Surfaces carrying sufficiently many Dirichlet finite harmonic functions that are automatically bounded

By Mitsuru Nakai

(Received July 13, 2010)

Abstract

It is shown that there exists a Riemann surface on which every Dirichlet finite harmonic function is automatically bounded and yet the linear dimension of the linear space of Dirichlet finite harmonic functions on it is infinite.

1. Introduction.

There are two important norms in the study of harmonic functions on open (i.e. noncompact) Riemann surfaces: one is the supremum norm

$$
\begin{equation*}
\|u ; R\|_{\infty}:=\sup _{z \in R}|u(z)| \tag{1.1}
\end{equation*}
$$

of a harmonic function u on a Riemann surface R which plays a core role in the harmonic version of the normal family argument; the other is the Dirichlet seminorm $\sqrt{D(u ; R)}$ given by the Dirichlet integral

$$
\begin{equation*}
D(u ; R):=\int_{R} d u \wedge * d u=\int_{R}|\nabla u(z)|^{2} d x d y \quad(z=x+i y) \tag{1.2}
\end{equation*}
$$

of a harmonic function u taken over a Riemann surface R, which is repeatedly used in connection with the Dirichlet principle. The notation $H(R)$ indicates the linear space of harmonic functions u on a Riemann surface R. Two important main linear subspaces of $H(R)$ are, firstly,

$$
\begin{equation*}
H B(R):=\left\{u \in H(R):\|u ; R\|_{\infty}<\infty\right\} \tag{1.3}
\end{equation*}
$$

which forms a Banach space equipped with the supremum norm $\|\cdot ; R\|_{\infty}$, and, secondly,

[^0]\[

$$
\begin{equation*}
H D(R):=\{u \in H(R): D(u ; R)<\infty\} \tag{1.4}
\end{equation*}
$$

\]

which is a semi-Hilbert space equipped with the semi-inner product $D(\cdot, \cdot ; R)$ given by the mutual Dirichlet integral

$$
\begin{equation*}
D(u, v ; R):=\int_{R} d u \wedge * d v=\int_{R} \nabla u(z) \cdot \nabla v(z) d x d y \tag{1.5}
\end{equation*}
$$

of u and v in $H D(R)$. The symbol B in (1.3) suggests the boundedness and D in (1.4) the Dirichlet finiteness. It is often necessary to consider harmonic functions which are both bounded and Dirichlet finite, and for this reason we use the notation

$$
\begin{equation*}
H B D(R):=H B(R) \cap H D(R), \tag{1.6}
\end{equation*}
$$

which also forms a Banach space equipped with the combined norm

$$
\|\cdot ; R\|_{\infty}+\sqrt{D(\cdot ; R)}
$$

This is traditional notation in the classification theory of Riemann surfaces (cf. e.g. [1], [11], etc.). Usually the boundedness of a harmonic function u on R does not imply the Dirichlet finiteness of u and vice versa but we know a lot of instances in which the boundedness (Dirichlet finiteness, resp.) of harmonic functions u on a Riemann surface R implies the Dirichlet finiteness (boundedness, resp.) of u on R., i.e. $H B(R) \subset H D(R)(H D(R) \subset H B(R)$, resp. $)$, and $\operatorname{dim} H B(R)<\infty(\operatorname{dim} H D(R)<\infty$, resp.) (cf. [11]), where e.g. $\operatorname{dim} H B(R)$ is the linear dimension of the linear space $H B(R)$, which is either a finite number in \boldsymbol{N}, the set of positive integers, or infinite ∞.

In the present paper we discuss Riemann surfaces R for which the inclusion relation $H D(R) \subset H B(R)$ is valid. The relation $H D(R) \subset H B(R)$ is equivalent to the relation

$$
\begin{equation*}
H D(R)=H B D(R) \tag{1.7}
\end{equation*}
$$

Riemann surfaces R satisfying (1.7) are quite interesting and also important in view of the fact that the relation (1.7) serves to give significant recognition to e.g. the theory of fullsuperharmonic functions and also that of (Dirichlet finite harmonic) Bergmann kernels, which will be discussed elsewhere. We discuss in this paper the problem of whether the condition (1.7) always implies $\operatorname{dim} H D(R)<\infty$ or not. If we denote by \mathscr{D}_{D} the set of $\operatorname{dim} H D(R)$ for R with (1.7), then it is well known as
stated above (cf. [11]) that $\mathscr{D}_{D} \supset \boldsymbol{N}$ so that the problem is restated as to clarify whether $\mathscr{D}_{D}=\boldsymbol{N}$ or $\mathscr{D}_{D}=\boldsymbol{N} \cup\{\infty\}$.

We state a few background materials concerning (1.7). The Royden harmonic boundary $\delta_{\mathscr{R}}=\delta_{\mathscr{R}} R$ of R is the set of regular points in the sense of potential theory in the Royden boundary $\gamma_{\mathscr{R}}=\gamma_{\mathscr{R}} R=R_{\mathscr{R}}^{*} \backslash R$ of R with $R_{\mathscr{R}}^{*}$ the Royden compactification of R (cf. e.g. [2], [11], [4]). The Royden harmonic boundary $\delta_{\mathscr{R}}$ is compact and

$$
\left.\operatorname{dim} H D(R)=\# \delta_{\mathscr{R}} \quad \text { (the number of points in } \delta_{\mathscr{R}}\right)
$$

which is either finite or infinite. We denote by $\operatorname{cap}(K)$ the capacity, or more precisely, the variational 2-capacity (cf. e.g. [3]), of a compact subset K of $\delta_{\mathscr{R}}$ (see $[\mathbf{7}]$). Then we have the following characterization of (1.7) (see [6]).

Theorem A. A Riemann surface R satisfies (1.7) if and only if

$$
\begin{equation*}
\inf _{\zeta \in \delta_{\mathscr{R}}} \operatorname{cap}(\{\zeta\})>0 \tag{1.8}
\end{equation*}
$$

Looking at this result one might feel that each point in $\delta_{\mathscr{R}}$ is distributed quite sporadically and yet $\delta_{\mathscr{R}}$ is compact and thus $\# \delta_{\mathscr{R}}<\infty$ might be the case so that $\operatorname{dim} H D(R)=\# \delta_{\mathscr{R}}<\infty$. This is a motivation for that we are tempted to maintain that $\operatorname{dim} H D(R)<\infty$. On the other hand, however, we have the following result originally due to Virtanen and then Royden (cf. e.g. [11]).

Theorem B. For any Riemann surface R

$$
\begin{equation*}
H D(R)=\overline{H B D(R)} \tag{1.9}
\end{equation*}
$$

in the sense that for any $u \in H D(R)$ and for any positive number $\varepsilon>0$ there is a $u_{\varepsilon} \in H B D(R)$ such that $D\left(u-u_{\varepsilon} ; R\right)<\varepsilon$.

The relation (1.9) says that the subspace $H B D(R)$ may not be identical with $H D(R)$ but very close to this situation in the sense that $H B D(R)$ almost exhausts $H D(R)$. Therefore the state (1.7) is certainly a pathological phenomenon but might not be so virulent as to destroy the normal situation $\infty \in \mathscr{D}_{D}$. This is thus a reverse motivation for that we suspect the existence of R with (1.7) and yet $\operatorname{dim} H D(R)=\infty$. Our problem, whether a Riemann surface R satisfying (1.7) always has a finite dimensional linear space $H D(R)$ or not, is thus not only quite challenging one but also very far from being trivial in view of the above two seemingly conflicting observations. Nevertheless, although we needed some period
of struggles, we come to the following conclusion, to give a proof to which is the central purpose of this paper.

The main theorem. There exists a Riemann surface R such that the Dirichlet finiteness always guarantees the boundedness for harmonic functions on R, i.e. $H D(R) \subset H B(R)$ or equivalently (1.7), and yet there exist sufficiently many Dirichlet finite harmonic functions on R in the sense that $\operatorname{dim} H D(R)=\infty$. In short, $\mathscr{D}_{D}=\boldsymbol{N} \cup\{\infty\}$.

We have already studied Riemann surfaces R on which the boundedness always implies the Dirichlet finiteness for harmonic functions on R, i.e. $H B(R) \subset$ $H D(R)$ which is equivalent to

$$
\begin{equation*}
H B(R)=H B D(R) \tag{1.10}
\end{equation*}
$$

A characterization of (1.10) in terms of the class of harmonic measures on R was given in $[8]$ and as a counterpart to the present main theorem we have also shown the following result (see [8]).

Theorem C. There exists a Riemann surface R such that (1.10) is satisfied and yet $\operatorname{dim} H B(R)=\infty$.

If we denote by \mathscr{D}_{B} the set of $\operatorname{dim} H B(R)$ for R with (1.10), then it is also well known (cf. e.g. [11]) that $\mathscr{D}_{B} \supset \boldsymbol{N}$ and thus the above theorem assures that $\mathscr{D}_{B}=\boldsymbol{N} \cup\{\infty\}$. Superficially Theorem C entirely resembles to the main theorem above but to derive it is in reality an easy and simple task compared with the case of the main theorem above. Actually (1.7) is quasiconformally invariant while (1.10) is not and a fortiori (1.7) and (1.10) should be understood to be essentially different in nature. Anyhow, observe that the simultaneous validity of both of (1.7) and (1.10) is equivalent to $H B(R)=H D(R)$. Related to this it is interesting to compare the present main theorem and Theorem C with the following beautiful result due to Masaoka [5] (for a simple elementary proof of it, see also [6]).

Theorem D. The relation $H B(R)=H D(R)$ (i.e. the synchronous validity of both of (1.7) and (1.10)) is equivalent to the relation $\operatorname{dim} H B(R)=$ $\operatorname{dim} H D(R)<\infty$.

2. Fundamental surfaces.

Our purpose is to exhibit a Riemann surface W satisfying the following two properties: firstly, $H D(W)=H B D(W)$; secondly, $\operatorname{dim} H D(W)=\infty$. Recall that a harmonic function u on a Riemann surface R is essentially positive if $|u|$
admits a harmonic majorant on R and we denote by $H P(R)$ the linear space of essentially positive harmonic functions on R. We denote by $u \vee v$ ($u \wedge v$, resp.) the least harmonic majorant (the greatest harmonic minorant, resp.) of u and v in $H P(R)$. Using $u \vee v(u \wedge v$, resp.) as join (meet, resp.) of u and v in $H P(R)$, the class $H P(R)$ forms a Riesz space (or a vector lattice in the older terms). Setting $u^{+}=: u \vee 0$ and $u^{-}:=-(u \wedge 0)$ for $u \in H P(R)$ we have the Jordan decomposition of $u \in H P(R): u=u^{+}-u^{-}$with $u^{ \pm} \in H(R)^{+}:=\{u \in H(R): u \geqq 0$ on $R\}$. The symbol P in $H P(R)$ thus suggests the term positive. Then $H B(R), H D(R)$, and $H B D(R)$ are Riesz subspaces of the Riesz space $H P(R)$. We denote by

$$
\mathscr{O}_{H X}:=\{R: H X(R)=\boldsymbol{R}\}
$$

the class of Riemann surfaces R such that the space $H X(R)$ reduces to the class \boldsymbol{R} of constant functions for $X=P, B, D$, and $B D$. We say that R is hyperbolic (parabolic, resp.) if R carries (does not carry, resp.) the Green function on R and we use also the traditional notation

$$
\mathscr{O}_{G}:=\{R: R \text { is parabolic }\}
$$

for the class of parabolic (i.e. nonhyperbolic) Riemann surfaces R. Then we have the following table of inclusion relations:

$$
\mathscr{O}_{G}<\mathscr{O}_{H P}<\mathscr{O}_{H B}<\mathscr{O}_{H D}=\mathscr{O}_{H B D}
$$

(cf. e.g. [11]), where $A<B$ for two sets A and B indicates the strict inclusion relation among A and B so that $A \subset B$ and $A \neq B$.

To construct the above W we will make an essential use of the so called SarioTôki disc $\hat{\boldsymbol{D}}$, which was presented independently by Sario and Tôki (cf. e.g. [1], [11], [12]) for the purpose of showing the strict inclusion $\mathscr{O}_{G}<\mathscr{O}_{H P}$:

$$
\begin{equation*}
\hat{\boldsymbol{D}} \in \mathscr{O}_{H P} \backslash \mathscr{O}_{G} \tag{2.1}
\end{equation*}
$$

Of course the above (2.1) is the most important property of $\hat{\boldsymbol{D}}$ but we still need to know the structure of $\hat{\boldsymbol{D}}$ to a certain extent. First of all $\hat{\boldsymbol{D}}$ is a quotient space of the unit disc \boldsymbol{D} in the complex plane \boldsymbol{C} by a certain equivalence relation Q, which we will not specify here except for a few point we really need to know: $\hat{\boldsymbol{D}}=\boldsymbol{D} / Q$. For each $\hat{z} \in \hat{\boldsymbol{D}}$ we have $\left|z_{1}\right|=\left|z_{2}\right|$ for any two z_{1} and z_{2} in \hat{z} and thus we can define

$$
\begin{equation*}
|\hat{z}|:=|z| \quad(z \in \hat{z}) \tag{2.2}
\end{equation*}
$$

which is called the absolute value of \hat{z}. We often identify the one point set $\{z\}$ consisting of a single point z with the point z itself. The set

$$
\begin{equation*}
D:=\{\hat{z} \in \hat{\boldsymbol{D}}: \hat{z}=\{z\}=z\} \tag{2.3}
\end{equation*}
$$

is an open subset of $\hat{\boldsymbol{D}}$ and $\hat{z} \mapsto z$ is an immersion of D into \boldsymbol{D} which is a conformal mapping and therefore we can view $D \subset \boldsymbol{D} \cap \hat{\boldsymbol{D}}$. We can choose a strictly increasing sequence $\left(t_{n}\right)_{n \in \boldsymbol{N} \cup\{0\}} \subset(0,1)$ converging to 1 and

$$
\begin{equation*}
D_{0}:=\left\{|z| \leqq t_{0}\right\} \cup\left(\bigcup_{n \in N}\left\{t_{2 n-1}<|z|<t_{2 n}\right\}\right) \subset D \tag{2.4}
\end{equation*}
$$

where, as before \boldsymbol{N} is the set of positive integers $n=1,2, \ldots$. In particular, the origin $0 \in D \subset \hat{\boldsymbol{D}}$ will be referred to as the origin of $\hat{\boldsymbol{D}}$.

The mapping $\hat{z} \mapsto \log |\hat{z}|$ defines a negative harmonic function on $\hat{\boldsymbol{D}} \backslash\{0\}$ with the negative pole at $\hat{z}=0$ and with the ideal boundary values $\lim _{|\hat{z}| \uparrow 1} \log |\hat{z}|=0$. In view of this we see that $\hat{\boldsymbol{D}}$ carries the Green function (kernel) $g(\cdot, \cdot ; \hat{\boldsymbol{D}}$) and in particular

$$
\begin{equation*}
g(\hat{z}):=g(\hat{z}, 0 ; \hat{\boldsymbol{D}})=\log \left(\frac{1}{|\hat{z}|}\right) \tag{2.5}
\end{equation*}
$$

on $\hat{\boldsymbol{D}} \backslash\{0\}$. Especially,

$$
g(z)=\log \left(\frac{1}{|z|}\right)=\log \left(\frac{1}{r}\right) \quad\left(z=r e^{i \theta}\right)
$$

on D will be repeatedly used. Thus, $\hat{\boldsymbol{D}}$ is hyperbolic, i.e. $\hat{\boldsymbol{D}} \notin \mathscr{O}_{G}$ which proves a trivial part of (2.1). The really important part of (2.1) is the relation $\hat{\boldsymbol{D}} \in \mathscr{O}_{H P}$ or $H P(\hat{\boldsymbol{D}})=\boldsymbol{R}$ and for this part we refer the reader to an excellent explanation in [1], among others cited above. We denote by $\hat{\boldsymbol{D}}^{*}=(\hat{\boldsymbol{D}})^{*}$ the Wiener compactification of $\hat{\boldsymbol{D}}, \gamma \hat{\boldsymbol{D}}:=\hat{\boldsymbol{D}}^{*} \backslash \hat{\boldsymbol{D}}$ the Wiener boundary of $\hat{\boldsymbol{D}}$, and $\delta \hat{\boldsymbol{D}}$ the Wiener harmonic boundary of $\hat{\boldsymbol{D}}$, which is the set of regular points in $\gamma \hat{\boldsymbol{D}}$ in the sense of potential theory and is a compact subset of $\gamma \hat{\boldsymbol{D}}$. By virtue of the relation $\hat{\boldsymbol{D}} \in \mathscr{O}_{H P}$ or $H P(\hat{\boldsymbol{D}})=\boldsymbol{R}$, we see that $\delta \hat{\boldsymbol{D}}$ consists of a single point d, say:

$$
\begin{equation*}
\delta \hat{\boldsymbol{D}}=\{d\} . \tag{2.6}
\end{equation*}
$$

Related to the set D_{0} in (2.4) we consider the following disjoint union $T \subset \boldsymbol{R}$
of open intervals in the open interval $0<t_{1}<t<1$ given by

$$
\begin{equation*}
T:=\bigcup_{n \in \boldsymbol{N}}\left(t_{2 n-1}, t_{2 n}\right) \tag{2.7}
\end{equation*}
$$

For each $r \in T$ and $\theta \in(0, \pi)$ the concentric circular arc

$$
\Gamma(r, \theta):=\left\{r e^{i s}:-\theta<s<\theta\right\}
$$

in $D_{0} \subset D \cap \hat{\boldsymbol{D}}$ will be referred to as an admissible arc in $\hat{\boldsymbol{D}}$ with radius $r \in T$ and opening angle $2 \theta \in(0,2 \pi)$. We will construct a sequence $\left(\gamma_{n}\right)_{n \in N}$ of mutually disjoint admissible arcs $\gamma_{n}:=\Gamma\left(\rho_{n}, \theta_{n}\right)$ not accumulating in $\hat{\boldsymbol{D}}$ with a specified condition, and then we paste $\hat{\boldsymbol{D}} \backslash \gamma_{1}$ to $\hat{\boldsymbol{D}} \backslash \gamma_{1} \cup \gamma_{2}$ anticonformally along γ_{1}, the resulting surface to $\hat{\boldsymbol{D}} \backslash \gamma_{2} \cup \gamma_{3}$ anticonformally along γ_{2}, the resulting surface to $\hat{\boldsymbol{D}} \backslash \gamma_{3} \cup \gamma_{4}$ along γ_{3}, \ldots. Repeating this process until all $n \in \boldsymbol{N}$ are exhausted we can complete the construction of Riemann surface W. We then show $H D(W)=$ $H B D(W)$ and $\operatorname{dim} H D(W)=\infty$. This is our program in the sequel to complete the proof of our main theorem.

3. The first step to the construction.

Before constructing a specified sequence of admissible arcs $\gamma_{n}:=\Gamma\left(\rho_{n}, \theta_{n}\right)$ $(n \in \boldsymbol{N})$ in $D_{0} \subset D \cup \hat{\boldsymbol{D}}$, we choose and then fix three kinds of sequences in \boldsymbol{R}. Firstly, we take a divergent sequence $\left(K_{n}\right)_{n \in \boldsymbol{N}} \subset \boldsymbol{R}^{+}:=\{\lambda \in \boldsymbol{R}: \lambda>0\}$ such that

$$
\begin{equation*}
\sum_{n \in N} \frac{1}{K_{n}}<\infty \tag{3.1}
\end{equation*}
$$

Secondly, we fix an arbitrary zero sequence $\left(k_{n}\right)_{n \in \boldsymbol{N}} \subset(0,1)$ satisfying

$$
\begin{equation*}
0<k_{n+1}<\frac{k_{n}}{1000} \quad(n \in N) \tag{3.2}
\end{equation*}
$$

which is entirely independent of $\left(K_{n}\right)_{n \in \boldsymbol{N}}$. Thirdly and finally, we choose a zero sequence $\left(\varepsilon_{n}\right)_{n \in \boldsymbol{N}}$ such that

$$
\begin{equation*}
0<\varepsilon_{n+1}<\frac{\varepsilon_{n}}{1000} \quad(n \in \boldsymbol{N}) \tag{3.3}
\end{equation*}
$$

and, moreover depending upon $\left(k_{n}\right)_{n \in N}$ this time,

$$
\begin{equation*}
0<\varepsilon_{n}<\frac{k_{n}}{1000} \quad(n \in \boldsymbol{N}) \tag{3.4}
\end{equation*}
$$

The sequence of admissible arcs $\gamma_{n}:=\Gamma\left(\rho_{n}, \theta_{n}\right)(n \in \boldsymbol{N})$ will be determined inductively. The procedure of the induction is to define γ_{n} when two precedent admissible arcs γ_{n-1} and γ_{n-2} are already given for every $n \in \boldsymbol{N}$. For this reason we arbitrarily choose and then fix two admissible arcs γ_{-1} and γ_{0} in advance before defining the required sequence $\left(\gamma_{n}\right)_{n \in \boldsymbol{N}}$. Namely, assume the main terms ρ_{-1}, ρ_{0} and the subsidiary terms $\sigma_{-2}, \sigma_{-1}, \sigma_{0}$ are arbitrarily given all in T such that

$$
\begin{equation*}
0<\sigma_{-2}<\rho_{-1}<\sigma_{-1}<\rho_{0}<\sigma_{0} \tag{3.5}
\end{equation*}
$$

and two angles θ_{-1}, θ_{0} in $(0, \pi)$ are also arbitrarily given with

$$
\theta_{0} \leqq \pi k_{0}:=\frac{\pi k_{1}}{1000}
$$

Then γ_{-1} and γ_{0} are given by

$$
\gamma_{j}:=\Gamma\left(\rho_{j}, \theta_{j}\right) \quad(j=-1,0)
$$

We start from this situation and we will construct $\gamma_{1}:=\Gamma\left(\rho_{1}, \theta_{1}\right)$ by choosing $\rho_{1} \in\left(\sigma_{0}, 1\right)$ and $\theta_{1} \in(0, \pi)$ in T suitably and then choose $\sigma_{1} \in\left(\rho_{1}, 1\right) \cap T$. We now state how this task is accomplished as the first step. We take an arbitrary admissible arc $\gamma=: \Gamma(r, \theta)\left(r \in\left(\sigma_{0}, 1\right) \cap T, \theta \in(0, \pi)\right)$ and consider three kinds of functions u, v, w associated with γ and then determine $\rho_{1} \in\left(\sigma_{0}, 1\right) \cap T$ and after ρ_{1} is fixed we determine $\sigma_{1} \in(\rho, 1) \cap T$ such that

$$
\sigma_{0}<\rho_{1}<\sigma_{1}
$$

all in T. This is hence the first step operation.

4. Fundamental functions in the first step.

We start by considering the solution $u \in H(\hat{\boldsymbol{D}} \backslash \gamma) \cap C\left(\hat{\boldsymbol{D}}^{*}\right)$ of the Dirichlet problem on the region $\hat{\boldsymbol{D}} \backslash \gamma$ with the boundary condition

$$
\left\{\begin{array}{l}
u \mid \gamma=1 \tag{4.1}\\
u \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

where $\gamma=\Gamma(r, \theta)\left(r \in\left(\sigma_{0}, 1\right) \cap T, \theta \in(0, \pi)\right)$. For the unique solvability of the
above problem, see e.g. [11]. Observe that, for any $r \in\left(\sigma_{0}, 1\right) \cap T$, there exists a unique $\theta=\theta(r) \in(0, \pi)$ such that the above u satisfies

$$
\begin{equation*}
u(0)=k_{1} . \tag{4.2}
\end{equation*}
$$

In fact, since the above solution u for (4.1) is determined by $\gamma=\Gamma(r, \theta)$, we denote it by $u=u(\cdot ; r, \theta)$. The function of $\theta \in(0, \pi)$ given by $\theta \mapsto \varphi(\theta):=u(0 ; r, \theta)$ is strictly increasing continuous function on $(0, \pi)$ in view of the fact that the family $\{u ; \gamma\}$ forms a normal family, and $\varphi(\theta) \downarrow 0$ as $\theta \downarrow 0$ and $\varphi(\theta) \uparrow 1$ as $\theta \uparrow \pi$. Hence by the intermediate value theorem for continuous functions we see the unique existence of $\theta(r) \in(0, \pi)$ with $\varphi(\theta(r))=k_{1}$. Since $u(0 ; r, \theta(r))=\varphi(\theta(r))$, (4.2) is established. Hereafter we denote by $u=u(\cdot ; r)$ the function determined by (4.1) and (4.2) with $\gamma=\gamma(r)=\Gamma(r, \theta(r))$.

We denote by γ_{0}^{+}and γ_{0}^{-}both sides of the cut γ_{0} in $\hat{\boldsymbol{D}}$ and by giving suitable orientations to $\gamma_{0}^{ \pm}$we can view that $\gamma_{0}^{+}+\gamma_{0}^{-}$is an analytic Jordan curve which is the boundary of the partly bordered Riemann surface $\hat{\boldsymbol{D}} \backslash \gamma_{0}$. We often consider γ_{0} for $\hat{\boldsymbol{D}} \backslash \gamma_{0}$ as an analytic Jordan curve $\gamma_{0}^{+}+\gamma_{0}^{-}$besides understanding γ_{0} just the simple cut in $\hat{\boldsymbol{D}}$. We next consider the solution $v \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{0} \cup \gamma(r)\right) \cap C\left(\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{0}}\right)$ of the mixed boundary value problem on $\hat{\boldsymbol{D}} \backslash \gamma_{0} \cup \gamma(r)$ with the boundary data

$$
\left\{\begin{array}{l}
v \mid \gamma(r)=1 \tag{4.3}\\
* d v \mid \gamma_{0}=0 \\
v \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

where we understand that $\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{0}}$ in the Carathéodory compactification of $\hat{\boldsymbol{D}}^{*} \backslash \gamma_{0}$ so that $\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{0}}$ is obtained by attaching the ideal boundary $\gamma \hat{\boldsymbol{D}}$ and the relative boundary $\gamma_{0}^{+}+\gamma_{0}^{-}$to $\hat{\boldsymbol{D}} \backslash \gamma_{0}$. For the unique solvability, again see [11]. Since the above function v is determined by $r \in\left(\sigma_{0}, 1\right) \cap T$, we denote it by $v=v(\cdot ; r)$. We need to consider one more function $w=w(\cdot ; r)$ which is the solution $w \in$ $H\left(\boldsymbol{D} \backslash \gamma(r) \cup \gamma_{0} \cup \gamma_{-1}\right) \cap C\left(\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{0} \cup \gamma_{-1}}\right)$ of the mixed boundary value problem on $\hat{\boldsymbol{D}} \backslash \gamma(r) \cup \gamma_{0} \cup \gamma_{-1}$ with boundary data

$$
\left\{\begin{array}{l}
w \mid \gamma(r)=1 \tag{4.4}\\
* d w \mid \gamma_{-1} \cup \gamma_{0}=0 \\
w \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

For the unique existence of w like u and v, see [11].

Observe that the family $\{u(\cdot ; r): r \uparrow 1\}$ forms a normal family on $\hat{\boldsymbol{D}}$. Let f be an arbitrary limit function of directed subnet of the above family. Clearly $0 \leqq f \leqq 1$ on $\hat{\boldsymbol{D}}$ and therefore $f \in H P(\hat{\boldsymbol{D}})^{+}=\boldsymbol{R}^{+}$. In view of (4.2), $f \equiv k_{1}$ on $\hat{\boldsymbol{D}}$. Thus we have seen that $u(\cdot ; r) \rightarrow k_{1}$ as $r \uparrow 1$ locally uniformly on $\hat{\boldsymbol{D}}$. In particular, we see that

$$
\left\{\begin{array}{l}
\lim _{r \uparrow 1}\left(\sup _{|\hat{z}| \leqq \sigma_{0}}\left|u(\hat{z} ; r)-k_{1}\right|\right)=0 \tag{4.5}\\
\lim _{r \uparrow 1}\left(\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d u\left(t e^{i \theta} ; r\right)}{d \theta}\right|\right)=0 .
\end{array}\right.
$$

Next we consider the family $\{v(\cdot ; r): r \uparrow 1\}$ from the same view point as we took for $\{u(\cdot ; r): r \uparrow 1\}$, i.e. we wish to derive the relation for $v(\cdot ; r)$ which is a counterpart to (4.5). We cannot conclude instantly the existence of the relation corresponding to (4.2), we need to make a detour as shown below. Note that we can understand that $D(u ; \hat{\boldsymbol{D}} \backslash \gamma)=D(u ; \hat{\boldsymbol{D}})$ for $u=u(\cdot ; r)$ with $\gamma=\gamma(r)$. Similarly $D\left(v ; \hat{\boldsymbol{D}} \backslash \gamma_{0} \cup \gamma\right)=D(v ; \hat{\boldsymbol{D}})$ for $v=v(\cdot ; r)$ with $\gamma=\gamma(r)$. For simplicity, we write $D(\cdot)$ for $D(\cdot ; \hat{\boldsymbol{D}})$ and similarly $D(\cdot, \cdot)$ for the mutual Dirichlet integral $D(\cdot, \cdot ; \hat{\boldsymbol{D}})$. Then

$$
D(u-v)=D(u)+D(v)-2 D(u, v)
$$

By virtue of the Stokes formula

$$
\begin{aligned}
D(u, v) & =\int_{\delta \hat{\boldsymbol{D}}+\gamma+\gamma_{0}} u * d v=\int_{\gamma} * d v \\
& =\int_{\gamma} v * d v=\int_{\delta \hat{\boldsymbol{D}}+\gamma+\gamma_{0}} v * d v=D(v) .
\end{aligned}
$$

Here we remark that $\delta \hat{\boldsymbol{D}}$ can be identified with the Royden harmonic boundary $\delta_{\mathscr{R}} \hat{\boldsymbol{D}}$ since both are just singleton. Then $* d v$ can be defined on $\delta \hat{\boldsymbol{D}}$ and the Stokes formula in the above form can be justified (cf. e.g. [4], [7]). Of course we can easily replace the above argument by the standard exhaustion method but it is only time-consuming. Anyway we see that

$$
D(u-v)=D(u)-D(v) \geqq 0 .
$$

On the other hand, again by the Stokes formula, we see that

$$
\begin{aligned}
D(v) & =D(u, v)=D(v, u)=\int_{\delta \hat{\boldsymbol{D}}+\gamma+\gamma_{0}} v * d u=\int_{\gamma} * d u+\int_{\gamma_{0}} v * d u \\
& =\int_{\delta \hat{\boldsymbol{D}}+\gamma} u * d u+\int_{\gamma_{0}} v * d u=D(u)+\int_{\gamma_{0}} v * d u
\end{aligned}
$$

and therefore

$$
D(u-v)=-\int_{\gamma_{0}} v * d u
$$

Combining the estimate

$$
\left|\int_{\gamma_{0}} v * d u\right| \leqq \int_{-\theta_{0}}^{\theta_{0}}\left|\frac{* d u\left(r_{0} e^{i \theta} ; r\right)}{d \theta}\right| d \theta
$$

with (4.5) we can now conclude that

$$
\begin{equation*}
\lim _{r \uparrow 1} D(u(\cdot ; r)-v(\cdot ; r))=0 . \tag{4.6}
\end{equation*}
$$

Recall that the Green function $g:=G(\cdot, 0 ; \hat{\boldsymbol{D}})$ on $\hat{\boldsymbol{D}}$ with pole 0 is given by $g(\hat{z})=\log (1 /|\hat{z}|)$. Let $c:=\{|z|=\varepsilon\}$ be a small circle with $0<\varepsilon<t_{0}$. By the Stokes formula we have

$$
\int_{\delta \hat{\boldsymbol{D}}+\gamma_{0}+\gamma+c}(g * d(u-v)-(u-v) * d g)=0 .
$$

Since $* d g=(1 / \varepsilon) \varepsilon d \theta$ on c, we deduce

$$
\int_{c}(g * d(u-v)-(u-v) * d g)=\mathscr{O}(\varepsilon \log \varepsilon)-2 \pi(u(0)-v(0))
$$

where $\mathscr{O}(\cdot)$ is the Landau O . Again by (4.2): $u(0)=k_{1}$, on letting $\varepsilon \downarrow 0$ in the above, we see that

$$
\int_{\delta \hat{\boldsymbol{D}}+\gamma_{0}+\gamma}(g * d(u-v)-(u-v) * d g)=2 \pi\left(k_{1}-v(0)\right),
$$

or equivalently

$$
(D(v)-D(u)) \log \left(\frac{1}{r}\right)+\int_{\gamma_{0}} v * d g=2 \pi\left(k_{1}-v(0)\right)
$$

We denote by v^{+}and v^{-}the continuous extension of v to γ_{0}^{+}and γ_{0}^{-}. Then

$$
\begin{aligned}
\left|\int_{\gamma_{0}} v * d g\right| & =\left|\int_{\gamma_{0}^{+}+\gamma_{0}^{-}} v * d g\right|=\left|\int_{-\theta_{0}}^{\theta_{0}}\left(v^{+}\left(\rho_{0} e^{i \theta}\right)-v^{-}\left(\rho_{0} e^{i \theta}\right)\right) d \theta\right| \\
& \leqq 2 \theta_{0} \sup _{|\theta| \leqq \theta_{0}}\left|v^{+}\left(\rho_{0} e^{i \theta} ; r\right)-v^{-}\left(\rho_{0} e^{i \theta} ; r\right)\right| .
\end{aligned}
$$

By (4.6) we deduce

$$
\begin{equation*}
\underset{r \uparrow 1}{\lim \sup }\left|v(0 ; r)-k_{1}\right| \leqq \frac{\theta_{0}}{\pi} \limsup _{r \uparrow 1}\left(\sup _{|\theta| \leqq \theta_{0}}\left|v^{+}\left(\rho_{0} e^{i \theta} ; r\right)-v^{-}\left(\rho_{0} e^{i \theta} ; r\right)\right|\right) . \tag{4.7}
\end{equation*}
$$

Since $|v(\cdot ; r)| \leqq 1$ on $\hat{\boldsymbol{D}} \backslash \gamma_{0} \cup \gamma,\{v(\cdot ; r): r \uparrow 1\}$ is a normal family on $\hat{\boldsymbol{D}} \backslash \gamma_{0}$. Choose any directed subnet $v\left(\cdot ; r_{\iota}\right)\left(r_{\iota} \uparrow 1\right)$ converging to a limit f locally uniormly on $\hat{\boldsymbol{D}} \backslash \gamma_{0}$. By virtue of the condition $* d v\left(\cdot ; r_{\iota}\right) \mid \gamma_{0}=0$, we see that $v\left(\cdot ; r_{\iota}\right)\left(r_{\iota} \uparrow 1\right)$ is locally uniformly convergent on $\left(\hat{\boldsymbol{D}} \backslash \gamma_{0}\right) \cup\left(\gamma_{0}^{+}+\gamma_{0}^{-}\right)$and we can conclude the existence of $* d f \mid \gamma_{0}$ and in fact $* d f \mid \gamma_{0}=0$. The boundedness $|f| \leqq 1$ then determines $f \mid \delta \hat{\boldsymbol{D}}=: a \in[0,1]$. Since $* d f \mid \gamma_{0}=0$, we can conclude that $f \equiv a$ on $\hat{\boldsymbol{D}}$ by the maximum principle. This shows that $v\left(\cdot ; r_{\iota}\right)$ converges to a uniformly on $|z| \leqq \sigma_{0}$ and a fortiori $v^{ \pm}\left(\rho_{0} e^{i \theta} ; r \iota\right) \rightarrow a$ as $r_{\iota} \uparrow 1$ uniformly on $|\theta| \leqq \theta_{0}$. The relation (4.7) now assures that

$$
\lim _{r \uparrow 1}\left|v(0 ; r)-k_{1}\right|=0
$$

so that, first of all, $a=k_{1}$ and then, finally, the family $\{v(\cdot ; r): r \uparrow 1\}$ converges to k_{1} locally uniformly on $\left(\hat{\boldsymbol{D}} \backslash \gamma_{0}\right) \cup\left(\gamma_{0}^{+}+\gamma_{0}^{-}\right)$. Hence, as the counterpart to (4.5), we deduce

$$
\left\{\begin{array}{l}
\lim _{r \uparrow 1}\left(\sup _{|\hat{z}| \leqq \sigma_{0}}\left|v(\hat{z} ; r)-k_{1}\right|\right)=0 \tag{4.8}\\
\lim _{r \uparrow 1}\left(\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d v\left(t e^{i \theta} ; r\right)}{d \theta}\right|\right)=0
\end{array}\right.
$$

Finally we consider the family $\{w(\cdot ; r): r \uparrow 1\}$. As we examined $v(\cdot ; r)(r \uparrow 1)$ with the aid of $u(\cdot ; r)(r \uparrow 1)$, we can repeat exactly the same procedure to examine
$w(\cdot ; r)(r \uparrow 1)$ with the aid of $v(\cdot ; r)(r \uparrow 1)$. Then we come to the conclusion that $\{w(\cdot ; r): r \uparrow 1\}$ converges to k_{1} locally uniformly on $\left(\hat{\boldsymbol{D}} \backslash \gamma_{0} \cup \gamma_{-1}\right) \cup\left(\gamma_{0}^{+}+\right.$ $\gamma_{0}^{-}+\gamma_{-1}^{+}+\gamma_{-1}^{-}$) and obtain the following relation as the counterpart to (4.5) and also (4.8):

$$
\left\{\begin{array}{l}
\lim _{r \uparrow 1}\left(\sup _{|\hat{z}| \leqq \sigma_{0}}\left|w(\hat{z} ; r)-k_{1}\right|\right)=0 \tag{4.9}\\
\lim _{r \uparrow 1}\left(\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d w\left(t e^{i \theta} ; r\right)}{d \theta}\right|\right)=0 .
\end{array}\right.
$$

Based upon the three conclusions (4.5), (4.8), and (4.9), we will determine $\rho_{1} \in T$ as follows. First ρ_{1} is required, at least, to satisfy

$$
\begin{equation*}
\max \left(\sigma_{0}, \exp \left(-\frac{k_{1}}{4 K_{1}}\right)\right)<\rho_{1}<1 . \tag{4.10}
\end{equation*}
$$

Moreover ρ_{1} is supposed to satisfy (4.14), (4.15), and (4.16) below as follows. Once ρ_{1} is tentatively so determined as to satisfy (4.10), we set

$$
\begin{equation*}
\theta_{1}:=\theta\left(\rho_{1}\right) \in(0, \pi) \tag{4.11}
\end{equation*}
$$

(cf. (4.2)) and then the most decisively

$$
\begin{equation*}
\gamma_{1}:=\Gamma\left(\rho_{1}, \theta_{1}\right)=\Gamma\left(\rho_{1}, \theta\left(\rho_{1}\right)\right) \tag{4.12}
\end{equation*}
$$

and finally we set

$$
\begin{equation*}
u_{1}:=u\left(\cdot ; \rho_{1}\right), \quad v_{1}:=v\left(\cdot ; \rho_{1}\right), \quad w_{1}:=w\left(\cdot ; \rho_{1}\right) \tag{4.13}
\end{equation*}
$$

As a consequence of (4.5), we can moreover choose ρ_{1} so close enough to 1 as to yield

$$
\left\{\begin{array}{l}
u_{1}(0)=k_{1} \tag{4.14}\\
k_{1}-\varepsilon_{1} \leqq u_{1}(\hat{z}) \leqq k_{1}+\varepsilon_{1} \quad\left(|\hat{z}| \leqq \sigma_{0}\right) \\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d u_{1}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{1}
\end{array}\right.
$$

and similarly also by (4.8) we can and may make the relation

$$
\left\{\begin{array}{l}
k_{1}-\varepsilon_{1} \leqq v_{1}(\hat{z}) \leqq k_{1}+\varepsilon_{1} \quad\left(|\hat{z}| \leqq \sigma_{0}\right) \tag{4.15}\\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d v_{1}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{1}
\end{array}\right.
$$

valid and finally, based upon (4.9), we can assume, by taking ρ_{1} enough close to 1 , that the following relation holds:

$$
\left\{\begin{array}{l}
k_{1}-\varepsilon_{1} \leqq w_{1}(\hat{z}) \leqq k_{1}+\varepsilon_{1} \quad\left(|\hat{z}| \leqq \sigma_{0}\right) \tag{4.16}\\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{0}}\left|\frac{* d w_{1}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{1}
\end{array}\right.
$$

We have thus seen that we can find and then fix a ρ_{1} satisfying the conditions (4.10), (4.14), (4.15), and (4.16).

In addition to three functions u_{1}, v_{1}, and w_{1}, we also consider one more function $p_{1}:=u_{1} / 2$, only notationally new but essentially u_{1} up to the multiplicative constant, i.e. p_{1} is the solution in $H D\left(\hat{\boldsymbol{D}} \backslash \gamma_{1}\right) \cap C\left(\hat{\boldsymbol{D}}^{*}\right)$ of the Dirichlet problem on $\hat{\boldsymbol{D}} \backslash \gamma_{1}$ with the boundary data

$$
\left\{\begin{array}{l}
p_{1} \left\lvert\, \gamma_{1}=\frac{1}{2}=\frac{2}{4}\right. \tag{4.17}\\
p_{1} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

Note that $\hat{\boldsymbol{D}}$ is hyperbolically regular, i.e. every level line of the Green function $G(\cdot, \zeta ; \hat{\boldsymbol{D}})$ of $\hat{\boldsymbol{D}}$ is compact as is easily seen by looking at $G(\hat{z}, 0 ; \hat{\boldsymbol{D}})=g(\hat{z})=$ $\log (1 /|\hat{z}|)$. Hence every level line $\left\{p_{1}=a\right\}(0<a<1)$ of p_{1} is compact and therefore

$$
\begin{equation*}
P_{1}:=\left\{\hat{z} \in \hat{\boldsymbol{D}}: p_{1}(\hat{z})>\frac{1}{4}\right\} \supset \gamma_{1} \tag{4.18}
\end{equation*}
$$

is relatively compact subregion of $\hat{\boldsymbol{D}}$ containing γ_{1}. We now determine arbitrarily and then fix a $\sigma_{1} \in\left(\rho_{1}, 1\right) \cap T$ such that

$$
\begin{equation*}
\left\{|\hat{z}|<\sigma_{1}\right\} \supset \bar{P}_{1} . \tag{4.19}
\end{equation*}
$$

Hence we have established a particular procedure to construct ρ_{1} and σ_{1} (and four functions $u_{1}, v_{1}, w_{1}, p_{1}$ and a region P_{1}) as follows when $\sigma_{-2}<\rho_{-1}<\sigma_{-1}<\rho_{0}<$ σ_{0} (but only dummy ones) are given:

$$
\begin{equation*}
0<\sigma_{-2}<\rho_{-1}<\sigma_{-1}<\rho_{0}<\sigma_{0}<\rho_{1}<\sigma_{1}<1 \tag{4.20}
\end{equation*}
$$

5. Completion of the inductive construction.

In the first step, starting from given admissible arcs γ_{-1} and γ_{0}, we determined the admissible arc $\gamma_{1}:=\Gamma\left(\rho_{1}, \theta_{1}=\theta\left(\rho_{1}\right)\right)$ and the associated fundamental functions $u_{1}, v_{1}, w_{1}, p_{1}$ and the region P_{1} and the number σ_{1}. By exactly the same procedure as above, as the second step, starting from the admissible arcs γ_{0} and γ_{1}, we can determine the admissible arc $\gamma_{2}:=\Gamma\left(\rho_{2}, \theta_{2}=\theta\left(\rho_{2}\right)\right)$ and the associated fundamental functions $u_{2}, v_{2}, w_{2}, p_{2}$ and the region P_{2} and the number σ_{2}. Repeating this process until the construction in the $(n-1)^{t h}$ step is over with σ_{n-1} and γ_{n-1} determined, as the $n^{\text {th }}$ step construction, we can determine ρ_{n} as ρ_{1} was determined in the case of the first step in Section 4. Namely, we can so choose $\rho_{n} \in T$ as to satisfy

$$
\begin{equation*}
\max \left(\sigma_{n-1}, \exp \left(-\frac{k_{n}}{4 K_{n}}\right)\right)<\rho_{n}<1 \tag{5.1}
\end{equation*}
$$

and on taking the admissible arc

$$
\gamma_{n}:=\Gamma\left(\rho_{n}, \theta_{n}\right)=\Gamma\left(\rho_{n}, \theta\left(\rho_{n}\right)\right),
$$

we consider the solution $u_{n} \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{n}\right) \cup C\left(\hat{\boldsymbol{D}}^{*}\right)$ of the Dirichlet problem on $\hat{\boldsymbol{D}} \backslash \gamma_{n}$ with the boundary data

$$
\left\{\begin{array}{l}
u_{n} \mid \gamma_{n}=1 \tag{5.2}\\
u_{n} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

and the solution $v_{n} \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{n-1} \cup \gamma_{n}\right) \cap C\left(\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{n-1}}\right)$ of the mixed boundary value problem on $\hat{\boldsymbol{D}} \backslash \gamma_{n-1} \cup \gamma_{n}$ with the boundary data

$$
\left\{\begin{array}{l}
v_{n} \mid \gamma_{n}=1 \tag{5.3}\\
* d v_{n} \mid \gamma_{n-1}=0 \\
v_{n} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

and one more solution $w_{n} \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{n-2} \cup \gamma_{n-1} \cup \gamma_{n}\right) \cup C\left(\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{n-2} \cup \gamma_{n-1}}\right)$ of the mixed boundary value problem on $\hat{\boldsymbol{D}} \backslash \gamma_{n-2} \cup \gamma_{n-1} \cup \gamma_{n}$ with boundary data

$$
\left\{\begin{array}{l}
w_{n} \mid \gamma_{n}=1 \tag{5.4}\\
* d w_{n} \mid \gamma_{n-2} \cup \gamma_{n-1}=0 \\
w_{n} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

and in addition to (5.1) we choose ρ_{n} so close to 1 as to satisfy the following three relations (5.5)-(5.7) corresponding to the relations (4.14)-(4.16): for $u_{n}=u\left(\cdot ; \rho_{n}\right)$

$$
\left\{\begin{array}{l}
u_{n}(0)=k_{n} \tag{5.5}\\
k_{n}-\varepsilon_{n} \leqq u_{n}(\hat{z}) \leqq k_{n}+\varepsilon_{n} \quad\left(|\hat{z}| \leqq \sigma_{n-1}\right) \\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{n-1}}\left|\frac{* d u_{n}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{n}
\end{array}\right.
$$

and for $v_{n}=v\left(\cdot ; \rho_{n}\right)$

$$
\left\{\begin{array}{l}
k_{n}-\varepsilon_{n} \leqq v_{n}(\hat{z}) \leqq k_{n}+\varepsilon_{n} \quad\left(|\hat{z}| \leqq \sigma_{n-1}\right) \tag{5.6}\\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{n-1}}\left|\frac{* d v_{n}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{n}
\end{array}\right.
$$

and finally for $w_{n}=w\left(\cdot ; \rho_{n}\right)$

$$
\left\{\begin{array}{l}
k_{n}-\varepsilon_{n} \leqq w_{n}(\hat{z}) \leqq k_{n}+\varepsilon_{n} \quad\left(|\hat{z}| \leqq \sigma_{n-1}\right) \tag{5.7}\\
\sup _{t \in T,\left|t e^{i \theta}\right| \leqq \sigma_{n-1}}\left|\frac{* d w_{n}\left(t e^{i \theta}\right)}{d \theta}\right| \leqq \varepsilon_{n} .
\end{array}\right.
$$

After functions u_{n}, v_{n}, and w_{n} are thus defined, we define one more function p_{n} and a region $P_{n} \subset \hat{\boldsymbol{D}}$ and then a number $\sigma_{n} \in\left(\rho_{n}, 1\right) \cup T$ as will be described below. Let $p_{n}:=u_{n} / 2$ so that $p_{n} \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{n}\right) \cap C\left(\hat{\boldsymbol{D}}^{*}\right)$ is the solution of the Dirichlet problem on $\hat{\boldsymbol{D}} \backslash \gamma_{n}$ with boundary data

$$
\left\{\begin{array}{l}
p_{n} \left\lvert\, \gamma_{n}=\frac{1}{2}=\frac{2}{4}\right. \tag{5.8}\\
p_{n} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

Since $\hat{\boldsymbol{D}}$ is hyperbolically regular, level lines of p_{n} are all compact in $\hat{\boldsymbol{D}}$. Hence

$$
\begin{equation*}
P_{n}:=\left\{p_{n}>\frac{1}{4}\right\} \supset \gamma_{n} \tag{5.9}
\end{equation*}
$$

is a relatively compact subregion of $\hat{\boldsymbol{D}}$ containing γ_{n}. Finally we can choose arbitrarily and then fix a $\sigma_{n} \in\left(\rho_{n}, 1\right) \cap T$ such that

$$
\begin{equation*}
\left\{|\hat{z}|<\sigma_{n}\right\} \supset \bar{P}_{n} \tag{5.10}
\end{equation*}
$$

Hence we see that

$$
\begin{equation*}
0<\sigma_{n-1}<\rho_{n}<\sigma_{n}<1 \quad(n \in \boldsymbol{N}) \tag{5.11}
\end{equation*}
$$

Lastly, we evaluate $\theta_{n}=\theta\left(\rho_{n}\right)$ in $\gamma_{n}=\Gamma\left(\rho_{n}, \theta_{n}\right)$ in terms of k_{n}. Let ω be the harmonic measure function on the region $\left\{|\hat{z}|<\rho_{n}\right\}$ of the boundary arc $\gamma_{n}=\Gamma\left(\rho_{n}, \theta_{n}\right) \subset\left\{|\hat{z}|=\rho_{n}\right\}$, i.e. $\omega \in H B\left(\left\{|\hat{z}|<\rho_{n}\right\}\right)$ with boundary values 1 on the interior of the arc γ_{n} and 0 on $\left\{|\hat{z}|=\rho_{n}\right\} \backslash \gamma_{n}$. Since $\omega \leqq u_{n}$ on $\left\{|\hat{z}|<\rho_{n}\right\}$, we see in particular

$$
\omega(0) \leqq u_{n}(0)=k_{n} .
$$

On the other hand the Green function $G(\hat{z}, 0)$ on $\left\{|\hat{z}|<\rho_{n}\right\}$ with its pole 0 is

$$
G(\hat{z}, 0)=\log \left(\frac{\rho_{n}}{|\hat{z}|}\right)=\log \rho_{n}+g(\hat{z})=\log \rho_{n}-\log |\hat{z}| .
$$

By using the Poisson formula we see that

$$
\omega(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \omega\left(\rho_{n} e^{i \theta}\right)\left[\frac{\partial}{\partial r} G\left(r e^{i \theta}, 0\right)\right]_{r=\rho_{n}} \rho_{n} d \theta=\frac{1}{2 \pi} \int_{-\theta_{n}}^{\theta_{n}} d \theta=\frac{\theta_{n}}{\pi} .
$$

Hence we have

$$
\begin{equation*}
0<\theta_{n} \leqq \pi k_{n} \quad(n \in N) \tag{5.12}
\end{equation*}
$$

and this is also true for $n=0$ by our convention (cf. Section 3). This is a quite rough estimate but sufficient for our later purpose.

6. An essential function.

We have constructed four function sequences $\left(u_{n}\right)_{n \in \boldsymbol{N}},\left(v_{n}\right)_{n \in \boldsymbol{N}},\left(w_{n}\right)_{n \in \boldsymbol{N}}$, and $\left(p_{n}\right)_{n \in \boldsymbol{N}}$. We now construct a sequence $\left(h_{n}\right)_{n \in \boldsymbol{N}}$ of important functions h_{n} which play essential roles below. Except $\left(p_{n}\right)_{n \in N}$, three function sequences $\left(u_{n}\right)_{n \in \boldsymbol{N}},\left(v_{n}\right)_{n \in \boldsymbol{N}}$, and $\left(w_{n}\right)_{n \in \boldsymbol{N}}$ will play only supporting roles to $\left(h_{n}\right)_{n \in \boldsymbol{N}}$. Anyway we define the solution $h_{n} \in H\left(\hat{\boldsymbol{D}} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}\right) \cap C\left(\overline{\hat{\boldsymbol{D}}^{*} \backslash \gamma_{n-1} \cup \gamma_{n+1}}\right)$ of the mixed boundary value problem on $\hat{\boldsymbol{D}} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}$ with boundary data

$$
\left\{\begin{array}{l}
h_{n} \mid \gamma_{n}=1 \tag{6.1}\\
* d h_{n} \mid \gamma_{n-1} \cup \gamma_{n+1}=0 \\
h_{n} \mid \delta \hat{\boldsymbol{D}}=0
\end{array}\right.
$$

For the unique existence of h_{n}, as appeared repeatedly before, see e.g. [11]. By the comparison principle we see that

$$
-w_{n+1}+v_{n} \leqq h_{n} \leqq w_{n+1}+v_{n}
$$

on $\hat{\boldsymbol{D}} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}$ because the same is true on its essential boundary $\gamma_{n-1} \cup$ $\gamma_{n} \cup \gamma_{n+1} \cup \delta \hat{\boldsymbol{D}}$. By (5.6) and (5.7) we deduce

$$
k_{n}-\left(k_{n+1}+\varepsilon_{n}+\varepsilon_{n+1}\right) \leqq h_{n}(\hat{z}) \leqq k_{n}+\left(k_{n+1}+\varepsilon_{n}+\varepsilon_{n+1}\right)
$$

on $|\hat{z}| \leqq \sigma_{n-1}$. By the manner k_{n} and ε_{n} are given in (3.2)-(3.4), we have

$$
\begin{equation*}
\frac{k_{n}}{2} \leqq h_{n}(\hat{z}) \leqq \frac{3 k_{n}}{2} \quad\left(|\hat{z}| \leqq \sigma_{n-1}\right) \tag{6.2}
\end{equation*}
$$

In particular, we have $h_{n}(0) \geqq k_{n} / 2$. We apply the Stokes formula to the differential form $g * d h_{n}-h_{n} * d g$ on $(\underline{\boldsymbol{D}} \backslash \overline{(c)}) \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}$, where c is a small circle with radius $0<\varepsilon<t_{0}$ and $\overline{(c)}$ the closed disc bounded by c. Then we have

$$
\int_{\delta \hat{\boldsymbol{D}}+c+\gamma_{n-1}+\gamma_{n}+\gamma_{n+1}}\left(g * d h_{n}-h_{n} * d g\right)=0 .
$$

Since $\int_{c}\left(g * d h_{n}-h_{n} * d g\right)=\mathscr{O}(\varepsilon \log \varepsilon)-2 \pi h_{n}(0) \rightarrow-2 \pi h_{n}(0)$ as $\varepsilon \downarrow 0$, we see that

$$
\int_{\delta \hat{\boldsymbol{D}}+\gamma_{n-1}+\gamma_{n}+\gamma_{n+1}}\left(g * d h_{n}-h_{n} * d g\right)=2 \pi h_{n}(0) .
$$

But we also have

$$
\begin{aligned}
& \int_{\delta \hat{\boldsymbol{D}}+\gamma_{n-1}+\gamma_{n}+\gamma_{n+1}} g * d h_{n} \\
& \quad=\log \left(\frac{1}{\rho_{n}}\right) \int_{\gamma_{n}} * d h_{n}=\log \left(\frac{1}{\rho_{n}}\right) \int_{\gamma_{n}} h_{n} * d h_{n} \\
& \quad=\log \left(\frac{1}{\rho_{n}}\right) \int_{\delta \hat{\boldsymbol{D}}+\gamma_{n-1}+\gamma_{n}+\gamma_{n+1}} h_{n} * d h_{n}=\log \left(\frac{1}{\rho_{n}}\right) D\left(h_{n} ; \hat{\boldsymbol{D}}\right)
\end{aligned}
$$

and

$$
\int_{\delta \hat{\boldsymbol{D}}+\gamma_{n-1}+\gamma_{n}+\gamma_{n+1}} h_{n} * d g=\int_{\gamma_{n-1}+\gamma_{n+1}} h_{n} * d g .
$$

Therefore we obtain

$$
\begin{equation*}
D\left(h_{n} ; \hat{\boldsymbol{D}}\right) \log \left(\frac{1}{\rho_{n}}\right)=2 \pi h_{n}(0)+\int_{\gamma_{n-1}+\gamma_{n+1}} h_{n} * d g \tag{6.3}
\end{equation*}
$$

Observe that $* d g\left(\rho_{j} e^{i \theta}\right)=d \theta$ on $\gamma_{j}=\gamma_{j}^{+}+\gamma_{j}^{-}(j=n \pm 1)$. On denoting by $h_{n}^{ \pm}$ the continuous boundary values of h_{n} on $\gamma_{n-1}=\gamma_{n-1}^{+}+\gamma_{n-1}^{-}$we have

$$
\int_{\gamma_{n-1}} h_{n} * d g=\int_{\gamma_{n-1}^{+}+\gamma_{n-1}^{-}} h_{n} * d g=\int_{-\theta_{n-1}}^{\theta_{n-1}}\left(h_{n}^{+}\left(\rho_{n-1} e^{i \theta}\right)-h_{n}^{-}\left(\rho_{n-1} e^{i \theta}\right)\right) d \theta
$$

By (6.2) and (5.12), we deduce

$$
\left|\int_{\gamma_{n-1}} h_{n} * d g\right| \leqq \int_{-\theta_{n-1}}^{\theta_{n-1}} \frac{3}{2} k_{n} d \theta=3 k_{n} \theta_{n-1} \leqq 3 \pi k_{n-1} \cdot k_{n} .
$$

Though very rough but certainly $\left|h_{n}^{+}-h_{n}^{-}\right| \leqq 2$ on $\gamma_{n+1}=\gamma_{n+1}^{+}+\gamma_{n+1}^{-}$and hence, by (5.12)

$$
\left|\int_{\gamma_{n+1}} h_{n} * d g\right| \leqq \int_{-\theta_{n+1}}^{\theta_{n+1}} 2 d \theta=4 \theta_{n+1} \leqq 4 \pi k_{n+1}
$$

Using (3.2)-(3.4) we see that

$$
\begin{equation*}
\left|\int_{\gamma_{n-1}+\gamma_{n+1}} h_{n} * d g\right| \leqq \pi\left(3 k_{n-1} k_{n}+4 k_{n+1}\right) \leqq \frac{k_{n}}{4} \tag{6.4}
\end{equation*}
$$

Since $h_{n}(0) \geqq k_{n} / 2$, we conclude with (6.3) that

$$
D\left(h_{n} ; \hat{\boldsymbol{D}}\right) \log \left(\frac{1}{\rho_{n}}\right) \geqq \pi k_{n}-\frac{k_{n}}{4}=\frac{k_{n}}{4}
$$

or equivalently we have

$$
D\left(h_{n} ; \hat{\boldsymbol{D}}\right) \geqq \frac{k_{n}}{4} \log \left(\frac{1}{\rho_{n}}\right)
$$

By the manner ρ_{n} is chosen to satisfy (5.1) we finally conclude that

$$
\begin{equation*}
D\left(h_{n} ; \hat{\boldsymbol{D}}\right) \geqq K_{n} \quad(n \in \boldsymbol{N}) \tag{6.5}
\end{equation*}
$$

7. Construction of a surface.

We use the doubling process of two Riemann surfaces along a common slit. Concerning the welding (pasting) of two surfaces along a cut, we refer the reader to the splendid description in the monograph $[\mathbf{1 0}]$ of Oikawa (see also [$\mathbf{9}]$).

Let X and Y be two Riemann surfaces and suppose there is a simply connected analytic Jordan region U contained both in X and also in Y. Let $\gamma \subset U$ be an analytic Jordan arc and γ^{+}and γ^{-}be both sides of the cut γ. We view that $U \backslash \gamma$ is surrounded by two analytic Jordan curves ∂U and $\gamma^{+}+\gamma^{-}$. We can also view that a concentric circular ring $A:=\{a<|z|<b\}(0<a<b<1)$ is a conformal representation of $U \backslash \gamma$ in which $\alpha:=\{|z|=a\}(\beta:=\{|z|=b\}$, resp.) corresponds to $\gamma^{+}+\gamma^{-}(\partial U$, resp. $)$. We denote by Φ the restriction of the conformal structure of X to $U \backslash \gamma$ and Φ^{*} the restriction of the conformal structure of Y to $U \backslash \gamma$ and assume that Φ^{*} is the conjugate (i.e. reversed) conformal structure of Φ so that the identity mapping of $(U \backslash \gamma, \Phi)$ to $\left(U \backslash \gamma, \Phi^{*}\right)$ is anticonformal. We weld the bordered Riemann surface (A, Φ) which is the conformal representation of $(U \backslash \gamma, \Phi)$ to $\left(A, \Phi^{*}\right)$ which is the conformal representation of $\left(U \backslash \gamma, \Phi^{*}\right)$ by means of the identity mapping of the component α of the border ∂A, which gives rise to the welding of $X \backslash \gamma$ to $Y \backslash \gamma$ by the identity mapping of $\gamma^{+}+\gamma^{-}$. In other words, we are considering the welding of $X \backslash \gamma$ to $Y \backslash \gamma$ induced by the double of $U \backslash \gamma=A$ about α. We say this process that we paste $X \backslash \gamma$ to $Y \backslash \gamma$ along γ anticonformally and the resulting surface is denoted by

$$
\begin{equation*}
(X \backslash \gamma) \uplus_{\gamma}(Y \backslash \gamma) \tag{7.1}
\end{equation*}
$$

We now start the operations of constructing a Riemann surface W such that $H D(W)=H B D(W)$ and $\operatorname{dim} H D(W)=\infty$. We denote by Φ the original conformal structure of the Sario-Tôki disc $\hat{\boldsymbol{D}}$ and by Φ^{*} the conjugate conformal structure of Φ on $\hat{\boldsymbol{D}}$. We define a sequence of Riemann surfaces S_{n} by

$$
\begin{cases}S_{2 \nu-1}:=(\hat{\boldsymbol{D}}, \Phi) & (\nu \in \boldsymbol{N}) \tag{7.2}\\ S_{2 \nu}:=\left(\hat{\boldsymbol{D}}, \Phi^{*}\right) & (\nu \in \boldsymbol{N})\end{cases}
$$

We take the sequence $\left(\gamma_{n}\right)_{n \in \boldsymbol{N}}$ of admissible arcs $\gamma_{n}=\Gamma\left(\rho_{n}, \theta_{n}\right)(n \in \boldsymbol{N})$ on $\hat{\boldsymbol{D}}$ constructed in Sections 3-6. Then the required surface W is given by

$$
\begin{equation*}
W:=\cdots\left\{\left\{\left\{\left(S_{1} \backslash \gamma_{1}\right) \uplus_{\gamma_{1}}\left(S_{2} \backslash \gamma_{1} \cup \gamma_{2}\right)\right\} \uplus_{\gamma_{2}}\left(S_{3} \backslash \gamma_{2} \cup \gamma_{3}\right)\right\} \uplus_{\gamma_{3}}\left(S_{4} \backslash \gamma_{3} \cup \gamma_{4}\right)\right\} \cdots \tag{7.3}
\end{equation*}
$$

It may be impressive to call surfaces as above as grafted surfaces.
We denote by W^{*} the Wiener compactification of W and by $\gamma W=W^{*} \backslash W$ the Wiener boundary of W and the Wiener harmonic boundary δW is the set of regular points in γW with respect to the Dirichlet problem, and δW is a compact subset of γW. The Wiener harmonic boundary δS_{j} of each S_{j} is a singleton so that $\delta S_{j}=\left\{d_{j}\right\}(j \in \boldsymbol{N})$. Then let

$$
\begin{equation*}
\hat{\delta} W:=\cup_{j \in N} \delta S_{j}=\left\{d_{1}, d_{2}, \ldots, d_{j}, \ldots\right\} \tag{7.4}
\end{equation*}
$$

which is seen to be a subset of δW :

$$
\begin{equation*}
\hat{\delta} W \subset \delta W \tag{7.5}
\end{equation*}
$$

Since $\hat{\delta} W$ is in general not compact but actually noncompact in the present W since $\# \hat{\delta} W=\infty$ while δW is compact, $\hat{\delta} W$ is always a proper subset of δW (see (7.4) above). But $\hat{\delta} W$ almost exhausts δW in a sense, which is crystallized by the following important result. At this point we need to recall the quasiboundedness for harmonic functions on a Riemann surface R. A harmonic function u on a Riemann surface R is quasibounded if

$$
u=\lim _{m, n \in N, m, n \rightarrow \infty}(u \wedge m) \vee(-n)
$$

on R. The totality of quasibounded harmonic functions on R is denoted by
$H B^{\prime}(R)$. It is entirely trivial that $H B(R) \subset H B^{\prime}(R) \subset H P(R)$ but it is slightly less trivial that $H D(R) \subset H B^{\prime}(R)$ (cf. e.g. [11]). Then we can state an important role played by the set $\hat{\delta} W$.

The Unicity Principle. If $u \in H B^{\prime}(W)$ satisfies $u \mid \hat{\delta} W=0$, then $u \equiv 0$ on W.

Proof. Since $H B^{\prime}(W)$ is a Riesz subspace (i.e. vector sublattice) of $H P(W)$, the positive part u^{+}and the negative part u^{-}of the Jordan decomposition $u=u^{+}-u^{-}$of $u \in H B^{\prime}(W)$ also belong to $H B^{\prime}(W)$. Let

$$
\max (u, 0)=u^{+}-s
$$

be the Riesz decomposition of the subharmonic function $\max (u, 0)$ dominated by $u^{+}+u^{-}$into the harmonic part u^{+}and the potential part s on W. Since $s \mid \delta W=0$ (cf. e.g. [2], [11]) and $\hat{\delta} W \subset \delta W$, we see that $s \mid \hat{\delta} W=0$. Clearly $\max (u, 0) \mid \hat{\delta} W=0$ along with $u \mid \hat{\delta} W=0$ and therefore $u^{+} \mid \hat{\delta} W=0$. Similarly $u^{-} \mid \hat{\delta} W=0$. Hence we only have to show that if $u \in H B^{\prime}(W)^{+}$satisfies $u \mid \hat{\delta} W=0$ then $u \equiv 0$ on W. Clearly $0 \leqq u \wedge n \leqq u$ on W and hence $u \wedge n \mid \hat{\delta} W=0$ and $u=\lim _{n \in \boldsymbol{N}, n \rightarrow \infty} u \wedge n$ locally uniformly on W. Thus we really have to prove is that if $u \in H(W)$ with $0 \leqq u \leqq 1$ on W satisfies $u \mid \hat{\delta} W=0$, then $u \equiv 0$ on W.

Let $W_{n}(n \geqq 2)$ be the subsurface of W given by
$W_{n}:=\left\{\cdots\left\{\left\{\left\{\left(S_{1} \backslash \gamma_{1}\right) \uplus_{\gamma_{1}}\left(S_{2} \backslash \gamma_{1} \cup \gamma_{2}\right)\right\} \uplus_{\gamma_{2}}\left(S_{3} \backslash \gamma_{2} \cup \gamma_{3}\right)\right\} \cdots\right\} \uplus_{\gamma_{n-1}}\left(S_{n} \backslash \gamma_{n-1} \cup \gamma_{n}\right)\right\}$
so that $\partial W_{n}=\gamma_{n}=\gamma_{n}^{+}+\gamma_{n}^{-}$. We take the solution $s_{n} \in H\left(S_{n} \backslash \gamma_{n-1} \cup \gamma_{n}\right) \cap C\left(S_{n}^{*}\right)$ of the Dirichlet problem on $S_{n} \backslash \gamma_{n-1} \cup \gamma_{n}$ with the boundary data

$$
\left\{\begin{array}{l}
s_{n} \mid \gamma_{n}=1 \tag{7.6}\\
s_{n} \mid \gamma_{n-1}=k_{n} \\
s_{n} \mid \delta S_{n}=0
\end{array}\right.
$$

where topologically $S_{n}^{*}=\hat{\boldsymbol{D}}^{*}$ and thus $\delta S_{n}=\delta \hat{\boldsymbol{D}}=\left\{d_{n}\right\}$. For the unique existence of s_{n}, cf. [11]. Comparing the boundary values of s_{n} with those of u_{n}, we see that $-\varepsilon_{n} \leqq s_{n}-u_{n} \leqq \varepsilon_{n}$, and hence by (5.5) we have $k_{n}-2 \varepsilon_{n} \leqq s_{n} \leqq k_{n}+2 \varepsilon_{n}$ on $P_{n-1} \subset\left\{|\hat{z}|<\sigma_{n-1}\right\}$. Considering $s_{n}+p_{n-1}$ on $P_{n-1} \backslash \gamma_{n-1}$, we see by (3.2)-(3.4) that

$$
\left\{\begin{array}{l}
\left(s_{n}+p_{n-1}\right) \left\lvert\, \gamma_{n-1}=k_{n}+\frac{1}{2}\right. \tag{7.7}\\
\left(s_{n}+p_{n-1}\right) \left\lvert\, \partial P_{n-1} \leqq k_{n}+2 \varepsilon_{n}+\frac{1}{4}<k_{n}+2 \cdot 10^{-6}+\frac{1}{4}<k_{n}+\frac{1}{2}\right.
\end{array}\right.
$$

We also consider the solution $q_{n-1} \in H\left(W_{n-1}\right) \cap C\left(\left(W_{n-1} \cup \gamma_{n-1}\right)^{*}\right)$ of the Dirichlet problem on W_{n-1} with the boundary data

$$
\left\{\begin{array}{l}
q_{n-1} \left\lvert\, \gamma_{n-1}=k_{n}+\frac{1}{2}\right. \tag{7.8}\\
q_{n-1} \mid \delta S_{1} \cup \delta S_{2} \cup \cdots \cup \delta S_{n-1}=0 .
\end{array}\right.
$$

For the unique existence of q_{n-1}, cf. [11]. We then set

$$
s:= \begin{cases}s_{n}+p_{n-1} & \left(\text { on } S_{n} \backslash \gamma_{n}\right) \tag{7.9}\\ q_{n-1} & \left(\text { on } W_{n-1}\right) .\end{cases}
$$

In view of (7.7) and (5.8) we see that s is superharmonic on W_{n}. By the manner k_{n} is chosen in (3.2), we infer that

$$
\begin{equation*}
s \left\lvert\, \gamma_{n-1}=k_{n}+\frac{1}{2} \leqq \frac{2}{3} \quad(n \geqq 2) .\right. \tag{7.10}
\end{equation*}
$$

A fortiori, since $0 \leqq u \leqq s_{n}$ on $\partial W_{n}=\gamma_{n}$, we have $0 \leqq u \leqq 2 / 3$ on $\partial W_{n-1}=\gamma_{n-1}$. We repeat the same discussion for W_{n-1} and $(3 / 2) u$ as was done for W_{n} and u and derive $0 \leqq u \leqq(2 / 3)^{2}$ on $\partial W_{n-2}=\gamma_{n-2}$. After $(n-1)$ repetitions of these procedures we arrive at $0 \leqq u \leqq(2 / 3)^{n-1}$ on $\partial W_{1}=\gamma_{1}$. By the maximum principle, we obtain

$$
\begin{equation*}
0 \leqq u \left\lvert\, W_{1} \leqq\left(\frac{2}{3}\right)^{n-1}\right. \tag{7.11}
\end{equation*}
$$

Since $n \geqq 2$ was arbitrarily chosen, we conclude $u \equiv 0$ on W_{1} by $n \uparrow \infty$ in (7.11). Hence we can finally maintain $u \equiv 0$ on W.

The meaning of the above result is that only a part $\hat{\delta} W$ of δW is already playing important roles originally played by δW. We state here some of these roles including inevitable ones for the later use. First we ask how large $\hat{\delta} W$ is quantitatively. As a reference point $o \in W$ of W we take the origin 0 in the first component $S_{1} \backslash \gamma_{1}$, i.e. $0 \in S_{1} \backslash \gamma_{1}$ and $o=0 \in S_{1} \backslash \gamma_{1}$. Let hm be the harmonic
measure on δW with the reference point o. Then we can prove quite easily that the unicity principle above for $\hat{\delta} W$ is equivalent to

$$
\begin{equation*}
\operatorname{hm}(\delta W \backslash \hat{\delta} W)=0 \tag{7.12}
\end{equation*}
$$

which is also equivalent to the existence of an $e \in H B^{\prime}(W)^{+}$such that

$$
\begin{equation*}
e \mid \delta W \backslash \hat{\delta} W=+\infty \tag{7.13}
\end{equation*}
$$

The last function e above is a very powerful and useful tool to show a certain property valid for δW is already valid for $\hat{\delta} W$. As an example we prove the following fact: if $u \mid \hat{\delta} W \geqq 0$ for a $u \in H B^{\prime}(W)$, then $u \geqq 0$ on W. In fact, for an arbitrary $\varepsilon>0$ we see that $(u+\varepsilon e) \mid \delta W \geqq 0$. It is a standard knowledge that $(u+\varepsilon e) \mid \delta W \geqq 0$ implies $u+\varepsilon e \geqq 0$ on W. On making $\varepsilon \downarrow 0$, we conclude that $u \geqq 0$ on W, which was to be shown.

For each $i \in \boldsymbol{N}$ there is a unique solution $e_{i} \in H B D(W) \subset H B^{\prime}(W)$ of the Dirichlet problem on W with the boundary data

$$
\left\{\begin{array}{l}
e_{i} \mid \delta S_{i}=e_{i}\left(d_{i}\right)=1 \tag{7.14}\\
e_{i} \mid \delta W \backslash \delta S_{i}=0 .
\end{array}\right.
$$

For the unique existence of e_{i}, again see [11]. The unicity principle for $\hat{\delta} W$ assures that the condition (7.14) is equivalent to the weaker condition

$$
\begin{equation*}
e_{i}\left(d_{j}\right)=\delta_{i j}(\text { the Kronecker delta }) \quad(i, j \in \boldsymbol{N}) \tag{7.15}
\end{equation*}
$$

Therefore we see that

$$
\begin{equation*}
\operatorname{hm}\left(\delta S_{i}\right)=\operatorname{hm}\left(\left\{d_{i}\right\}\right)=e_{i}(o) \quad(i \in \boldsymbol{N}) \tag{7.16}
\end{equation*}
$$

and, by (7.12), we have $\mathrm{hm}(\hat{\delta} W)=\mathrm{hm}(\delta W)=1$ and a fortiori

$$
\begin{equation*}
\sum_{i \in \boldsymbol{N}} e_{i}(o)=1 \tag{7.17}
\end{equation*}
$$

Properties for $\hat{\delta} W$ stated below are all derived off hand from the corresponding ones for δW by using the function e in (7.13). First of all, we state the maximum principle for $\hat{\delta} W$: for $u \in H B^{\prime}(W)$ we have

$$
\left\{\begin{array}{l}
\sup _{W} u=\sup _{\hat{\delta} W} u \tag{7.18}\\
\inf _{W} u=\inf _{\hat{\delta} W} u
\end{array}\right.
$$

Next, the representation theorem: for any $u \in H B^{\prime}(W)$, we have

$$
\begin{equation*}
u=\sum_{j \in N} u\left(d_{j}\right) e_{j} \tag{7.19}
\end{equation*}
$$

on W, and the convergence in (7.19) is of local uniform one on W. As the converse to this, we have the following solvability of the Dirichlet problem: a sequence $\left(a_{j}\right)_{j \in \boldsymbol{N}} \subset \boldsymbol{R}$ satisfies

$$
\begin{equation*}
\sum_{j \in N}\left|a_{j}\right| e_{j}(o)<\infty \tag{7.20}
\end{equation*}
$$

or, equivalently, $\left(a_{j}\right)_{j \in \boldsymbol{N}} \in L^{1}(\boldsymbol{N}, \mathrm{hm})$, if and only if

$$
\begin{equation*}
u:=\sum_{j \in N} a_{j} e_{j} \in H B^{\prime}(W) \tag{7.21}
\end{equation*}
$$

We are now in the stage that we can give a proof to

$$
\begin{equation*}
\operatorname{dim} H D(W)=\infty \tag{7.22}
\end{equation*}
$$

In fact, choose arbitrarily m mutually distinct functions $e_{j_{i}}(1 \leqq i \leqq m)$ from the family $\left\{e_{j}: j \in N\right\}$ and suppose their linear combination vanishes on W :

$$
\sum_{1 \leqq i \leqq m} \lambda_{i} e_{j_{i}}=0
$$

on W. By considering this at the point $d_{j_{i}}$, we obtain $\lambda_{i}=0(i=1,2, \ldots, m)$. We have thus seen that any finite subset of $\left\{e_{j}: j \in \boldsymbol{N}\right\}$ is linearly independent so that (7.22) is deduced.

8. Completion of the proof.

In this last section we show that the essential property $H D(W) \subset H B(W)$, or equivalently $H D(W)=H B D(W)$, is valid for the Riemann surface W given by
(7.3). At the final part of the preceding section 7 we have shown very easily the fact (7.22): $\operatorname{dim} H D(W)=\infty$. Thus the proof of our main theorem is complete if $H D(W)=H B D(W)$ is established, which is in reality very far from being trivial compared with that of (7.22). Let

$$
\begin{equation*}
R_{n}:=\left(S_{n} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}\right) \uplus_{\gamma_{n}}\left(S_{n+1} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}\right) \quad(n \in N) \tag{8.1}
\end{equation*}
$$

We consider the symmetric selfmapping j_{n} of R_{n} induced by the identity mapping of $\hat{\boldsymbol{D}}$. Take the solution $f_{n} \in H\left(R_{n}\right) \cap C\left(\bar{R}_{n}\right)$ of the mixed boundary value problem on R_{n} with the boundary data

$$
\left\{\begin{array}{l}
f_{n} \mid \delta S_{n}=0 \\
f_{n} \mid \delta S_{n+1}=1 \\
* d f_{n} \mid \partial R_{n}=0
\end{array}\right.
$$

where \bar{R}_{n} is the closure of R_{n} in the Wiener compactification W^{*} of W. For the unique existence of f_{n}, see again [11]. The function $f_{n}+f_{n} \circ j_{n} \in H\left(R_{n}\right)$ takes the value 1 on the harmonic boundary δR_{n} of R_{n} and therefore, by the maximum principle, we deduce

$$
f_{n}+f_{n} \circ j_{n} \equiv 1
$$

on R_{n}. Since $j_{n}=i d$. (identity) on γ_{n}, we have $f_{n}=f_{n} \circ j_{n}$ on γ_{n} and hence $f_{n} \mid \gamma_{n}=1 / 2$. Thus we see that $f_{n}=(1 / 2) h_{n}$ on $\left(S_{n} \backslash \gamma_{n-1} \cup \gamma_{n} \cup \gamma_{n+1}\right)$. Therefore, if we define \hat{h}_{n} by

$$
\left(\frac{1}{2}\right) \hat{h}_{n}:= \begin{cases}\left(\frac{1}{2}\right) h_{n} & \left(\text { on } S_{n} \backslash \gamma_{n-1} \cup \gamma_{n+1}\right) \tag{8.2}\\ 1-\left(\frac{1}{2}\right) h_{n} \circ j_{n} & \left(\text { on } S_{n+1} \backslash \gamma_{n-1} \cup \gamma_{n+1}\right),\end{cases}
$$

then $(1 / 2) \hat{h}_{n}=f_{n} \in H\left(R_{n}\right)$ and a fortiori $\hat{h}_{n} \in H\left(R_{n}\right)$.
Choose an arbitrary $u \in H D(W)$. We wish to show that $u \in H B(W)$ or equivalently $u \in H B D(W)$. For the purpose we set

$$
\begin{equation*}
u\left(d_{j}\right)=: a_{j} \quad(j \in \boldsymbol{N}) \tag{8.3}
\end{equation*}
$$

By the maximum principle for $\hat{\delta} W=\left\{d_{1}, d_{2}, \ldots, d_{j}, \ldots\right\}$, we see the equivalence
of $u \in H B D(W)$ and $\left(a_{j}\right)_{j \in N} \in l^{\infty}$. Hence we only have to show the boundedness of the sequence $\left(a_{j}\right)_{j \in N}$. Observe that

$$
\begin{equation*}
\sum_{n \in \boldsymbol{N}} D\left(u ; R_{n}\right) \leqq 2 D(u ; W) . \tag{8.4}
\end{equation*}
$$

Fix an arbitrary $n \in \boldsymbol{N}$. If $a_{n} \neq a_{n+1}$, then

$$
v:=\frac{u-a_{n}}{a_{n+1}-a_{n}}
$$

belongs to $H B D\left(R_{n}\right)$ and $u=\left(a_{n+1}-a_{n}\right) v+a_{n}$ on R_{n}. Hence

$$
D\left(u ; R_{n}\right)=\left(a_{n+1}-a_{n}\right)^{2} D\left(v ; R_{n}\right) .
$$

By the boundary conditions $v-\hat{h}_{n} / 2=0$ on the harmonic boundary $\delta S_{n} \cup \delta S_{n+1}$ of R_{n} and in particular $* d \hat{h}_{n}=0$ on ∂R_{n}, the Stokes formula yields

$$
D\left(v-\frac{\hat{h}_{n}}{2}, \frac{\hat{h}_{n}}{2} ; R_{n}\right)=\int_{\delta S_{n} \cup \delta S_{n+1}+\partial R_{n}}\left(v-\frac{\hat{h}_{n}}{2}\right) * \frac{d \hat{h}_{n}}{2}=0,
$$

or $D\left(v, \hat{h}_{n} / 2 ; R_{n}\right)=D\left(\hat{h}_{n} / 2 ; R_{n}\right)$, and therefore we deduce

$$
D\left(v-\frac{\hat{h}_{n}}{2} ; R_{n}\right)=D\left(v ; R_{n}\right)-D\left(\frac{\hat{h}_{n}}{2} ; R_{n}\right) \geqq 0
$$

Hence by (6.5) we see that

$$
D\left(v ; R_{n}\right) \geqq D\left(\frac{\hat{h}_{n}}{2} ; R_{n}\right)=2 D\left(\frac{h_{n}}{2} ; \hat{\boldsymbol{D}}\right) \geqq \frac{K_{n}}{2}
$$

Therefore we obtain

$$
\begin{equation*}
D\left(u ; R_{n}\right) \geqq \frac{K_{n}\left(a_{n+1}-a_{n}\right)^{2}}{2} \tag{8.5}
\end{equation*}
$$

We have deduced the above inequality (8.5) under the assumption $a_{n} \neq a_{n+1}$ but this inequality is trivially true if $a_{n}=a_{n+1}$. Thus (8.5) is always valid for every $n \in N$. This with (8.4) we obtain

$$
\begin{equation*}
\sum_{n \in N} K_{n}\left(a_{n+1}-a_{n}\right)^{2} \leqq 4 D(u ; W) \tag{8.6}
\end{equation*}
$$

Fix an arbitrary $m \in \boldsymbol{N}$. Then the Schwarz inequality implies that

$$
\begin{aligned}
\left|a_{m}-a_{1}\right| & =\left|\sum_{1 \leqq n<m}\left(a_{n+1}-a_{n}\right)\right| \leqq \sum_{1 \leqq n<m}\left|a_{n+1}-a_{n}\right| \\
& =\sum_{1 \leqq n<m} K_{n}^{1 / 2}\left|a_{n+1}-a_{n}\right| \cdot K_{n}^{-1 / 2} \\
& \leqq \sqrt{\sum_{1 \leqq n<m} K_{n}\left(a_{n+1}-a_{n}\right)^{2}} \cdot \sqrt{\sum_{1 \leqq n<m} 1 / K_{n}}
\end{aligned}
$$

We have

$$
\sqrt{\sum_{n \in \boldsymbol{N}} 1 / K_{n}}=: K<\infty
$$

by (3.1). Then (8.6) assures that

$$
\left|a_{m}-a_{1}\right| \leqq 2 \sqrt{D(u ; W)} K
$$

and a fortiori

$$
\left|a_{m}\right| \leqq\left|a_{1}\right|+2 K \sqrt{D(u ; W)} \quad(m \in \boldsymbol{N})
$$

or $\left(a_{m}\right)_{m \in \boldsymbol{N}} \in l^{\infty}$, which was to be shown.

References

[1] L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Math. Ser., 26, Princeton Univ. Press, 1960.
[2] C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 32, Springer-Verlag, 1963.
[3] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, 1993.
[4] F.-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math., 803, Springer-Verlag, 1980.
[5] H. Masaoka, The class of harmonic functions with finite Dirichlet integrals and the harmonic Hardy spaces on a hyperbolic Riemann surface, RIMS Kôkyûroku, 1669 (2009), 81-90.
[6] M. Nakai, Extremal functions for capacities, Proceedings of the Workshop on Potential Theory, Hiroshima, 2007, pp. 83-102.
[7] M. Nakai, Extremal functions for capacities, J. Math. Soc. Japan, 61 (2009), 345-361.
[8] M. Nakai, Spectral resolutions of bounded harmonic functions, Proceeding of the Workshop on Potential Theory in Akita, 2008, pp. 81-104.
[9] K. Oikawa, Welding of polygons and the type of Riemann surfaces, Kōdai Math. Sem. Rep., 13 (1961), 37-52.
[10] K. Oikawa, Riemann Surfaces, Kyoritu Lecture Series, 22, Kyoritu Publishing Co., 1987.
[11] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Grund-lehren der mathematischen Wissenschaften in Einzelldarstellungen, Band 164, Springer-Verlag, 1970.
[12] L. Sario, M. Nakai, C. Wang and L. O. Chung, Classification Theory of Riemannian Manifolds, Lecture Notes in Math., 803, Springer-Verlag, 1980.

Mitsuru NAKAI
Professor Emeritus at:
Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa
Nagoya 466-8555, Japan
Mailing Address:
52 Eguchi, Hinaga
Chita 478-0041, Japan
E-mail: nakai@daido-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 30F20; Secondary 30F25, 30F15, 31A15.
 Key Words and Phrases. anticonformal pasting, capacity, Dirichlet finite, essentially positive, grafted surface, harmonic measure, hyperbolic, parabolic, quasibounded, Royden harmonic boundary, Sario-Tôki disc, Wiener harmonic boundary.

