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for Kähler magnetic fields

By Toshiaki Adachi
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Abstract. We study the global behavior of trajectories for Kähler mag-
netic fields on a connected complete Kähler manifold M of negative curvature.
Concerning these trajectories we show that theorems of Hadamard-Cartan
type and of Hopf-Rinow type hold: If sectional curvatures of M are not greater
than c (< 0) and the strength of a Kähler magnetic field is not greater thanp
|c|, then every magnetic exponential map is a covering map. Hence arbi-

trary distinct points on M can be joined by a minimizing trajectory for this
magnetic field.

1. Introduction.

The aim of this paper is to study some global properties on trajectories for
Kähler magnetic fields, especially on a Kähler manifold of negative curvature.
Generally, a closed 2-form on a Riemannian manifold is said to be a magnetic field
because it is considered as a generalization of static magnetic fields on a Euclidean
3-space (cf. [9]). When a magnetic field is given, we can consider a dynamical
system on the unit tangent bundle which is a perturbation of the geodesic flow.
For manifolds of negative curvature, it is well-known that their geodesic flows are
hyperbolic. In his paper [5], Gouda, having the structure stability theorem on
hyperbolic flows in his mind, studied the relationship between hyperbolicity of
magnetic fields and curvature conditions of base manifolds.

To treat arbitrary magnetic fields on a given manifold and to investigate their
properties are very interesting study, but the author thinks that there is another
angle in the study of magnetic fields. When we study Riemannian manifolds, it
is needless to say that geodesics play quite an important role. There is an inter-
action between shapes of Riemannian manifolds and properties of their geodesics.
From this point of view the author hopes the following: If one considers magnetic
fields corresponding to some geometric structure on base manifolds, then there is
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some interaction between properties of this structure and properties of trajectories,
which are motions of charged particles under magnetic fields.

In this paper we take Kähler manifolds. On a Kähler manifold M with com-
plex structure J and Riemannian metric 〈 , 〉, we have natural closed 2-forms
which are constant multiples of the Kähler form BJ . They are typical examples
of uniform magnetic fields, and are called Kähler magnetic fields. Here, uniform
means that the strength of a magnetic field does not depend on the choice of unit
tangent vectors of a base manifold (see [2] for the definition). A smooth curve
γ parameterized by its arclength is said to be a trajectory for a Kähler magnetic
field Bκ = κBJ if it satisfies ∇γ̇ γ̇ = κJγ̇. When we study Riemannian geome-
try, the theorem of Hopf-Rinow which shows the equivalence of completeness and
geodesical completeness is one of basic results (see for example [4], [8]). As a
corollary of this theorem we have an important property of geodesics: For arbi-
trary distinct points p, q on a connected complete Riemannian manifold there is a
minimizing geodesic joining them. We consider this property for trajectories for
Kähler magnetic fields.

Theorem 1. Let Bκ be a Kähler magnetic field on a connected complete
Kähler manifold M whose sectional curvatures satisfy RiemM ≤ c < 0. If |κ| ≤√
|c|, for arbitrary distinct points p, q ∈ M , there is a minimizing trajectory for

Bκ which goes from p to q. In particular, when M is simply connected, there exists
a unique trajectory for Bκ of p to q.

On a manifold of nonpositive curvature we have one more important result
on geodesics which is called the theorem of Hadamard-Cartan: Every exponential
map on this manifold is a covering map. We can generalize this in the following
manner. We define magnetic exponential maps from trajectories for magnetic
fields by just the same way as for exponential maps.

Theorem 2. Let M be a connected complete Kähler manifold whose sec-
tional curvatures satisfy RiemM ≤ c < 0. If |κ| ≤

√
|c|, then every magnetic

exponential map for Bκ is a covering map. In particular, when M is simply con-
nected, every magnetic exponential map for Bκ is bijective.

Our idea is based on comparison theorems on Jacobi fields. In Section 2,
we study magnetic exponential maps on complex space forms. After discussing
a comparison theorem on trajectory-harps, which are constructed by trajectories
and geodesics joining their points, in Section 3, we show our results.
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2. Trajectory-spheres on a complex space form.

Let M be a complete Kähler manifold. We take a Kähler magnetic field Bκ

on M . One can easily see that every trajectory is defined on (−∞,∞) (see [7]).
For a unit tangent vector v ∈ UM , we denote by γv a trajectory for Bκ with
initial vector v. Given a point p ∈ M we define a magnetic exponential map
Bκ expp : TpM → M of the tangent space TpM at p ∈ M by

Bκ expp(w) =

{
γw/‖w‖(‖w‖), if w 6= 0p,

p, if w = 0p.

Clearly, for a trivial magnetic field B0, it is an exponential map expp : TpM → M .
In [2] we studied its differential by investigating magnetic Jacobi fields (see Section
4). In this paper we study some properties of themselves.

For a positive r we put BκSp(r) = {Bκ expp(rv) | v ∈ UpM} and call it a
trajectory-sphere of radius r centered at p. Trivially, when κ = 0, it is a geodesic
sphere Sp(r) of radius r. We are interested in the difference between geodesic
spheres and trajectory-spheres. It is well-known that geodesics emanating from
the center of a geodesic sphere cross this geodesic sphere orthogonally. We are
also interested in how trajectories cross trajectory-spheres. In this section we
study these points on a complex space form, which is one of a complex projective
space CPn, a complex Euclidean space Cn and a complex hyperbolic space CHn.
When γ is a trajectory for Bκ, we call its restriction γ|[a,b] onto a finite interval
[a, b] a trajectory-segment, and call its restriction onto (−∞, 0] or on [0,∞) a
trajectory half line.

On a complex Euclidean space Cn, a trajectory γ for Bκ is a circle of radius
1/|κ| in the sense of Euclidean geometry, hence is closed of length 2π/|κ|. Every
trajectory-sphere coincides with some geodesic sphere.

Proposition 1. For a Kähler magnetic field Bκ on Cn, we have the fol-
lowing for an arbitrary point p ∈ Cn :

(1) For 0 ≤ r ≤ 2π/|κ|, we have BκSp(r) = Sp(`κ(r; 0)) with `κ(r; 0) =
(2/|κ|) sin(|κ|r/2);

(2) Every trajectory for Bκ emanating from p and the outward unit normal of
BκSp(r) make the angle θκ(r; 0) = |κ|r/2 when 0 < r < 2π/|κ|.

Proof. We take a trajectory γ for Bκ with γ(0) = p. Since γ([0, 2π/|κ|])
is a circle, when 0 < r ≤ π/|κ|, the geodesic segment joining γ(0) and γ(r) is a
subtense for the circular arc γ([0, r]). Considering a triangle of vertices p, γ(r) and
the center of the circle γ and a sector of circular arc γ([0, r]), we find that the
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distance between p and γ(r) is (2/|κ|) sin(|κ|r/2) and that θκ(r; 0) coincides with
the half of the angle |κ|r of the sector. As we can consider similarly for the case
π/|κ| < r ≤ 2π/|κ|, we get the conclusion. ¤

This example shows that the corollary of the theorem of Hopf-Rinow does
not hold in general: On Cn, if the distance between two points is greater than
2/|κ|, then they can not be joined by trajectory-segments for Bκ. Clearly, if the
distance between two points is not greater than 2/|κ|, then they can be joined by
a trajectory-segment for Bκ.

By the expressions of `κ(r; 0) and θκ(r; 0) for 0 < r < π/|κ|, we find

1) `κ(r; 0) = `−κ(r; 0), θκ(r; 0) = θ−κ(r; 0),
2) κ 7→ `κ(r; 0) is monotone decreasing on 0 ≤ κ < 1/r;
3) κ 7→ δκ(r; 0) = cos θκ(r; 0) is monotone decreasing on 0 ≤ κ < 1/r.

Generally, when γ is a trajectory for Bκ, then a curve γ̃ which is given by reversing
the parameter of γ, that is γ̃(t) = γ(r − t), is a trajectory for B−κ. If a geodesic
σ satisfies σ(0) = γ(0) and σ(`) = γ(r), we see the angle between γ̇(0) and σ̇(0)
coincides with the angle between ˙̃γ(0) and ˙̃σ(0), where σ̃ is given by σ̃(t) = σ(`−t).
Thus θκ(r; 0) also shows the angle between γ̇(0) and σ̇(0). On Cn the following
property is clear.

Proposition 2. If the distance between two distinct points p, q ∈ Cn is not
greater than 2/|κ|, there is a unique trajectory for Bκ which goes from p to q.

On a complex projective space CPn(c) of constant holomorphic sectional
curvature c, a trajectory γ for Bκ is a “small” circle on a totally geodesic CP 1(c) =
S2 (see [1]). It is closed of length 2π/

√
κ2 + c. On CPn also every trajectory-

sphere coincides with some geodesic sphere.

Proposition 3. For a Kähler magnetic field Bκ on CPn(c), we have the
following for an arbitrary point p ∈ CPn and an arbitrary r with 0 < r <

2π/
√

κ2 + c :

(1) BκSp(r) = Sp(`κ(r; c)) with `κ(r; c) which satisfies

√
κ2 + c sin

(√
c `κ(r; c)/2

)
=
√

c sin
(√

κ2 + c r/2
)
;

(2) Every trajectory for Bκ emanating from p and the outward unit normal of a
trajectory-sphere BκSp(r) make the angle cos−1 δκ(r; c), where
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δκ(r; c) =

√
κ2 + c cos

(√
κ2 + c r/2

)
√

κ2 + c cos2
(√

κ2 + c r/2
) .

On the interval
[
0, π/

√
κ2 + c

]
, the function r 7→ `κ(r; c) is monotone increasing

and the function r 7→ δκ(r; c) is monotone decreasing.

Proof. We first study the case c = 4. For a trajectory γ for Bκ, we
consider its horizontal lift γ̂ with respect to the Hopf fibration $ : S2n+1(1)

(⊂
Cn+1

) → CPn(4). It is of the form

γ̂(t) = e
√−1κt/2

{
cos

1
2

√
κ2 + 4 t z+(κ2+4)−1/2 sin

1
2

√
κ2 + 4 t

(−√−1κz+2v
)}

,

where z ∈ S2n+1 ⊂ Cn+1 satisfies $(z) = γ(0) and a horizontal vector (z, v) ∈
TzS

2n+1 with respect to $ satisfies d$((z, v)) = γ̇(0). A horizontal lift σ̂ of the
minimizing geodesic σ joining γ(0) and γ(r) is of the form σ̂(t) = cos t z + sin t u

with some u = e
√−1θv, because γ lies on some totally geodesic CP 1. As we have

γ(r) = σ(`κ(r; c)), there is a real number φ with γ̂(r) = e
√−1φσ̂(`κ(r; c)). We

take the Hermitian products of both sides on Cn+1 with v and with z. As the
Hermitian product 〈〈v, z〉〉 of z and v satisfies 〈〈v, z〉〉 = 0, we have





e
√−1(φ+θ−(κr/2)) sin `κ(r; 4) =

2√
κ2 + 4

sin
1
2

√
κ2 + 4 r,

e
√−1(φ−(κr/2)) cos `κ(r; 4) = cos

1
2

√
κ2 + 4 r −

√−1κ√
κ2 + 4

sin
1
2

√
κ2 + 4 r.

Taking the absolute values of both sides of the first equality, we get sin `κ(r; 4) =(
2/
√

κ2 + 4
)
sin(

√
κ2 + 4 r/2). Since the curve t 7→ γ(r − t) is a trajectory for

B−κ, we have δκ(r; 4) = cos θ. We hence obtain the relations in the case c = 4.
In order to study general cases, we consider a homothetical change of metrics.

If we change the metric 〈 , 〉 on a Kähler manifold homothetically to the metric
λ2〈 , 〉 with some positive λ, for a trajectory γ for Bκ with respect to the orig-
inal metric, the curve γ̃(t) = γ(t/λ) is a trajectory for Bκ/λ with respect to the
new metric. Since sectional curvatures change λ−2-times of the original sectional
curvatures, we obtain the conclusion. ¤

As was used in the above proof, we have `κ(r; c) = `−κ(r; c) and δκ(r; c) =
δ−κ(r; c) for trajectories on CPn(c). The proof also shows the following.
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Proposition 4.

(1) If the distance between two distinct points p, q ∈ CPn(c) is not greater than
(2/
√

c) sin−1
√

c/(κ2 + c), then there is a unique trajectory for Bκ which goes
from p to q.

(2) If the distance between p, q is longer than (2/
√

c) sin−1
√

c/(κ2 + c), then there
are no trajectory-segments joining these points.

On a complex hyperbolic space CHn(c) of constant holomorphic sectional
curvature c, every trajectory for a Kähler magnetic field is a curve without self-
intersections and lies on some totally geodesic CH1(c) = H2 (see [1]). Features
of trajectories depend on strengths of Kähler magnetic fields. When |κ| >

√
|c|,

a trajectory for Bκ is closed of length 2π/
√

κ2 + c, and when |κ| ≤
√
|c|, it is

unbounded. On CHn also every trajectory-sphere coincides with some geodesic
sphere.

Proposition 5. For a Kähler magnetic field Bκ on CHn(c), we have the
following at an arbitrary point p ∈ CHn.

(1) BκSp(r) = Sp(`κ(r; c)) with `κ(r; c) which satisfies the following relation;





√
|c| − κ2 sinh

(√|c|`κ(r; c)/2
)

=
√
|c| sinh

(√|c| − κ2 r/2
)
, if |κ| <

√
|c|,

2 sinh
(√|c|`κ(r; c)/2

)
=

√
|c|r, if κ = ±

√
|c|,

√
κ2 + c sinh

(√|c|`κ(r; c)/2
)

=
√
|c| sin (√

κ2 + c r/2
)
, if |κ| >

√
|c|.

(2) Every trajectory for Bκ emanating from p and the outward unit normal of a
trajectory-sphere BκSp(r) make the angle cos−1 δκ(r; c), where

δκ(r; c) =





√
|c| − κ2 cosh

(√|c| − κ2 r/2
)

√
|c| cosh2

(√|c| − κ2 r/2
)− κ2

, if |κ| <
√
|c|,

2√
|c|r2 + 4

, if κ = ±
√
|c|,

√
κ2 + c cos

(√
κ2 + c r/2

)
√

κ2 + c cos2
(√

κ2 + c r/2
) , if |κ| > √

c.

Here, in the case |κ| >
√
|c| we only consider r with 0 ≤ r ≤ 2π/

√
κ2 + c.

When |κ| ≤
√
|c| the function r 7→ `κ(r; c) is monotone increasing and sat-

isfies limr→∞ `κ(r; c) = ∞, and the function r 7→ δκ(r; c) is monotone decreasing
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and satisfies limr→∞ δκ(r; c) =
√

1− (κ2/|c|). When |κ| >
√
|c|, on the interval[

0, π/
√

κ2 + c
]
, the function r 7→ `κ(r; c) is monotone increasing and the function

r 7→ δκ(r; c) is monotone decreasing.

Proof. When c = −4, we consider a fibration $ : H2n+1
1 (⊂ Cn+1

1 ) →
CHn(−4) of an anti-de Sitter space H2n+1

1 . For a trajectory γ for Bκ, its hori-
zontal lift γ̂ with respect to this fibration is given as

γ̂(t) =





e
√−1κt/2

{
cosh

1
2

√
4− κ2 t z

+ (4− κ2)−1/2 sinh
1
2

√
4− κ2 t

(−√−1κz + 2v
)}

,

if |κ| < 2,

e±
√−1t

{(
1∓√−1t

)
z + tv

}
, if κ = ±2,

e
√−1κt/2

{
cos

1
2

√
κ2 − 4 t z

+ (κ2 − 4)−1/2 sin
1
2

√
κ2 − 4 t

(−√−1κz + 2v
)}

,

if |κ| > 2,

where z ∈ H2n+1
1 ⊂ Cn+1 satisfies $(z) = γ(0) and a horizontal vector (z, v) ∈

TzH
2n+1
1 with respect to $ satisfies d$((z, v)) = γ̇(0). Along the same lines as in

the proof of Proposition 3, we get the conclusion. ¤

For trajectories on CHn(c) we also have `κ(r; c) = `−κ(r; c) and δκ(r; c) =
δ−κ(r; c). We should also note that the assertion of Theorem 1 holds on a complex
hyperbolic space by the proof of Proposition 5.

Proposition 6 (cf. [1]). Let p, q ∈ CHn(c) be distinct points.

(1) When |κ| ≤
√
|c|, there is a unique trajectory for Bκ which goes from p to q.

(2) When |κ| >
√
|c|, if the distance between p and q is not greater than

(2/
√
|c|) sinh−1

√
|c|/(κ2 + c), then there is a unique trajectory-segment for

Bκ which goes from p to q.
(3) When |κ| >

√
|c| and if the distance between p, q is greater than

(2/
√
|c|) sinh−1

√
|c|/(κ2 + c), then they can not be joined by trajectory-

segments for Bκ.

3. A comparison theorem on trajectory-harps.

We now consider trajectories on general Kähler manifolds. Let M be a com-
plete Kähler manifold and γ : [0, T ] → M be a trajectory-segment or a trajectory
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half line for a Kähler magnetic field Bκ on M . This means that when 0 < T < ∞
it is a trajectory-segment and when T = ∞ the curve γ : [0,∞) → M is a
trajectory half line. We suppose γ

(
[0, T ]

)
lies on a geodesic ball centered at

γ(0) and of radius of injectivity at γ(0). We also suppose γ(t) 6= γ(0) for all
t ∈ (0, T ). For this trajectory-segment or trajectory half line, we define a variation
αγ : [0, T )×R → M of geodesics as follows:

i) αγ(t, 0) = γ(0),
ii) when t = 0, the curve s 7→ αγ(0, s) is the geodesic of initial vector γ̇(0),
iii) when t 6= 0, the curve s 7→ αγ(t, s) is the geodesic of unit speed joining γ(0)

and γ(t).

We shall call this variation the trajectory-harp associated with γ. We denote
by `γ(t) the distance d(γ(0), γ(t)) between γ(0) and γ(t) and call it the string-
length at t. As γ is parameterized by its arclength, it is clear that it satisfies
`γ(t) ≤ t for all 0 ≤ t ≤ T . We define the string-cosine δγ(t) at t by δγ(t) =
〈γ̇(t), (∂α/∂s)(t, `γ(t))〉. When we consider a trajectory-segment or a trajectory
half line γ :

[
0, 2π/

√
κ2 + c

) → CMn(c) for Bκ on a complex space form CMn(c)
of constant holomorphic sectional curvature c, we have `γ(t) = `κ(t; c) and δγ(t) =
δκ(t; c) by the study of the previous section. Here, we regard 2π/

√
κ2 + c infinity

when κ2 + c ≤ 0. From now on we use this convention without noticing.

Lemma 1. For a trajectory-segment or a trajectory half line γ for Bκ on a
Kähler manifold, its string-length and string-cosine satisfy the following properties:

(1) `′γ(t) = δγ(t);
(2) `γ(0) = 0, δγ(0) = 1, limt↓0 δ′γ(t) = 0, limt↓0 δ′′γ (t) = −κ2/4.

Proof. (1) We set α̂(t, u) = α
(
t, `γ(t)u

)
. As we have `γ(t)2 =∫ 1

0
‖(∂α̂/∂u)(t, u)‖2du and u 7→ α̂(t, u) is a geodesic, we find

2`′γ(t)`γ(t) =
∫ 1

0

2
〈
∇∂/∂t

∂α̂

∂u
,
∂α̂

∂u

〉
du = 2

∫ 1

0

〈
∇∂/∂u

∂α̂

∂t
,
∂α̂

∂u

〉
du

= 2
∫ 1

0

d

du

〈
∂α̂

∂t
,
∂α̂

∂u

〉
du = 2

〈
∂α̂

∂t
(t, 1),

∂α̂

∂u
(t, 1)

〉
.

Since α̂(t, 1) = γ(t), we get the conclusion.
(2) The first two equalities are trivial. For the third equality, by the definition

of the string-cosine, we get
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δ′γ(t) =
〈
∇γ̇ γ̇(t),

∂α

∂s
(t, `γ(t))

〉
+

〈
γ̇(t),

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉

+ `′γ(t)
〈

γ̇(t),
(
∇∂/∂s

∂α

∂s

)
(t, `γ(t))

〉

= κ

〈
Jγ̇(t),

∂α

∂s
(t, `γ(t))

〉
+

〈
γ̇(t),

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉
.

Since ‖∂α/∂s‖ ≡ 1, we have 〈∇∂/∂t∂α/∂s, ∂α/∂s
〉 ≡ 0. As we have γ̇(0) =

(∂α/∂s)(0, 0), we get the third equality.
To get the fourth equality, we continue our calculation.

δ′′γ (t) = −κ2

〈
γ̇(t),

∂α

∂s
(t, `γ(t))

〉
+ 2κ

〈
Jγ̇(t),

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉

+
〈

γ̇(t),
(
∇∂/∂t∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉

+ `′γ(t)
〈

γ̇(t),
(
∇∂/∂s∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉
.

Since γ(t) = α(t, `γ(t)), we see γ̇(t) = (∂α/∂t)(t, `γ(t)) + `′γ(t)(∂α/∂s)(t, `γ(t)),
hence we have

κJγ̇(t) = ∇γ̇ γ̇(t)

=
(
∇∂/∂t

∂α

∂t

)
(t, `γ(t)) + 2`′γ(t)

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t)) + `′′γ(t)

∂α

∂s
(t, `γ(t)).

We therefore obtain

κJγ̇(0) = 2 lim
t↓0

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t)),

because limt↓0 `′γ(t) = δγ(0) = 1 and limt↓0 `′′γ(t) = limt↓0 δ′γ(t) = 0. As we have〈∇∂/∂t∂α/∂s, ∂α/∂s
〉
(t, s) ≡ 0, we see

0 =
d

dt

〈
∇∂/∂t

∂α

∂s
,
∂α

∂s

〉
=

∥∥∥∥∇∂/∂t
∂α

∂s

∥∥∥∥
2

+
〈
∇∂/∂t∇∂/∂t

∂α

∂s
,
∂α

∂s

〉
.

Thus we find
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lim
t↓0

δ′′γ (t) = −κ2 + κ2 − κ2

4
+ lim

t↓0

〈
γ̇(t), R

(
∂α

∂s
(t, `γ(t)),

∂α

∂t
(t, `γ(t))

)
∂α

∂s
(t, `γ(t))

〉

= −κ2

4
.

We get the conclusion. ¤

We now prepare a comparison theorem on trajectory-harps. Concerning the
string-length function for trajectory-harps on a complex space form CMn(c), Ex-
amples 1, 2 and 3 show that `κ( · ; c) :

[
0, π/

√
κ2 + c

] → [0,∞) is monotone
increasing, because `′κ(t; c) = δκ(t; c) > 0 if t 6= π/

√
κ2 + c. We denote by

` 7→ τκ(`; c) the inverse function of the function t 7→ `κ(t; c). We hence have
τκ(· ; c) :

[
0, `κ(π/

√
κ2 + c; c)

] → [
0, π/

√
κ2 + c

]
.

Theorem 3. Let M be a complete Kähler manifold whose sectional cur-
vatures satisfy RiemM ≤ c for some constant c, and let γ : [0, T ] → M be a
trajectory-segment or a trajectory half line for a Kähler magnetic field Bκ on M

with 0 < T ≤ π/
√

κ2 + c which lies on the ball centered at γ(0) and of injectivity
radius at γ(0). We then have the following :

(1) γ(t) 6= γ(0) for each t ∈ [0, T ];
(2) The string-length of the trajectory-harp associated with γ is monotone increas-

ing and satisfies `γ(t) ≥ `κ(t; c) for 0 ≤ t ≤ T ;
(3) The string-cosine of the trajectory-harp associated with γ satisfies δγ(t) ≥

δκ(τκ(`γ(t); c); c) for 0 ≤ t ≤ T∗. Here, we set T∗ to be the minimum positive
t∗ (≤ T ) with `γ(t∗) = `κ

(
π/
√

κ2 + c; c
)

if such t∗ exists, and set T∗ = T if
`γ(t) < `κ

(
π/
√

κ2 + c; c
)

for all 0 ≤ t ≤ T .

Proof. We take positive κ̂ so that |κ| < κ̂. By Lemma 1 we see there is a
positive ε which satisfies δγ(t) > δκ̂(t; c) and δ′κ̂(t; c) < δ′γ(t) < 0 for 0 < t < ε.

We take the maximal positive Tκ̂ ≤ min{T, π/
√

κ̂2 + c} which satisfies the
following two conditions for all 0 ≤ t ≤ Tκ̂:

i) `γ(t) ≤ `κ̂

(
π/
√

κ̂2 + c; c
)
,

ii) δγ(t) ≥ δκ̂(τκ̂(`γ(t); c); c).

We should note that the second condition guarantees that γ(t) 6= γ(0). We shall
show that `γ(Tκ̂) = `κ̂

(
π/
√

κ̂2 + c; c
)

if Tκ̂ < min{T, π/
√

κ̂2 + c}. We suppose
`γ(Tκ̂) < `κ̂

(
π/
√

κ̂2 + c; c
)

and Tκ̂ < min{T, π/
√

κ̂2 + c}. By the maximality of
Tκ̂ we have δγ(Tκ̂) = δκ̂(τκ̂(`γ(Tκ̂); c); c). We here estimate the derivative
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dδγ

dt
(t) = κ

〈
Jγ̇(t),

∂α

∂s
(t, `γ(t))

〉
+

〈
γ̇(t),

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉
.

By the definition of δγ we see

κ

〈
Jγ̇(t),

∂α

∂s
(t, `γ(t))

〉
≥ −|κ|

√
1− δ2

γ(t).

We hence estimate the second term. We put Zt(s) = (∂α/∂t)(t, s), which is
a Jacobi field along a geodesic s 7→ α(t, s) and is orthogonal to (∂α/∂s)(t, s).
We denote by α̂ : [0, π/

√
κ̂2 + c ] → CM1(c) a trajectory-harp associated with a

trajectory γ̂ for Bκ̂ on CM1(c) ∼= RM2(c) and put Ẑt(s) = (∂α̂/∂t)(t, s), which
is a Jacobi field on a real space form RM2(c) of constant sectional curvature c.
Since γ̇(t) = Zt(`γ(t)) + δγ(t)(∂α/∂s)(t, `γ(t)), we have ‖Zt(`γ(t))‖2 = 1− δ2

γ(t).
By the comparison theorem on Jacobi fields, we find the following:

〈
γ̇(t),

(
∇∂/∂t

∂α

∂s

)
(t, `γ(t))

〉

=
〈
Zt(`γ(t)), (∇∂/∂sZt)(`γ(t))

〉

= ‖Zt(`γ(t))‖2 × 〈Zt(`γ(t)), (∇∂/∂sZt)(`γ(t))〉
‖Zt(`γ(t))‖2

≥ ‖Zt(`γ(t))‖2 × 〈Ẑτκ̂(`γ(t);c)(`γ(t)), (∇∂/∂sẐτκ̂(`γ(t);c))(`γ(t))〉
‖Ẑτκ̂(`γ(t);c)(`γ(t))‖2

=
1− δ2

γ(t)
1− δ2

κ̂(τκ̂(`γ(t); c); c)
〈
Ẑτκ̂(`γ(t);c)(`γ(t)), (∇∂/∂sẐτκ̂(`γ(t);c))(`γ(t))

〉
.

As we have δγ(Tκ̂) = δκ̂(τκ̂(`γ(Tκ̂); c); c), we obtain

dδγ

dt
(Tκ̂) > −κ̂

√
1− δκ̂(τκ̂(`γ(Tκ̂); c); c)2

+
〈
Ẑτκ̂(`γ(Tκ̂);c)(`γ(Tκ̂)),

(∇∂/∂sẐτκ̂(`γ(Tκ̂);c)

)
(`γ(Tκ̂))

〉

= κ̂

〈
J ˙̂γ(τκ̂(`γ(Tκ̂); c)),

∂α̂

∂s
(τκ̂(`γ(Tκ̂); c), `γ(Tκ̂))

〉

+
〈

˙̂γ(τκ̂(`γ(Tκ̂); c)),
(
∇∂/∂t

∂α̂

∂s

)
(τκ̂(`γ(Tκ̂); c), `γ(Tκ̂))

〉

=
dδκ̂

dt
(τκ̂(`γ(Tκ̂); c)) =

d

du
δκ̂(τκ̂(`γ(u); c))

∣∣∣∣
u=Tκ̂

.
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By the maximality of Tκ̂ we find it is a contradiction, hence we can conclude that
either Tκ̂ = min{T, π/

√
κ̂2 + c} or `γ(Tκ̂) = `κ̂

(
π/
√

κ̂2 + c; c
)

holds.
We have a monotone decreasing sequence {κ̂j}∞j=1 with κ̂j > |κ| and

limj→∞ κ̂j = |κ| which satisfies one of the following conditions for all j:

1) Tκ̂j
= min

{
T, π/

√
κ̂2

j + c
}
,

2) Tκ̂j
< min

{
T, π/

√
κ̂2

j + c
}

and `γ(Tκ̂j
) = `κ̂

(
π/

√
κ̂2

j + c; c
)
.

In the first case it is clear that limj→∞ Tκ̂j
= T . In the second case, as we have

`′γ(t) = δγ(t) > 0 in the interior of
⋃

j

[
0, Tκ̂j

]
, hence `γ is monotone increasing

on this domain and Tκ̂j
is monotone increasing. We have limj→∞ Tκ̂j

= T∗.
Since limκ̂↓κ δκ̂(τκ̂(`γ(t); c); c) = δκ(τκ(`γ(t); c); c) for each t, we obtain δγ(t) ≥
δκ(τκ(`γ(t); c); c) for all 0 ≤ t ≤ T∗.

We next compare `γ(t) and `κ(t; c). For a positive κ̂ with |κ| < κ̂ we take
the maximal positive Sκ̂ ≤ min

{
T, π/

√
κ̂2 + c} satisfying `γ(t) ≥ `κ̂(t; c) for all

0 < t ≤ Sκ̂. We shall show Sκ̂ = min
{
T, π/

√
κ̂2 + c

}
. If we suppose Sκ̂ <

min
{
T, π/

√
κ̂2 + c

}
, then `γ(Sκ̂) = `κ̂(Sκ̂; c) holds. We hence have

δγ(Sκ̂) ≥ δκ(τκ(`γ(Sκ̂); c); c) = δκ(Sκ̂; c) > δκ̂(Sκ̂; c).

The maximality of Sκ̂ shows that it is a contradiction. By the same argument as
for δγ we obtain that `γ(t) ≥ `κ(t; c) for all 0 ≤ t ≤ T . We get the conclusion. ¤

A simply connected complete Riemannian manifold is said to be a Hadamard
manifold if it is non-positively curved. As a consequence of Theorem 3 we have
the following.

Corollary 1. Let M be a Kähler Hadamard manifold whose sectional cur-
vatures satisfy RiemM ≤ c < 0. When κ satisfies |κ| ≤

√
|c|, for a trajectory γ

for Bκ on M , its string-length and string-cosine of the associated trajectory-harp
satisfy the following properties.

(1) Its string-cosine satisfies δγ(t) ≥ δκ(τκ(`γ(t); c); c) >
√

1− (κ2/c) for all t ≥
0.

(2) Its string-length `γ(t) is monotone increasing and satisfies `γ(t) ≥ `κ(t; c) for
all t ≥ 0. In particular, it satisfies limt→∞ `γ(t) = ∞, hence both of the sets
γ([0,∞)) and γ((−∞, 0]) are unbounded.
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4. A theorem of Hadamard-Cartan type.

In the previous section we study the behavior of trajectories. In order to show
our main theorems we here briefly recall properties of differentials of magnetic
exponential maps given in [2]. A vector field Y along a trajectory γ for a Kähler
magnetic field Bκ on a Kähler manifold is said to be a normal magnetic Jacobi
field if it satisfies

{∇γ̇∇γ̇Y − κJ
(∇γ̇Y

)
+ R(Y, γ̇)γ̇ = 0,

〈∇γ̇Y, γ̇〉 = 0.

Normal magnetic Jacobi fields for Bκ correspond to variations of trajectories for
Bκ. As we suppose trajectories have unit speed we need the second condition.
Being different from usual Jacobi fields, for magnetic Jacobi fields, there is an
interaction between the component which is tangent to a trajectory and the com-
ponent which is orthogonal to a trajectory. For a magnetic Jacobi field Y along a
trajectory γ, let Y ](t) denote the component of Y (t) orthogonal to γ̇(t).

Theorem 4 ([3], cf. [2]). Let M be a Kähler manifold whose sectional
curvatures satisfy RiemM ≤ c < 0 and γ be a trajectory for Bκ on M . If Y is a
normal magnetic Jacobi field along γ with Y ](0) = 0, then it satisfies ‖Y ](t)‖ ≥
‖∇γ̇Y ](0)‖sκ(t; c). Here

sκ(t; c) =





(1/
√
|c| − κ2) sinh

√
|c| − κ2 t, κ2 < |c|,

t, κ = ±
√
|c|,

(1/
√

κ2 + c) sin
√

κ2 + c t, κ2 > |c|.

Corollary 2. When M is a Kähler manifold whose sectional curvatures
satisfy RiemM ≤ c < 0, every magnetic exponential map for Bκ does not have
singular points if |κ| ≤

√
|c|.

We now show our main theorems which correspond to theorems of Hopf-Rinow
and of Hadamard-Cartan on geodesics.

Proof of Theorem 1 (Existence). By taking the universal covering of
M , we may suppose M is a Kähler Hadamard manifold. Given a point p ∈ M

we show the magnetic exponential map Bκ expp : TpM → M is surjective. Since
we do not have magnetic conjugate points for Bκ with |κ| ≤ √

c, we see that
the image of Bκ expp is an open set. On the other hand, if a sequence of points
qi = Bκ expp(rivi) with unit tangent vectors vi ∈ UpM and ri > 0 converges to
q (6= p), Corollary 1 guarantees that {ri} is bounded. As ri ≥ d(p, qi), taking
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subsequences we see rij
converges to some positive r0 and vij

to some v0 ∈ UpM .
Hence we have q = Bκ expp(r0v0), and obtain that the image of Bκ expp is closed.
Thus the connectedness of M guarantees that Bκ expp is surjective. Hence, for
an arbitrary point q ∈ M , we have a trajectory-segment for Bκ from p to q. If
there exist trajectory-segments for Bκ from p to q more than one, by the same
argument as above, we have a trajectory-segment of minimal length. We get the
assertion of Theorem 1 except the uniqueness. ¤

Proof of Theorem 2. We show this theorem by the same argument
as for exponential maps. We may suppose M is Hadamard Kähler. Since
Bκ expp : TpM → M does not have singular points, with the induced metric
〈 , 〉κ and induced complex structure on TpM , it is a local holomorphic isometry
and sectional curvatures of TpM are not greater than c. For a unit tangent vector
v ∈ U0(TpM) ∼= UpM , the curve t → tv is a trajectory for Bκ on TpM .

We here show the origin 0p ∈ TpM and sv ∈ TpM is joined by a unique
geodesic-segment of unit speed. Since Bκ expp is a local isometry, we see for
sufficiently small s we can join 0p and sv by a unique geodesic-segment of unit
speed. We put t∗ the maximal positive number such that for all 0 < t < t∗ we have
a unique geodesic-segment of unit speed joining 0p and tv. If we suppose t∗ < ∞,
by taking a trajectory-harp associated with a trajectory γv for Bκ of initial vector
v on M , we see the set {α(t, s) | 0 ≤ t ≤ t∗, 0 ≤ s ≤ `γ(t)} is compact. Thus it is
covered by finite open sets each of which gives the local isometric property. Hence
there is positive ε such that for all 0 < t < t∗ + ε we have a geodesic-segment of
unit speed joining 0p and tv. If there are two geodesics σ1, σ2 of unit speed on
TpM joining 0p and tv, as M is a Hadamard manifold, we conclude that the two
geodesic-segments Bκ expp(σ1) and Bκ expp(σ2) on M must coincide. The local
isometric property at Bκ expp(0p) = p shows σ1 and σ2 coincide. We therefore
find that t∗ = ∞.

In order to complete the proof, we show TpM is complete. Take a Cauchy se-
quence {wj} ⊂ TpM and denote wj = rjvj with nonnegative rj and vj ∈ U0(TpM).
Since {wj} is a bounded set and the distance between 0 and wj coincides with the
distance between p and Bκ expp(wj), Corollary 1 guarantees that {rj} is bounded.
As the unit tangent space U0(TpM) is compact, we have a convergent subsequence
{wji

}, which shows that {wj} converges to some point on TpM . Thus TpM is
complete. We hence find that Bκ expp : TpM → M is a covering map. ¤

When M is a Hadamard Kähler manifold, as Bκ expp is bijective, we see there
is only one trajectory-segment joining p and an arbitrary q (6= p). This completes
the proof of Theorem 1.

We should note that a minimizing trajectory for Bκ of p to q (p 6= q) does not
coincide with that of q to p in general. As we mentioned in Section 2, the image
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of a trajectory for Bκ of q to p coincides with the image of a trajectory for B−κ

of p to q.
We can generalize Theorem 1 in the following manner. For a point p ∈ M on

a Riemannian manifold M , we denote by Br(0p) a closed ball in TpM of radius
r centered at the origin 0p, and by Br(p) a distance closed ball in M of radius r

centered at p.

Theorem 5. Let M be a complete Kähler manifold whose sectional cur-
vatures satisfy RiemM ≤ c for some constant c. For an arbitrary positive r

with r < π/
√

κ2 + c, the image Bκ expp(Br(0p)) contains the distance closed ball
B`κ(r;c)(p).

Proof. We may suppose M to be simply connected. By the same argument
as in the proof of Theorem 1, we see Bκ expp(Br(0p)) is a closed subset of M .
Therefore, if we suppose B`κ(r;c)(p) \Bκ expp(Br(0p)) 6= ∅, we have B`κ(r;c)(p) \
Bκ expp(Br(0p)) is a non-empty open subset. Since Bκ expp(Br(0p)) is connected
and contains an open neighborhood of p, for sufficiently small positive ε (< `κ(r; c))
we have q ∈ S`κ(r;c)−ε(p) ∩ ∂Bκ expp(Br(0p)). We denote as q = Bκ expp(t0v0)
with some v0 ∈ UpM and t0 satisfying 0 < t0 ≤ r. As the distance between q and
p is smaller than `κ(r; c), Theorem 3 shows that t0 < r. Since Bκ expp is regular
at t0v0, we find that some open neighborhood of Bκ expp(t0v0) is contained in
Bκ expp(Br(0p)). It is a contradiction. ¤
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