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Abstract. We study weak hyperbolicity of a differentiable dynamical
system which is robustly free of non-hyperbolic periodic orbits of Markus type.
Let S be a C1-class vector field on a closed manifold Mn, which is free of any
singularities. It is of C1-weak-star in case there exists a C1-neighborhood U
of S such that for any X ∈ U , if P is a common periodic orbit of X and S
with S—P = X—P , then P is hyperbolic with respect to X. We show, in the

framework of Liao theory, that S possesses the C1-weak-star property if and
only if it has a natural and nonuniformly hyperbolic dominated splitting on
the set of periodic points Per(S), for the case n = 3.

1. Introduction.

Since the pioneer work of Peixoto [37] and specially the stability conjecture of
Palis and Smale [36], it has been an important problem in differentiable dynam-
ical systems to seek sufficient and necessary conditions for robustness of certain
dynamics “P”, where “P” is usually topological, such as the topological structure
of orbits, shadowing, expansiveness etc., and where “P” might be global or local.
Generally speaking, existence of such a robustness of “P” needs certain “unifor-
mity” of the associated linear tangent map of the differentiable dynamical system
itself.

The structural stability of orbits is the strongest robust dynamics, which
implies uniform hyperbolicity on the non-wandering set, see, e.g., [24], [29], [30],
[42], and [17]. Another important result of this type could be the star conjecture
of Liao [25] for flows and Mañé [29] for diffeomorphisms, verified, respectively,
by Liao [24] for 3-dimensional nonsingular flows and Mañé [29] for 2-dimensional
diffeomorphisms and by Aoki [2] and Hayashi [16] for general diffeomorphisms
and by Gan and Wen [14] for general nonsingular vector fields, which states that
a C1-diffeomorphism or a nonsingular C1-vector field that is robustly free of any
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non-hyperbolic periodic orbits (also called the C1-star property), satisfies Axiom
A and the no cycle condition. The star conjecture is partially localized by the
author in the recent work [10].

To attack the stability conjecture of Palis and Smale, Pliss [38], Liao [22],
[24] and Mañé [27], [29] were led independently to the important notion “domi-
nated splitting” of the tangent bundle into two invariant subbundles: one of them
is definitely more contracted (or less expanded) than the other, after a uniform
number of iterates. In the present paper, we show, using Liao theory, that there are
the “nonuniform hyperbolicity” and “natural dominated splitting” of the periodic
point set of a nonsingular differential system if and only if it is C1-robustly free of
the so-called non-hyperbolic periodic orbits of Markus type in the 3-dimensional
case.

In this introductory section, we first introduce the basic concept C1-weak-star
property considered here and formulate our basic result proved in this paper.

1.1. C1-weak-star property.
Let S : Mn → TMn be a C1-class vector field defined on a closed manifold

Mn of dim Mn = n ≥ 2, with a smooth Riemann structure 〈·, ·〉x, for x ∈ Mn. It
gives naturally rise to flows on the state space Mn and its tangent bundle TMn

(St)t∈R : Mn → Mn; x 7→ t·x

and

(DSt)t∈R : TMn → TMn; (x, v) 7→ (t·x,DxSt(v))

where DxSt : TxMn 7→ Tt·xMn is the derivative of St : Mn → Mn at the base
point x ∈ Mn for any t ∈ R.

As usual, an invariant set Λ of (St)t∈R (or S-invariant set Λ for short) is
said to be hyperbolic if the tangent bundle over Λ admits a (DSt)t∈R-invariant
continuous splitting

TΛMn = Es ⊕ {S�Λ} ⊕ Eu where {S�Λ} = span(S�Λ)

and constants λ < 0, C > 0 such that for any t > 0,

‖DSt(u)‖ ≤ C‖u‖ exp(λt) ∀u ∈ Es and ‖DS−t(u)‖ ≤ C‖u‖ exp(λt) ∀u ∈ Eu.

An S-invariant set Λ is called nonuniformly hyperbolic if the tangent bundle over
Λ admits a (DSt)t∈R-invariant (not necessarily continuous) splitting
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TΛMn = Es ⊕ {S�Λ} ⊕ Eu

and constants η > 0, τ > 0 such that

lim inf
L→+∞

1
τL

L−1∑

`=0

log ‖DSτ ¹ Es((`τ)·x)‖ ≤ −η

and

lim sup
L→+∞

1
τL

L−1∑

`=0

log ‖DSτ ¹ Eu((`τ)·x)‖co ≥ η

for all x ∈ Λ. Here and in the sequel ‖ • ‖co means the minimal norm (also called
co-norm in some literature) of the operator •.

On the other hand, S can further induce the smooth linear skew-product
(Poincaré) flow

ΨS : R× S⊥ → S⊥; (t, (x, v)) 7→ (
t·x, Ψ t

S,x(v)
)

on the S-transversal tangent bundle of Mn

S⊥ =
⊔

x∈Mn
S⊥x where S⊥x =

{
v ∈ TxMn | 〈S(x), v〉x = 0

} ∀x ∈ Mn.

We notice that every fiber S⊥x is of co-dimension 1 whenever S(x) 6= 0, and if no
confusion, we often simply write Ψ t

S,x(v) = Ψ t
S(v) for any (x, v) ∈ S⊥. Let

D−(x,S) =
{

v ∈ S⊥x | lim
t→+∞

∥∥Ψ t
S(v)

∥∥ = 0
}

and

D+(x,S) =
{

v ∈ S⊥x | lim
t→−∞

∥∥Ψ t
S(v)

∥∥ = 0
}

;

write

IndS(x) = dim D−(x,S).

Clearly, D−(·,S) and D+(·,S) both are ΨS-invariant subspaces of S⊥. As usual,
IndS(x) is still called the “index” of S at the base point x ∈ Mn.
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A periodic point p of S with period τ is said to be “hyperbolic” if and only if
Ψτ

S : S⊥p → S⊥p does not have any eigenvalues of absolute value one; equivalently

S⊥p = D−(p, S)⊕D+(p, S).

Notice here that the hyperbolicity includes the contracting and expanding cases
in the present paper.

From here on, Per(S) stands for the set of all periodic points of S and Oper(S)
denotes the set of all periodic orbits of S. By Oper(S ¹ Λ) we mean the set of all
periodic orbits which are contained in the subset Λ.

Let S be a C∞-vector field of Mn. According to L. Markus [31] and [35,
Lemma 2.5 of Chapter 3], for arbitrary P ∈ Oper(S) and for any C1-neighborhood
U of S, one can find some X ∈ U such that P ∈ Oper(X) is hyperbolic for
X with S�P = X�P . This motivates us to study the following basic property
described by Definition 1.1 below.

Let X1(Mn) denote the set of all C1-class vector fields defined on Mn endowed
with the usual C1-norm.

Definition 1.1. Let S ∈ X1(Mn) and let Λ be a nonempty closed, not
necessarily invariant, subset of Mn. S is said to possess the C1-weak-star property
on Λ, provided that there exists a C1-neighborhood U of S in X1(Mn) such that,
for any X ∈ U , every P ∈ Oper(S ¹ Λ)∩Oper(X) with S�P = X�P , is hyperbolic
with respect to X.

Then, that S possesses the C1-weak-star property means that S is robustly
free of any non-hyperbolic Markus-type periodic orbits.

It should be noted here that, in general, for P ∈ Oper(S)∩Oper(X), its prime
periods under S and X might be different; it is enough to take X = (1+`−1)S with
` large enough. However, there is no such difference in the case of diffeomorphisms.

Recall that S is called C1-star in case there is a C1-neighborhood V of S such
that all periodic orbits of each X ∈ V are hyperbolic for X. We notice that even
for the special case Λ = Mn, the C1-weak-star property is conceptually weaker
than the global C1-star property, as is shown by the following simple example.

Example 1.2. Let f : S2 → S2 be a C1-diffeomorphism of the 2-dimensional
unit sphere S2 with the South Pole S and the North Pole N, which has sources
{N,A,B} and a saddle S such that Ω(f) = {N,S,A,B}. Let W s(S) = Wu(S)
and {S} ∪W s(S) be homeomorphic to the shape “∞” containing {A,B}. Then,
the suspension S (f) of f on S2 × [0, 1] obeys the C1-weak-star property, but it is
not a C1-star system from [14] because there are two cycles at the periodic point
(S, 0) ∈ S2 × [0, 1] of S (f).
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So, the C1-weak-star property introduced here is a generalization of the im-
portant C1-star property that has been well studied by many literature; see, e.g.,
[12], [22], [24], [29], [30], [2], [16], [14] and the references therein.

1.2. Dominated and nonuniformly hyperbolic splitting.
In this paper, we push forward the methods of Liao developed in [22] to obtain

the following basic theorem on the existence of a natural and uniform dominated
splitting which possesses an additional nonuniform hyperbolicity, under the local
C1-weak-star condition introduced above.

Theorem A. Let S ∈ X1(Mn) have an invariant closed set Λ which con-
tains no singularities of S. If S possesses the C1-weak-star property on Λ, then
one can find numbers η > 0 and T > 0 satisfying the following two properties.

(1) “Natural dominated splitting”: for any P ∈ Oper(S ¹ Λ)

∥∥Ψ t
S�D−(p,S)

∥∥ ≤ exp(−ηt) if IndS(P ) = n− 1, (1.1a)
∥∥Ψ t

S�D+(p,S)

∥∥
co
≥ exp(ηt) if IndS(P ) = 0, (1.1b)

and

‖Ψ t
S�D−(p,S)‖

‖Ψ t
S�D+(p,S)‖co

≤ exp(−2ηt) if 1 ≤ IndS(P ) ≤ n− 2, (1.1c)

for any t ≥ T and all p ∈ P .
(2) “Nonuniform hyperbolicity”: if P ∈ Oper(S ¹ Λ) has prime period TP and if

0 = t0 < t1 < · · · < t` = mTP where m ∈ N

is a subdivision of the interval [0,mTP ] having tk − tk−1 ≥ T for k = 1, . . . , `,
then

1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D−(Stk−1 (p),S)

∥∥ ≤ −η

and

1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D+(Stk−1 (p),S)

∥∥
co
≥ η
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for any p ∈ P .

Here S⊥p = D−(p, S)⊕D+(p, S) is the natural hyperbolic splitting of the hyperbolic
periodic trajectory P of S.

For any nonempty subset Θ of Mn, by Cl(Θ) we denote the closure of Θ

relative to Mn. Then the natural dominated splitting over Oper(S ¹ Λ) may be
extended over Cl(Oper(S ¹ Λ)).

We notice here that in the case where Λ = Mn and in addition S possesses
the C1-star property that is stronger than ours from Example 1.2, the above state-
ments have been established independently by Liao [22] and Mañé [29, Proposition
II.1]. Since the C1-star condition implies the C1-weak-star property, Theorem A
is an extension of their theorems. In dynamical systems, some interesting basic
dynamics sets like nonwandering set, homoclinic class, chain recurrent class and
periodic orbit, usually are lower dimensional than the ambient manifold Mn, and
so very sensitive to small perturbations. In view of this, our Theorem A above is
more or less of interest.

This kind of “nonuniform hyperbolicity” presented by statement (2) of The-
orem A above plays an important part for proving uniform hyperbolicity from
robust dynamics in many important situations, for instance, in [24] and [30]. It
is also very important in our subsequent applications [11]. In addition, (1.1a) and
(1.1b) in statement (1) of Theorem A imply that there is at most a finite number
of periodic orbits of indices 0 or n−1 for S having the C1-weak-star property. This
is an important property of the C1-weak-star systems; this is because it removes
the Newhouse phenomenon (the existence of infinitely many periodic attractors or
periodic repellers [33]).

It also is interesting to note that under the hypothesis of Theorem A, every
periodic points of S lying in Λ have only nonzero transversal Lyapunov exponents
and such exponents are uniformly bounded away from zero. This generalizes a
classical result of Franks [12, Theorem 1].

For the 3-dimensional case, we can obtain the following sufficient and neces-
sary condition for C1-weak-star property.

Theorem B. Let S ∈ X1(M3) have an invariant closed set Λ which does
not contain any singularities of S. Then, S obeys the C1-weak-star property on
Λ if and only if each P ∈ Oper(S ¹ Λ) is hyperbolic and moreover, one can find
numbers η > 0, T > 0 satisfying the properties (1) and (2) described in Theorem
A.

1.3. Weak-star property induced from other robust dynamics.
Let Diff1(Mn) denote the set of all C1-class diffeomorphisms of Mn endowed

with the usual C1-topology. We can deduce the local C1-weak-star property of
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f ∈ Diff1(Mn) from some other C1-robust dynamics which are considered recently
in many papers. Propositions 1.4 and 1.6 below highlight somewhat our basic
dominated and nonuniformly hyperbolic splitting theorem stated before.

Recall that a point x ∈ Mn is said to be a chain recurrent point of f if for
any δ > 0 there can be found a δ-pseudo-orbit {xi}nδ

i=0 of f for some nδ ≥ 1 such
that x0 = x = xnδ

. Let CRf denote the set of all chain recurrent points of f . We
define an equivalence relation ! on CRf by x ! y if and only if for any δ > 0
there exists a δ-pseudo-orbit {xi}nδ

i=0 of f for some nδ ≥ 1 such that x0 = x and
xnδ

= y. The equivalence classes CRf (x) are called the chain recurrent classes of
f , see, e.g., [5], [3], [1], [40], and [43]. Clearly, each chain recurrent class of f is
a compact invariant set of f .

Definition 1.3. For any x ∈ Per(f), CRf (x) is said to be C1-sustainedly
shadowable for f if there exists a C1-neighborhood U of f such that for any
g ∈ U and any p ∈ Per(f ¹ CRf (x)) ∩ Per(g), g has the shadowing property on
CRg(p). Similarly, the C1-sustainedly shadowable property can be defined on the
nonwandering set Ω(f) of f .

Notice here that our C1-sustainedly shadowing is different from the C1-stably
shadowable condition considered in [40] and [43] where one requires g has the
shadowing property on every CRg(xg). Precisely speaking, let x be a hyperbolic
periodic point of f ; then there exists a C1-neighborhood U of f such that for any
g ∈ U , x has a continuation xg near x; so, xg lies in a unique chain component
CRg(xg) of g. The C1-stably shadowable condition in [40] and [43] requires that g

has the shadowing property on CRg(xg). However, there f and g need not share a
common periodic orbit in CRf (x)∩CRg(xg). In addition, here we do not assume
previously that x is hyperbolic.

However, the C1-sustainedly shadowable property implies the C1-weak-star
property on a chain recurrent class from a discussion of Franks type, see Proposi-
tion 1.4 below, which implies that our Theorem A is a kind of extensions of Sakai
[40, Theorems A and B]. Similar result can be obtained for the C1-sustainedly
shadowable property on the nonwandering set of a diffeomorphism.

Proposition 1.4. Let f ∈ Diff1(Mn) be arbitrarily given. Then, the fol-
lowing two statements hold.

(1) If for x ∈ Per(f), CRf (x) is C1-sustainedly shadowable, then it satisfies the
C1-weak-star property for f .

(2) If f is C1-sustainedly shadowable on the nonwandering set Ω(f), then it pos-
sesses the C1-weak-star property on Ω(f) and moreover it is hyperbolic on the
closure Cl(Per(f)).
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Proof. The existence of the C1-weak-star property follows from a Franks-
type argument [12]. The hyperbolicity of Cl(Per(f)) in statement (2) of Proposi-
tion 1.4 follows from Theorem A and a Liao-wise sifting-shadowing combination
as done in [11]. This proves Proposition 1.4. ¤

A special case of n = 2 of Proposition 1.4 is a generalization of [44, Theorem
A] for the continuous-time dynamics. Similar to the C1-stably shadowable con-
dition, C1-stably expansive condition was considered in a number of papers, for
example, in [27], [28], [34], [32], [41]. Now, we introduce a slightly different one.

Definition 1.5. f is said to be C1-sustainedly expansive on the nonwan-
dering set Ω(f) if there exists a C1-neighborhood U of f such that each g ∈ U
is expansive on Ω(g) if Per(f) ∩ Per(g) 6= ∅. For any point p ∈ Per(f), one can
define similarly the C1-sustainedly expansive property on CRf (p).

In [27] and [32], it is proved that if f is C1-stably expansive on Mn, i.e., there
is a C1-neighborhood V of f such that every g ∈ V is expansive on Mn, then
f is quasi-Anosov or equivalently satisfies both Axiom A and quasi-transversality
condition. If f is C1-robustly expansive on Ω(f), then it follows from [2] and [16]
that f is Axiom A. Clearly our notion of C1-sustainable expansiveness is weaker
than the C1-robustly expansive. Using an argument of Franks type, however, we
can easily show that if f is C1-sustainedly expansive on Ω(f), then f satisfies
the C1-weak-star property on Ω(f), see Proposition 1.6 below. Similarly, if f is
C1-sustainedly expansive on CRf (p), then f obeys the C1-weak-star property on
CRf (p).

Proposition 1.6. Let f ∈ Diff1(Mn) be arbitrarily given. Then, the fol-
lowing two statements hold.

(1) If f is C1-sustainedly expansive on Ω(f), then it satisfies the C1-weak-star
property on Ω(f).

(2) If for x ∈ Per(f), f is C1-sustainedly expansive on CRf (x), then it obeys the
C1-weak-star property on CRf (x).

The statements of Propositions 1.4 and 1.6 will play a role of the starting
point for one to further study the hyperbolicity of the C1-sustainedly shadowable
and expansive dynamical classes. We shall not discuss these applications here.

1.4. A simple version of of Theorem A.
Let X1(Rn), where n ≥ 2, be the space of all C1-class vector fields on the n-

dimensional Euclidean space Rn endowed with the uniform C1-topology induced
by the usual C1-norm
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‖X − Y ‖1 = supx∈Rn{‖X(x)− Y (x)‖+ ‖X ′(x)− Y ′(x)‖}

for all X,Y ∈ X1(Rn).
To simplify the symbols we will mainly prove the following Theorem A′ instead

of Theorem A.

Theorem A′. Let S : Rn → Rn be any nonsingular C1-class vector field on
Rn. Assume Λ is an invariant, nonempty, and compact set of S. If S possesses
the C1-weak-star property on Λ, then there are constants η > 0, T > 0 such that
the following two statements hold.

(1) S has a natural and uniform (η, T )-dominated splitting on Per(S ¹ Λ), i.e.,
for any t ≥ T and any x ∈ Per(S ¹ Λ)

∥∥Ψ t
S,x

∥∥ ≤ exp(−ηt) if IndS(x) = n− 1,
∥∥Ψ t

S,x

∥∥
co
≥ exp(ηt) if IndS(x) = 0,

and

‖Ψ t
S�D−(x,S)‖

‖Ψ t
S�D+(x,S)‖co

≤ exp(−2ηt) if 1 ≤ IndS(x) ≤ n− 2.

(2) Moreover, if x ∈ Per(S ¹ Λ) has the prime period Tx ≥ T , and

0 = t0 < t1 < · · · < t` = Tx

is a subdivision of [0, Tx] satisfying tk − tk−1 ≥ T for k = 1, . . . , `, then

1
Tx

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D−(Stk−1 (x),S)

∥∥ ≤ −η

and

1
Tx

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D+(Stk−1 (x),S)

∥∥
co
≥ η.

Although this theorem is formally simpler than Theorem A, its proof contains
all the key points of that. If we take the exponential projection exp: TMn → Mn,
one can translate its proof to a proof of Theorem A.
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1.5. Applications.
If a nonsingular C1-class differential system is robustly free of any non-

hyperbolic Markus-type periodic orbits then based on Theorem A above, it is
hyperbolic on the closure of all its periodic points under some other interesting
conditions like shadowing and approximation conditions. Our principal results of
applications of Theorem A will be the following Theorem C.

Theorem C ([11]). Let S ∈ X1(Mn) be nonsingular, which possesses the
C1-weak-star property.

(1) If S has the shadowing property on the closure Cl(Per(S)), then it is hyperbolic
on Cl(Per(S)).

(2) If every (St)t∈R-minimal subset of Cl(Per(S)) can be approached arbitrarily
by periodic orbits of S in the sense of Hausdorff topology, then Cl(Per(S)) is
hyperbolic in the cases of n = 3 and 4.

From [6], we see that the approximation condition assumed in statement (2)
of Theorem C is C1-generic. So, we can easily obtain the following C1-generic
result.

Proposition 1.7. If, for a C1-generic f ∈ Diff1(Mn) where n = 2 or 3, it
possesses the C1-weak-star property, then it satisfies Axiom A.

Proof. From the known C1 closing lemma [39] or [23], it follows that for
a C1-generic f ∈ Diff1(Mn), it satisfies Ω(f) = Cl(Per(f)). Moreover, it follows
from [6] that for a C1-generic f ∈ Diff1(Mn), its minimal sets can be approximated
in the Hausdorff topology by its periodic orbits. So, the statement comes from
Theorem C. ¤

Since the dynamics of Axiom A is not C1-generic, Proposition 1.7 implies
that the C1-weak-star dynamics is also not C1-generic in X1(Mn) for n ≥ 3.
Hence, it follows, from Propositions 1.4 and 1.6, that the C1-sustainedly shadow-
able (resp. expansive) dynamics is not C1-generic in Diff1(Mn) too.

Let Diff1+α
loc (Mn) be the set of all locally diffeomorphic transformations of

class C1+α, where 0 < α ≤ 1. Anatole Katok has asked if f ∈ Diff1+α
loc (Mn),

which is Hölder conjugated to a C1-expanding map (or a C1-class Anosov diffeo-
morphism) is an expanding (or Anosov) one. On Katok’s problem, there is an
affirmative solution for the expanding case; see [18] and [9]. But recently Andrey
Gogolev [15] presents a counterexample on T2 for the diffeomorphism case.

As a straightforward application of Theorem C, we can easily obtain the
following result.
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Proposition 1.8. Let f ∈ Diff1(Mn) possess the C1-weak-star property.
If f is topologically conjugated to an Axiom A diffeomorphism, then f satisfies
Axiom A itself.

Proof. Since f is topologically conjugated to an Axiom A diffeomorphism,
f has the shadowing property on the nonwandering set Ω(f) of f and Cl(Per(f)) =
Ω(f). Then the statement follows from Theorem C. ¤

Thus, under the same hypothesis of Proposition 1.8, if f is topologically con-
jugated to a transitive Anosov diffeomorphism, then f is Anosov itself.

1.6. Outline.
This paper is organized as follows. To prove Theorem A, we will introduce

the theory of standard systems of differential equations in Section 2. In Section
3, we will introduce two technical linear perturbation lemmas that are due to S.-
T. Liao. We will prove Theorem A′ and then Theorem A in Section 4, using Liao
approaches. Finally, based on Theorem A we will prove Theorem B in Section 5.

2. Liao standard systems of differential equations.

In [20] and [21], Professor Shantao Liao established his theory of standard
systems of differential equations for C1-differential dynamical systems on closed
manifolds. Since we will prove Theorem A′ in Liao’s framework which is less
known, we need to recall some basic results of Liao theory. Here our standard
system is different from Liao’s used in [22]. Moreover our treatments are much
simpler than Liao’s. In addition, we shall introduce the notion of “level vector
field” following Liao [22].

Let Rn be the n-dimensional Euclidean space, where n ≥ 2. We identify its
tangent bundle TRn with Rn × Rn.

Throughout this section, let S : Rn → TRn be any fixed nonsingular C1-class
differential systems on Rn which has an invariant compact nonempty set Λ ⊂ Rn.

2.1. Variational equations.
First S naturally generates the C1-flow (St)t∈R : Rn → Rn; St(x) = t·x on

the state space Rn as before. It further induces, on the tangent bundle Rn × Rn

of Rn, the smooth linear skew-product flow

(DSt)t∈R : Rn × Rn → Rn × Rn; (x, v) 7→ (t·x,DxSt(v))

where DxSt : TxRn = Rn → Tt·xRn = Rn; v 7→ (∂St/∂x)v, corresponding to the
variational equations
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{
ẋ = S(x);

v̇ = S′(x)v,
((x, v) ∈ Rn × Rn)

on the extended (x, v)-phase-space Rn ×Rn, i.e., (d/dt)DxSt = S′(t·x)DxSt. We
define the natural S-transversal vector bundle over Λ as follows:

S⊥Λ =
⊔

x∈Λ
S⊥x where the fiber at x is S⊥x = {v ∈ Rn | 〈S(x), v〉 = 0}.

Then, S further gives rise to the natural (smooth) linear skew-product flow on
S⊥Λ :

ΨS : R× S⊥Λ → S⊥Λ ; (t, (x, v)) 7→ (t·x, Ψ t
S,x(v))

where

Ψ t
S,x(v) = DxSt(v)−

〈
DxSt(v),

S(t·x)
‖S(t·x)‖

〉
S(t·x)
‖S(t·x)‖ .

In other words, Ψ t
S,x(v) is the component of DxSt(v) orthogonal to S(t·x).

Then, Λ is hyperbolic if and only if there exists a ΨS-invariant continuous
splitting

S⊥Λ = Es ⊕ Eu

and two constants λ < 0, K > 0, such that

∥∥Ψ t
S(u)

∥∥ ≤ K‖u‖ exp(λt) ∀u ∈ Es and
∥∥Ψ−t

S (u)
∥∥ ≤ K‖u‖ exp(λt) ∀u ∈ Eu.

for any t ≥ 0.
As usual in Liao theory, let

F ∗]
S,n−1(Λ) =

⊔
x∈Λ

F ∗]
S,n−1(x)

be the bundle of S-transversal orthonormal (n− 1)-frames of the tangent bundle
Rn × Rn over Λ, where the fiber over x is defined as

F ∗]
S,n−1(x) =

{
γ = [v1, . . . , vn−1] | vi ∈ S⊥x , 〈vi, vj〉 = δij for 1 ≤ i, j ≤ n− 1

}
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equipped with the naturally induced smooth structure. Here δij is the Kronecker
symbol. Then, S naturally generates a frame skew-product flow:

(
S ∗]

t

)
t∈R : R×F ∗]

S,n−1(Λ) → F ∗]
S,n−1(Λ); (x, γ) 7→ (

t·x,S ∗]
t,x(γ)

)
, (2.1)

where the factor S ∗]
t,x : F ∗]

S,n−1(x) → F ∗]
S,n−1(t·x) is defined by applying the stan-

dard Gram-Schmidt orthogonalization procedure; see [19] and [7], for example.
We now make a Perronwise triangularization for the variational equation of

S under the moving frames (S ∗]
t,x(γ))t∈R. For that, we simply write

γx(t) = S ∗]
t,x(γ) ∀t ∈ R and (x, γ) ∈ F ∗]

S,n−1(Λ).

Because S is of C1-class, γx(t) also is of C1-class in t; that is to say, ∂γx(t)/∂t

makes sense and is continuous with respect to (t, (x, γ)) under the natural smooth
structure.

Given any (n − 1)-frame (x, γ) of S, define an orthogonal non-autonomous
coordinate transformation as follows:

γx,t : Rn−1 → S⊥t·x; z 7→ γx(t)z :=
n−1∑

i=1

zicoli(γx(t))

where z = (z1, . . . , zn−1)T ∈ Rn−1 is regarded as an (n − 1)-dimensional column
vector and the (n − 1)-frame γx(t) ∈ Rn×(n−1) as an n-by-(n − 1) matrix with
columns col1(γx(t)), . . . , coln−1(γx(t)) successively. Then, there can be defined a
family of linear isomorphisms

(C∗x,γ(t))t∈R : Rn−1 → Rn−1 such that

Rn−1
C∗x,γ(t)

//

γx,0

²²

Rn−1

γx,t

²²
S⊥x

Ψt
S,x // S⊥t·x.

(2.2)

We now think of C∗x,γ(t) as an (n−1)-by-(n−1) matrix under the standard basis of
Rn−1. Clearly, the function t 7→ (d/dt)C∗x,γ(t) makes sense since S is of C1-class,
and by (2.2) we have

C∗x,γ(t1 + t2) = C∗
S ∗]

t1
(x,γ)

(t2) ◦ C∗x,γ(t1) ∀t1, t2 ∈ R.

Put
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R∗x,γ(t) =
{

d

dt
C∗x,γ(t)

}
◦ C∗x,γ(t)−1 ∀(x, γ) ∈ F ∗]

S,n−1(Λ)

which is continuous with respect to (t, (x, γ)). Given (x, γ) ∈ F ∗]
S,n−1(Λ) associated

to S, the linear differential equation

ż = R∗x,γ(t)z, (t, z) ∈ R× Rn−1 (R∗x,γ)

is called the Liao linearized system of S under the moving frame (γx(t))t∈R.

Lemma 2.1 ([19], [8]). The Liao linearized systems of S possess the follow-
ing three properties.

(1) Uniform boundedness: R∗x,γ(t) is continuous in (t, (x, γ)) ∈ R × F ∗]
S,n−1(Λ)

with

ηΛ := sup
{ ∑

i,j

|R∗ijx,γ(t)|; t ∈ R, (x, γ) ∈ F ∗]
S,n−1(Λ)

}
< ∞.

(2) Upper triangularity : R∗x,γ(t) is upper-triangular.
(3) Geometrical interpretation: Let v = γx,0(z̄) for any z̄ ∈ Rn−1 and any frame

(x, γ) ∈ F ∗]
S,n−1(Λ). If z(t) = z(t, z̄) is the solution of (R∗x,γ) with z(0) = z̄,

then

Ψ t
S,x(v) = γx,t(z(t)) ∈ S⊥t·x.

Conversely, letting z(t) = (z1(t), . . . , zn−1(t))T ∈ Rn−1 be defined by

zi(t) =
〈
Ψ t

S,x(v), coliγx(t)
〉

(i = 1, . . . , n− 1),

we have ż(t) = R∗x,γ(t)z(t)and z(0) = z̄. Particularly, C∗x,γ(t) is the funda-
mental matrix of solution of (R∗x,γ).

Statement (3) of Lemma 2.1 shows that (R∗x,γ) is essentially the variational
equations of the differential system S along the orbit SR(x).

2.2. Standard systems.
For c > 0, let Rn−1

c = {z ∈ Rn−1; ‖z‖ < c}. Let

ΣS(t·x) = St(x) + S⊥t·x where t·x = St(x) as before
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be the cross-section of S at the base point t·x for all t ∈ R and all x ∈ Rn, viewed
as a hyperplane in Rn.

Given any (x, γ) ∈ F ∗]
S,n−1, we consider the C1-mapping

S∗
x,γ : R× Rn−1 → Rn

defined by

S∗
x,γ(t, z) = t·x + γx,t(z) ∀(t, z) ∈ R× Rn−1.

It is known from [8] that there is a constant c > 0, which might rely on S but
is independent of the choice of (x, γ) ∈ F ∗]

S,n−1(Λ), such that S∗
x,γ is locally

diffeomorphic from R×Rn−1
c into Rn. In fact, there is some ε > 0 so that for any

x ∈ Λ, S∗
x,γ is C1-diffeomorphic from (−ε, ε)× Rn−1

2c into Rn.
Given any (x, γ) ∈ F ∗]

S,n−1(Λ) and any other X ∈ X1(Rn) nearby S, we define
a C0-vector field on R× Rn−1

c

X̂x,γ : R× Rn−1
c → R× Rn−1

in this way:

(
D(t,z)S

∗
x,γ

)
X̂x,γ(t, z) = X(S∗

x,γ(t, z)) ∀(t, z) ∈ R× Rn−1
c .

Since S∗
x,γ is locally C1-diffeomorphic associated to S, X̂x,γ(t, z) is well defined

on R× Rn−1
c . Particularly, for the special case X = S, we have

Ŝx,γ(t,0) = (1,0) ∈ R× Rn−1.

On the (t, z)-phase-space R× Rn−1
c , we now consider the autonomous differ-

ential system

d

d

(
t
z

)
= X̂x,γ(t, z), (t, z) ∈ R× Rn−1

c and ∈ R.

Write

X̂x,γ(t, z) =
(
X̂

0

x,γ(t, z), . . . , X̂
n−1

x,γ (t, z)
) ∈ R× Rn−1.
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Clearly, it follows from S∗
x,γ(t, z) = S∗

S ∗]
t (x,γ)

(0, z) for any (t, z) ∈ R×Rn−1 that

X̂x,γ(t, z) = X̂S ∗]
t (x,γ)(0, z) ∀(t, z) ∈ R× Rn−1

c . (2.3)

Although S∗
x,γ is only C1-class, we can obtain more about the regularity of

X̂x,γ(t, z) with respect to the variable z ∈ Rn−1
c .

First, by replacing c by a more small positive constant if necessary, we can
obtain the following lemma.

Lemma 2.2. There exists a C1-neighborhood NS of S in X1(Rn) such that
for any X ∈ NS,

1
2
≤ X̂

0

x,γ(t, z) ≤ 4
2

for any (t, z, (x, γ)) ∈ R× Rn−1
c ×F ∗]

S,n−1(Λ).

Thus, the following definition makes sense.

Definition 2.3. Given any (X, (x, γ)) ∈ NS ×F ∗]
S,n−1(Λ), set

X∗
x,γ(t, z) =


X̂

1

x,γ(t, z)

X̂
0

x,γ(t, z)
, . . . ,

X̂
n−1

x,γ (t, z)

X̂
0

x,γ(t, z)


 ∈ Rn−1 ∀(t, z) ∈ R× Rn−1

c .

The non-autonomous differential equations

dz

dt
= X∗

x,γ(t, z), (t, z) ∈ R× Rn−1
c (X∗

x,γ)

is referred to as the standard system of X associated to (S, (x, γ)).

From (2.3), it follows easily that

X∗
x,γ(t + t′, z) = X∗

S ∗]
t (x,γ)

(t′, z) ∀t, t′ ∈ R and z ∈ Rn−1
c .

Note here that S ∗]
t is defined by S as in (2.1), not by X. From now on, we rewrite

(X∗
x,γ) as a quasi-linear differential equations

ż = R∗x,γ(t)z + X∗
rem(x,γ)(t, z), (t, z) ∈ R× Rn−1

c (X∗
x,γ)
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where

X∗
rem(x,γ)(t, z) = X∗

x,γ(t, z)−R∗x,γ(t)z

such that

X∗
rem(x,γ)(t + t′, z) = X∗

rem(S ∗]
t (x,γ))

(t′, z), ∀t, t′ ∈ R.

We notice also that R∗x,γ(t) is associated to S, not to X.
The following theorem is basic in the theory of standard systems of differential

equations.

Theorem 2.4 ([20]). Let NS be given by Lemma 2.2. Then for any system
X ∈ NS, the following statements hold :

(1) X∗
rem(x,γ)(t, z) and ∂X∗

rem(x,γ)(t, z)/∂z both are continuous with respect to
(t, z, (x, γ)) in R× Rn−1

c ×F ∗]
S,n−1(Λ).

(2) Given any (x, γ) ∈ F ∗]
S,n−1(Λ) and t′ < t′′, if z∗(t) = z∗X,x,γ(t; t0, z) where

t, t0 ∈ (t′, t′′), is the solution of (X∗
x,γ) with z∗(t0) = z, then

X (t;t0)(S∗
x,γ(t0, z)) = S∗

x,γ(t, z∗(t)) ∈ ΣS(t·x)

where

(t; t0) =
∫ t

t0

1

X̂
0

x,γ(τ, z∗(τ))
dτ.

(3) S∗x,γ(t, z) is of C1-class in z ∈ Rn−1
c with S∗x,γ(t,0) = 0 for all t, such that

∂S∗x,γ(t, z)
∂z

→ ∂S∗x,γ(t,0)
∂z

= R∗x,γ(t) as z → 0

uniformly for (t, (x, γ)) ∈ R×F ∗]
S,n−1(Λ).

Remark 2.5. Statement (2) of Theorem 2.4 shows that if x is a periodic
point of S with period τx, then

S (τx;0) : ΣS(x) → ΣS(x)

is well defined near x, which is just the classical Poincaré map of S at x, and
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C∗x,γ(τx) : Rn−1 → Rn−1 is its linear approximation. However, certain care must
be taken in interpreting the characteristic multipliers of x, since the coordinate
system of TxΣS(x) is γ at instant t = 0 and γx(τx) at instant t = τx.

2.3. Level vector fields.
As mentioned before, there is a constant ε > 0, which is independent of

the choices of (x, γ) ∈ F ∗]
S,n−1(Λ), such that S∗

x,γ : [0, ε] × Rn−1
c → Rn is C1-

diffeomorphic. If T > 0 and 0 < ζ < c are such that

S∗
x,γ : [0, T ]× Rn−1

ζ → Rn

is C1-diffeomorphic into Rn, then the cylinder [0, T ]×Rn−1
ζ is said to be admissible

for (S, x). Notice here that the admissibility is independent of the choice of the
frames γ ∈ F ∗]

S,n−1(x).
We introduce a necessary notion following Liao [22].

Definition 2.6. Let [0, T ] × Rn−1
ζ be admissible for (S, x) where x ∈ Λ,

and

Z(t, z) = (0,Z1, . . . ,Zn−1)

a C1-vector field on Rn such that Z�Rn−[0,T ]×Rn−1
ζ

≡ 0. Such a Z is called a level

vector field on the cylinder [0, T ]×Rn−1
ζ . For any γ ∈ F ∗]

S,n−1(x), define naturally
a C0-vector field, write Π∗x,γ(Z), on Rn as follows:

Π∗x,γ(Z)(w) =

{(
DS∗

x,γ

)
Z(t, z) if w = S∗

x,γ(t, z), 0 ≤ t ≤ T, ‖z‖ ≤ ζ

0 if w ∈ Rn −S∗
x,γ

(
[0, T ]× Rn−1

ζ

)
.

The following facts are useful for proving Theorem A, which correspond to
[22, Propositions 3.1, 3.3 and 3.4].

Theorem 2.7. Let Z(t, z) =
(
0, Ŝ

0

x,γ(t, z)Z∗(t, z)
) ∈ Rn be a level vector

field on an admissible cylinder [0, T ]×Rn−1
ζ for (S, x), where (x, γ) ∈ F ∗]

S,n−1(Λ).
Then, the following three statements hold :

(1) Π∗x,γ(Z) is of C1-class.
(2) There are numbers ξ∗ > 0, ζ∗ > 0 such that for any (x, γ) ∈ F ∗]

S,n−1(Λ) and
any T > 0

∥∥Π∗x,γ(Z)
∥∥

1
≤ ξ∗‖Z‖1
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if [0, T ] × Rn−1
ζ , ζ ≤ ζ∗, is an admissible cylinder of (S, x) and Z(t, z) is a

level vector field on it.
(3) Let X = S + Π∗x,γ(Z). For any ε > 0, there is a δ = δ(S, ε) > 0 such that

X̂x,γ(t, z) = Ŝx,γ(t, z) + Z(t, z)

and

X∗
x,γ(t, z) = S∗x,γ(t, z) + Z∗(t, z) and ‖Π∗x,γ(Z)‖1 < ε

if [0, T ]×Rn−1
ζ with ζ ≤ δ is an admissible cylinder of (S, x) and Z(t, z) is a

level vector field on it satisfying ‖Z‖1 ≤ δ.

Proof. Let C(s; (t, z)) ∈ [0, T ] × Rn−1
ζ be an integral curve of the level

vector field Z in Rn with C(0) = (t, z), for s ∈ (−τ, τ) for some τ > 0 sufficiently
small. Clearly,

C(s; (t, z)) = (t, C1(s; (t, z)), . . . , Cn−1(s; (t, z)))

lies in {t} × Rn−1
c for all s ∈ (−τ, τ). Then for w = S∗

x,γ(t, z), we have

C (s;w) := S∗
x,γ(C(s; (t, z)))

= t·x + γx,t(C1(s; (t, z)), . . . , Cn−1(s; (t, z))) ∈ ΣS(t·x),

is an integral curve of the field Π∗x,γ(Z) in Rn with C (0;w) = w. Thus,

Π∗x,γ(Z)(w) =
dC (s;w)

ds

∣∣∣∣
s=0

= γx(t)
(
Z1(t, z), . . . ,Zn−1(t, z)

)T

= γx(t)
(
Z1(S∗

x,γ
−1(w)), . . . ,Zn−1(S∗

x,γ
−1(w))

)T (2.4)

is of C1-class with respect to w by the definition of admissible cylinder. This
proves statement (1) of Theorem 2.7.

Next, we are going to prove statement (2) of Theorem 2.7. By (2.4) we have

∥∥Π∗x,γ(Z)
∥∥

0
≤ ‖Z‖0

for any (x, γ) ∈ F ∗]
S,n−1(Λ) and for any admissible cylinder [0, T ]×Rn−1

ζ of (S, x).
Note that
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w = w(t, z) = S∗
x,γ(t, z) = t·x + γx,t(z) ∀(t, z) ∈ [0, T ]× Rn−1

ζ .

From (2.4) again, it follows that

∥∥∥∥
∂Π∗x,γ(Z)(w)

∂w

∥∥∥∥ ≤
∥∥∥∥

∂{γx(t)(Z1(t, z), . . . ,Zn−1(t, z))T}
∂(t, z)

∥∥∥∥
∥∥∥∥

∂S∗
x,γ

−1(w)
∂w

∥∥∥∥.

However,

∥∥∥∥
∂{γx(t)(Z1(t, z), . . . ,Zn−1(t, z))T}

∂t

∥∥∥∥

≤
∥∥∥∥

dγx(t)
dt

(
Z1(t, z), . . . ,Zn−1(t, z)

)T
∥∥∥∥ +

∥∥∥∥γx(t)
(

∂Z1(t, z)
∂t

, . . . ,
∂Zn−1(t, z)

∂t

)T∥∥∥∥

≤
∥∥∥∥

dγx(t)
dt

∥∥∥∥‖Z‖0 +
∥∥∥∥

∂Z(t, z)
∂t

∥∥∥∥

and

∥∥∥∥
∂{γx(t)(Z1(t, z), . . . ,Zn−1(t, z))T}

∂z

∥∥∥∥ =
∥∥∥∥γx(t)

[
∂Zi(t, z)

∂zj

]

(n−1)×(n−1)

∥∥∥∥

≤
∥∥∥∥

∂Z(t, z)
∂z

∥∥∥∥.

Therefore, we have

∥∥Π∗x,γ(Z)
∥∥

1
≤ ‖Z‖0 + sup

w

∥∥∥∥
∂Π∗x,γ(Z)(w)

∂w

∥∥∥∥

≤ ‖Z‖0 + sup
w

∥∥∥∥
∂S∗

x,γ
−1(w)

∂w

∥∥∥∥
(∥∥∥∥

dγx(t)
dt

∥∥∥∥‖Z‖0 +
∥∥∥∥

∂Z(t, z)
∂(t, z)

∥∥∥∥
)

≤ sup
w

(
1 +

∥∥∥∥
∂S∗

x,γ
−1(w)

∂w

∥∥∥∥
)(

1 +
∥∥∥∥

dγx(t)
dt

∥∥∥∥
)
‖Z‖1

and

∂S∗
x,γ(t, z)

∂(t, z)
=

[
S(t·x) +

d

dt
γx,t(z), γx(t)

]

n×n
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where w = w(t, z).
On the other hand, we see that (d/dt)γx,t is jointly continuous with respect to

(t, (x, γ)) and uniformly continuous with respect to (t, (x, γ)) ∈ [0, T ]×F ∗]
S,n−1(Λ).

So ‖(∂S∗
x,γ

−1(w))/∂w‖ is continuous with respect to (t, (x, γ)).
Thus, by the group property of (S ∗]

t )t∈R and the compactness of F ∗]
S,n−1(Λ),

there exist constants ξ∗ > 0, ζ∗ > 0 such that for any (x, γ) ∈ F ∗]
S,n−1(Λ) and any

T > 0
∥∥Π∗x,γ(Z)

∥∥
1
≤ ξ∗‖Z‖1

whenever Z is a level vector field on an admissible cylinder [0, T ]×Rn−1
ζ for (S, x)

and for ζ ≤ ζ∗. This proves statement (2) of Theorem 2.7.
Statement (3) of Theorem 2.7 comes immediately from Definition 2.3 and

statement (2) of Theorem 2.7 proved above. The proof of Theorem 2.7 is therefore
completed. ¤

Theorem 2.7 will play the role of the Franks lemma [12]. This kind of special
small perturbation X of S defined by Theorem 2.7 is very important in the proof
of Theorem A′.

2.4. Level vector fields based on periodic orbits.
We now assume that p ∈ Λ is a periodic point of the differential system S

with prime period Tp. For any γ ∈ F ∗]
S,n−1(p), γp(Tp) = S ∗]

Tp,p(γ) belongs to

F ∗]
S,n−1(p) as well. Let

〈γ, γp(Tp)〉 = (〈coliγ, coljγp(Tp)〉)(n−1)×(n−1) (2.5)

be the correlation (n− 1)-by-(n− 1) matrix of γ and γp(Tp). Then, we have

γp(Tp) =
(
col1γp(Tp), . . . , coln−1γp(Tp)

)
= γ〈γ, γp(Tp)〉.

We will use the following results in the proof of Theorem A′.

Proposition 2.8. Given any periodic point p ∈ Per(S ¹ Λ) with the prime
period Tp and any ε > 0, let Z = (0, Z̃) be a level vector field on an admissible
cylinder [0, T ]× Rn−1

ζ of (S, p) such that Z(t,0) = 0 for all t ∈ R and ‖Z‖1 ≤ δ,
where δ = δ(S, ε) is as in statement (3) of Theorem 2.7. Let γ ∈ F ∗]

S,n−1(p) and
S[0,Tp](p) ∩S∗

p,γ([0, T ]× Rn−1
ζ ) = S[0,T ](p) and T < Tp. Then, P := S[0,Tp](p) is

also a periodic orbit of X = S + Π∗p,γ(Z) with S�P = X�P . Moreover, if Z](t) is
the standard fundamental solution of matrix of the equation
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dz

dt
=

(
R∗p,γ(t) +

∂Z̃(t, z)
∂z

∣∣∣∣
z=0

)
z,

then the eigenvalues of the matrices 〈γ, γp(Tp)〉Z](Tp) and Z](Tp)〈γ, γp(Tp)〉 are
just those of X at p, respectively.

Proof. Let X = S + Π∗p,γ(Z). Since S(t·p) = X(t·p) for any t ∈ R where
t·p = St(p), S[0,Tp](p) is still a periodic orbit of X with St(p) = Xt(p) for all t.
We write

X̃(t, z) = Ŝ
0

p,γ(t, z)X∗(t, z).

By a direct calculation, we easily have

∂Ŝ
0

p,γ(t, z)Z∗(t, z)
∂z

∣∣∣∣
z=0

=
∂Z∗(t, z)

∂z

∣∣∣∣
z=0

.

Thus, Z](t) is also the standard fundamental matrix solution of the equation

dz

dt
=

(
R∗p,γ(t) +

∂Z∗(t, z)
∂y

∣∣∣∣
z=0

)
z,

where Z∗(t, z) is as in statement (3) of Theorem 2.7.
To validate the second part of Proposition 2.8, we consider the Poincaré map

of X at p

ψ
Tp

X,p : ΣS(p) → ΣS(Tp·p) = ΣS(p).

Notice that ΣS(p) = ΣX(p) and X∗
p,γ(t,0) = 0 for all t ∈ R and so z∗X,p,γ(t) = 0

is a solution of the standard system (X∗
p,γ) of X associated to (S, (p, γ)). From

statement (3) of Theorem 2.7 and Theorem 2.4, it follows that Dpψ
Tp

X,p = Z](Tp)
if we let γ, γp(Tp) serve as the bases of S⊥p and S⊥Tp·p

, respectively. So, if we let γ

serve simultaneously as the basis of S⊥p and S⊥Tp·p
, then

Dpψ
Tp

X,p = 〈γ, γp(Tp)〉Z](Tp).

This shows that the eigenvalues of 〈γ, γp(Tp)〉Z](Tp) are just those of X at p.
Similarly, one can prove that the eigenvalues of Z](Tp)〈γ, γp(Tp)〉 are just

those of X at p. This proves Proposition 2.8. ¤
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3. Two perturbation lemmas of Liao.

In this section, we will introduce two perturbation lemmas due to Liao [22].
Since they are unavailable for English readers, we now restate them without proof.

Let us consider a linear differential equations of order i

dy

dt
= A(t)y (t, y) ∈ R× Ri

where the i-by-i coefficient matrix A(t) is continuous in t such that

supt∈R‖A(t)‖ ≤ a∗ < ∞.

By yA(t, y) we denote its solutions with yA(0, y) = y for any y ∈ Ri.
Let f∗ : R→ [0, 1] be a smooth bump function needed later such that

f∗|(−∞, 1/8] ≡ 0, f∗|[7/8,∞) ≡ 1, f∗|[1/4, 3/4] ≡ 1/
√

2.

and

1 ≤ b∗ := supt∈R|f ′∗(t)| < ∞.

Then, the following two lemmas are useful.

Lemma 3.1 ([22]). For any % ∈ (0, 1), y0, y] ∈ Ri with ‖y0‖ = 1 = ‖y]‖ and
0 < T1 < T < ∞ such that

‖yA(T, y0)‖
‖yA(T, y])‖ ≤

λ2
∗
8

exp(λ%T1/32)

and

T ≥ max
{

16a∗T1

%
, 2λT1 +

64
%

log
2
λ∗

, T1 + 2
}

,

where

λ =
%

4b∗ exp(2a∗)
, λ∗ =

λ

2
exp(−%/2),

there is a linear perturbed equation
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dy

dt
= [A(t) + B](t)]y (t, y) ∈ R× Ri (])

which satisfies that

( i ) B](t) is continuously differentiable in t such that B](t)|(−∞, 0]∪[T−1/8,∞) ≡ 0
and

supt∈R‖B](t)‖ < %;

( ii ) there exists a solution y](t) such that y](0) = y0, y](T ) = yA(T, y]) or
−yA(T, y]).

The second lemma is stated as follows:

Lemma 3.2 ([22]). Let % ∈ (0, 1) and 0 = t0 < t1 < · · · < t` = T < ∞ and
y0, y\ ∈ Ri such that ‖y0‖ = 1 = ‖yA(T, y\)‖. If

‖yA(t`−1, y\)‖ = inf
y∈Ri,‖yA(T,y)‖=1

‖yA(t`−1, y)‖

and

tk − tk−1 ≥ max
{

16a∗T̄
%

, 2λT̄ +
64
%

log
2
λ∗

, T̄ + 2
}

, k = 1, . . . , `,

where λ = %/(4b∗ exp(2a∗)), λ∗ = (λ/2) exp(−%/2) and where

T̄ =
32
λ%

log
32
λ2∗

,

then there is a linear perturbed equation

dy

dt
= [A(t) + B\(t)]y (t, y) ∈ R× Ri (\)

which satisfies that

( i ) B\(t) is continuously differentiable in t such that B\(t)|(−∞, 0]∪[T−1/8,∞) ≡ 0
and

supt∈R‖B\(t)‖ < %;
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( ii ) there exists a solution y\(t) such that y\(0) = y0 and

y\(T )
‖y\(T )‖ = yA(T, y\) or − yA(T, y\)

and

‖y\(tk)‖
‖y\(tk−1)‖ = sup

y∈Ri,‖yA(tk−1,y)‖=1

‖yA(tk, y)‖ for k = 1, . . . , `.

Particularly,

‖y\(T )‖ =
∏̀

k=1

sup
y∈Ri,‖yA(tk−1,y)‖=1

‖yA(tk, y)‖.

Let At : Ri → Ri; y 7→ yA(t, y) for all t ∈ R. Then

inf
y∈Ri,‖yA(T,y)‖=1

‖yA(t`−1, y)‖ = ‖At`−1 ◦A −1
T ‖co

and

sup
y∈Ri,‖yA(tk−1,y)‖=1

‖yA(tk, y)‖ =
∥∥Atk

◦A −1
tk−1

∥∥

for k = 1, . . . , `.

4. Existence of weak hyperbolicity.

This section will be devoted to proving Theorem A stated in Section 1.2. As
described before, we need to prove mainly the simple version Theorem A′ stated
in Section 1.4.

4.1. Proof of Theorem A′.
Throughout this subsection, let S : Rn → TRn be any given C1-class vector

field on Rn having no singularities. Let Λ ⊂ Rn be an invariant, nonempty, and
compact set of the dynamical system S. We simply write

St(x) = t·x and Ψ t
S,x(v) = Ψ t(v) ∀t ∈ R and (x, v) ∈ S⊥Λ .

For convenience, we now reformulate Theorem A′ as follows:
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Theorem 4.1. If S obeys the C1-weak-star property on Λ; that is to say,
there is a C1-neighborhood U ∗ of S in X1(Rn) such that, for any V ∈ U ∗, every
P in Oper(S ¹ Λ)∩Oper(V ) with S�P = V �P , is hyperbolic with respect to V , then
there are constants η > 0 and T > 0, for which the following two statements hold.

(1) S has a natural and uniform dominated splitting on Per(S ¹ Λ); that is

‖Ψ t‖ ≤ exp(−ηt) if dimD−(x,S) = n− 1,

‖Ψ t‖co ≥ exp(ηt) if dimD−(x,S) = 0,

‖Ψ t�D−(x,S)‖
‖Ψ t�D+(x,S)‖co

≤ exp(−2ηt) if 1 ≤ dimD−(x,S) ≤ n− 2,

for any t ≥ T and any x ∈ Per(S ¹ Λ).
(2) If x ∈ Per(S ¹ Λ) has the prime period Tx ≥ T and

0 = t0 < t1 < · · · < t` = Tx, ` ≥ 1

is a subdivision of [0, Tx] satisfying tk − tk−1 ≥ T for k = 1, . . . , `, then

1
Tx

∑̀

k=1

log
∥∥Ψ tk−tk−1�D−(tk−1·x,S)

∥∥ ≤ −η

and

1
Tx

∑̀

k=1

log
∥∥Ψ tk−tk−1�D+(tk−1·x,S)

∥∥
co
≥ η.

Here the subspaces D−(x,S) and D+(x,S) of TxRn both are defined as in
Section 1.1.

Proof. For the clarity, we will divide the proof of Theorem 4.1 into several
steps.

Step 1: Define a C1-neighborhood W of S in X1(Rn) as follows:

W = U ∗ ∩NS

where NS is defined by Lemma 2.2. At first, let us choose two constants ε > 0
and δ > 0 such that
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(a) if V ∈ X1(Rn) satisfies ‖V − S‖1 < ε then V ∈ W ;
(b) δ = δ(S, ε) satisfies the requirement of statement (3) of Theorem 2.7 for the

case where ε is given as in (a).

And put

% =
min{δ, 1}
4(1 + 2b∗)

with 0 < % < 1, (4.1)

where b∗ ≥ 1 is defined as in Section 3 associated to the bump function f∗(t).

Step 2: For any P ∈ Oper(S ¹ Λ), from the hyperbolicity of S at P it follows
that there exists a natural Ψ -invariant decomposition over P

S⊥x = D−(x,S)⊕D+(x,S), and simply write ix = IndS(x) ∀x ∈ P.

Then, take an arbitrary (n−1)-frame γ ∈ F ∗]
S,n−1(x) at the base point x ∈ P such

that

colkγ ∈ D−(x,S) for k = 1, . . . , ix if ix ≥ 1. (4.2)

We will apply Liao’s Lemmas 3.1 and 3.2 stated in Section 3 to the Liao linearized
equations of S under the chosen (n− 1)-frame (x, γ)

dz

dt
= R∗x,γ(t)z (R∗x,γ)

given as in Section 2.1. Write

R∗x,γ(t) =
[

Qx,γ(t) Q′′x,γ(t)
0(n−1−ix)×ix Q′x,γ(t)

]
, z =

[
y
y′

]
∈ Rix × Rn−1−ix

where Qx,γ(t) is a matrix of ix × ix. By zx,γ(t, z) we denote the solution of (R∗x,γ)
with zx,γ(0, z) = z for any z ∈ Rn−1. In the case ix ≥ 1, let Yx,γ(t) be the standard
fundamental solution matrix of the following subsystem of (R∗x,γ)

ẏ = Qx,γ(t)y, (t, y) ∈ R× Rix .

From Lemma 2.1, it follows that ‖Ψ t(γx,0(z))‖ = ‖zx,γ(t, z)‖ for any t ∈ R and
any z ∈ Rn−1. Thus,
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‖Ψ t
�D−(t′·x,S)‖ = sup

y∈Rix ,‖Yx,γ(t′)y‖=1

‖Yx,γ(t′ + t)y‖ ∀t ≥ 0 and t′ ∈ R.

Step 3: We first prove the following claim:

Claim 1. There exists a constant TΛ > 0 such that, if P ∈ Oper(S ¹ Λ)
having prime period TP ≥ TΛ and if 0 = t0 < t1 < · · · < t` = TP is a subdivision
of [0, TP ] with tk − tk−1 ≥ TΛ for k = 1, . . . , `, then the inequalities

1
TP

∑̀

k=1

log
∥∥Ψ tk−tk−1�D−(tk−1·x,S)

∥∥ ≤ −%/4 (4.3)

and

1
TP

∑̀

k=1

log
∥∥Ψ tk−tk−1�D+(tk−1·x,S)

∥∥
co
≥ %/4 (4.4)

for any x ∈ P , are satisfied.

Here % is as in (4.1) and TΛ will be defined by (4.7b) below.

Proof. Let P ∈ Oper(S ¹ Λ) with the prime period TP and a subdivision
of [0, TP ]

0 = t0 < t1 < · · · < t` = TP , ` ≥ 1

have been arbitrarily given. Let

i = IndS(P ).

Since the case of i = 0 can be handled by considering −S instead of S, without
loss of generality we may assume 1 ≤ i ≤ n − 1. Let x ∈ P be a periodic point
with the prime period Tx = TP .

First, pick up some (n−1)-frame γ ∈ F ∗]
S,n−1(x) at the base point x satisfying

(4.2) and consider (R∗x,γ) associated to (S, (x, γ)). To apply Lemma 3.2, we first
take and then fix some y\ ∈ Ri such that

‖Yx,γ(Tx)y\‖ = 1 and ‖Yx,γ(t`−1)y\‖ = inf
y∈Ri,‖Yx,γ(Tx)y‖=1

‖Yx,γ(t`−1)y‖.

Let z\ = (Yx,γ(Tx)y\,0)T ∈ Ri × Rn−1−i, and set
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z0 = 〈γ, γx(Tx)〉z\ ∈ Rn−1,

where γx(Tx) = S ∗]
Tx,x(γ) and S ∗]

Tx,x : F ∗]
S,n−1(x) → F ∗]

S,n−1(x) is defined as in
(2.1). Condition (4.2) implies that colkγx(Tx) ∈ D−(x,S) for k = 1, . . . , i and
hence the correlation matrix of γ and γx(Tx) has the form as follows:

〈γ, γx(Tx)〉 =
[
Cx,γ 0
0 ∗

]
(4.5)

where Cx,γ is of i× i and ∗ is some matrix of (n− 1− i)× (n− 1− i) given as in
(2.5). So,

z0 = (Cx,γYx,γ(Tx)y\,0) ∈ Ri × Rn−1−i.

Let

y0 = Cx,γYx,γ(Tx)y\ ∈ Ri. (4.6)

Since 〈γ, γx(Tx)〉 is an orthogonal matrix, we have ‖y0‖ = ‖z\‖ = 1.
Let the constants λ, λ∗, T̄ and TΛ be defined as

λ =
%

4b∗ exp(2ηΛ)
, λ∗ =

λ

2
exp(−%/2),

and

T̄ =
32
λ%

log
32
λ2∗

, (4.7a)

TΛ = max
{

16ηΛT̄

%
, 2λT̄ +

64
%

log
2
λ∗

, T̄ + 2
}

, (4.7b)

where ηΛ is defined as in Lemma 2.1. It is easy to see that TΛ is independent of
the choice of the (n− 1)-frame (x, γ).

Then, if

tk − tk−1 ≥ TΛ for k = 1, . . . , `, (4.8)

then by applying Lemma 3.2 with A(t) = Qx,γ(t), a∗ = ηΛ, and T = Tx, one can
find a linear equation
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dy

dt
= [Qx,γ(t) + Bx,γ(t)] y, (t, y) ∈ R× Ri

such that Bx,γ(t) is continuously differentiable in t,

Bx,γ(t)|(−∞, 0]∪[Tx−1/8, +∞) = 0, and supt∈R‖Bx,γ(t)‖ < %. (4.9)

Observe that it has a solution y\(t) such that

y\(0) = y0 and y\(Tx) = ‖y\(Tx)‖Yx,γ(Tx)y\ or − ‖y\(Tx)‖Yx,γ(Tx)y\, (4.10)

and

‖y\(Tx)‖ =
∏̀

k=1

sup
y∈Ri,‖Yx,γ(tk−1)y‖=1

‖Yx,γ(tk)y‖. (4.11)

Next, we are going to prove (4.3) of Claim 1 under condition (4.8).
We will define a level vector field on Rn as in Section 2.3. First, we take a

constant ξ0 such that

ξ0

Tx

∫ Tx

0

f∗(s/Tx)f∗(1− s/Tx) ds =
%

4
and 0 < ξ0 < %. (4.12)

Put

T = Tx − 1
8
.

Since x has prime period Tx > T , we can take a constant ζ ∈ (0, c) so that the
cylinder [0, T ]× Rn−1

ζ is admissible for (S, x) and

S[0,Tx](x) ∩S∗
x,γ

(
[0, T ]× Rn−1

ζ

)
= [0, T ]·x,

where S∗
x,γ is the standard mapping defined by (S, (x, γ)) as in Section 2.2. Par-

ticularly, we require

ζ <
δ

2[max0≤t≤Tx
‖(d/dt)Bx,γ(t)‖+ 2%b∗T−1

x + %] + 1
. (4.13)

For any ξ ∈ [0, ξ0], define a vector field on Rn as follows:



Dominated splitting of dynamics with C1-weak-star property 1279

Zγ,ξ(t, z) =
(
0, Z̃γ,ξ(t, z)

)
=

(
0, f∗(2(1− ‖z‖/ζ))Bγ,ξ(t)z

)

for any (t, z) ∈ R× Rn−1, where

Bγ,ξ(t) =
ξ

ξ0

[
Bx,γ(t) 0

0 0

]

(n−1)×(n−1)

+ ξf∗(t/Tx)f∗(1− t/Tx)In−1.

Here In−1 is the identity matrix on Rn−1. It is easy to see that Zγ,ξ(t, z) is level
and of C1-class on the admissible cylinder [0, T ]× Rn−1

ζ of (S, x), and

Z̃γ,ξ(t,0) = 0 ∀t ∈ R and Z̃γ,ξ(t, z) = Bγ,ξ(t)z for ‖z‖ ≤ ζ/2.

Let

Xγ,ξ = S + Π∗x,γ(Zγ,ξ).

Then Xγ,ξ ∈ X1(Rn) by statement (1) of Theorem 2.7. Moreover, we have
‖Π∗x,γ(Zγ,ξ)‖1 < ε and so Xγ,ξ ∈ W for any ξ ∈ [0, ξ0] by (a) in Step 1 before.
Indeed, from

∂Z̃γ,ξ(t, z)
∂z

=





Bγ,ξ(t) if ‖z‖ ≤ ζ/2,

0 if ‖z‖ ≥ ζ,

Bγ,ξ(t)f̂∗(z) if ζ/2 ≤ ‖z‖ ≤ ζ,

where f̂∗(z) = f∗(2(1− ‖z‖/ζ))In−1 − 2f ′∗(2(1− ‖z‖/ζ))(z/ζ)(zT/‖z‖), we obtain
by (4.1)

sup
(t,z)∈Rn

∥∥∥∥
∂Z̃γ,ξ(t, z)

∂z

∥∥∥∥ < (% + ξ0)(1 + 2b∗) < δ/2.

Similarly, we can obtain by (4.9)

sup
(t,z)∈Rn

∥∥∥∥
∂Z̃γ,ξ(t, z)

∂t

∥∥∥∥ ≤ ζ

∥∥∥∥
d

dt
Bγ,ξ(t)

∥∥∥∥

≤ ζ

(
max

0≤t≤T

∥∥∥∥
d

dt
Bx,γ(t)

∥∥∥∥ +
2ξ0b∗
Tx

)
.
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In addition,

sup
(t,z)∈Rn+1

‖Zγ,ξ(t, z)‖ ≤ ζ%.

Therefore, by (4.13) we have

‖Zγ,ξ‖1 < δ.

This implies, from statement (3) of Theorem 2.7 and (b) in Step 1, that
‖Π∗x,γ(Zγ,ξ)‖1 < ε as desired.

Clearly, from Proposition 2.8, S[0,Tx](x) is also a periodic orbit of Xγ,ξ with
St(x) = Xt

γ,ξ(x) for all 0 ≤ t ≤ Tx, since Zγ,ξ(t,0) = 0 for all t ∈ R. Let Nγ,ξ(t)
be the standard fundamental solution of matrix of the equations

dz

dt
=

[
R∗x,γ(t) +

∂Z̃γ,ξ(t, z)
∂z

∣∣∣∣
z=0

]
z, (t, z) ∈ R× Rn−1. (4.14)

Then, from Proposition 2.8 it follows that Nγ,ξ(Tx)〈γ, γx(Tx)〉 has the same eigen-
values as the periodic point x of the differential system Xγ,ξ. From

∂Z̃γ,ξ(t, z)
∂z

∣∣∣∣
z=0

= Bγ,ξ(t)

and statement (2) of Lemma 2.1, it is easily seen that Nγ,ξ(t) is such that

Nγ,ξ(t) =
[
Lγ,ξ(t) ∗

0 ∗
]

where Lγ,ξ(t) is a matrix of i× i.

So, from (4.5)

Nγ,ξ(Tx)〈γ, γx(Tx)〉 =
[
Lγ,ξ(Tx)Cx,γ ∗

0 ∗
]

Let ργ(ξ) be the spectral radius of the i-by-i matrix Lγ,ξ(Tx)Cx,γ . Then, ργ(ξ) is
continuous with respect to ξ ∈ [0, ξ0], since Lγ,ξ(Tx) is continuous.

Now, on the contrary, assume that (4.3) is not true. Thus according to (4.11),

‖y\(Tx)‖ > exp(−%Tx/4).
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For ξ = ξ0, let

ŷ(t) = y\(t) exp
{ ∫ t

0

ξ0f∗(s/Tx)f∗(1− s/Tx) ds

}
, ŷ(0) = y\(0).

Since ŷ(t) is a solution of the equation

dy

dt
=

[
Qx,γ(t) + Bx,γ(t) + ξ0f∗(t/Tx)f∗(1− t/Tx)Ii

]
y,

(ŷ(t),0) is a solution of (4.14) by the definition of Bγ,ξ(t), and further

ŷ(Tx) = Lγ,ξ(Tx)ŷ(0).

It follows from (4.6) and (4.10) that

ŷ(Tx) = Lγ,ξ(Tx)Cx,γYx,γ(Tx)y\

=





‖y\(Tx)‖ exp
{ ∫ Tx

0

ξ0f∗(s/Tx)f∗(1− s/Tx) ds

}
Yx,γ(Tx)y\

or

−‖y\(Tx)‖ exp
{ ∫ Tx

0

ξ0f∗(s/Tx)f∗(1− s/Tx) ds

}
Yx,γ(Tx)y\

and so Lγ,ξ(Tx)Cx,γ has an eigenvalue

‖y\(Tx)‖ exp
{ ∫ Tx

0

ξ0f∗(s/Tx)f∗(1− s/Tx) ds

}

or

− ‖y\(Tx)‖ exp
{ ∫ Tx

0

ξ0f∗(s/Tx)f∗(1− s/Tx) ds

}
.

Thus, ργ(ξ0) > 1 by (4.12).
On the other hand, for the case where ξ = 0, we have Z̃γ,0(t, z) = 0 for any

t ∈ R. So Lγ,0(t) = Yx,γ(t) and further ργ(0) is the spectral radius of the linear
transformation

ΨTx
x �D−(x,S) : D−(x,S) → D−(x,S) (where D−(Tx·x,S) = D−(x,S)).
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Since x is a hyperbolic periodic point of S with IndS(x) ≥ 1 and D−(x,S) is just
the stable subspace, we have ργ(0) < 1. Therefore, by the continuity of ργ(ξ) with
respect to ξ, there is some ξ′ ∈ [0, ξ0] such that ργ(ξ′) = 1.

This contradicts the fact that Xγ,ξ′ ∈ W which shares the same periodic
orbit P = S[0,Tx](x) with S. So, under condition (4.8), the inequality (4.3) holds.
Considering −S, we can similarly show the inequality (4.4).

This proves Claim 1. ¤

Step 4: Let

Υ = log
(

2 exp(−2ηΛTΛ)√
25[6 + exp(−2ηΛTΛ)]2 + 4 exp(−4ηΛTΛ)− 5[6 + exp(−2ηΛTΛ)]

)
.

It is clear that 0 < Υ < ∞. Define two constants

T∗ = max{2TΛ, 4Υ/%} and T? = 2TΛ(1 + 2ηΛTΛ/ log 2),

where TΛ as in (4.7b) and ηΛ as in statement (1) of Lemma 2.1.
Next, we will show

Claim 2. If P ∈ Oper(S ¹ Λ) has the prime period TP ≥ T∗ satisfying
indS(P ) = i, 1 ≤ i ≤ n− 2, then

1
t

log
‖Ψ t�D+(x,S)‖co
‖Ψ t�D−(x,S)‖

≥ 1
T?

log 2 ∀t ≥ T?

for any x ∈ P .

Proof. Fix any P ∈ Oper(S ¹ Λ) with prime period TP ≥ T∗ and 1 ≤ i ≤
n− 2. To prove Claim 2, we first prove

log
∥∥ΨTΛ�D+(x,S)

∥∥
co
− log

∥∥ΨTΛ�D−(x,S)

∥∥ ≥ log 2 ∀x ∈ P. (4.15)

Hereafter, let x ∈ P be given. We can take u− ∈ D−(x,S) and u+ ∈ D+(x,S)
such that ‖u−‖ = 1 = ‖u+‖ and

log
∥∥ΨTΛ

x (u−)
∥∥ = log

∥∥ΨTΛ�D−(x,S)

∥∥

and
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log
∥∥ΨTΛ

x (u+)
∥∥ = log

∥∥ΨTΛ�D+(x,S)

∥∥
co

.

From the assumption TP ≥ T∗ and by (4.3) and (4.4) of Claim 1, we have

max
{‖ΨTP

x (u−)‖, ‖Ψ−TP
x (u+)‖} ≤ exp(−%T∗/4) < 1. (4.16)

Thus, there is some ū ∈ S⊥x and r̄ > 0, r > 0 such that

ū = r̄u− + r
Ψ−TP

x (u+)
‖Ψ−TP

x (u+)‖ and ‖ū‖ = 1 =
∥∥ΨTP

x (ū)
∥∥.

Let u0 = ΨTP
x (ū) and r0 = r/‖Ψ−TP

x (u+)‖. Then

ū = r̄u− + r0Ψ
−TP
x (u+) and u0 = r0u+ + r̄ΨTP

x (u−). (4.17)

Take a frame γ ∈ F ∗]
S,n−1(x) such that (4.2), and let zγ(t, z) be the solutions of

(R∗x,γ) associated to (S, (x, γ)) with zγ(0, z) = z for all z ∈ Rn−1. By Lemma 2.1,
it is easy to see that

exp(−ηΛt) ≤ ∥∥Ψ t
x

∥∥ ≤ exp(ηΛt) ∀t > 0. (4.18)

Take z̄, z−, z0, z+ ∈ Rn such that

ū = γx,0(z̄), u− = γx,0(z−), u0 = γx,0(z0) and u+ = γx,0(z+).

Then ‖z̄‖ = ‖z−‖ = ‖z0‖ = ‖z+‖ = 1. We claim

‖zγ(TΛ, z−)‖
‖zγ(TΛ, z̄)‖ ≤ 4

3
, (4.19)

and

‖zγ(TΛ, z0)‖
‖zγ(TΛ, z+)‖ ≤

4
3
. (4.20)

In fact, from (4.17) we have

r̄2 + 2r̄r0

〈
u−, Ψ−TP

x (u+)
〉

+ r2
0

∥∥Ψ−TP
x (u+)

∥∥ = 1
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and

r2
0 + 2r̄r0

〈
u+, ΨTP

x (u−)
〉

+ r̄2
∥∥ΨTP

x (u−)
∥∥ = 1.

This implies that

0 = r̄2
(
1− ‖ΨTP

x (u−)‖2) + 2r̄r0

(〈u−, Ψ−TP
x (u+)〉 − 〈u+, ΨTP

x (u−)〉)

+ r2
0

(‖Ψ−TP
x (u+)‖2 − 1

)
.

Let

a = 1−
∥∥ΨTP

x (u−)
∥∥2

,

b = 2
(〈

u−, Ψ−TP
x (u+)

〉− 〈
u+, ΨTP

x (u−)
〉)

c = 1− ∥∥Ψ−TP
x (u+)

∥∥2
.

Then, from (4.16)

r̄

r0
=
−b±√b2 + 4ac

2a
≤ 4 +

√
42 + 4

2a
<

5
a

and similarly r0/r̄ ≤ 5/a. Thus, we obtain

max
{

r0

r̄
,

r̄

r0

}
<

5
1− exp(−%T∗/2)

.

Moreover, by the definition of T∗

max
{

r0

r̄

∥∥Ψ−TP
x (u+)

∥∥,
r̄

r0

∥∥ΨTP
x (u−)

∥∥
}

<
5 exp(−%T∗/4)

1− exp(−%T∗/2)

<
exp(−2ηΛTΛ)

6 + exp(−2ηΛTΛ)
.

By ū = r̄u− + r0Ψ
−TP
x (u+) and the triangle inequality, we have

1
1 + r0/r̄‖Ψ−TP

x (u+)‖ ≤ r̄ ≤ 1
1− r0/r̄‖Ψ−TP

x (u+)‖
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and further

|r̄ − 1| ≤ r0/r̄‖Ψ−TP
x (u+)‖

1− r0/r̄‖Ψ−TP
x (u+)‖ .

Hence

‖u− − ū‖ ≤ ‖u− − r̄u−‖+ ‖r̄u− − ū‖ ≤ |r̄ − 1|+ r̄
r0

r̄

∥∥Ψ−TP
x (u+)

∥∥

≤ 2
1− r0/r̄‖Ψ−TP

x (u+)‖
r0

r̄

∥∥Ψ−TP
x (u+)

∥∥

<
1
3

exp(−2ηΛTΛ),

and moreover

‖z− − z̄‖ <
1
3

exp(−2ηΛTΛ).

On the other hand, from ‖zγ(TΛ, z̄)‖ ≥ exp(−ηΛTΛ) and

∥∥zγ(TΛ, z−)− zγ(TΛ, z̄)
∥∥ = ‖zγ(TΛ, z− − z̄)‖ ≤ ‖z− − z̄‖ exp(ηΛTΛ)

it follows that

‖zγ(TΛ, z−)‖
‖zγ(TΛ, z̄)‖ ≤ 1 +

‖z− − z̄‖ exp(ηΛTΛ)
‖zγ(TΛ, z̄)‖ ≤ 4

3
,

which shows (4.19).
Similarly, beginning with u0 = r0u+ + r̄ΨTP

x (u−), we can prove the estimate
(4.20).

To prove (4.15), on the contrary, we may assume by Lemma 2.1

‖zγ(TΛ, z+)‖
‖zγ(TΛ, z−)‖ =

‖ΨTΛ
x (u+)‖

‖ΨTΛ
x (u−)‖ < 2.

Thus, from (4.19) and (4.20) we have
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‖zγ(TΛ, z0)‖
‖zγ(TΛ, z̄)‖ =

‖zγ(TΛ, z0)‖
‖zγ(TΛ, z+)‖ ·

‖zγ(TΛ, z+)‖
‖zγ(TΛ, z−)‖ ·

‖zγ(TΛ, z−)‖
‖zγ(TΛ, z̄)‖

≤ 32
9

<
λ2
∗
8

exp(λ%T̄/32)

where T̄ is as in (4.7a). Applying Lemma 3.1 with A(t) = R∗x,γ(t), T1 = T̄ and
T = TΛ, we can obtain a linear equation

dz̃

dt
=

[
R∗x,γ(t) + B̃γ(t)

]
z̃, (t, z̃) ∈ R× Rn−1

such that B̃γ(t) is continuously differentiable in t, B̃γ(t)�(−∞, 0]∪[TΛ−1/8,∞) = 0
and

supt∈R
∥∥B̃γ(t)

∥∥ < %.

Observe that it has a solution z̃(t) such that

z̃(0) = z0, z̃(TΛ) = zγ(TΛ, z̄) or − zγ(TΛ, z̄)

and so

z̃(TP ) = zγ(TP , z̄) or − zγ(TP , z̄). (4.21)

Now, as in the proof of Claim 1, we take a small ζ > 0 so that the cylinder
[0, TΛ−1/8]×Rn−1

ζ is admissible for (S, (x, γ)), and with respect to the level field

Zγ(t, z) =
(
0, Z̃γ(t, z)

)
=

(
0, f∗(2(1− ‖z‖/ζ))B̃γ(t)z

)

we have a C1-vector field Xγ = S +Π∗x,γ(Zγ) ∈ W , which still has P as a periodic
orbit of prime period TP whose eigenvalues are just the eigenvalues of the matrix
〈γ, γx(TP )〉Nγ(TP ) from Proposition 2.8. Here Nγ(t) satisfies

dNγ(t)
dt

=
(

R∗x,γ(t) +
∂Z̃γ(t, z)

∂z

∣∣∣∣
z=0

)
Nγ(t), Nγ(0) = In−1.

However, it is easily seen that (∂Z̃γ(t, z)/∂z)z=0 = B̃γ(t) and from ū = γx,0(z̄)
and Lemma 2.1 we have γx,TP

(zγ(TP , z̄)) = ΨTP
x (ū) = u0 = γx,0(z0). Hence, by

(4.21) we have



Dominated splitting of dynamics with C1-weak-star property 1287

z0 = 〈γ, γx(TP )〉zγ(TP , z̄) = ±〈γ, γx(TP )〉z̃(TP ) = ±〈γ, γx(TP )〉Nγ(TP )z0

which implies that x has an eigenvalue of absolute value one with respect to Xγ .
It is a contradiction since Xγ ∈ W ⊂ U ∗ and P = X [0,TP ]

γ (x) ⊂ Λ. This proves
the inequality (4.15).

Next, we prove Claim 2 from (4.15). If t ≥ T? and kTΛ ≤ t < (k + 1)TΛ for
some k ≥ 2 (noting that T? ≥ 2TΛ), then

1
t

[
log ‖Ψ t

�D+(x,S)‖co − log ‖Ψ t
�D−(x,S)‖

]

≥ 1
t

{ k−1∑

j=0

[
log ‖ΨTΛ�D+(jTΛ·x,S)‖co − log ‖ΨTΛ�D−(jTΛ·x,S)‖

]
+ (t− kTΛ)

log 2
TΛ

}

− 1
t

{∣∣ log ‖Ψ t−kTΛ�D+(kTΛ·x,S)‖co
∣∣

+
∣∣ log ‖Ψ t−kTΛ�D−(kTΛ·x,S)‖

∣∣ + (t− kTΛ)
log 2
TΛ

}
.

In addition, by (4.18)

−1
t

{∣∣ log ‖Ψ t−kTΛ�D+(kTΛ·x,S)‖co
∣∣ +

∣∣ log ‖Ψ t−kTΛ�D−(kTΛ·x,S)‖
∣∣ + (t− kTΛ)

log 2
TΛ

}

≥ −(2ηΛTΛ + log 2)
t

.

Thus, by (4.15)

1
t

log
‖Ψ t�D+(x,S)‖co
‖Ψ t�D−(x,S)‖

≥
(

1
TΛ

− 1
t

)
log 2− 2ηΛTΛ

t

≥
(

1
TΛ

− 1
T?

)
log 2− 2ηΛTΛ

T?

=
log 2
T?

.

This proves Claim 2. ¤

Step 5: To complete the proof of Theorem 4.1, let

Λ0,n−1 = {x ∈ Per(S ¹ Λ) | IndS(x) = 0 or n− 1}.
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Then, Λ0,n−1 consists of at most finite number of “isolated” periodic orbits from
[24, Theorem 3.1], whose proof relies only on Claim 1 proved before. Let

ΛT∗ = {x ∈ Per(S ¹ Λ) | 1 ≤ indS(x) ≤ n− 2 and Tx ≤ T∗},

where Tx denotes the prime period of x under S. Then, ΛT∗ also consists of at
most finite number of periodic orbits of S. Therefore there is some η′ > 0 and
T ′ > 0 such that for any t ≥ T ′ and any x ∈ Λ0,n−1 ∪ ΛT∗

∥∥Ψ t
x

∥∥ ≤ exp(−η′t) if IndS(x) = n− 1,
∥∥Ψ t

x

∥∥
co
≥ exp(η′t) if IndS(x) = 0

and

‖Ψ t�D−(x,S)‖ ≤ exp(−η′t)

‖Ψ t�D+(x,S)‖co ≥ exp(η′t)

}
if 1 ≤ IndS(x) ≤ n− 2.

Then, from Claims 1 and 2 it follows immediately that the constants

η = min
{

η′,
%

4
,

log 2
2T?

}
and T = max{T ′, T∗, T?}

satisfy the requirements of Theorem 4.1 at every x ∈ Per(S ¹ Λ). Thus, the proof
of Theorem 4.1 is complete. ¤

4.2. Proof of Theorem A.
Now, we turn to prove Theorem A based on Theorem A′. Let Mn be as before

and let S ∈ X1(Mn). We need a uniformity lemma stated as follows:

Lemma 4.2. Assume that S obeys the C1-weak-star property on Λ and T > 0.
Then, there exists a C1-neighborhood UT of S and two numbers θ > 0 and ∆ > 0
such that, for any V ∈ UT and any P ∈ Oper(S ¹ Λ) ∩ Oper(V ) with S�P = V �P
and period TP ≤ T, we have

1
t

log
∥∥Ψ t

V �D−(x,V )

∥∥ ≤ −θ and
1
t

log
∥∥Ψ t

V �D+(x,V )

∥∥
co
≥ θ

for any t ≥ ∆ and all x ∈ P .

Proof. For any V ∈ U where U is as in Definition 1.1, put

PT,Λ(V ) =
⋃ {

P ∈ Oper(S ¹ Λ) ∩ Oper(V ) | S�P = V �P and TP ≤ T}
.
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It is easy to check that PT,Λ(V ) is hyperbolic with respect to V , since it consists
of at most finitely many periodic orbits of V . So, there are θS > 0 and TS ≥ T
such that for any y ∈ PT,Λ(S)

∥∥ΨTS

S �D−(y,S)

∥∥ ≤ exp(−4θSTS) and
∥∥ΨTS

S �D+(y,S)

∥∥
co
≥ exp(4θSTS).

Then, by a standard argument (the Dependence of Solutions on Initial Conditions
and Parameters of ODE) we can always take a C1-neighborhood UT of S such
that for any V ∈ UT and any y ∈ PT,Λ(V )

∥∥ΨTS

V �D−(y,V )

∥∥ ≤ exp(−2θSTS) and
∥∥ΨTS

V �D+(y,V )

∥∥
co
≥ exp(2θSTS).

This, together with Lemma 2.1, completes the proof of Lemma 4.2. ¤

Now, we reformulate Theorem A as follows:

Theorem 4.3. If S ∈ X1(Mn) obeys the C1-weak-star property on some
invariant closed set Λ containing no singularities, then one can find η̃ > 0, T̃ > 0
such that the following two statements hold.

(1) For any P ∈ Oper(S ¹ Λ),

∥∥Ψ t
S�D−(p,S)

∥∥ ≤ exp(−η̃t) if dimD−(p, S) = n− 1,

∥∥Ψ t
S�D(p,S)

∥∥
co
≥ exp(η̃t) if dimD−(p, S) = 0,

‖Ψ t
S�D−(p,S)‖

‖Ψ t
S�D+(p,S)‖co

≤ exp(−2η̃t) if 1 ≤ dimD−(p, S) ≤ n− 2.

for any t ≥ T̃ and all p ∈ P .
(2) Moreover, if P ∈ Oper(S ¹ Λ) has prime period TP and

0 = t0 < t1 < · · · < t` = mTP where m ∈ N

is a subdivision of [0,mTP ] satisfying tk − tk−1 ≥ T̃ for k = 1, . . . , `, then

1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D−(Stk−1 (p),S)

∥∥ ≤ −η̃

and
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1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
S �D+(Stk−1 (p),S)

∥∥
co
≥ η̃

for any p ∈ P .
(3) There are at most finite number of periodic contracted (or expanded) orbits of

S contained in Λ.

Proof. Statements (1) and (2) of Theorem 4.3 follow immediately from
Lemma 4.2 and Theorem 4.1. Statement (3) of Theorem 4.3 comes from statements
(1) and (2) of Theorem 4.3 using an argument similar to that of [24, Theorem 3.1].
This thus completes the proof of Theorem 4.3. ¤

Remark 4.4. In fact, under the hypothesis of Theorem 4.3, one can find a
C1-neighborhood U of S which satisfies that statements (1) and (2) of Theorem
4.3 are still fulfilled when S is replaced by X and P ∈ Oper(S ¹ Λ)∩Oper(X) with
S�P = X�P , for any X ∈ U .

5. A criterion of weak-star condition.

In this section, we will devote our attention to proving the sufficiency part
of Theorem B, which provides us with a criterion of C1-weak-star property in the
3-dimensional case. For its proof, the main obstacle is that every ergodic measure
in Λ need not be approximated arbitrarily by periodic measures in Λ.

Theorem 5.1. Let Λ ⊆ M3 be an invariant compact set of a differential
system X ∈ X1(M3) with X(x) 6= 0 for x ∈ Λ. Assume there are constants η > 0
and T > 0, for which there hold the following three conditions:

(1) Each P ∈ Oper(X ¹ Λ) is hyperbolic, that is to say, X⊥
p = D−(p, X) ⊕

D+(p, X) for any p ∈ P .
(2) X possesses a natural (η, T )-dominated splitting :

‖Ψ t
X�D−(p,X)‖

‖Ψ t
X �D+(p,X)‖co

≤ exp(−2ηt) ∀p ∈ P if IndX(P ) 6= 0, 2

for any t ≥ T and all P ∈ Oper(X ¹ Λ).
(3) If P ∈ Oper(X ¹ Λ) has prime period TP and if

0 = t0 < t1 < · · · < t` = mTP where m ∈ N

is a subdivision of [0,mTP ] satisfying tk − tk−1 ≥ T for k = 1, . . . , `, then
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1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
X �D−(Xtk−1 (p),X)

∥∥ ≤ −η (5.1a)

and

1
mTP

∑̀

k=1

log
∥∥Ψ

tk−tk−1
X �D+(Xtk−1 (p),X)

∥∥
co
≥ η (5.1b)

for any p ∈ P .

Then X possesses the C1-weak-star property on Λ.

Proof. We simply assume that X ∈ X1(M3) does not have any singu-
larities, and let Λi = Cl({p ∈ Per(X ¹ Λ) | IndX(p) = i}) for i = 0, 1, 2. The
conditions (5.1a) and (5.1b) imply that Λ0 ∪ Λ2 consists of at most a finite num-
bers of periodic repellers and periodic attractors and so Λ0 ∪ Λ2 is isolated from
Λ1. Therefore, to prove the statement of Theorem 5.1, it is sufficient to verify that
X possesses the C1-weak-star property on Λ1.

Then from the persistence of dominated splitting, see, e.g., [4, Appendix B.1],
there can be found a neighborhood U of Λ1 in M3 and a C1-neighborhood V of
X in X1(M3) such that for every Y ∈ V , it has no singularities and possesses an
(η/2, T ; 1)-dominated splitting over the maximal Y -invariant set KY in U

Y ⊥
x = E(x,Y )⊕ F (x,Y ) with dimE(x,Y ) = 1 ∀x ∈ KY .

Note that Λ1 ⊆ KX and E(·) : Y 7→ E(Y ) is continuous in the sense that

‖E(X)− E(Y )‖ := sup
x∈KX∩KY

](E(x,X), E(x,Y )) → 0 as Y → X in C1-norm

(analogous statement holds for F (·) : Y 7→ F (Y )). Here ] denotes the angle
between the two subspaces E(x,X), E(x,Y ) of Y ⊥

x . Clearly, D−(x,X) = E(x,X)
and D+(x,X) = F (x,X) for all x ∈ Per(X ¹ Λ1) with IndX(x) = 1.

For any Y ∈ V , we define the so-called Liao qualitative function

ωs(·,Y ) : KY → R; x 7→ d

dt

∣∣∣∣
t=0

∥∥Ψ t
Y ,x ¹ E(x,Y )

∥∥.

Similarly, ωu(·,Y ) may be defined on KY based on F (Y ). From [7, Theorem 2.3],
we see that ωs(·,Y ) and ωu(·,Y ) both are continuous functions for any Y ∈ V .
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We now define another qualitative function

ωs(·,X|Y ) : KX → R; x 7→
{

ωs(x,Y ) if x ∈ KX ∩KY ,

ωs(x,X) if x ∈ KX \KY .

Clearly, ωs(·,X|Y ) is Borel measurable, not necessarily continuous, for any system
Y ∈ V .

From the calculations in the proof of [7, Theorem 2.3] and the continuity of
E(·), there holds the following

Claim 3. If Y n ∈ V converges to X in the sense of C1-norm, then
ωs(x,X|Y n) converges to ωs(x,X) uniformly for x ∈ KX .

Similar statement holds for ωu(·,X|Y ).
For any P ∈ Oper(Y ), where Y ∈ V , let µP,Y be the unique ergodic proba-

bility measure of Y supported on P . Then from the Liao spectrum theorem, see
[26], [7], [8] for example, we have the following

Claim 4. Let P ∈ Oper(Y ¹ U) be arbitrarily given, where Y ∈ V . Then,∫
M3 ωs(x,Y )dµP,Y (x) and

∫
M3 ωu(x,Y )dµP,Y (x) both are Lyapunov exponents of

Y at P .

Next, we are going to verify that X possesses the C1-weak-star property on
Λ1. We suppose, on the contrary, that there is a sequence of vector fields X` → X

in V with P` ∈ Oper(X ¹ Λ1) ∩ Oper(X` ¹ Λ1) such that X�P`
= X`�P`

and
X` has at least one X`-transversal Lyapunov exponent zero at P`. By choosing
some subsequence of {X`} if necessary, there is no loss of generality in assuming
that µP`,X`

converges weakly-∗ to some probability measure µ on M3 with P` →
supp(µ) ⊆ Λ1. From Claim 4, it may be assumed, without loss of generality, that

∫

KX

ωs(x,X|X`)dµP`,X`
(x) =

∫

M3
ωs(x,X`)dµP`,X`

(x) = 0

for all ` ≥ 1; otherwise, we consider ωu(x,X|X`) instead of ωs(x,X|X`). As
ωs(·,X|X`) converges uniformly to ωs(·,X) as ` →∞ by Claim 3, it follows that

∫

KX

ωs(x,X)dµ(x) = lim
`→∞

∫

KX

ωs(x,X|X`)dµP`,X`
(x).

Thus, noting that µP`,X`
= µP`,X for all ` ≥ 1 because X�P`

= X`�P`
, we could

obtain that
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lim
`→∞

∫

M3
ωs(x,X)dµP`,X(x) = 0.

From Claim 4, this contradicts condition (3) of Theorem 5.1. Thus, the proof of
Theorem 5.1 is completed. ¤

We note here that conditions (1)–(3) of Theorem 5.1 are more stronger than
the following one:

(1)′ There exists a continuous invariant splitting over ∆ := Cl(Oper(X ¹ Λ))

T∆M = E ⊕ F such that E(p) = D−(p), F (p) = D+(p) ∀p ∈ Per(X ¹ Λ).

Proof of Theorem B. The sufficiency part of Theorem B follows from
Theorem 5.1 and the necessity part from Theorem A. Therefore, the proof of
Theorem B is completed. ¤
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