Erratum to "The cuspidal class number formula for the modular curves $X_{1}(2 p)$ "

[The original paper is in this journal, Vol. 64 (2012), 23-85]

By Toshikazu Takagi

(Received May 26, 2011)

Abstract

We correct a theorem on the conductor of elliptic curves over \boldsymbol{Q} given in Introduction of the paper "The cuspidal class number formula for the modular curves $X_{1}(2 p)$ ".

In Introduction of Takagi [3], I gave a theorem concerning the conductor of elliptic curves over \boldsymbol{Q}. But, since our arguments contained an error, the statement of the theorem had a surplus assumption in the case of the prime conductor. I give the corrected statement in the following.

Let A be an elliptic curve over \boldsymbol{Q} of conductor n. Let r be 5 or 7 with $r \nmid n$. Agashe [1] proved that if n is square-free and r divides the order of the \boldsymbol{Q}-rational torsion subgroup of $A(\boldsymbol{Q})$, then r divides the cuspidal class number $h_{0}(n)$ of $X_{0}(n)$.

When n is a prime, $\operatorname{Ogg}[\mathbf{6}]$ has shown that $h_{0}(n)$ is equal to the numerator of $(n-1) / 12$. On the other hand, in Takagi [2, Theorem 5.1], we gave the cuspidal class number formula for n square-free, generalizing the formula of Ogg. When n is composite, we see from this that r divides $h_{0}(n)$ if and only if n has a prime factor congruent to ± 1 modulo r. Combining these results we have the following

Theorem. Let n be a square-free integer. Let A be an elliptic curve over Q of conductor n. Let r be 5 or 7 with $r \nmid n$.
(1) Assume that n is a prime. If A has a \boldsymbol{Q}-rational point of order r, then $n \equiv 1$ $(\bmod r)$.
(2) Assume that n is composite. If A has a \boldsymbol{Q}-rational point of order r, then n has a prime factor congruent to ± 1 modulo r.

Examples. In Table 1 of Cremona [4], all elliptic curves over \boldsymbol{Q} of conductor $n \leqq 1000$ are listed. In the list there exist 45 elliptic curves A with $5||A(\boldsymbol{Q})|$.

[^0]Among them the number of the curves with $5 \nmid n$ is 25 , and all these 25 curves have a square-free conductor. Among the 25 curves, the number of the curves such that n is a prime is 2 , and both of them (the curves 11 A 1 and 11A3) have the conductor $n=11 \equiv 1(\bmod 5)$, which are examples of the case (1) of the theorem. Among the other 23 curves which have a composite n, the number of the curves such that n has a prime factor p with $p \equiv 1(\bmod 5)$ (respectively $p \equiv-1(\bmod 5))$ is $14($ respectively 9$)$. The curves with the least n which have a prime factor $p \equiv 1(\bmod 5)$ are 66 C 1 and 66 C 2 . Both of them have the conductor $n=66=2 \cdot 3 \cdot 11$ with $p=11$. The curve with the least n which have a prime factor $p \equiv-1(\bmod 5)$ is 38 B 1 , and its conductor is $n=38=2 \cdot 19$ with $p=19$.

In the list there exist 10 elliptic curves A with $7||A(\boldsymbol{Q})|$. Among them the number of the curves with $7 \nmid n$ is 6 , and all these 6 curves have a composite, squarefree conductor. Among the 6 curves, the number of the curves such that n has a prime factor p with $p \equiv 1(\bmod 7)($ respectively $p \equiv-1(\bmod 7))$ is $4($ respectively $2)$. The curve with the least n which has a prime factor $p \equiv 1(\bmod 7)$ is 174 B 1 , and its conductor is $n=174=2 \cdot 3 \cdot 29$ with $p=29 \equiv 1(\bmod 7)$. The curve with the least n which has a prime factor $p \equiv-1(\bmod 7)$ is 26 B 1 , and its conductor is $n=26=2 \cdot 13$ with $p=13 \equiv-1(\bmod 7)$.

ObSERVATIONS. The theorem considers the elliptic curves of conductor n with $r \nmid n$. On the contrary, for the elliptic curves of conductor n with $r \mid n$, we have the following observations. In Table 1 of Cremona [5], all elliptic curves over \boldsymbol{Q} of conductor $n<180000$ are listed. In the list there exist 868 (respectively 54) elliptic curves A with $5||A(\boldsymbol{Q})|$ (respectively 7$||A(\boldsymbol{Q})|$), among them the number of the curves such that $5 \mid n$ (respectively $7 \mid n$) is 456 (respectively 21), and the number of the curves such that $5 \| n$ (respectively $7 \| n$) is 283 (respectively 12). For each $r=5,7$, we observe that all curves in this list with $r||A(\boldsymbol{Q})|$ and $r \| n$ satisfy that the conductor n is square-free and has a prime factor congruent to ± 1 modulo r.

References

[1] A. Agashe, Rational torsion in elliptic curves and the cuspidal subgroup, preprint, arXiv:math/0810.5181, 2008.
[2] T. Takagi, The cuspidal class number formula for the modular curves $X_{0}(M)$ with M square-free, J. Algebra, 193 (1997), 180-213.
[3] T. Takagi, The cuspidal class number formula for the modular curves $X_{1}(2 p)$, J. Math. Soc. Japan, 64 (2012), 23-85.
[4] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cambridge, second edition, 1997.
[5] J. E. Cremona, Elliptic curve data (updated 2011-08-09), http://www.warwick.ac.uk/ staff/J.E.Cremona/ftp/data/INDEX.html
[6] A. Ogg, Rational points on certain elliptic modular curves, In: Analytic Number Theory,

Proc. Sympos. Pure Math., XXIV, St. Louis Univ. St. Louis, 1972, Amer. Math. Soc., Providence, RI, 1973, pp. 221-231.

Toshikazu TAKAGI

Faculty of Arts and Sciences at Fujiyoshida Showa University
Fujiyoshida
Yamanashi 403-0005, Japan
E-mail: takagi@cas.showa-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11G18; Secondary 11F03, 11G05, 14G05, 14G35, 14H40, 14H52.

 Key Words and Phrases. modular curve, modular unit, cuspidal class number, elliptic curve, Jacobian variety, torsion subgroup.

