Kummer's quartics and numerically reflective involutions of Enriques surfaces

To the memory of Professor Masaki Maruyama

By Shigeru Mukai

(Received Apr. 19, 2010)
(Revised July 27, 2010)

Abstract

A (holomorphic) involution σ of an Enriques surface S is said to be numerically reflective if it acts on the cohomology group $H^{2}(S, \boldsymbol{Q})$ as a reflection. We show that the invariant sublattice $H(S, \sigma ; \boldsymbol{Z})$ of the antiEnriques lattice $H^{-}(S, \boldsymbol{Z})$ under the action of σ is isomorphic to either $\langle-4\rangle \perp$ $U(2) \perp U(2)$ or $\langle-4\rangle \perp U(2) \perp U$. Moreover, when $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $\langle-4\rangle \perp U(2) \perp U(2)$, we describe (S, σ) geometrically in terms of a curve of genus two and a Göpel subgroup of its Jacobian.

An automorphism of an Enriques surface S is said to be numerically trivial if it acts on the cohomology group $H^{2}(S, \boldsymbol{Q}) \simeq \boldsymbol{Q}^{10}$ trivially. By [11] and [10], numerically trivial involutions are classified into three types. An involution of S is called numerically reflective if it acts on $H^{2}(S, \boldsymbol{Q})$ as a reflection, that is, the eigenvalue -1 is of multiplicity one. In this article, we shall study numerically reflective involutions as the next case of the classification of involutions of an Enriques surface.

We first explain a construction, with which we started our investigation. Let C be a (smooth projective) curve of genus two and $J=J(C)$ be its Jacobian variety. As is well known the quotient variety $J(C) /\left\{ \pm 1_{J}\right\}$ is realized as a quartic surface with 16 nodes in \boldsymbol{P}^{3}, called Kummer's quartic. The minimal resolution of $J(C) /\left\{ \pm 1_{J}\right\}$ is called the Jacobian Kummer surface of C and denoted by $\mathrm{Km} C$.

Let $G \subset J(C)_{(2)}$ be a Göpel subgroup which is not bi-elliptic (Definitions 1.4 and 1.6). Then the four associated nodes $\bar{G} \subset J(C) /\left\{ \pm 1_{J}\right\}$ are linearly independent in \boldsymbol{P}^{3} (Proposition 5.2). Let $(x: y: z: t)$ be a coordinate of \boldsymbol{P}^{3} such that the four nodes are the four vertices of the tetrahedron $x y z t=0$. Then the equation of Kummer's quartic $J(C) /\left\{ \pm 1_{J}\right\} \subset \boldsymbol{P}^{3}$ is of the form

[^0]\[

$$
\begin{equation*}
q(x t+y z, y t+z x, z t+x y)+4 x y z t=0 \tag{1}
\end{equation*}
$$

\]

for a ternary quadratic form $q(x, y, z)=a x^{2}+b y^{2}+c z^{2}+d y z+e x z+f x y$ by Hutchinson[7]. The standard Cremona transformation $(x: y: z: t) \mapsto(1 / x:$ $1 / y: 1 / z: 1 / t$) of \boldsymbol{P}^{3} leaves the quartic invariant and induces a (holomophic) involution of $\operatorname{Km} C$, which we denote by ε_{G}. As is observed in [8, Section 3], the involution ε_{G} has no fixed points and the quotient $(\mathrm{Km} C) / \varepsilon_{G}$ is an Enriques surface (Proposition 5.1 and Remark 5.3).

The projection $(x: y: z: t) \mapsto(x: y: z)$ from the node $(0: 0: 0: 1)$ gives a rational map of degree two from the quartic $\operatorname{Km} C$ to \boldsymbol{P}^{2}. The Galois group of this double cover is generated by the involution

$$
\begin{equation*}
\beta:(x: y: z: t) \mapsto\left(x: y: z: \frac{q(y z, x z, x y)}{t q(x, y, z)}\right) \tag{2}
\end{equation*}
$$

which commutes with ε_{G} and descends to an involution σ_{G} of the Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$. Our main purpose of this article is to characterize $\left((\operatorname{Km} C) / \varepsilon_{G}, \sigma_{G}\right)$ as an Enriques surface with an involution, making use of the following:

Proposition 1. $\quad \sigma_{G}$ is numerically reflective.
Let S be an Enriques surface and \tilde{S} the covering K3 surface of S. We denote by ε the covering involution of $\tilde{S} \rightarrow S$ and by $H^{-}(S, \boldsymbol{Z})$, the anti-Enriques lattice, that is, the anti-invariant part of $H^{2}(\tilde{S}, \boldsymbol{Z})$ with respect to the action of ε^{*}. An involution σ of an Enriques surface S uniquely lifts to a symplectic involution σ_{K} of \tilde{S}, of which the associated map σ_{K}^{*} of $H^{-}(S, \boldsymbol{Z})$ acts trivially on $H^{2,0} \subset$ $H^{-}(S, \boldsymbol{Z}) \otimes \boldsymbol{C}$ (Proposition 2.1). We denote by $H(S, \sigma ; \boldsymbol{Z})$ the invariant part of $H^{-}(S, \boldsymbol{Z})$ under the action of σ_{K}^{*}. Both $H^{-}(S, \boldsymbol{Z})$ and $H(S, \sigma ; \boldsymbol{Z})$ carry polarized Hodge structures of weight two.

When the involution σ is numerically reflective, $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to either a) $\langle-4\rangle \perp U(2) \perp U(2)$ or b) $\langle-4\rangle \perp U(2) \perp U$ as a lattice (Proposition 3.2). If σ is σ_{G}, the involution constructed above, then the case a) occurs, and the converse is also true:

Theorem 2. Let σ be a numerically reflective involution of an Enriques surface S such that $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $\langle-4\rangle \perp U(2) \perp U(2)$. Then

1) there exists a unique curve C of genus two such that $H(S, \sigma ; \boldsymbol{Z})$ and H^{2} $(J(C), \Theta ; \boldsymbol{Z})$ are isomorphic polarized Hodge structures (Lemmas 4.2, 4.3), and
2) (S, σ) is isomorphic to $\left((\mathrm{Km} C) / \varepsilon_{G}, \sigma_{G}\right)$, the pair constructed above.

See Remark 5.3 for explicit equations of $(\mathrm{Km} C) / \varepsilon_{G}$ and an example appear-
ing as a Hilbert modular surface attached to a certain congruence subgroup of $S L_{2}\left(\mathscr{O}_{\boldsymbol{Q}(\sqrt{2})}\right)$. The case b) will be discussed elsewhere.

A Jacobiam Kummer surface $\mathrm{Km} C$ is expressed as the intersection of three diagonal quadrics $\sum_{i=1}^{6} x_{i}^{2}=\sum_{i=1}^{6} \lambda_{i} x_{i}^{2}=\sum_{i=1}^{6} \lambda_{i}^{2} x_{i}^{2}=0$ in \boldsymbol{P}^{5} for mutually distinct six constants $\lambda_{1}, \ldots, \lambda_{6}$. Hence we have 10 fixed-point-free involutions, e.g., $\left(x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right) \mapsto\left(x_{1}: x_{2}: x_{3}:-x_{4}:-x_{5}:-x_{6}\right)$, corresponding to the 10 odd theta characteristics of C. A Jacobian Kummer surface $\mathrm{Km} C$ has exactly 15 Göpel subgroups. A general $\mathrm{Km} C$ is expressed as the quartic Hessian surfaces in six different ways ([6], [3]) and accordingly has six involutions of Hutchinson-Weber type which are also free from fixed points.

Conjecture 3. If the Picard group of $J(C)$ is infinitely cyclic, then a fixed-point-free involution ε of $\mathrm{Km} C$ is conjugate to one of the above $31(=10+15+6)$ involutions ${ }^{1}$.

In the situation of the conjecture, the quotient group of $H^{-}(\mathrm{KmC}, \boldsymbol{Z})$ by the sum of the transcendental lattice and the anti-invariant Picard lattice is of order four. Our proof of Theorem 2 shows that the conjecture holds true when this abelian group is of type $(2,2)$.

After a preparation on Kummer and Enriques surfaces in Sections 1 and 2, we compute the period of a numerically reflective involution in Sections 3 and 4. In Section 5, we construct a Hutchinson-Göpel involution ε_{G} of a Jacobian Kummer surface from its planar description. In Section 6, we compute the period of the Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$ more explicitly, and prove Theorem 2 using an equivariant Torelli theorem for Enriques surfaces (Theorem 2.3).

Notations. Given an abelian group A, we denote by $A_{(2)}$ the two-torsion subgroup. A free \boldsymbol{Z}-module with an integral symmetric bilinear form is simply called a lattice. U denotes the lattice of rank two given by the symmetric matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) . A_{l}, D_{l}$ and E_{l} are the negative definite root lattices of rank l of type A, D and E, respectively. For a lattice L and a rational number r, we denote by $L(r)$ the lattice obtained by replacing the bilinear form (.) on L by $r($.$) .$

1. Preliminary.

We recall some basic facts on the cohomology of Kummer surfaces. Let T be a two-dimensional complex torus. The minimal resolution of the quotient $T /\left\{ \pm 1_{T}\right\}$ is called the Kummer surface of T and denoted by $\operatorname{Km}(T) . \operatorname{Km}(T)$ contains 16 mutually disjoint (-2) curves $N_{a}, a \in T_{(2)}$, parametrized by the two-torsion

[^1]subgroup $T_{(2)} \simeq(\boldsymbol{Z} / 2 \boldsymbol{Z})^{4}$ of T. We denote by $\Gamma_{K m}$ the primitive hull of the lattice generated by the $16 N_{a}$'s. Let Λ be the orthogonal complement of $\Gamma_{K m}$ in $H^{2}(\operatorname{Km}(T), \boldsymbol{Z})$. Then Λ is the image of $H^{2}(T, \boldsymbol{Z})$ by the quotient morphism from the blow-up of T at $T_{(2)}$ onto $\operatorname{Km}(T)$. The following is well known ([1, Chapter VIII, Section 5]):

Lemma 1.1. $\quad \Lambda \subset H^{2}(\operatorname{Km}(T))$ is isomorphic to $H^{2}(T, \boldsymbol{Z})$ as a Hodge structure and to $H^{2}(T, \boldsymbol{Z})(2) \simeq U(2) \perp U(2) \perp U(2)$ as a lattice.

The discriminant group A_{Λ} of Λ is $((1 / 2) \Lambda) / \Lambda \simeq H^{2}(T, \boldsymbol{Z} / 2 \boldsymbol{Z})$ and the discriminant form q_{Λ} is essentially the cup product, that is, $q_{\Lambda}(\bar{y})=(y \cup y) / 2 \bmod 2$ for $y \in H^{2}(T, \boldsymbol{Z})$.

Let $P \subset T_{(2)}$ be a subgroup of order four, or equivalently, a two-dimensional subspace of $T_{(2)}$ over the finite field \boldsymbol{F}_{2}. We put $N_{P^{\prime}}=\sum_{a \in P^{\prime}} N_{a} \in \Gamma_{K m}$ for a coset P^{\prime} of $P \subset T_{(2)}$. Noting that a one-dimensional vector space over \boldsymbol{F}_{2} is identified with its (unique) basis, we denote the Plücker coordinate of $P^{\perp} \subset T_{(2)}^{\vee}$ by $\pi_{P} \in \bigwedge^{2} T_{(2)}^{\vee} \simeq H^{2}(T, \boldsymbol{Z} / 2 \boldsymbol{Z})$ and regard it as an element of $\Lambda / 2 \Lambda$. The following is known ([1, Chaper VIII, Section 5]):

Lemma 1.2. $\quad\left(N_{P^{\prime}} \bmod 2\right)+\pi_{P}=0$ holds in $H^{2}(\operatorname{Km}(T), \boldsymbol{Z} / 2 \boldsymbol{Z})$ for every coset P^{\prime} of $P \subset T_{(2)}$.

Let (A, Θ) be a principally polarized abelian surface, that is, Θ is an ample divisor with $\left(\Theta^{2}\right)=2$. The orthogonal complement of $[\Theta]$ in $H^{2}(A, \boldsymbol{Z})$ is equipped with a polarized Hodge structure. We denote it by $H^{2}(A, \Theta ; \boldsymbol{Z})$. As a lattice it is isomorphic to $\langle-2\rangle \perp U \perp U$.

Proposition 1.3. A polarized Hodge structure of weight two on the lattice $\langle-2\rangle \perp U \perp U$ is isomorphic to $H^{2}(A, \Theta ; \boldsymbol{Z})$ for a principally polarized abelian surface (A, Θ). Moreover, such (A, Θ) is unique up to isomorphisms.

Proof. A Hodge structure of weight 2 on the lattice $U \perp U \perp U$ is isomorphic to $H^{2}(T, \boldsymbol{Z})$ for a 2-dimensional complex torus T. Moreover, such T is unique up to an isomorphism and taking the dual (Shioda [14]). Our proposition is a direct consequence of these results.

Let $e^{2 \Theta}: K(2 \Theta) \times K(2 \Theta) \rightarrow \boldsymbol{C}^{*}$ be the Weil pairing with respect to 2Θ ([2, Chaper 6]). The group $K(2 \Theta)$ coincides with the two-torsion group $A_{(2)}$ and is naturally identified with $H_{1}(A, \boldsymbol{Z} / 2 \boldsymbol{Z})$. Via this identification, $e^{2 \Theta}(\alpha, \beta)=1$ is equivalent to $([\Theta], \alpha \wedge \beta)=0$, where (,) is the natural pairing between cohomology and homology.

Definition 1.4. A subgroup G of the two-torsion group $A_{(2)}$ is Göpel if it is of order four and totally isotropic with respect to the Weil pairing $e^{2 \Theta}$.

Let $P \subset A_{(2)} \simeq H_{1}(A, \boldsymbol{Z} / 2 \boldsymbol{Z})$ be a subgroup of order four and $\pi_{P} \in$ $H^{2}(A, \boldsymbol{Z} / 2 \boldsymbol{Z})$ be the Plücker coordinate of $P^{\perp} \subset H^{1}(A, \boldsymbol{Z} / 2 \boldsymbol{Z}) . \pi_{P}$ belongs to $H^{2}(A, \Theta ; \boldsymbol{Z} / 2 \boldsymbol{Z})$ if and only if it is perpendicular to $\Theta \bmod 2$. Hence we have

Lemma 1.5. The Plücker coordinate π_{P} belongs to $H^{2}(A, \Theta ; \boldsymbol{Z} / 2 \boldsymbol{Z})$ if and only if P is Göpel.

The Jacobian $J(C)$ of a curve C of genus two is a principally polarized abelian surface. An involution γ of C is called bi-elliptic if the quotient C / γ is an elliptic curve E. In this case, E is embedded into $J(C)$ as the fixed locus of the action of γ on $J(C)$. The two-torsion subgroup $E_{(2)}$ is a Göpel subgroup of $J(C)$, and denoted by G_{γ}.

Definition 1.6. A Göpel subgroup G, or more precisely, a pair (C, G) is bi-elliptic if C has a bi-elliptic involution γ with $G=G_{\gamma}$.

The composite γ^{\prime} of a bi-elliptic involution γ and the hyper-elliptic involution is again a bi-elliptic involution of C. The Jacobian $J(C)$ contains $E^{\prime}:=C / \gamma^{\prime}$ as the fixed locus of the action of γ^{\prime}. The intersection $E \cap E^{\prime}$ in $J(C)$ coincides with the common two-torsion subgroups $E_{(2)}=E_{(2)}^{\prime}$. Hence $J(C)$ is the quotient of $E \times E^{\prime}$ by a subgroup of order four contained in $E_{(2)} \times E_{(2)}^{\prime}$. The involution γ, or equivalently γ^{\prime}, induces an involution of the Kummer surface $\operatorname{Km} C$ without fixed points outside two \boldsymbol{P}^{1} 's:

Lemma 1.7. Let γ be a bi-elliptic involution of C and $\operatorname{Km} \gamma($ resp. $J(\gamma))$ be the involution of $\mathrm{Km} C$ (resp. $J(C)$) induced by γ. Then the fixed locus of $\mathrm{Km} \gamma$ is the union of two \boldsymbol{P}^{1} 's which are the images of two elliptic curves $E=\operatorname{Fix} J(\gamma)$ and $E^{\prime}=\operatorname{Fix} J\left(\gamma^{\prime}\right)$.

2. Involutions of Enriques surfaces.

Let S be a (minimal) Enriques surface, that is, a compact complex surface with $H^{1}\left(\mathscr{O}_{S}\right)=H^{2}\left(\mathscr{O}_{S}\right)=0$ and $2 K_{S} \sim 0$. Let \tilde{S} be the universal cover, which is a K3 surface, and let ε be the covering involution of \tilde{S}. Consider the action ε^{*} on $H^{2}(\tilde{S}, \boldsymbol{Z}) \simeq \boldsymbol{Z}^{22}$. The invariant part coincides with the pull-back of $H^{2}(S, \boldsymbol{Z})$ by $\tilde{S} \rightarrow S$, and the anti-invariant part $H^{-}(S, \boldsymbol{Z})$ is isomorphic to $E_{8}(2) \perp U(2) \perp U$ as a lattice ($[\mathbf{1}$, Chapter VIII $]$).

Let σ be a (holomorphic) involution of $S . \sigma$ is lifted to an automorphism $\tilde{\sigma}$ of the covering K3 surface \tilde{S}. Its square $\tilde{\sigma}^{2}$ is either the identiy or the covering
involution ε. The latter is impossible since, in this case, $\tilde{\sigma}$ is free from fixed points and its order necessarily divides $\chi\left(\mathscr{O}_{\tilde{S}}\right)=2$. Hence σ is lifted to two involutions $\tilde{\sigma}$ and $\tilde{\sigma} \varepsilon$ of \tilde{S}.

An involution of a K3 surface is called symplectic (resp. anti-symplectic) if it acts trivially (resp. as -1) on the space $H^{0}\left(\tilde{S}, \Omega^{2}\right)$ of holomorphic 2-forms. Distinguishing the two lifts by their actions on 2 -forms, we have

Proposition 2.1. There exist exactly two lifts $\sigma_{K}, \sigma_{R} \in$ Aut \tilde{S} of $\sigma \in$ Aut S, where σ_{K} is a symplectic involution and σ_{R} an anti-symplectic one.

Let $H(S, \sigma ; \boldsymbol{Z})$ (resp. $\left.H_{-}(S, \sigma ; \boldsymbol{Z})\right)$ be the invariant (resp. the anti-invariant) part of the action of σ_{K}^{*} on $H^{-}(S, \boldsymbol{Z}) . H(S, \sigma ; \boldsymbol{Z})$ is endowed with a non-trivial polarized Hodge structure of weight 2, which we regard as the period of (S, σ). The lattice $H^{-}(S, \boldsymbol{Z})$ contains the orthogonal direct sum $H(S, \sigma ; \boldsymbol{Z}) \perp H_{-}(S, \sigma ; \boldsymbol{Z})$ as a sublattice of finite index. More precisely, the quotient group

$$
\begin{equation*}
D_{\sigma}:=\frac{H^{-}(S, \boldsymbol{Z})}{\left[H_{-}(S, \sigma ; \boldsymbol{Z}) \oplus H(S, \sigma ; \boldsymbol{Z})\right]} \tag{3}
\end{equation*}
$$

is 2-elementary. We call this quotient D_{σ} the patching group of σ.
The global Torelli theorem for K3 surfaces (resp. Enriques surfaces) is generalized to that for pairs of K3 surfaces (resp. Enriques surfaces) and involutions.

Theorem 2.2. Let X and X^{\prime} be two $K 3$ surfaces and let τ and τ^{\prime} be involutions of X and X^{\prime}, respectively. If there exists an orientation preserving Hodge isometry $\alpha: H^{2}\left(X^{\prime}, \boldsymbol{Z}\right) \rightarrow H^{2}(X, \boldsymbol{Z})$ such that the diagram

commutes, then there exists an isomorphism $\varphi: X \rightarrow X^{\prime}$ such that $\varphi \circ \tau=\tau^{\prime} \circ \varphi$.
Proof. If neither τ nor τ^{\prime} has a fixed point, this is the global Torelli theorem for Enriques surfaces. The proof in [1, Chapter VIII, Section 21], especially its key Proposition (21.1), works also in our general case as follows.

Let h^{\prime} be a τ^{\prime}-invariant ample divisor class of X^{\prime} and put $h=\alpha\left(h^{\prime}\right)$. By our assumption, h is τ-invariant and belongs to the positive cone of $H^{1,1}(X, \boldsymbol{Z})$. If h is ample, we are done by the global Torelli theorem for K3 surfaces. If not, there exists a (-2) curve $D \simeq \boldsymbol{P}^{1}$ with $(h . D) \leq 0$. Since $(h . D+\tau(D))=2(h . D) \leq 0$,
$D+\tau(D)$ is not nef. Hence we have $(D \cdot \tau(D))=1,0$ or -2 . Replace α with $r_{D+\tau(D)} \circ \alpha$ if $(D, \tau(D))=1$, with $r_{D} \circ r_{\tau(D)} \circ \alpha$ if $(D, \tau(D))=0$ and with $r_{D} \circ \alpha$ if $(D, \tau(D))=-2$, where r_{D} is the reflection with respect to a (-2) divisor class D. Then we have $\left(\alpha\left(h^{\prime}\right) . D\right)>0$. Repeating this process, $\alpha\left(h^{\prime}\right)$ becomes ample after a finitely many steps.

Theorem 2.3. Let S and S^{\prime} be two Enriques surfaces and let σ and σ^{\prime} be involutions of S and S^{\prime}, respectively. If there exists an orientation preserving Hodge isometry $\alpha: H^{-}\left(S^{\prime}, \boldsymbol{Z}\right) \rightarrow H^{-}(S, \boldsymbol{Z})$ such that the diagram

commutes, then there exists an isomorphism $\varphi: S \rightarrow S^{\prime}$ such that $\varphi \circ \sigma=\sigma^{\prime} \circ \varphi$.
Proof. Let \tilde{S} and \tilde{S}^{\prime} be the covering K3 surfaces. Each has an action of $G:=\boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$. It suffices to show a G-equivariant Torelli theorem for K3 surfaces \tilde{S} and \tilde{S}^{\prime}. (The remaining part is the same as the usual global Torelli theorem for Enriques surfaces.) The proof goes as the preceding theorem if the G-orbit of D consists of one or two irreducible components. Assume that the G orbit of D has four irreducible components and let L be the sublattice spanned by them. If L is negative definite, then L is of type $4 A_{1}$ or $2 A_{2}$. Hence the same argument as the preceding theorem works. Otherwise (h.D) is positive by the Hodge index theorem.

3. Period of a numerically reflective involution.

In this section and the next we assume that σ is numerically reflective and study the patching group D_{σ} (defined by the formula (3)) in detail.

Let $H^{2}(S, \boldsymbol{Z})_{f}$ be the torsion free part of $H^{2}(S, \boldsymbol{Z})$. σ acts on $H^{2}(S, \boldsymbol{Z})_{f}$ as a reflection with respect to a class $e=e_{\sigma}$. Since $H^{2}(S, \boldsymbol{Z})_{f}$ is an even unimodular lattice with respect to the intersection form, we have $\left(e^{2}\right)=-2$. Let N_{R} and N_{K} be the anti-invariant part of the action of σ_{R} and σ_{K}, respectively. Both N_{R} and N_{K} contains the pull-back $\tilde{e} \in H^{2}(\tilde{S}, \boldsymbol{Z})$ of e. The orthogonal complement of \tilde{e} in N_{R} is $H(S, \sigma ; \boldsymbol{Z})$, and that in N_{K} is $H_{-}(S, \sigma ; \boldsymbol{Z})$. Since N_{K} is isomorphic to $E_{8}(2)([\mathbf{9}$, Section 5], [11, Lemma 2.1]), we have

Lemma 3.1. $\quad H_{-}(S, \sigma ; \boldsymbol{Z}) \simeq E_{7}(2)$.

In particular, the discriminant group A_{-}of $H_{-}(S, \sigma ; \boldsymbol{Z})$ is $u(2)^{\perp 3} \perp$ (4), whose underlying group is $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{\oplus 6} \oplus(\boldsymbol{Z} / 4 \boldsymbol{Z})$, in the notation of [12, Section 1].

There are two lattice-types of numerically reflective involutions:
Proposition 3.2. The patching group D_{σ} is of order 2^{a} and $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $\langle-4\rangle \perp U(2) \perp U(a)$ for $a=1$ or 2 .

Proof. The lattice $H_{-}(S, \sigma ; \boldsymbol{Z})$ is not 2-elementary by the above lemma. Since $H^{-}(S, \boldsymbol{Z})$ is 2-elementary, D_{σ} is not trivial. Let $a \geq 1$ be the length of the patching group D_{σ}. Then we have

$$
\left[\operatorname{disc} H^{-}(S, \boldsymbol{Z})\right] \cdot 2^{2 a}=\left[\operatorname{disc} H_{-}(S, \sigma ; \boldsymbol{Z})\right] \cdot[\operatorname{disc} H(S, \sigma ; \boldsymbol{Z})] .
$$

The discriminant group of $H^{-}(S, \boldsymbol{Z})$ is an abelian groups of type $\left(2^{10}\right)$. By the above lemma, the discriminant of $H(S, \sigma ; \boldsymbol{Z})$ equals $-2^{(2+2 a)}$. More precisely, the discriminant group A_{+}of $H(S, \sigma ; \boldsymbol{Z})$ is an abelian group of type $\left(2^{2 a}, 4\right)$. Since $H(S, \sigma ; \boldsymbol{Z})$ is of rank 5 , we have $a \leq 2$.

If $a=2$, then $H(S, \sigma ; \boldsymbol{Z})(1 / 2)$ is an even (integral) lattice with discriminant -2 . Hence $H(S, \sigma ; \boldsymbol{Z}))(1 / 2)$ is isomorphic to $\langle-2\rangle \perp U \perp U$ by Kneser's uniqueness theorem for indefinite lattices ($[\mathbf{1 2}$, Section 1]). If $a=1$, then we have $H(S, \sigma ; \boldsymbol{Z}) \simeq\langle-4\rangle \perp U(2) \perp U$ by the uniqueness theorem again.

The lattice $H^{-}(S, \boldsymbol{Z})$ is a \boldsymbol{Z}-submodule of the direct sum $H_{-}(S, \sigma ; \boldsymbol{Q}) \oplus$ $H(S, \sigma ; \boldsymbol{Q})$. Hence the patching group D_{σ} is a subgroup of the discriminant group $A_{-} \perp A_{+}$of the lattice $H_{-}(S, \sigma ; \boldsymbol{Z}) \perp H(S, \sigma ; \boldsymbol{Z})$. The discriminant group A_{+}is either $u(2)^{\perp 2} \perp$ (4) or $u(2) \perp$ (4).

Both A_{-}and A_{+}contains exactly one copy of $\boldsymbol{Z} / 4 \boldsymbol{Z}$ as their direct summand. Let $\zeta_{ \pm} \in A_{ \pm}$be the unique element which is twice an element $\eta_{ \pm}$of order four. We call $\left(\zeta_{-}, \zeta_{+}\right) \in A_{-} \perp A_{+}$the canonical element.

Lemma 3.3. $\quad D_{\sigma}$ contains the canonical element $\left(\zeta_{-}, \zeta_{+}\right)$.

Proof. Both $H_{-}(S, \sigma ; \boldsymbol{Q})$ and $H(S, \sigma ; \boldsymbol{Q})$ are primitive in $H^{-}(S, \boldsymbol{Q})$. Hence D_{σ} does not contain $\left(0, \zeta_{+}\right)$or $\left(\zeta_{-}, 0\right)$. Hence the intersection $D_{\sigma} \cap\left(2 A_{-} \oplus\right.$ $2 A_{+}$) is either 0 or generated by $\left(\zeta_{-}, \zeta_{+}\right)$. We consider the intersection number of an element of D_{σ} and $\left(\eta_{-}, \eta_{+}\right)$. Since the intersection number of ($\left.\zeta_{-}, \zeta_{+}\right)$and $\left(\eta_{-}, \eta_{+}\right)$is zero (in $\left.\boldsymbol{Q} / \boldsymbol{Z}\right)$, the intersection number with $\left(\eta_{-}, \eta_{+}\right)$is a linear form on \bar{D}_{σ}, the image of D_{σ} in $A:=\left(A_{-}\right)_{(2)} /\left\{0, \zeta_{-}\right\} \oplus\left(A_{+}\right)_{(2)} /\left\{0, \zeta_{+}\right\}$. Since the induced bilinear form on the group A is non-degenerate, there exists an element $\left(\beta_{-}, \beta_{+}\right) \in A_{-} \oplus A_{+}$whose intersection number with D_{σ} is the same as $\left(\eta_{-}, \eta_{+}\right)$. It follows that $\left(\eta_{-}+\beta_{-}, \eta_{+}+\beta_{+}\right)$is perpendicular to D_{σ}. Since $D_{\sigma}^{\perp} / D_{\sigma}$ is 2-
elementary, $2 \times\left(\eta_{-}+\beta_{-}, \eta_{+}+\beta_{+}\right)=\left(\zeta_{-}, \zeta_{+}\right)$is contained in D_{σ}.
The patching group D_{σ} is generated by the canonical element $\left(\zeta_{-}, \zeta_{+}\right)$when it is of order two.

Lemma 3.4. If D_{σ} is of order four, then D_{σ} is generated by the canonical element and an element $\left(\pi_{-}, \pi_{+}\right) \in A_{-} \oplus A_{+}$of order two such that $q_{-}\left(\pi_{-}\right)=$ $q_{+}\left(\pi_{+}\right)=0 \in \boldsymbol{Q} / 2 \boldsymbol{Z}$, where $q_{ \pm}$are the quadratic forms on $A_{ \pm}$.

Proof. $D_{\sigma} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$ is generated by $\left(\zeta_{-}, \zeta_{+}\right)$and an element $\left(\pi_{-}, \pi_{+}\right)$. Since D_{σ} is totally isotropic, we have $q_{-}\left(\pi_{-}\right)=q_{+}\left(\pi_{+}\right)$. This common value belongs to $\boldsymbol{Z} / 2 \boldsymbol{Z}$. If it is non-zero, replace $\pi_{ \pm}$with $\zeta_{ \pm}+\pi_{ \pm}$. Then we have $q_{-}\left(\pi_{-}\right)=q_{+}\left(\pi_{+}\right)=0$.

4. Numerically reflective involution with ord $D_{\sigma}=4$.

Let σ be a numerically reflective involution of an Enriques surface S and assume that the patching group D_{σ} is of order four. By Propositions 1.3 and 3.2, we have

Proposition 4.1. There exists a principally polarized abelian surface (A, Θ) such that $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $H^{2}(A, \Theta ; \boldsymbol{Z})(2)$ as a polarized Hodge structure.

Let $\pi_{+} \in\left(A_{+}\right)_{(2)}$ be as in Lemma 3.4. Since $q_{+}\left(\pi_{+}\right)=0, \pi_{+}$is the Plücker coordinate of a subgroup $G_{\sigma} \subset A_{(2)}$ of order four. Since $\left(A_{+}\right)_{(2)}$ is the orthogonal complement of $[\Theta / 2]$ in $H^{2}(A,((1 / 2) \boldsymbol{Z}) / \boldsymbol{Z}), G_{\sigma}$ is Göpel (Definition 1.4 and Lemma 1.5).

Lemma 4.2. (A, Θ) in Proposition 4.1 is not a product of two elliptic curves. In particular, (A, Θ) is the Jacobian of a curve C_{σ} of genus two.

Proof. Assume that (A, Θ) is the product $E_{1} \times E_{2}$ (as a polarized abelian surface). Then $E_{1} \times 0-0 \times E_{2}$, the difference of two fibers, is a (-2)-class in $H^{2}(A, \Theta ; \boldsymbol{Z})$. Let D_{+}be its image in $H(S, \sigma ; \boldsymbol{Z})$. Then $\left(D_{+}^{2}\right)=-4$ and $D_{+} / 4$ represents an element $\eta_{+} \in A_{+}$of order four. Hence $D_{+} / 2$ represents the class ζ_{+} in the discriminant group A_{+}. Let \tilde{e} be the pull-back of $e=e_{\sigma} \in H^{2}(S, \boldsymbol{Z})_{f}$ as in Section 3. Then $\tilde{e}+D_{+}$is divisible by two in $H^{2}(\tilde{S}, \boldsymbol{Z})$ and $\left(\tilde{e}+D_{+}\right) / 2$ is an algebraic (-2)-class in N_{R}. This is a contradiction since N_{R} is the anti-invariant part of the involution or σ_{R}.

Lemma 4.3. The pair $\left(C_{\sigma}, G_{\sigma}\right)$ is not bi-elliptic (see Definition 1.6).

Proof. The proof is similar to the preceding lemma. Assume that $\left(C_{\sigma}, G_{\sigma}\right)$ is bi-elliptic. Since $(\Theta \cdot E)=2, \Theta-E$ is a (-2)-class in $H^{2}(A, \Theta ; \boldsymbol{Z})$. Let D_{+}be its image in $H(S, \sigma ; \boldsymbol{Z})$. Then $\left(D_{+}^{2}\right)=-4$ and $D_{+} / 2$ represents the class $\zeta_{+}+\pi_{+}$in $A_{+} \cdot\left(D_{-}+D_{+}\right) / 2$ belongs to $H^{-}(S, \boldsymbol{Z})$ if D_{-}belongs to $H_{-}(S, \sigma ; \boldsymbol{Z})$ and $D_{-} / 2$ represents $\zeta_{-}+\pi_{-}$. Since $q_{-}\left(\zeta_{-}+\pi_{-}\right)=1$ and since $H_{-}(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $E_{7}(2)$, there is such a D_{-}with $\left(D_{-}^{2}\right)=-4$. For this choice, $\left(D_{-}+D_{+}\right) / 2$ is an algebraic (-2)-class. This is a contradiction since $H^{-}(S, \boldsymbol{Z})$ is the anti-invariant part of the involution ε.

Summarizing this section, we have
Proposition 4.4. There exists a unique non-bi-elliptic pair $\left(C_{\sigma}, G_{\sigma}\right)$ of a curve C_{σ} and a Göpel subgroup G_{σ} of $J\left(C_{\sigma}\right)$ with the following properties:
(1) $H(S, \sigma ; \boldsymbol{Z}) \simeq H^{2}\left(J\left(C_{\sigma}\right), \Theta ; \boldsymbol{Z}\right)(2)$ as a polarized Hodge structure, and
(2) the patching subgroup D_{σ} is generated by the canonical element and an element $\left(\pi_{-}, \pi_{+}\right)$such that π_{+}is the Plücker coordinate of G_{σ}.

In the subsequent sections, we conversely construct a numerically reflective involutions σ_{G} of an Enriques surface from such a pair (C, G) as above (Proposition 6.4).

5. Hutchinson-Göpel involution.

Hutchinson [7] discovered an equation which implies (1) by means of theta functions. In this section we describe the automorphism ε_{G} in a more elementary manner without using the equation ($c f$. Remark 6.3).

Let C be a curve of genus two and $J(C)$ its Jacobian. By the natural morphism Sym ${ }^{2} C \rightarrow J(C)$ and Abel's theorem, the second symmetric product $S y m^{2} C$ of C is the blow-up of $J(C)$ at the origin. Let $\overline{S y m^{2}} C$ be the quotient of $S y m^{2} C$ by the involution induced by the hyper-elliptic involution.

Since C is a double cover of the projective line \boldsymbol{P}^{1} with six branch points, $\overline{S y m^{2}} C$ is the double cover of $S y m^{2} \boldsymbol{P}^{1} \simeq \boldsymbol{P}^{2}$ with branch six lines l_{1}, \ldots, l_{6}. Moreover, these six lines are tangent lines of the conic Q corresponding to the diagonal $\boldsymbol{P}^{1} \hookrightarrow$ Sym $^{2} \boldsymbol{P}^{1}$. Note that the double cover has 15 nodes over 15 intersections $p_{i, j}=l_{i} \cap l_{j}, 1 \leq i<j \leq 6$. These correspond to the 15 non-zero two-torsions of $J(C)$. The minimal resolution of this double cover $\overline{S y m^{2}} C$ is the Jacobian Kummer surface $\mathrm{Km} C$.

Three nodes on $\overline{S y m^{2}} C$ are called Göpel if they correspond to the three non-zero elements of a Göpel subgroup of $J(C)_{(2)}$. More explicitly, a triple $\left(p_{i j}, p_{i^{\prime} j^{\prime}}, p_{i^{\prime \prime} j^{\prime \prime}}\right)$ of nodes is Göpel if and only if all suffixes $i, j, \ldots, j^{\prime \prime}$ are distinct. Hence the Göpel subgroups correspond to the decompositions of the six

Weierstrass points of C into three pairs. Therefore, there are exactly 15 Göpel subgroups.

We now construct an involution of $\mathrm{Km} C$ for each Göpel subgroup G. The construction differs a lot according as the Göpel triple is collinear or not. First we consider the non-collinear case, which we are most interested in.

Assume that three points p, q, r on \boldsymbol{P}^{2} are not collinear. A birational automorphism $\varphi: \boldsymbol{P}^{2} \cdots \rightarrow \boldsymbol{P}^{2}$ is called a Cremona involution with center p, q, r if there is a linear coordinate $(x: y: z)$ of \boldsymbol{P}^{2} such that p, q, r is the three vertices of the triangle $x y z=0$ and that φ is the quadratic Cremona transformation $(x: y: z) \mapsto\left(x^{-1}: y^{-1}: z^{-1}\right)$. Given a triple $p, q, r \in \boldsymbol{P}^{2}$, there is a two-parameter family of Cremona involutions with center p, q, r.

Proposition 5.1. Assume that a Göpel triple $\left(p_{14}, p_{25}, p_{36}\right)$ of G is not collinear. Then there exists a unique quadratic Cremona transformation φ with center p_{14}, p_{25} and p_{36} which maps the line l_{i} onto l_{i+3} for $i=1,2,3$.

Proof. We choose a linear coordinate $(x: y: z)$ of \boldsymbol{P}^{2} such that p_{14}, p_{25} and p_{36} are the vertices of the triangle $x y z=0$. Then the six lines are given by

$$
l_{i}: y=\alpha_{i} x(i=1,4), \quad l_{j}: z=\alpha_{j} y(j=2,5) \text { and } l_{k}: x=\alpha_{k} z(k=3,6)
$$

for $\alpha_{1}, \ldots, \alpha_{6} \in \boldsymbol{C}^{*}$. Let

$$
\check{Q}: a^{\prime} x^{2}+b^{\prime} y^{2}+c^{\prime} z^{2}+d^{\prime} y z+e^{\prime} x z+f^{\prime} x y=0
$$

be the dual of the conic Q to which the six lines are tangent. Then we have

$$
\alpha_{1} \alpha_{4}=\frac{a^{\prime}}{b^{\prime}}, \quad \alpha_{2} \alpha_{5}=\frac{b^{\prime}}{c^{\prime}}, \quad \alpha_{3} \alpha_{6}=\frac{c^{\prime}}{a^{\prime}}
$$

and hence $\prod_{i=1}^{6} \alpha_{i}=1$. The Cemona involution $(x: y: z) \mapsto(A / x: B / y: 1 / z)$ satisfies our requirement if and only if $A=\alpha_{3} \alpha_{6}$ and $B=\alpha_{2}^{-1} \alpha_{5}^{-1}$.

The Cremona involution φ in the proposition is lifted to two involutions of $\mathrm{Km} C$. One is symplectic and has eight fixed points over the four fixed points of φ. The other has no fixed points (cf. (1) of Remark 5.3). We call the latter the Hutchinson involution associated with the Göpel subgroup G and denote by ε_{G}. Since the covering involution β commutes with ε_{G}, it induces an involution of the Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$, which we denote by σ_{G}.

Now we assume that a Göpel triple, say $\left(p_{14}, p_{25}, p_{36}\right)$, lies on a line l. Let p be the point whose polar with respect to the conic Q is l and $\tilde{\gamma}$ be the involution
of \boldsymbol{P}^{2} whose fixed locus is the union of l and p. Then $\tilde{\gamma}$ maps Q onto itself and interchanges p_{i} and p_{i+3} for $i=1,2$ and 3. $\tilde{\gamma}$ induces involutions of $\mathrm{Km} C$ and C. The following is easily verified:

Proposition 5.2. A Göpel triple of nodes is collinear if and only if (C, G) is bi-elliptic. Furthermore, the involution of $\mathrm{Km} C$ constructed above is the same as $\operatorname{Km} \gamma$ in Lemma 1.7.

Hence we have constructed an Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$ with an involution σ_{G} for every non-bi-elliptic pair (C, G).

Remark 5.3. Let $\alpha_{1}, \ldots, \alpha_{6}$ be as in the proof of Proposition 5.1.
(1) The Kummer surface $\mathrm{Km} C$ is the minimal resolution of the double cover

$$
\bar{S}: \tau^{2}=\left(y-\alpha_{1} x\right)\left(y-\alpha_{4} x\right)\left(\alpha_{2} y-1\right)\left(\alpha_{5} y-1\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{6}\right)
$$

of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, where (x, y) is an inhomogeneous coordinate of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

The involution

$$
\bar{\varepsilon}_{G}:(\tau, x, y) \mapsto\left(-\frac{A B \tau}{x^{2} y^{2}}, \frac{A}{x}, \frac{B}{y}\right), \quad A=\alpha_{3} \alpha_{6}, B=\alpha_{2}^{-1} \alpha_{5}^{-1}
$$

of \bar{S} has no fixed points. The K3 surface \bar{S} has fourteen nodes and $(\mathrm{Km} C) / \varepsilon_{G}$ is the minimal resolution of the Enriques surface $\bar{S} / \bar{\varepsilon}_{G}$ with seven nodes.
(2) The Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$ is the minimal model of the double plane with branch the plane curve

$$
x_{1} x_{2} x_{3} x_{4}\left(x_{1} x_{4}-c_{1} x_{2} x_{3}\right)\left(x_{2} x_{4}-c_{2} x_{1} x_{3}\right)\left(x_{3} x_{4}-c_{3} x_{1} x_{2}\right)=0
$$

of degree 10 and σ_{G} is induced by the covering involution, where ($x_{1}: x_{2}: x_{3}$) is a coordinate of $\boldsymbol{P}^{2}, x_{4}=-x_{1}-x_{2}-x_{3}$ and we put $c_{i}=\left(\sqrt{\alpha_{i}}-\sqrt{\alpha_{i+3}}\right)^{2} /\left(\sqrt{\alpha_{i}}+\right.$ $\left.\sqrt{\alpha_{i+3}}\right)^{2}$ for $i=1,2,3$. In the case $\alpha_{1}+\alpha_{4}=\alpha_{2}+\alpha_{5}=\alpha_{3}+\alpha_{6}=0, \mathrm{Km} C$ is
the minimal model of the Hilbert modular surface $H^{2} / \Gamma(2)$ associated with the principal congruence subgroup $\Gamma(2)$ of $S L_{2}\left(\mathscr{O}_{\boldsymbol{Q}(\sqrt{2})}\right)$ for the ideal (2), and ε_{G} is induced by the matrix $\left(\begin{array}{cc}1+\sqrt{2} & 0 \\ 0 & -1+\sqrt{2}\end{array}\right)$ (Hirzebruch [5, Section 4], [4, Chapter 8]).

6. Period of $(\mathrm{KmC}) / \varepsilon_{G}$.

Returning to the case where (C, G) is not bi-elliptic, we compute the periods of the Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$ and the involution σ_{G}. The Jacobian Kummer surface $\mathrm{Km} C$ is a double cover of the blow-up R of \boldsymbol{P}^{2} at the 15 points $p_{i j}$, $1 \leq i<j \leq 6$. The pull-back of $H^{2}(R, \boldsymbol{Q})$ has $\left\{h, N_{i j}, 1 \leq i<j \leq 6\right\}$ as a Q-basis, where h is the pull-back of a line and $N_{i j}$ is the (-2) curves over $p_{i j}$.

We assume for simplicity that the Göpel triple is $\left(p_{14}, p_{25}, p_{36}\right)$. Let \bar{R} be the blow-up of \boldsymbol{P}^{2} at p_{14}, p_{25} and p_{36}. The Cremona involution φ in Proposition 5.1 acts on the Picard group of \bar{R} as the reflection with respect to the (-2 -class $l-$ $E_{14}-E_{25}-E_{36}$, where E_{14}, E_{25} and E_{36} are the exceptional curves. φ interchanges $p_{i, j}$ with $p_{i+3, j+3}$, and $p_{i, j+3}$ with $p_{j, i+3}$ for $1 \leq i<j \leq 3$. Hence we have

Proposition 6.1. The action of ε_{G} on the pull-back of $H^{2}(R, \boldsymbol{Q})$ is the composite of the permutation

$$
N_{i, j} \leftrightarrow N_{i+3, j+3}, \quad N_{i, j+3} \leftrightarrow N_{j, i+3} \quad(1 \leq i<j \leq 3)
$$

of type $(2)^{6}$ and the reflection with respect to the (-4)-class $h-N_{14}-N_{25}-N_{36}$.
By the proposition,

$$
\begin{equation*}
\left\{h-N_{14}-N_{25}-N_{36}, N_{i j}-N_{i+3, j+3}, N_{i, j+3}-N_{j, i+3}\right\}, \tag{4}
\end{equation*}
$$

with $1 \leq i<j \leq 3$, is a \boldsymbol{Q}-basis of $H_{-}\left(\mathrm{KmC} / \varepsilon_{G}, \sigma_{G} ; \boldsymbol{Q}\right) . N_{0}$, the $(-2) \boldsymbol{P}^{1}$ over the origin, maps onto the conic Q.

Proposition 6.2. $h-N_{0}$ is invariant by ε_{G} and anti-invariant by β.
Proof. There exists a cubic curve $D: r(x, y, z)=0$ such that $D \cap C$ consists of the 6 tangent points $l_{i} \cap Q, 1 \leq i \leq 6$. The union of 6 lines is defined by $r(x, y, z)^{2}-q(x, y, z) s(x, y, z)$ for a suitable quartic form $s(x, y, z)$. Choose a cubic curve D such that it passes the Göpel triple. Then the quartic curve $s(x, y, z)=0$ is singular at the Göpel triple. By the Cremona symmetry, $s(x, y, z)$ is a constant multiple of $q(y z, x z, x y)$. Hence the double cover $\overline{S y m^{2}} C$ is defined by

$$
\begin{equation*}
\tau^{2}=r(x, y, z)^{2}-c q(x, y, z) q(y z, x z, x y) \tag{5}
\end{equation*}
$$

for a constant $c \in \boldsymbol{C}^{*}$. The rational function $\{r(x, y, z)+\tau\} /\{r(x, y, z)-\tau\}$ on $\mathrm{Km} C$ gives a rational equivalence between two divisors $N_{0}+\beta \varepsilon_{G}\left(N_{0}\right)$ and $\varepsilon_{G}\left(N_{0}\right)+\beta\left(N_{0}\right)$. Hence $\beta\left(N_{0}\right)-N_{0}$ is ε_{G}-invariant. Since $\beta\left(N_{0}\right)+N_{0}$ is linearly equivalent to $2 h$, we have our proposition.

Remark 6.3. By (5) the linear system $\left|h+N_{0}\right|$ gives a birational morphism from the double cover $\overline{S y m^{2}} C$ to the quartic $c q(x, y, z) t^{2}+2 r(x, y, z) t+$ $q(y z, x z, x y)=0$ in \boldsymbol{P}^{3}, which is essentially the equation (1).

By Propositions 6.1 and 6.2,

$$
\begin{equation*}
\left\{h-N_{0}, h-N_{14}, h-N_{25}, h-N_{36}, N_{i j}+N_{i+3, j+3}, N_{i, j+3}+N_{j, i+3}\right\} \tag{6}
\end{equation*}
$$

with $1 \leq i<j \leq 3$, is an orthogonal \boldsymbol{Q}-basis of $\pi^{*} H^{2}\left(\operatorname{Km} C / \varepsilon_{G}, \boldsymbol{Q}\right)$. In particular, σ_{G} acts on $\pi^{*} H^{2}\left(\operatorname{Km} C / \varepsilon_{G}, \boldsymbol{Q}\right)$ as the reflection with respect to $h-N_{0}$. Hence we have

Proposition 6.4. The involution σ_{G} of the Enriques surface $(\mathrm{Km} C) / \varepsilon_{G}$ is numerically reflective.

Moreover, the inverse of the correspondence $(S, \sigma) \mapsto\left(C_{\sigma}, G_{\sigma}\right)$ of Proposition 4.4 is given by this construction $(C, G) \mapsto\left(\mathrm{Km} C / \varepsilon_{G}, \sigma_{G}\right)$:

Proposition 6.5.
(1) The polarized Hodge structure $H\left(\operatorname{Km} C / \varepsilon_{G}, \sigma_{G} ; \boldsymbol{Z}\right)$ is isomorphic to $H^{2}(J(C), \Theta ; \boldsymbol{Z})(2)$.
(2) The patching group of σ_{G} is of order four, and generated by the canonical element and $\left(\pi_{-}, \pi_{G}\right)$, where π_{G} is the Plücker coordinate of G.

Proof. By (4) and (6), $H\left(\mathrm{Km} C / \varepsilon_{G}, \sigma_{G} ; \boldsymbol{Z}\right)$ is the orthogonal complement of the lattice generated by the 17 classes h, N_{0} and $N_{i j}, 1 \leq i<j \leq 6$, in $H^{2}(\mathrm{Km} C, \boldsymbol{Z})$. Let $H \in H^{2}(\mathrm{Km} C, \boldsymbol{Z})$ be the (4)-class in Λ corresponding to $\Theta \in H^{2}(J(C), \boldsymbol{Z})$ in the way of Lemma 1.1. It is easily checked that $H=h+N_{0}$. Hence we have (1).

The patching group is order four by (1) and Proposition 3.2 since $H^{2}(J(C), \Theta ; \boldsymbol{Z})(2) \simeq\langle-4\rangle \perp U(2) \perp U(2)$. By Proposition 6.1, both $N_{12}-N_{45}$ and $N_{15}-N_{24}$ belong to $H_{-}\left(\operatorname{Km} C / \varepsilon_{G}, \sigma_{G} ; \boldsymbol{Z}\right)$. Since the two-torsion points p_{12}, p_{45}, p_{15} and p_{24} form a coset of $G \subset J(C)_{(2)},\left(\left[\left(N_{12}-N_{45}+N_{15}-N_{24}\right) / 2\right], \pi_{G}\right)$ belongs to the patching group of σ_{G} by Lemma 1.2.

Proof of Theorem 2. Let σ be a numerically reflective involution of an Enriques surface S and assume that the patching group D_{σ} is of order four. Let
$\left(C_{\sigma}, G_{\sigma}\right)$ be as in Proposition 4.4 and σ^{\prime} be the numerically reflective involution σ_{G} of the Enriques surface $S^{\prime}:=\mathrm{Km} C / \varepsilon_{G}$ for $C=C_{\sigma}$ and $G=G_{\sigma}$. By Proposition 6.5, $H(S, \sigma ; \boldsymbol{Z})$ is isomorphic to $H\left(S^{\prime}, \sigma^{\prime} ; \boldsymbol{Z}\right)$ as a polarized Hodge structure. Moreover, the A_{+}-components of their patching groups are the same. Both are generated by ζ_{+}and the Plücker coordinate π_{G} of G.

Now we look at the A_{-}-components. Two lattices $H_{-}(S, \sigma ; \boldsymbol{Z})$ and $H_{-}\left(S^{\prime}, \sigma^{\prime} ; \boldsymbol{Z}\right)$ are $E_{7}(2)$ by Lemma 3.1. The A_{-}-components of patching groups are generated by ζ_{+}and π_{-}with $q_{-}\left(\pi_{-}\right)=0$. The Weyl group W of E_{7} acts on $A_{-} \simeq u(2)^{\perp 3} \perp(4)$ preserving ζ_{-}. There are 63α 's with $q_{-}(\alpha)=0$ in $\left(A_{-}\right)_{(2)}$ and W acts transitively on them. Hence a Hodge isometry between $H(S, \sigma ; \boldsymbol{Z})$ and $H\left(S^{\prime}, \sigma^{\prime} ; \boldsymbol{Z}\right)$ extends to a $\boldsymbol{Z} / 2 \boldsymbol{Z}$-equivariant Hodge isometry between $H^{-}(S, \boldsymbol{Z})$ and $H^{-}\left(S^{\prime}, \boldsymbol{Z}\right)$. Now the theorem follows from Theorem 2.3.

References

[1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, 1984.
[2] C. Birkenhake and H. Lange, Complex Abelian Varieties, Springer-Verlag, 2004.
[3] I. V. Dolgachev and J. H. Keum, Birational automorphisms of quartic Hessian surfaces, Trans. Amer. Math. Soc., 354 (2002), 3031-3057.
[4] G. van der Geer, Hilbert Modular Surfaces, 2nd ed., Springer-Verlag, 1988.
[5] F. Hirzebruch, The ring of Hilbert modular forms for real quadratic fields of small discriminant, "Modular functions of one variable VI", Lecture Notes in Math., 627 (1977), 287-323.
[6] J. I. Hutchinson, The Hessian of the cubic surface, Bull. Amer. Math. Soc., 5 (1899), 282-292: II, ibid, 6 (1900), 328-337.
[7] J. I. Hutchinson, On some birational transformations of the Kummer surface into itself, Bull. Amer. Math. Soc., 7 (1901), 211-217.
[8] J. H. Keum, Every algebraic Kummer surface is the $K 3$-cover of an Enriques surface, Nagoya Math. J., 118 (1990), 99-110.
[9] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math., 75 (1984), 105-121.
[10] S. Mukai, Numerically trivial involutions of Kummer type of an Enriques surface, Kyoto J. Math., 50 (2010), 889-902.
[11] S. Mukai and Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math., 77 (1984), 383-397.
[12] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111-177 (Russian); Math. USSR-Izv., 14 (1980), 103167.
[13] H. Ohashi, Enriques surfaces covered by Jacobian Kummer surfaces, Nagoya Math. J., 195 (2009), 165-186.
[14] T. Shioda, The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 25 (1978), 47-59.

Shigeru Mukai

Research Institute for Mathematical Sciences Kyoto University
Kyoto 606-8502, Japan
E-mail: mukai@kurims.kyoto-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 14J28; Secondary 14K10, 32G20.
 Key Words and Phrases. Enriques surface, Kummer surface, period.
 Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006, (S) 19104001, (S) 22224001, (A) 22244003 and for Exploratory Research 20654004.

[^1]: ${ }^{1}$ This conjecture has been solved by H. Ohashi [13].

