].

There are infinitely many conservation laws for the cubic NLS, with the lead-
ing term of the form

∫
T |∂k

xu|2dx, roughly corresponding to the Hk-norm, and of
the form

∫
T u ∂2k+1

x u dx, k ∈ N ∪ {0}. See [FT], [ZM]. By (1.7), we can easily
see that all these conservation laws, except for the L2-norm and momentum, are
almost surely divergent under the Gibbs measure. Thus, it may seem that the L2-
norm and momentum are the only conserved quantities which are finite a.s. in the
support of the Gibbs measure. However, from a different perspective, we have a
different set of infinitely many conserved quantities for (1.1), namely the spectrum
of the Zakharov-Shabat operator L (also called the Dirac operator) appearing in
the Lax pair formulation of (1.1): ∂tL = [B,L] (with some appropriate B.) These
are finite under the Gibbs measure. Expressing the flow of (1.1) in the Liouville
coordinates (or rather in the Birkhoff coordinates) with actions and angles (which
are determined in terms of the spectral data), the flow basically becomes trivial.
See [GKP].

In constructing a Gibbs measure conditioned on mass and momentum, we
first condition the Wiener measure on mass and momentum. Recall that if u is
distributed according to the Wiener measure P given by3

dP = Z−1e−1/2
R
T |u|2−1/2

R
T |ux|2

∏

x∈T
du(x), (1.8)

then it can be represented as

u(x) =
∑

n∈Z

gn√
1 + 4π2n2

e2πinx, (1.9)

where {gn}n∈Z is a family of independent standard complex-valued Gaussian ran-
dom variables. Note that (1.9) is basically the Fourier-Wiener series for the Brow-
nian motion (except for the zeroth mode.) Given a > 0 and b ∈ R, define the
conditional Wiener measures Pε = Pε,a,b, ε > 0, as follows. Given a measurable
set E, we define Pε(E) by

3The mass is added to take care of the zeroth frequency. We still refer to P in (1.8) and u in
(1.9) as the Wiener measure and the Brownian motion, respectively.
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Pε(E) = P

(
E

∣∣∣
∫

T
|u|2 ∈ Aε(a), i

∫

T
uux ∈ Bε(b)

)
, (1.10)

where Aε(a) and Bε(b) are neighborhoods shrinking nicely4 to a and b as ε → 0.
Here P (C | D) = P (C ∩D)/P (D) is the standard, naive, conditional probability
given by Bayes’ rule. In terms of the density, we have

dPε = Ẑ−1
ε 1{RT |u|2∈Aε(a)}1{i RT uux∈Bε(b)}dP. (1.11)

Now, we would like to define the conditioned measure

P0(E) = P0,a,b(E) = P

(
E

∣∣∣
∫

T
|u|2 = a, i

∫

T
uux = b

)

by P0 = limε→0 Pε. Namely, we define P0 by

P0(E) := lim
ε→0

P

(
E

∣∣∣
∫

T
|u|2 ∈ Aε(a), i

∫

T
uux ∈ Bε(b)

)
. (1.12)

Note that the normalization constant Ẑε in (1.11) tends to 0 as ε → 0. Hence,
some care is needed. We discuss details in Subsection 2.1.

Finally, we define the conditioned Gibbs measure µ0 = µa,b in terms of the
Wiener measure P0 = P0,a,b conditioned on mass and momentum, by setting

dµ0 = Z−1
0 e∓1/p

R
T |u|pdP0. (1.13)

In the defocusing case, this clearly defines a probability measure since
e−1/p

R
T |u|p ≤ 1. In the focusing case, we need to show that

e1/p
R
T |u|p ∈ L1(dP0). (1.14)

Lebowitz-Rose-Speer [LRS] and Bourgain [B2] proved a similar integrability result
of the weight e1/p

R
T |u|p with respect to the (unconditioned) Wiener measure P

defined in (1.8). Bourgain’s argument was based on dyadic pigeonhole principle
and a large deviation estimate (see Lemma 4.2 in [OQV].) In Subsection 2.2,
we follow Bourgain’s argument and prove (1.14) by dyadic pigeonhole principle
and a large deviation estimate for P0. This large deviation estimate for P0 is by

4See Subsection 2.1 for the definition.
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no means automatic, and we need to deduce it by establishing a uniform large
deviation estimate for the conditioned Wiener measures Pε, ε > 0 (see Lemma 2.4
below.) As a result, we obtain the L1-boundedness result

EPε

[
e1/p

R
T |u|p

] ≤ Cp < ∞

for all sufficiently small ε ≥ 0. We point out that the proof of Lemma 2.4 (and
hence the argument in Subsection 2.1) is the heart of this paper.

We state the main theorem. The proof is presented in in the next section.

Theorem 1. Let a > 0 and b ∈ R. For p > 2, let µ0 be the Gibbs measure
µ0 = µa,b conditioned on mass and momentum defined in (1.13). Also, assume
that p ≤ 6 in the focusing case. Then, µ0 is a well-defined probability measure (with
sufficiently small mass a when p = 6 in the focusing case), absolutely continuous
to the conditioned Wiener measure P0. Moreover, µε converges weakly to µ0 as
ε → 0, where µε is defined by

dµε := Z−1
ε e∓1/p

R
T |u|pdPε. (1.15)

Remark 1.2. In the critical case, i.e. focusing with p = 6, Lebowitz-Rose-
Speer [LRS] proved that the weight 1{RT |u|2≤B}e1/p

R
T |u|p is integrable with respect

to the (unconditioned) Wiener measure P in (1.8) as long as B < ‖Q‖2L2(R), where
Q is the ground state for (1.6). Indeed, this is sharp (except for the endpoint
B = ‖Q‖2L2(R).) By Fourier analytic techniques, Bourgain [B2] provided another
proof of this L1-boundedness result. However, his argument does not allow us to
determine the (sharp) upperbound on the size B of the L2-cutoff in the critical
case. We believe that, in the critical case, the upperbound on a =

∫
T |u|2dx in

Theorem 1 is also given by ‖Q‖2L2(R). Unfortunately, our proof of Theorem 1,
following Bourgain’s idea, does not provides such a quantitative bound.

It follows from invariance of the Gibbs measure µ in (1.5) (with an L2-cutoff
in the focusing case) and the conservation of mass and momentum that µε is
invariant under the flow of (1.1) for each fixed ε > 0. As a corollary to Theorem
1, we obtain invariance of the conditioned Gibbs measure µ0.

Theorem 2. Let a > 0, b ∈ R, and p > 2 be as in Theorem 1. Then, the
conditioned Gibbs measure µ0 = µa,b defined in (1.13) is invariant under the flow
of NLS (1.1).

We conclude this introduction with several remarks. The first is about con-
ditional probabilities.
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Remark 1.3. A natural way to proceed with this construction is to start
with the (unconditioned) Gibbs measure µ in (1.5) on the space Ω, which is the
space of continuous complex-valued functions on the circle, with the topology
of uniform convergence and the Borel σ-field F . This is a complete separable
metric space. Let G be the sub σ-field generated by the measurable maps

∫
T |u|2

and i
∫
T uux. There is a general theorem which guarantees the existence of a

conditional probability, i.e. a family of measures µu, u ∈ Ω such that (i) for any
A ∈ F , µu(A) is measurable with respect to G as a function of u; (ii) for any
A ∈ G and B ∈ F , µ(A ∩ B) = Eµ[1Aµu(B)]. It follows from (i) and (ii) that
given B ∈ F , we have

µu(B) = µR
T |u|2, i

R
T uux

(B) (1.16)

for µ-almost every u. The sets of measure zero, on which (1.16) fails, depend on
B ∈ F , and thus their union could be a set of nontrivial measure. Hence, one
needs some regularity. The best that can be said in such a general context is that
if G is countably generated (and one can check that ours is), then µu is a regular
conditional probability in the sense that (iii) µu(A) = 1A(u) for A ∈ G. In our
context, this reassures us that our conditioned Gibbs measure µ0 = µa,b gives
mass one to u with

∫
T |u|2 = a and i

∫
T uux = b. However, we only know that this

property holds for almost every a and b, and there is no soft way out to obtain the
same for all a and b. (Another way to think of this is that applying the Lebesgue
differentiation theorem to (ii) gives Theorem 1 for almost every a and b.) Since we
want our conditioned measures to be defined for every value of a and b, we have
to define them directly. For the conditioned Wiener measure P0, which is just a
Gaussian measure, this is straightforward. In this case, we can even use the fact
that the distributions of a and b are basically explicit. However, for the Gibbs
measure µa,b, it requires hard analysis.

Remark 1.4. Consider the (generalized) Korteweg-de Vries equation
(gKdV):

ut + uxxx = ±up−2ux. (1.17)

For an integer p ≥ 3, (1.1) is a Hamiltonian PDE with Hamiltonian:

H(u) =
1
2

∫

T
u2

x ±
1

p(p− 1)

∫

T
up, (1.18)

and (1.17) can be written as ut = ∂x(dH/du). Also recall that (1.17) preserves the
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mean
∫
T u and the L2-norm. Bourgain [B2] constructed Gibbs measures of the

form (1.5) (with an appropriate L2-cutoff 1{R |u|2≤B} unless it is defocusing when p

is even) for (1.17), and proved its invariance under the flow for p = 3, 4. Recently,
Richards [R] established invariance of the Gibbs measure for (1.17) when p = 5.
In an attempt to study more dynamical properties of (1.17), one can construct
Gibbs measure conditioned on mass by an argument similar to Theorem 1. In this
case, an analogue of Theorem 1 holds for all (even) p when (1.17) is defocusing,
and for p ≤ 6 when it is non-defocusing. However, an analogue of Theorem 2 holds
only for p ≤ 5 due to lack of well-defined flow for gKdV (1.17) in the support of
the Gibbs measure when p ≥ 6. Note that KdV (p = 3) and mKdV (p = 4) are
completely integrable. Hence, a question of ergodicity can be posed only for p ≥ 5.
See Remark 1.1.

Remark 1.5. An interesting but straightforward comment is that the
momentum P (u) is nothing but the Lévy stochastic area of the planar loop
(Re u(x), Im u(x)), 0 ≤ x < 2π,

P (u) = i

∫

T
uux =

∫

T
(Re u) d(Im u)− (Im u) d(Re u). (1.19)

Note that this is not the actual area enclosed by the loop, but a signed version. A
Brownian loop has infinitely many self-intersections. Regularizing the Brownian
loop gives a loop with finitely many self-intersections. The ‘area’ is then computed
through the path integral above, with each subregion bounded by non-intersecting
part of the loop having area counted positive or negative depending on whether the
boundary is traversed in the counterclockwise or clockwise direction, respectively.
This includes the fact that the areas inside internal loops are multiply counted.
Removing the regularization gives the Lévy stochastic area. Remarkably, unlike
other stochastic integrals, the limit does not depend on the regularization proce-
dure. For example, one can check directly that the Itô (left endpoint rule in the
Riemann sum) and Stratonovich (midpoint rule) versions of (1.19) give the same
result. The stochastic area has attracted a great deal of attention. Lévy [L] found
the exact expression 1/4(cosh(x/2))−2 for its density under the standard Brow-
nian motion measure. Our base Gaussian measure (1.8) is almost the same as
the standard Brownian motion, and the analogous computation can be performed
(see Section 2.1.) Our Gibbs measures µ0 = µa,b are absolutely continuous with
respect to the base Brownian motion, so most of the results about the stochastic
area continue to hold, though, of course, there are no longer any exact formulas.
The Lévy area is basically the only new element when one moves from the Wiener-
Itô chaos of order one to order two. Therefore, it is a natural object to supplement
the Brownian path itself, and this is the basis of the rough path theory [LQ]. It
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seems a remarkable fact that the flow of NLS preserves the Lévy area.

Acknowledgments. The authors would like to thank the anonymous ref-
eree for pointing out an error in the previous version of this paper as well as for
helpful comments.

2. Proof of Theorem 1: Construction of the conditioned Gibbs
measures.

2.1. Wiener measure conditioned on mass and momentum.
In this subsection, we construct the Wiener measure P0 conditioned on mass

a and momentum b for any fixed a > 0 and b ∈ R. Given Pε as in (1.11), we
define P0 as a limit of Pε by (1.12), where E is an arbitrary set in the σ-field F .
In the following, we show that (1.12) indeed defines a probability measure. For
this purpose, we can simply take E to be in some generating family of F . Let us
choose the increasing family FN = σ(gn; |n| ≤ N) as such a generating family of
F .

Fix a nonnegative integer N and a Borel set F in C2N+1. Let E = {ω :
(gn; |n| ≤ N) ∈ F}. Then, by (1.10), we have

Pε(E) = P

(
(gn; |n| ≤ N) ∈ F

∣∣∣
∫

T
|u|2 ∈ Aε(a), i

∫

T
uux ∈ Bε(b)

)
,

where Aε(a) and Bε(b) are neighborhoods shrinking nicely to a and b as ε → 0.
That is,

(a) For each ε > 0, we have

Aε(a) ⊂ (a− ε, a + ε) and Bε(b) ⊂ (b− ε, b + ε).

(b) There exists α > 0, independent of ε, such that

|Aε(a)| > αε and |Bε(b)| > αε.

By (1.9), we have

∫

T
|u(x)|2dx =

∑

n∈Z
〈ñ〉−2|gn|2 and i

∫

T
uuxdx =

∑

n∈Z
〈ñ〉−2ñ|gn|2, (2.1)

where ñ = 2πn and 〈ñ〉 =
√

1 + ñ2. Therefore, by independence of {gn}|n|≤N and
{gn}|n|≥N+1, we have
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Pε(E) =
∫

F

P
( ∑

|n|≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑
|n|≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)

)

P
( ∑

n∈Z〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n∈Z〈ñ〉−2ñ|gn|2 ∈ Bε(b)
)

× e−1/2
P
|n|≤N |ξn|2

(2π)2N+1

∏

|n|≤N

dξn, (2.2)

where dξn denotes the Lebesgue measure on C, and Aε(ã) and Bε(̃b) are the
translates of Aε(a) and Bε(b) centered at

ã = a−
∑

|n|≤N

〈ñ〉−2|ξn|2, and b̃ = b−
∑

|n|≤N

〈ñ〉−2ñ|ξn|2, (2.3)

respectively.
Now, define the density fN (a, b) by

fN (a, b) dadb = P

( ∑

|n|≥N

〈ñ〉−2|gn|2 ∈ da,
∑

|n|≥N

〈ñ〉−2ñ|gn|2 ∈ db

)
. (2.4)

Then, we have the following lemma on the regularity of fN .

Lemma 2.1. Let f̂N be the characteristic function (Fourier transform) of fN .
Then, we have f̂N ∈ L1(R2) with estimate: ‖f̂N‖L1(R2) < C(N) < ∞, where C(N)
is at most a power of N . In particular, fN is bounded and uniformly continuous.

Proof. By computing the characteristic function of fN , we have

f̂N (s, t) = E
[

exp
(

is
∑

|n|≥N

〈ñ〉−2|gn|2 + it
∑

|n|≥N

〈ñ〉−2ñ|gn|2
)]

=
∏

|n|≥N

E
[
ei(s〈en〉−2+t〈en〉−2en)|gn|2]

=
∏

n≥N

1(
1− 2i〈ñ〉−2(s + t ñ)

)(
1− 2i〈ñ〉−2(s− t ñ)

) . (2.5)

For any n ≥ N , we have max(s + tñ, s − tñ) ≥ max(s, tñ). Also, note that each
factor in (2.5) is bounded by 1. Thus, considering the terms for n = N, . . . , N + 3
in (2.5), we have
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|f̂N (s, t)| ≤ C(N)〈s〉−2〈t〉−2,

where C(N) is at most a power of N . Therefore, we have ‖f̂N‖L1
s,t

< C ′(N) < ∞.
Note that C ′(N) is at most a power of N . We use this fact in Subsection 2.2. ¤

By Lemma 2.1, we have, for any N ≥ 0,

P
( ∑

|n|≥N 〈n〉−2|gn|2 ∈ Aε(ã),
∑
|n|≥N 〈n〉−2n|gn|2 ∈ Bε(̃b)

)

|Aε(ã)×Bε(̃b)|

=
1

|Aε(ã)×Bε(̃b)|

∫

Aε(ea)×Bε(eb)
fN (a′, b′)da′db′ −→ fN (ã, b̃), (2.6)

as ε → 0. By the uniform continuity of fN , this convergence is uniform in ã and
b̃.

In taking the limit of (2.2) as ε → 0, the expression f0(a, b), i.e. (2.4) with
N = 0, appears in the denominator. Hence, we need to show that f0(a, b) > 0 for
any a > 0 and b ∈ R. Indeed, we have

Proposition 2.2. Let a > 0 and b ∈ R. Then, we have f0(a, b) > 0.

Proposition 2.2 is intuitively obvious. However, since f0 involves an infinite number
of random variables, we were not able to find any reference. The proof will be given
at the end of this subsection.

Putting everything together, we have

P
( ∑

|n|≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑
|n|≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)

)

P
( ∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
)

−→ fN+1(ã, b̃)
f0(a, b)

, (2.7)

where the convergence is uniform in ã and b̃. Moreover, the left hand side of
(2.7) is uniformly bounded for small ε > 0 (for fixed a and b), since ‖fN+1‖L∞ ≤
‖f̂N+1‖L1 < ∞ and f0(a, b) > 0. Hence, by (1.12), (2.2), and Lebesgue dominated
convergence theorem, we have

P0(E) = lim
ε→0

Pε(E) =
∫

F

fN+1(ã, b̃)
f0(a, b)

e−1/2
P
|n|≤N |ξn|2

(2π)2N+1

∏

|n|≤N

dξn.
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This shows that P0 is a well-defined probability measure. Lastly, note that it
basically follows from the definition that Pε converges weakly to P0.

We will need the following lemma for the proof of Proposition 2.2.

Lemma 2.3. Assume that f0(a∗, b∗) = 0 for some a∗ > 0 and b∗ ∈ R. Then,
there exists sufficiently large N0 ∈ N such that fN (a, b) = 0 on

B :=
{

(a, b) ∈ R+ × R : a ≤ 1
2
a∗, |b| ≤ |b∗|+ 1

}
(2.8)

for all N ≥ N0.

Proof. First, note that, by symmetry, we have

fN (a, b) = fN (a,−b) (2.9)

for any a, b ∈ R and N ≥ 0. Defining XN and YN by

XN =
∑

|n|≥N

〈ñ〉−2|gn|2 and YN =
∑

|n|≥N

〈ñ〉−2ñ|gn|2, (2.10)

we have X0 = X1 + |g0|2 and Y0 = Y1. Note that X1 and |g0|2 are independent.
Thus, we can write f0 as f0 = f1 ∗a χ2

2, where χ2
2 is the density for the (rescaled)

chi square distribution with two degrees of freedom, corresponding to |g0|2 =
(Re g0)2 +(Im g0)2, and ∗a denotes the convolution only in the first variable of f1.
Recall that χ2

2(x) > 0 for x > 0 and = 0 for x < 0.
Now, suppose that f0(a∗, b∗) = 0 for some a∗ > 0 and b∗ ∈ R. By (2.9),

assume that b∗ ≥ 0. Then, from

0 = f0(a∗, b∗) =
∫

x>0

f1(a∗ − x, b∗)χ2
2(x)dx

and the positivity of χ2
2 on R+, we have f1(a, b∗) = 0 for a ≤ a∗. (Recall that f1

is continuous by Lemma 2.1.)
Let c1(n) and c2(n) be given by

c1(n) = (1 + 4π2n2)−1 and c2(n) = 2πnc1(n), n ∈ N. (2.11)

Then, from (2.10), we have
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X1 = X2 + c1(1)(|g1|2 + |g−1|2) and Y1 = Y2 + c2(1)(|g1|2 − |g−1|2).

Since f1(a∗, b∗) = 0, we have

0 = f1(a∗, b∗)

=
∫ ∞

0

∫ ∞

0

f2

(
a∗ − c1(1)(x + y), b∗ − c2(1)(x− y)

)
χ2

2(x)χ2
2(y)dxdy. (2.12)

By change of variables p = x + y and q = x− y, we can write (2.12) as

0 = c

∫∫
p>0
|q|≤p

f2(a∗ − c1(1)p, b∗ − c2(1)q)χ2
2

(
p + q

2

)
χ2

2

(
p− q

2

)
dpdq.

This implies that f2(a, b) = 0 on a triangular region

A2 := {(a, b) ∈ R+ × R : a ≤ a∗, |b− b∗| ≤ 2π(a∗ − a)}.

In particular, f2(a∗, b∗) = 0. From (2.10), we have

X2 = X3 + c1(2)(|g2|2 + |g−2|2) and Y2 = Y3 + c2(2)(|g2|2 − |g−2|2),

where c1(2) and c2(2) are as in (2.11). Since f2(a∗, b∗) = 0, we have

0 = f2(a∗, b∗)

=
∫ ∞

0

∫ ∞

0

f3

(
a∗ − c1(2)(x + y), b∗ − c2(2)(x− y)

)
χ2

2(x)χ2
2(y)dxdy. (2.13)

Once again, by change of variables p = x+ y and q = x− y, we can write (2.13) as

0 = c

∫∫
p>0
|q|≤p

f3(a∗ − c1(2)p, b∗ − c2(2)q)χ2
2

(
p + q

2

)
χ2

2

(
p− q

2

)
dpdq.

This implies that f3(a, b) = 0 on a triangular region

A3 := {(a, b) ∈ R+ × R : a ≤ a∗, |b− b∗| ≤ 4π(a∗ − a)}.

In particular, we have f3(a∗, b∗) = 0 and thus we can repeat the argument. In
general, from fN (a∗, b∗) = 0, we can show that fN+1(a, b) = 0 on a triangular
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region

AN+1 := {(a, b) ∈ R+ × R : a ≤ a∗, |b− b∗| ≤ 2πN(a∗ − a)}

by simply noting c2(N)/c1(N) = 2πN . By symmetry (2.9), we have fN+1(a, b) = 0
also on

ÃN+1 := {(a, b) ∈ R+ × R : a ≤ a∗, |b + b∗| ≤ 2πN(a∗ − a)}.

Finally, by choosing N0 large such that πN0a
∗ ≥ max(1, b∗), we see that B ⊂

AN ∪ ÃN for N ≥ N0 and hence fN (a, b) = 0 on B for N ≥ N0. ¤

Finally, we conclude this subsection by presenting the proof of Proposition
2.2.

Proof of Proposition 2.2. Suppose that f0(a∗, b∗) = 0 for some a∗ > 0
and b∗ ∈ R. By Lemma 2.3, there exists N0 ∈ N such that fN = 0 on B for all
N ≥ N0, where B is defined in (2.8). Recall that fN is nonnegative and fN (a, b) =
0 for a < 0. Then, by (a, b) ∈ R+ × R ⊂ B ∪ {a > (1/2)a∗} ∪ {|b| ≥ |b∗|+ 1}, we
have

1 =
∫

R

∫ ∞

0

fN (a, b)dadb

≤
∫∫

B

fN (a, b)dadb +
∫∫

a>(1/2)a∗
fN (a, b)dadb +

∫∫

|b|>|b∗|+1

fN (a, b)dadb

= 0 + P

(
XN >

1
2
a∗

)
+ P

(|YN | > |b∗|+ 1
)
, (2.14)

for all N ≥ N0, where XN and YN are as in (2.10). Once we prove

P

(
XN >

1
2
a∗

)
<

1
2
, (2.15)

P
(|YN | > |b∗|+ 1

)
<

1
2
, (2.16)

for some N , (2.14) together with (2.15) and (2.16) leads to a contradiction, and
hence f0(a, b) > 0 for all a > 0 and b ∈ R.

Therefore, it remains to prove (2.15) and (2.16) for large N . First, we prove
(2.16). Write YN as
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YN =
∑

n≥N

2πn

1 + 4π2n2

(|gn|2 − |g−n|2
)
.

Since E[|gn|2 − |g−n|2] = 0, we have E[|YN |2] ≤ CN−1. Then, by Chebyshev’s
inequality, we conclude that

P
(|YN | > |b∗|+ 1

)
. E

[|YN |2
] ≤ CN−1.

Hence, there exists N1 such that (2.16) holds for all N ≥ N1.
Next, we prove (2.15). Fix large dyadic N2 = 2k (to be chosen later). Let

σj = C2−(1/2)j such that
∑∞

j=1 σj = 1. Then, for N ≥ N2, we have

P

(
XN >

1
2
a∗

)
≤

∞∑

j=k

P

(( ∑

2j≤|n|<2j+1

(1 + 4π2n2)−2|gn|2
)1/2

>
1
2
σja

∗
)

≤
∞∑

j=k

P

(( ∑

2j≤|n|<2j+1

|gn|2
)1/2

> ca∗σj2j

)
,

where ca∗ > 0 is a constant depending only on a∗. By the large deviation estimate
(e.g. see Lemma 4.2 in [OQV]), we obtain

P

(
XN >

1
2
a∗

)
≤

∞∑

j=k

e−c′a∗σ2
j 22j ≤ e−eca∗ 2k

<
1
2

for sufficiently large k ∈ N. By choosing N ≥ max(N0, N1, N2), (2.14) together
with (2.15) and (2.16) leads to a contradiction. This completes the proof of Propo-
sition 2.2. ¤

2.2. Gibbs measure conditioned on mass and momentum.
In the previous subsection, we constructed the Wiener measure P0 conditioned

on mass and momentum as a limit of conditioned Wiener measures Pε. In this
subsection, we define the conditioned Gibbs measure µ0 = µa,b by (1.13). In
the defocusing case, (1.13) defines a probability measure. In the focusing case,
however, we need to show (1.14); the weight e1/p

R
T |u|p is integrable with respect

to P0 for p ≤ 6 (with sufficiently small mass when p = 6.)
Bourgain [B2] proved a similar integrability result of the weight e1/p

R
T |u|p

with respect to the (unconditioned) Wiener measure P in (1.8) via dyadic pigeon-
hole principle and a large deviation estimate. In the following, we also use dyadic
pigeonhole principle and a large deviation estimate (for the conditioned Wiener
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measure P0) to show that the conditioned Gibbs measure µ0 is a well-defined prob-
ability measure. Indeed, Lemma 2.4 below establishes a uniform large deviation
estimate for Pε, ε > 0, and we prove the L1-boundedness of the weight e1/p

R
T |u|p

with respect to Pε, uniformly in sufficiently small ε > 0. See (2.23).
First, we present a uniform large deviation lemma for the conditioned Wiener

measure Pε, ε > 0.

Lemma 2.4. Let R ≥ 5N1/2 and M ∼ N . Then, we have

Pε

( ∑

|n−M |≤N

|gn|2 ≥ R2

)
≤ Ce−(1/8)R2

(2.17)

uniformly for sufficiently small ε ≥ 0.

Proof. By Chebyshev’s inequality, we have

Pε

( ∑

|n−M |≤N

|gn|2 ≥ R2

)
≤ e−tR2

EPε

[
et
P
|n−M|≤N |gn|2]. (2.18)

Set t = 1/4. We estimate EPε
[e1/4

P
|n−M|≤N |gn|2 ] in the following. As in (2.2), we

can write it as

EPε

[
e1/4

P
|n−M|≤N |gn|2]

=
∫

C2N+1

P
( ∑

|n−M |≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑
|n−M |≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)

)

P
( ∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
)

× e−1/4
P
|n−M|≤N |ξn|2

(2π)2N+1

∏

|n−M |≤N

dξn, (2.19)

where ã and b̃ are given by

ã = a−
∑

|n−M |≤N

〈ñ〉−2|ξn|2, and b̃ = b−
∑

|n−M |≤N

〈ñ〉−2ñ|ξn|2. (2.20)

By repeating the argument in Subsection 2.1, we can show that the right hand
side of (2.19) is uniformly bounded for small ε > 0.

More precisely, define the density f̃N (a, b) by
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f̃N (a, b) dadb = P

( ∑

|n−M |≥N

〈ñ〉−2|gn|2 ∈ da,
∑

|n−M |≥N

〈ñ〉−2ñ|gn|2 ∈ db

)
.

Then, as in Subsection 2.1, one can prove

P
( ∑

|n−M |≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑
|n−M |≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)

)

P
( ∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
)

−→ f̃N+1(ã, b̃)
f0(a, b)

, (2.21)

where the convergence is uniform in ã and b̃. Moreover, by showing ‖f̃N‖L∞ < ∞
as before, we see that the left hand side of (2.21) is uniformly bounded for small
ε > 0. (Recall that a and b are fixed.) By (2.19), (2.21), and Lebesgue dominated
convergence theorem, we have

lim
ε→0

EPε

[
e1/4

P
|n−M|≤N |gn|2] =

∫

C2N+1

f̃N+1(ã, b̃)
f0(a, b)

e−1/4
P
|n−M|≤N |ξn|2

(2π)2N+1

∏

|n−M |≤N

dξn

≤ ‖f̃N+1‖L∞

f0(a, b)

∫

C2N+1

e−1/4
P
|n−M|≤N |ξn|2

(2π)2N+1

∏

|n−M |≤N

dξn

≤ ‖f̃N+1‖L∞

f0(a, b)
22N+1,

where the last inequality follows from change of variables. Also, by an analogous
argument to the proof of Lemma 2.1, we see that ‖f̃N+1‖L∞ ≤ ‖(f̃N+1)∧‖L1 is
bounded at most by a power of N . Hence, we have

EPε

[
e1/4

P
|n−M|≤K |gn|2] . 23N (2.22)

for all sufficiently small ε > 0. Therefore, (2.17) follows from (2.18) and (2.22) as
long as R2 ≥ (24 ln 2)N . ¤

In the following, we show the L1-boundedness of the weight e1/p
R
T |u|p with

respect to Pε, uniformly for sufficiently small ε ≥ 0, for p ≤ 6 (with sufficiently
small mass when p = 6.) This, in particular, shows that µε in (1.15) is a well-
defined probability measure.

Note that it suffices to prove that
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∫ ∞

0

eλ Pε

( ∫

T
|u|p ≥ pλ

)
dλ

=
∫ ∞

0

eλ P

( ∫

T
|u|p ≥ pλ

∣∣∣
∫

T
|u|2 ∈ Aε(a), i

∫

T
uux ∈ Bε(b)

)
dλ ≤ Cp < ∞

(2.23)

for all sufficiently small ε > 0. The estimate (2.23) follows once we prove

Pε

( ∫

T
|u|p ≥ pλ

)
≤

{
Ce−cλ1+δ

when p < 6.

Ce−(1+δ)λ when p = 6.
(2.24)

for λ > 1 (with some δ > 0), uniformly in small ε > 0.
Before proving (2.24), let us introduce some notations. Given M0 ∈ N,

let P>M0 denote the Dirichlet projection onto the frequencies {|n| > M0}. i.e.
P>M0u =

∑
|n|>M0

ûne2πinx. P≤M0 is defined in a similar manner. Given j ∈ N,
let Mj = 2jM0. We use the notation |n| ∼ Mj to denote the set of integers
|n| ∈ (Mj−1,Mj ], and denote by PMj

the Dirichlet projection onto the dyadic
block (Mj−1,Mj ], i.e. PMj u =

∑
|n|∼Mj

ûne2πinx.

Without loss of generality, assume ε ≤ a. Then, we have
∫ |u|2 ≤ 2a =: K.

By Sobolev inequality (or equivalently, by Hausdorff-Young inequality followed by
Hölder inequality on the Fourier side in this particular case),

∥∥P≤M0u
∥∥

Lp(T) ≤ cM
1/2−1/p
0

∥∥P≤M0u
∥∥

L2(T). (2.25)

Hence, we have

∫

T

∣∣P≤M0u
∣∣p ≤ p

2
λ on

∫

T
|u|2 ≤ K, (2.26)

by choosing

M0 = c0λ
2/(p−2)K−p/(p−2) ∼ c0λ

2/(p−2)a−p/(p−2) (2.27)

for some c0 > 0. Let σj = C2−δj , j = 1, 2, . . . for some small δ > 0 where C = C(δ)
is chosen such that

∑∞
j=1 σj = 1. Then, we have

Pε

( ∫

T

∣∣P>M0u
∣∣p >

p

2
λ

)
≤

∞∑

j=0

Pε

(∥∥PMj
u
∥∥

Lp(T) > σj

(
p

2
λ

)1/p)
. (2.28)
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By Sobolev inequality as in (2.25), we have

∥∥PMj
u
∥∥

Lp(T) ≤ cM
1/2−1/p
j

∥∥PMj
u
∥∥

L2(T). (2.29)

From (1.9), we have

∥∥PMj
u
∥∥2

L2(T) =
∑

|n|∼Mj

|ûn|2 =
∑

|n|∼Mj

(
1 + (2πn)2

)−1|gn|2. (2.30)

From (2.29) and (2.30), the right hand side of (2.28) is bounded by

∞∑

j=0

Pε

( ∑

|n|∼Mj

|gn|2 ≥ R2
j

)
, where Rj := c′σjλ

1/pM
1/p−1/2
j (1+M2

j )1/2. (2.31)

Note that Rj & M
1/2+1/p
j À M

1/2
j . By applying Lemma 2.4 to (2.31), we obtain

Pε

( ∫

T

∣∣P>M0u
∣∣p >

p

2
λ

)
.

∞∑

j=0

e−(1/8)R2
j .

∞∑

j=0

e−c′′σ2
j λ2/pM

(p+2)/p
j

.
∞∑

j=0

e−ec(2
j)(p+2)/p−2δλ2/pM

(p+2)/p
0 . e−cλ2/pM

(p+2)/p
0 .

(2.32)

Hence, from (2.32) and (2.27), we have

Pε

( ∫

T
|u|p > pλ

)
≤ C exp

{− c λ1+(6−p)/(p−2)a−(p+2)/(p−2)
}

(2.33)

and (2.24) follows. Note that when p = 6, we need to take a sufficiently small such
that the coefficient of λ in (2.33) is less than −1.

2.3. Weak convergence.
Finally, we prove weak convergence of µε defined in (1.15) to µ0. Let f be a

bounded continuous function on H1/2−γ(T) for some small γ > 0.
We first consider the defocusing case. If a sequence of functions un converges

to u in H1/2−γ(T) with γ < p−1, then we have un → u in Lp(T) by Sobolev
inequality. Thus, e−

R
T |u|p is bounded and continuous on H1/2−γ(T). Then, by

weak convergence of Pε to P0, we have
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Zε =
∫

e−1/p
R
T |u|pdPε −→

∫
e−1/p

R
T |u|pdP0 = Z0 as ε → 0.

Since f(u)e−1/p
R
T |u|p is also bounded and continuous on H1/2−γ(T), we have

∫
fdµε = Z−1

ε

∫
f(u)e−1/p

R
T |u|pdPε

−→ Z−1
0

∫
f(u)e−1/p

R
T |u|pdP0 =

∫
fdµ0 as ε → 0.

This shows that µε converges weakly to µ0 in the defocusing case.
Next, we consider the focusing case. First, we prove

Zε =
∫

e1/p
R
T |u|pdPε −→

∫
e1/p

R
T |u|pdP0 = Z0 as ε → 0. (2.34)

Let g(u) = e1/p
R
T |u|p . By Chebyshev’s inequality with the uniform integrability

(2.24), we have

∫

g>B

g(u)dPε ≤ CB−δ (2.35)

for all small ε ≥ 0. Then, (2.34) follows once we note that

|Zε − Z0| ≤
∣∣∣∣
∫

g>B

g(u)dPε

∣∣∣∣ +
∣∣∣∣
∫

g≤B

g(u)(dPε − dP0)
∣∣∣∣ +

∣∣∣∣
∫

g>B

g(u)dP0

∣∣∣∣,

where the second term goes to 0 by the weak convergence of Pε to P0.
Let f be a bounded continuous function f on H1/2−γ(T). Then, by writing

∫
fdµε −

∫
fdµ0

= Z−1
ε

∫
f(u)g(u)dPε − Z−1

0

∫
f(u)g(u)dP0

= Z−1
0

( ∫
f(u)g(u)dPε −

∫
f(u)g(u)dP0

)
+

(
Z−1

ε − Z−1
0

) ∫
f(u)g(u)dPε,

it follows from (2.34) that the second term on the right hand side goes to zero.
The first term goes to zero by the uniform integrability (2.24) with Chebyshev’s
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inequality as before. Hence, µε converges weakly to µ0. This completes the proof
of Theorem 1.

3. Proof of Theorem 2: Invariance of the conditioned Gibbs mea-
sures.

In this section, we show that the conditioned Gibbs measure µ0 is invariant
under the flow of NLS (1.1). In fact, one can directly establish the invariance
of the conditioned Gibbs measure µ0 by following the argument developed by
Bourgain [B2], [B3]. This argument is based on approximating the PDE flow
by finite dimensional Hamiltonian systems with invariant finite dimensional Gibbs
measures. For such an argument, one needs the following large deviation estimate
(with ε = 0.)

Lemma 3.1. Let s < 1/2. Then, we have

Pε

(‖u‖Hs > Λ
) ≤ Cse

−cΛ2
, (3.1)

uniformly in small ε ≥ 0.

Proof. This basically follows from the proof of (2.33) in Subsection 2.2.
Given s < 1/2, choose p > 2 such that s = 1/2− 1/p. Then, we have

∥∥P≤M0u
∥∥

Hs(T) ≤ cM
1/2−1/p
0

∥∥P≤M0u
∥∥

L2(T). (3.2)

(Compare this with (2.25).) By repeating the computation in Subsection 2.2 (with
Λ = λ1/p), we obtain

Pε

(‖u‖Hs > Λ
) ≤ Cs exp

{− cΛp(1+(6−p)/(p−2))a−(p+2)/(p−2)
}
. (3.3)

Then, (3.1) follows since p(1 + (6− p)/(p− 2)) > 2 for p > 2. ¤

Bourgain’s argument [B2], [B3] requires a combination of PDE and probabilistic
techniques. In the following, however, we simply show how the invariance of the
conditioned Gibbs measure µ0 follows, as a corollary, from a priori invariance of
Gibbs measures µε, ε > 0.

Case 1: p ≤ 6. In this case, the flow of (1.1) is globally defined in H1/2−δ(T)
for small δ = δ(p) > 0, thanks to [B1], [B5]. Let St be the flow map of (1.1):
u0 7→ u(t) = Stu0. Then, St is well-defined and continuous on H1/2−δ(T).

Given a bounded continuous function φ on H1/2−δ(T), φ ◦ St is bounded and



34 T. Oh and J. Quastel

continuous on H1/2−δ(T). By weak convergence of µε to µ0 and invariance of µε

under the flow of (1.1), we have
∫

φdµ0 = lim
ε→0

∫
φdµε = lim

ε→0

∫
φ ◦ St dµε =

∫
φ ◦ St dµ0.

This proves invariance of µ0 for p ≤ 6.

Case 2: p > 6. (This is relevant only in the defocusing case.)
In this case, there is no a priori global-in-time flow of (1.1) on H1/2−δ(T).

However, by Bourgain’s argument [B2], [B3], µε is invariant under the flow of
NLS (1.1) for each ε > 0, and we show invariance of µ0 as a corollary to the
invariance of µε, ε > 0.

Let K be a compact set in Hs(T) with s = 1/2−. Then, there exists Λ =
Λ(K) > 0 such that ‖u‖Hs ≤ Λ for u ∈ K. By the (deterministic) local well-
posedness [B2], there exists t0 > 0 such that NLS (1.1) is well-posed on [0, t0] for
initial data u0 with ‖u0‖Hs ≤ Λ + 1. Moreover, for each small θ > 0, there exists
δ > 0 such that

St0(K + Bδ) ⊂ St0K + Bθ. (3.4)

Then, by weak convergence of µε to µ0, we have

µ0(K) ≤ µ0(K + Bδ) ≤ lim inf
ε→0

µε(K + Bδ).

By invariance of µε and (3.4),

= lim inf
ε→0

µε

(St0(K + Bδ)
) ≤ lim inf

ε→0
µε

(St0K + Bθ

)

≤ lim sup
ε→0

µε

(St0K + Bθ

) ≤ lim sup
ε→0

µε

(St0K + Bθ

)

≤ µ0

(St0K + Bθ

)
,

where the last inequality follows once again from the weak convergence of µε to
µ0. By letting θ → 0, we have µ0(K) ≤ µ0(St0K). Given arbitrary t > 0, we can
iterate the above argument and obtain µ0(K) ≤ µ0(StK). By the time-reversibility
of the NLS flow, we obtain

µ0(K) = µ0(StK).

This proves invariance of µ0 for p > 6.
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