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Abstract. We investigate the spectral properties of the Dirac operator
with a potential V (x) and two relativistic Schrödinger operators with V (x) and
−V (x), respectively. The potential V (x) is assumed to be dilation analytic and
diverge at infinity. Our approach is based on an abstract theorem related to
dilation analytic methods, and our results on the Dirac operator are obtained
by analyzing dilated relativistic Schrödinger operators. Moreover, we explain
some relationships of spectra and resonances between Schrödinger operators
and the Dirac operator as the nonrelativistic limit.

1. Introduction.

We first consider the Dirac operator

H(c) = cα ·D + mc2β + V (x) (1)

in the Hilbert space L2(R3)4, where c > 0 is the speed of light, m > 0 the rest
mass of a relativistic particle moving in an electric potential V ∈ C(R3 → R) and
α · D =

∑3
j=1 αjDj , where D = −i∇x = (D1, D2, D3), α = (α1, α2, α3). Here

each αj and β are 4× 4 Hermitian matrices defined by

αj =
(

0 σj

σj 0

)
, β =

(
I2 0
0 −I2

)
,

where
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σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are Pauli matrices, and In is the n× n unit matrix.
It is believed that a Dirac operator converges to the corresponding Schrödinger

operator acting in L2(R3)

S = − 1
2m

∆ + V (x) (2)

in some sense if the speed of light, c, goes to infinity (the nonrelativistic limit) and
this expectation has been verified by many authors [3], [4], [19], [20], [22], [23], if
the potential V (x) decays uniformly at infinity. Indeed, in this case the resolvent
(H(c)−mc2 − z)−1, Im z 6= 0, converges to

(
(S − z)−1I2 0

0 0

)
(3)

as c → ∞ in the operator norm (see, e.g., [19]), and the spectrum of the Dirac
operator is similar to that of the Schrödinger operator, that is, σess(H(c)) =
(−∞,−mc2] ∪ [mc2,∞), σd(H(c)) ⊂ (−mc2,mc2), and σess(S) = [0,∞), σd(S) ⊂
(−∞, 0). In this paper we denote the spectrum of H by σ(H), the discrete spec-
trum σd(H), the essential spectrum σess(H), the point spectrum σp(H), the con-
tinuous spectrum σc(H), the absolutely continuous spectrum σac(H), the singular
continuous spectrum σsc(H) and the resolvent set ρ(H) (cf. [12], [14]).

On the other hand, if the potential diverges at infinity :

V (x) → +∞ as |x| → ∞, (4)

their spectra are quite different. Indeed, the Schrödinger operator S has a purely
discrete spectrum, whereas the Dirac operator H(c) has a purely absolutely con-
tinuous spectrum covering the whole real line (−∞,+∞) for a wide class of radial
potentials [17], [18], [19]. Therefore, in this case, we cannot expect the norm re-
solvent convergence of H(c)−mc2 to S as in the case of decaying potentials since
their spectra are quite different. However, we can consider S as the nonrelativistic
limit of H(c) even in this case. In fact, there are two typical approaches to relate
them: “spectral concentration” [11], [21] and “resonances” [1], [20].

In this paper we study this problem from the standpoint of resonances. More-
over, we consider the nonrelativistic limit of the spectral projection of the Dirac
operator, which plays a crucial role in the study of “spectral concentration”.
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We assume the the following in this paper.

Assumptions.

(V1): V (x) is a real-valued continuous function on R3 and there are constants
M > 0, K > 0, a small constant a0 > 0 and a C(S2)-valued analytic function
V (z, ·) of z defined on Sa0 ,

Sa0 := {reiτ ∈ C; r ∈ (0,∞), −a0 < τ < a0},

such that

sup
ω∈S2

|V (z, ω)| ≤ K(1 + |z|)M (5)

for all z ∈ Sa0 and V (r, ω) = V (rω) if r > 0 and ω ∈ S2.
Define a function Vθ(x) for each θ ∈ C with | Im θ| < a0 by

Vθ(x) := V
(
eθ|x|, x̂)

, x̂ =
x

|x| , x 6= 0.

(V2): There is a constant R0 > 0 such that for each τ ∈ (−a0, a0) the function
Viτ (x) is C∞ for |x| > R0 and satisfies the estimate

∣∣∂α
x Viτ (x)

∣∣ ≤ Kα|x|M−|α| (6)

for |α| ≥ 0 and for |x| > R0 uniformly in |τ | < a0.

(V3): There exists a constant K0 > 0 such that

V (x) ≥ K0|x|M , x · ∇V (x) ≥ K0|x|M (7)

for |x| ≥ R0.

Here we note that it follows from the estimate (5) and the Cauchy integral
formula that the following estimates hold

∥∥∂α
z V (z, ·)∥∥

L∞(S2)
≤ Kα(1 + |z|)M−|α|, z ∈ Sa0 (8)

for all α.
The resonances of H(c) are defined as the eigenvalues of the dilated Dirac

operator
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H(c, θ) := cα · e−θD + mc2β + Vθ(x) (9)

for θ ∈ C with 0 < Im θ < a0 (see [1]). Amour, Brummelhuis and Nourrigat [1]
show that under a similar assumption the family of H(c, θ) is an analytic family
of type (A) [12], [16] with compact resolvent, and so H(c, θ) has a purely discrete
spectrum. The standard argument of the complex scaling method shows that the
resonances are independent of θ with 0 < Im θ < a0 [2], [6], [16]. In [1] they prove
that there are resonances of H(c) −mc2 near each eigenvalue of the Schrödinger
operator S if c is large enough and the resonances converge to the eigenvalue as
c →∞.

Our main purpose is to clarify these mechanisms by introducing two relativis-
tic Schrödinger operators,

L±(c) := ±
√
−c2∆ + m2c4 −mc2 + V (x) in L2(R3), (10)

as intermediates between the Dirac operator H(c) and the Schrödinger operator S,
though relativistic Schrödinger operators are not considered in [1]. Here we note
that each operator is a self-adjoint operator with a core S , the Schwartz class on
R3, under our assumptions (see [8], [9]).

Before giving a description of our results, we should remark that we denote
by ‖ · ‖ (resp. (·, ·)) the norm (resp. the scalar product) of the Hilbert space
L2(R3)4 and also use these notations for other Hilbert spaces if they do not cause
a confusion. The notation ‖ · ‖ is also used for operator norms.

Applying the FWT transformation Uc(D) to H(c) − mc2 (see Section 2 for
the definition of Uc(D)), we have

L(c) := Uc(D)(H(c)−mc2)Uc(D)−1 = L1(c) + W (c), (11)

where

L1(c) :=
(

L+(c)I2 0
0 L−(c)I2

)
, (12)

and

W (c) = W (c, x, D) := Uc(D)V (x)Uc(D)−1 − V (x). (13)

If V (x) is smooth (i.e. C∞) on R3, a simple calculus of pseudodifferential operators
leads to the following estimate
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∥∥W (c)〈x〉−M+1
∥∥ ≤ Kc−1, c ≥ 1

for some K > 0, where 〈x〉 := (1+ |x|2)1/2. This estimate seems to allow W (c) as a
perturbation of L1(c) for at least large c > 0, but the idea cannot be used directly
since it is difficult to control W (c) by L−(c) which has no global ellipticity. Hence,
to avoid this problem we introduce the idea of complex scaling as in [1]. Let us
fix a small constant a with 0 < a < a0 and define

Ω := {θ ∈ C; | Im θ| < a},
Ω+ := {θ ∈ C; 0 < Im θ < a}.

Under our assumptions we can define the following operators

L±(c, θ) := ±
√
−c2e−2θ∆ + m2c4 −mc2 + Vθ(x), (14)

L(c, θ) :=
(

L+(c, θ)I2 0
0 L−(c, θ)I2

)
+ W (c, θ), (15)

where W (c, θ) := W (c, eθx, e−θD) for θ ∈ Ω. Let {U (t)}t∈R be the dilation group
on R3,

U (t)f(x) = e(3t/2)f(etx).

Now we state our results. The details are discussed in the following sections.
We see that {L+(c, θ)} is an analytic family of type (A) in Ω, with compact

resolvent, and satisfies

U (t)L+(c, θ)U (t)−1 = L+(c, θ + t), t ∈ R, θ ∈ Ω. (16)

Thus L+(c, θ) has a purely discrete spectrum and the standard argument on the
dilation analyticity gives the following theorem since L+(c) = L+(c, 0).

Theorem 1.1.

(a) The discrete spectrum σd(L+(c, θ)) is independent of θ ∈ Ω, denoted by Σ+(c),
and coincides with σp(L+(c)).

(b) L+(c) has a purely discrete spectrum.

However, {L−(c, θ)} is an analytic family of type (A) only in Ω+ (not in Ω).
Each L−(c, θ) also has compact resolvent for each θ ∈ Ω+ and satisfies
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U (t)L−(c, θ)U (t)−1 = L−(c, θ + t), t ∈ R, θ ∈ Ω+. (17)

Thus, the spectrum of L−(c, θ) (also consisting of a discrete spectrum only) is
independent of θ ∈ Ω+. Moreover, we can prove that the resolvent (L−(c)− z)−1,
Im z < 0, is the strong limit of (L−(c, θ)− z)−1 as Ω+ 3 θ → 0 (Proposition 2.1).
But, the spectra of L−(c) and L−(c, θ) are quite different. Indeed, we have

Theorem 1.2.

(a) The discrete spectrum σd(L−(c, θ)) is independent of θ ∈ Ω+, denoted by
Σ−(c), and satisfies

Σ−(c) ⊂ C+, Σ−(c) ∩R = σp(L−(c)),

where C+ := {z ∈ C; Im z ≥ 0} is the closed upper half plane.
(b) L−(c) has at most finitely many eigenvalues, and the multiplicity of each of

them is finite.
(c) σ(L−(c)) = R and σsc(L−(c)) = φ. In particular, σ(L−(c)) \ σp(L−(c)) ⊂

σac(L−(c)).

Remarks.

( i ) There are only a few studies about the relativistic Schrödinger operator√−∆ + 1 + v(x) with a potential v(x) such that v(x) → −∞ as |x| → ∞:
In [9], [8] the essential self-adjointness of the operator is investigated.

( ii ) Each element of Σ+(c) (resp. Σ−(c)) is called a resonance of L+(c) (resp.
L−(c)).

The spectra of L+(c) and L−(c) are quite different. But, Theorem 3.4 shows
that L+(c) and L−(c) can be treated in the same framework. They are regarded as
boundary values of analytic families {L+(c, θ)} and {L−(c, θ)}, in Ω+, respectively
(see Section 3 for the definition of a boundary value of an analytic family). We
shall prove that self-adjoint operators T defined as a boundary value of a certain
analytic family are classified into two categories: type (I) σ(T ) = σd(T ); type (II)
σ(T ) = (−∞,+∞), σsc(T ) = ∅ (Theorem 3.4). In Section 4, we shall show that
L+(c) is of type (I), and L−(c) is of type (II).

We also see that {L(c, θ)} is an analytic family of type (A) in Ω+, with
compact resolvent, and satisfies

U4(t)L(c, θ)U4(t)−1 = L(c, θ + t), t ∈ R, θ ∈ Ω+, (18)
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where U4(t) := U (t)I4. Thus, the spectrum of L(c, θ) (also consisting of a dis-
crete spectrum only) is independent of θ ∈ Ω+, and coincides with the set of the
resonances of H(c)−mc2 (see the remark after Proposition 4.3). In Section 4 we
show that L(c) is of type (II), from which the following theorem follows.

Theorem 1.3.

(a) The resonances of the Dirac operator H(c) are contained in the closed upper
half plane C+, and the real resonances coincide with the eigenvalues of H(c).
In particular, the set of the eigenvalues (if exist) is a discrete set. Moreover,
the multiplicity of each eigenvalue is finite.

(b) σ(H(c)) = R and σsc(H(c)) = φ. In particular, σ(H(c)) \ σp(H(c)) ⊂
σac(H(c)).

Next we see that there exist resonances of the Dirac operator H(c) − mc2

near each eigenvalue of the Schrödinger operator S if c is sufficiently large and
they converge to the eigenvalue as c →∞.

We fix a constant L > 0 and an open interval I ⊂ R with I∩σd(S) = {λj}N
j=1

and define a set

O := {z ∈ C; Re z ∈ I, | Im z| < L}.

For small ε > 0 we also define Bε(λ) = {z ∈ C; |z−λ| ≤ ε}, B+
ε (λ) = Bε(λ)∩C+

and B+
ε (λ) = Bε(λ) ∩ C+, where C+ := {z ∈ C; Im z > 0}. Let mj be the

multiplicity of the eigenvalue λj of S.

Theorem 1.4. For any small ε > 0 there exists a constant cε > 0 such
that there is no resonance of H(c) −mc2 in O \ ∪N

j=1B
+
ε (λj) and there are 2mj

resonances of H(c)−mc2 in B+
ε (λj) for each j = 1, . . . , N , if c > cε.

By Theorems 1.3 and 1.4, we have the following corollary, which guarantees
the existence of nonreal resonances of H(c) if H(c) has no eigenvalue.

Corollary 1.5. Suppose σp(H(c)) = φ for all large c. Then for any small
ε > 0 there exists a constant cε > 0 such that there is no resonance of H(c)−mc2

in O \ ∪N
j=1B

+
ε (λj) and there are 2mj resonances of H(c) − mc2 in B+

ε (λj) for
each j = 1, . . . , N , if c > cε.

Remarks.

( i ) It is known that the Dirac operator H(c) has no eigenvalue if the potential
V (x) asymptotically equals to a radial function q(|x|) as |x| → ∞, where
q(r) goes to +∞ as r → +∞ and satisfies some mild condition [13], [25]. For
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example, the Dirac operator has no eigenvalue if V (x) = A|x|M +O(|x|M−1),
A > 0, as |x| → ∞. Moreover, if V (x) is a radial potential with some growth
condition, then H(c) has a purely absolutely continuous spectrum (cf. [17],
[18], [19]). In particular, if a radial potential satisfies our assumptions, then
the Dirac operator has a purely absolutely continuous spectrum. Our result
gives a condition for the absolute continuity even if we do not assume the
radial symmetry of V (x).

( ii ) We can also consider the problem on the limits of resonances of H(c)+mc2

as c → ∞. In Section 6, we state a result on this problem (Theorem 6.5),
in which eigenvalues of S in Theorem 1.4 are replaced by “resonances” of
(2m)−1∆ + V (x) (see the remark after Proposition 6.1).

(iii) It is a natural question whether or not there exists a resonance of H(c) in
a bounded set in C. We shall show that there is neither eigenvalue nor
resonance in any fixed bounded set if c > 0 is sufficiently large (Theorem
6.6).

A result similar to Theorem 1.4 has already been proved by Amour, Brum-
melhuis and Nourrigat in [1], in which they investigate the nonrelativistic limits
of resonances in more detail: They obtain an asymptotic expansion of the real
part of each resonance and an estimate of its imaginary part. In this work we
do not intend to study the nonrelativistic limits of resonances in detail. However,
we investigate not only the nonrelativistic limit but also the resonances and the
spectra of various operators (Dirac operators, relativistic Schrödinger operators
and Schrödinger operators) for fixed c ≥ 1. Combining these results, we can show
that there are nonreal resonances of Dirac operators in C+ under some condition
(Corollary 1.5). Here we should note that the results on resonances and spectra
are obtained in an abstract framework (Theorem 3.4).

We introduce two relativistic Schrödinger operators L±(c) to explain the
structure of the spectrum of H(c), the appearance of resonances of H(c) and their
convergence to eigenvalues of the Schrödinger operator S in the nonrelativistic
limit. Proposition 5.1 shows that there is no resonance of L−(c) in any bounded
set in C if c > 0 is large enough. However, since L+(c) converges to S in the
norm resolvent sense as c →∞ (Proposition 5.5), for each eigenvalue of S we can
find eigenvalues of L+(c) converging to it as c →∞. If I is a small open interval
containing only an eigenvalue λ of S with multiplicity n, then I is contained in the
spectrum of L1(c) = L+(c)I2 ⊕ L−(c)I2 since σ(L1(c)) = R, and there exist 2n
eigenvalues of L1(c) (counting multiplicity) in I for c large enough. Now suppose
there is no eigenvalue of H(c), i.e., σp(H(c) − mc2) = σp(L(c)) = φ. Then the
embedded eigenvalues of L1(c) in I disappear by adding the perturbation W (c) to
L1(c). But, Corollary 1.5 shows that they survive as resonances in the upper half
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plane C+ near λ and converge to λ as c →∞.
This is our explanation for the appearance of the resonances of H(c) −mc2

and for the convergence of the resonances to eigenvalues of S in the nonrelativistic
limit.

The plan of this paper is as follows. In Section 2 we study L±(c, θ) in detail.
Proposition 2.1 is the main result in the section. In Section 3 we study an abstract
theory on self-adjoint operators defined as a boundary value of a certain analytic
family. Theorem 3.4 is the key to our study on spectral properties and resonances.
Theorems 1.1, 1.2 and 1.3 are proved in Section 4 with the help of Theorem 3.4.
In Section 5 the nonrelativistic limits of L±(c, θ) and L(c, θ) are considered and
Theorem 1.4 is proved. Moreover, we obtain a result on the nonrelativistic limit
of the spectral projection of the Dirac operator. In Section 6 we state our results
on the nonrelativistic limits of resonances for H(c) + mc2 and H(c), respectively,
and study a typical example in detail.

2. Relativistic Schrödinger Operators.

Let σ(ξ) :=
√
|ξ|2 + m2, ξ ∈ R3, and

A(ξ) :=
(

σ(ξ) + m

σ(ξ)

)1/2

.

Define a 4× 4 matrix Uc(ξ) by

Uc(ξ) := U

(
ξ

c

)
,

where

U(ξ) :=
1√
2

(
A(ξ)I4 + A(ξ)−1βα · ξ

σ(ξ)

)
.

The matrix Uc(ξ) is unitary with inverse Uc(ξ)−1 = Uc(−ξ) and satisfies

∣∣∂α
ξ Uc(ξ)

∣∣ ≤ Kαc−|α|σ(ξ/c)−|α|, c ≥ 1, ξ ∈ R3 (19)

for all multi-index α. Furthermore, by a simple calculation we see that the matrix
Uc(ξ) diagonalizes the symbol of the Dirac operator H(c):
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Uc(ξ)(cα · ξ + mc2β + V (x))Uc(ξ)−1

=
((√

c2|ξ|2 + m2c4 + V (x)
)
I2 0

0
(−

√
c2|ξ|2 + m2c4 + V (x)

)
I2

)
.

In particular, the free Dirac operator (V (x) = 0) is diagonalized by the unitary
operator Uc(D):

Uc(D)H0(c)Uc(D)−1 =
(√−c2∆ + m2c4I2 0

0 −√−c2∆ + m2c4I2

)
.

This transformation by Uc(D) is called the FWT transformation (the Foldy-
Wouthuysen-Tani transformation). The estimate (19) guarantees that the FWT
transformation maps S 4 onto itself, where S denotes the Schwartz space S (R3).
Applying this transformation to H(c)−mc2 = H0(c)−mc2 + V (x), we have (11),
(12) and (13). Since the potential V (x) is continuous, H(c) defined on S 4 is
essentially self-adjoint (see e.g. [19]), and so L(c) defined on S 4 is also essentially
self-adjoint since Uc(D) maps S 4 onto itself. Hereafter we denote by L(c) and
H(c) the unique self-adjoint extensions of them, respectively.

First we study the relativistic Schrödinger operators L±(c). Let us remark
that L±(c) defined on S are essentially self-adjoint operators (see [8], [9]) under
our assumptions, though the Schrödinger operator −(2m)−1∆ − |x|M defined on
S is essentially self-adjoint if and only if M ≤ 2 (cf. [15]). We denote again by
the same notation L±(c) their self-adjoint extensions, respectively.

Recall that we fix a constant a with 0 < a < a0 in this paper and define
Ω = {θ ∈ C; | Im θ| < a} and Ω+ = {θ ∈ C; 0 < Im θ < a}. Our assumptions on
V make it possible to define the following operators on S

L±(c, θ) := ±
√
−c2e−2θ∆ + m2c4 −mc2 + Vθ(x) (20)

for θ ∈ Ω, where
√
−c2e−2θ∆ + m2c4 is considered as the pseudodifferential oper-

ator with symbol
√

c2e−2θ|ξ|2 + m2c4. Here
√

z is defined to have the branch on
the negative real line. Note that if t is a real number, they are written as

L±(c, t) = U (t)L±(c)U (t)−1 (21)

on S , where U (t) is the dilation group defined by

U (t)f(x) = e(3t/2)f(etx).
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Let us define the weighted L2-space L2
M (R3) by L2

M (R3) = L2(R3; 〈x〉2Mdx) and
set DM := H1(R3) ∩ L2

M (R3), where H1(R3) is the Sobolev space of order one.
Here we note that according to Rellich’s criterion any closed operator with domain
DM has compact resolvent if the resolvent set is not empty.

Hereafter we suppose a > 0 is sufficiently small and c ≥ 1. The following
proposition is the main result in this section.

Proposition 2.1.

(a) For each θ ∈ Ω and c ≥ 1, L+(c, θ) defined on S is closable, and its clo-
sure (denoted by the same notation L+(c, θ)) has domain DM . Moreover, its
resolvent set is nonempty and, in particular, L+(c, θ) has compact resolvent.

(b) For each c ≥ 1 the family of closed operators {L+(c, θ)}θ∈Ω is an analytic
family of type (A) (e.g. [12], [16]) with the following property :

L+(c, t + θ) = U (t)L+(c, θ)U (t)−1, t ∈ R, θ ∈ Ω. (22)

(c) For each θ ∈ Ω+ and c ≥ 1, L−(c, θ) defined on S is closable and its clo-
sure (denoted by the same notation L−(c, θ)) has domain DM . Moreover, its
resolvent set is nonempty and, in particular, L−(c, θ) has compact resolvent.

(d) For each c ≥ 1, the family of closed operators {L−(c, θ)}θ∈Ω+ is an analytic
family of type (A) with the following property :

L−(c, t + θ) = U (t)L−(c, θ)U (t)−1, t ∈ R, θ ∈ Ω+. (23)

(e) There is a constant r0 > 0 independent of c ≥ 1 and θ ∈ Ω+ such that
{z ∈ C; Im z < −r0} ⊂ ρ(L−(c, θ)), the resolvent set of L−(c, θ).

(f) Let c ≥ 1 and Im z < −r0. Then the resolvent (L−(c, θ) − z)−1 converges to
(L−(c)− z)−1 strongly as θ → 0 :

s− lim
Ω+3θ→0

(L−(c, θ)− z)−1 = (L−(c)− z)−1. (24)

Remarks.

( i ) Since L+(c, θ) has compact resolvent, it has a purely discrete spectrum.
Moreover, according to (b), with the help of the standard argument by
Aguilar and Combes [2] we see that the discrete spectrum is independent of
θ ∈ Ω for each c ≥ 1. In particular, it coincides with that of L+(c). However,
the above argument is valid for L−(c, θ) with only θ ∈ Ω+. Actually, the
structure of spectrum of L−(c, θ) for Im θ > 0 and that of L−(c) are quite
different (see Theorem 1.2). Thus it seems that the analysis of L−(c, θ) for
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Im θ > 0 does not contribute to that of L−(c). But, as shown in Section 3,
the spectral property of L−(c, θ) for Im θ > 0 helps us to determine that of
L−(c) through the relation (24).

( ii ) The result of (e) is not optimal. Indeed, combining this proposition with
Proposition 3.2 in the next section, we can prove that the lower half plane
{z ∈ C; Im z < 0} is contained in the resolvent set of L−(c, θ) for all θ ∈ Ω+.

We have to prepare several lemmas to prove the above proposition.

Lemma 2.2. Suppose a > 0 is small enough. Then for any ρ0 > 0 there
exist constants R1 > 0 and K > 0 such that

K−1〈x〉M ≤ Re Vρ+iτ (x) ≤ K〈x〉M , |x| ≥ R1 (25)

for τ ∈ (−a, a) and ρ ∈ [−ρ0, ρ0] and that

K−1|τ |〈x〉M ≤ ± Im Vρ+iτ (x) ≤ K|τ |〈x〉M , |x| ≥ R1 (26)

for ±τ ∈ (0, a), respectively, and ρ ∈ [−ρ0, ρ0].

Proof. It suffices to prove for ρ = 0. Indeed we may replace x by eρx in
the obtained result for ρ = 0. Let V1(x) = x · ∇V (x). Then we can write

Viτ (x) = V (x) + iV1(x)τ + V2(τ, x)τ2. (27)

By the estimate (8) there is a constant K1 > 0 such that

|V1(x)|, |V2(τ, x)| ≤ K1〈x〉M

for |x| ≥ R0 uniformly in τ ∈ (−a, a). Thus the desired results follow immediately
from our assumptions since a > 0 is sufficiently small. ¤

Let σθ(c, ξ) :=
√

c2e−2θ|ξ|2 + m2c4 −mc2. Then we can write

L+(c, θ) = σθ(c,D) + Vθ(x), L−(c, θ) = −σθ(c,D)− 2mc2 + Vθ(x)

on S .

Lemma 2.3.

(a) Fix ρ0 > 0. Then there exists a constant K > 0, independent of τ ∈ (−a, a),
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ρ ∈ [−ρ0, ρ0], c ≥ 1 and ξ ∈ R3, such that

K−1 c|ξ|2
|ξ|+ c

≤ Re σρ+iτ (c, ξ) ≤ K
c|ξ|2
|ξ|+ c

. (28)

(b) Fix ρ0 > 0. Then there exists a constant K ′ > 0, independent of τ ∈ (0, a),
ρ ∈ [−ρ0, ρ0], c ≥ 1 and ξ ∈ R3, such that

K ′−1 c|ξ|2
|ξ|+ c

τ ≤ − Im σρ+iτ (c, ξ) ≤ K ′ c|ξ|2
|ξ|+ c

τ. (29)

Proof. Note that a > 0 is sufficiently small. Due to the relation
σρ+iτ (c, ξ) = σiτ (c, e−ρξ), it is sufficient to prove the estimates for ρ = 0. The
first estimate (28) follows immediately from the formula

σiτ (c, ξ) =
ce−2iτ |ξ|2√

e−2iτ |ξ|2 + c2m2 + mc
.

Next we write Re−iφ/2 = σiτ (c, ξ) + mc2 with R > 0 and 0 < φ < 2τ < 2a, i.e.,

R2e−iφ = c2e−2iτ |ξ|2 + m2c4.

Then

R = c
(|ξ|4 + m4c4 + 2|ξ|2m2c2 cos 2τ

)1/4
,

tanφ =
|ξ|2 sin 2τ

|ξ|2 cos 2τ + m2c2
. (30)

The first equality implies that R ∼ c(|ξ| + c) and the second φ ∼ 2τ |ξ|2(|ξ|2 +
c2)−1 uniformly in ξ, since τ > 0 is small enough. Combining these results with
− Im σiτ (c, ξ) = R sin(φ/2), we obtain the estimate (29). ¤

Combining the last two lemmas, we have

Lemma 2.4. Define

h(c, x, ξ) :=
c|ξ|2
|ξ|+ c

+ 〈x〉M

and fix ρ0 > 0. Then there are positive constants K and L independent of x ∈ R3,
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ξ ∈ R3, c ≥ 1 and θ such that

K−1h(c, x, ξ)− L ≤ Re(σθ(c, ξ) + Vθ(x)) ≤ Kh(c, x, ξ) + L (31)

for | Im θ| < a and |Re θ| < ρ0 and that

K−1(Im θ)h(c, x, ξ)− L ≤ Im(−σθ(c, ξ)− 2mc2 + Vθ(x))

≤ K(Im θ)h(c, x, ξ) + L (32)

for 0 < Im θ < a and |Re θ| < ρ0.

Lemma 2.5. Fix ρ0 > 0. Then

∣∣∂ξk
σθ(c, ξ)

∣∣ ≤ K|ξk|, k = 1, 2, 3, (33)
∣∣∂α

ξ σθ(c, ξ)
∣∣ ≤ Kαc(|ξ|+ c)1−|α|, |α| ≥ 2 (34)

for some constants K > 0 and Kα > 0, uniformly in c ≥ 1 and θ ∈ Ω with
|Re θ| < ρ0.

Proof. We only prove the lemma in the case Im θ = 0 for simplicity. The
desired result follows immediately from the relation σθ(c, ξ) + mc2 = c2σ(e−θξ/c)
and the estimates

∣∣∂ξk
σ(ξ)

∣∣ ≤ |ξk|σ(ξ)−1, k = 1, 2, 3,
∣∣∂α

ξ σ(ξ)
∣∣ ≤ Kασ(ξ)1−|α|, |α| ≥ 2. ¤

In the proof of the next two lemmas we need a class of pseudodifferential
operators. Let m, s ∈ R and denote by Sm,s the space of functions p(x, ξ) ∈
C∞(R3 ×R3) satisfying

∣∣∂α
ξ ∂β

xp(x, ξ)
∣∣ ≤ Kαβ〈x〉m−|β|〈ξ〉s−|α| on R3 ×R3

for all α and β. We denote by Σm,s the set of pseudodifferential operators p(x,D),
p ∈ Sm,s, defined by

p(x,D)u(x) =
1

(2π)3

∫ ∫
ei(x−y)·ξp(x, ξ)u(y)dξdy.
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Let

s(c, ξ) :=
c|ξ|2
|ξ|+ c

and write

Vθ,∞(x) := χ∞

(
eRe θ|x|

R0

)
Vθ(x),

Vθ,0(x) := Vθ(x)− Vθ,∞(x),

where χ∞(r) is a smooth function on (0,∞) with χ∞(r) = 1 for r > 2 and
χ∞(r) = 0 for r < 1. By (V1) and (V2) Vθ,∞(x) is smooth on R3 and Vθ,0(x) is
a bounded function with compact support. We define

L+,∞(c, θ) := σθ(c,D) + Vθ,∞(x), L−,∞(c, θ) := −σθ(c,D)− 2mc2 + Vθ,∞(x).

Lemma 2.6. Fix θ ∈ Ω+ and a constant L > 0. Then there are positive
constants K1, K2 and K3 independent of c ≥ 1 such that

‖(L−(c, θ)− z)f‖2 + K1‖f‖2 ≥ K2‖s(c,D)f‖2 + K3

∥∥〈x〉Mf
∥∥2 (35)

for all z ∈ C with | Im z| ≤ L and all f ∈ S .

Proof. Fix a constant M0 > 0 such that ImVθ,∞(x) + M0 ≥ 1 on R3 (see
(26)). We have only to give the proof for z = r− i(M0 +1), r ∈ R, and L−,∞(c, θ)
in place of L−(c, θ) because

‖(L−(c, θ)− z)f‖ ≥ ‖(L−,∞(c, θ)− z0)f‖ − (|z − z0|+ ‖Vθ,0‖∞)‖f‖

and |z − z0| ≤ (L + M0) for z, z0 ∈ C with Re z = Re z0, | Im z| ≤ L and
Im z0 = M0 + 1. Define

σ1,θ(c, ξ) := Re σθ(c, ξ), σ2,θ(c, ξ) := Im σθ(c, ξ)− 1,

V1,θ(x) := Re Vθ,∞(x)− r, V2,θ(x) := Im Vθ,∞(x) + M0.

Writing σθ(ξ) = σθ(c, ξ), etc. for simplicity, we have
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∥∥(−σθ(D)− 2mc2 + Vθ,∞(x)− r + i(M0 + 1))f
∥∥2

=
(
(σ1,θ(D) + 2mc2 − V1,θ)2f, f

)
+

(
(σ2,θ(D)− V2,θ)2f, f

)

+
({i[σ2,θ(D), V1,θ(x)]− i[σ1,θ(D), V2,θ(x)]}f, f

)

≥ (
(σ2,θ(D)− V2,θ)2f, f

)
+

({i[σ2,θ(D), V1,θ(x)]− i[σ1,θ(D), V2,θ(x)]}f, f
)
.

Here taking account of −σ2,θ(ξ, c) ≥ 1 and V2,θ(x) ≥ 1, we write

(σ2,θ(D)− V2,θ(x))2

= σ2,θ(D)2 + V2,θ(x)2 + (−σ2,θ(D))V2,θ(x) + V2,θ(x)(−σ2,θ(D))

= σ2,θ(D)2 + V2,θ(x)2 + 2V2,θ(x)1/2(−σ2,θ(D))V2,θ(x)1/2

− V2,θ(x)1/2
[
V2,θ(x)1/2, σ2,θ(D)

]− [σ2,θ(D), V2,θ(x)1/2]V2,θ(x)1/2

≥ σ2,θ(D)2 + V2,θ(x)2 − V2,θ(x)1/2
[
V2,θ(x)1/2, σ2,θ(D)

]

− [
σ2,θ(D), V2,θ(x)1/2

]
V2,θ(x)1/2 (36)

in the form sense on S . Using Lemma 2.5 and our assumptions on V we can
verify that

T1 := −V2,θ(x)1/2
[
V2,θ(x)1/2, σ2,θ(D)

] ∈ Σ1,M−1,

T2 := −[
σ2,θ(D), V2,θ(x)1/2

]
V2,θ(x)1/2 ∈ Σ1,M−1

and that for j = 1, 2

K ′
j := sup

c≥1

∥∥〈D〉−1Tj〈x〉−(M−1)
∥∥ < ∞, (37)

where 〈D〉 := (1−∆)1/2. Therefore we have for any ε > 0

|(Tjf, f)| ≤ K ′
j

∥∥〈x〉M−1f
∥∥∥∥〈D〉f

∥∥

≤ K ′
j(2ε)−1

(〈x〉2(M−1)f, f
)

+ K ′
j

(
ε

2

)
(〈D〉2f, f). (38)

This implies that
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T1 + T2 ≥ −(
K ′

1 + K ′
2

)[
(2ε)−1〈x〉2(M−1) +

(
ε

2

)
〈D〉2

]
. (39)

Let T3 := i[σ2,θ(D), V1,θ(x)]− i[σ1,θ(D), V2,θ(x)]. Then, since

[σ2,θ(D), V1,θ(x)], [σ1,θ(D), V2,θ(x)] ∈ Σ1,M−1,

we can also show that for any ε > 0

T3 ≥ −K ′
3

[
(2ε)−1〈x〉2(M−1) +

(
ε

2

)
〈D〉2

]
,

where K ′
3 is defined by (37) for j = 3. Note that for any K > 0 there exists

L = L(K) > 0 such that

K〈x〉2(M−1) ≤ 〈x〉2M + L

for all x ∈ R3, and that s(c, ξ)2 ≥ |ξ|2/4 for |ξ| ≥ 1 and c ≥ 1, since ab/(a + b) ≥
1/2 for real numbers a ≥ 1, b ≥ 1. This implies that s(c,D)2 + (1/4) ≥ |ξ|2/4 on
R3. Consequently, by (28) and (36) we obtain

∥∥(−σθ(D)− 2mc2 + Vθ,∞(x)− r + i(M0 + 1))f
∥∥2

≥ K2(s(c,D)2f, f) + K3(〈x〉2Mf, f)−K1‖f‖2

for some positive constants K1, K2 and K3 independent of c ≥ 1. ¤

Lemma 2.7. Fix θ ∈ Ω and a constant L ∈ R. Then there are positive
constants K̃1, K̃2 and K̃3 independent of c ≥ 1 such that

‖(L+(c, θ)− z)f‖2 + K̃1‖f‖2 ≥ K̃2‖s(c,D)f‖2 + K̃3‖〈x〉Mf‖2 (40)

for all z ∈ C with Re z ≤ L and f ∈ S .

Proof. Fix a positive constant M̃0 such that Re Vθ,∞(x) + M̃0 ≥ 1 on R3.
As in the proof of Lemma 2.6, we have only to prove for z = −t− (M̃0 + 1)− ir,
t ≥ 0, r ∈ R, and L−,∞(c, θ) in place of L−(c, θ). Let

σ̃1,θ(c, ξ) := Re σθ(c, ξ) + 1, σ̃2,θ(c, ξ) := Im σθ(c, ξ),

Ṽ1,θ(x) := Re Vθ,∞(x) + M̃0, Ṽ2,θ(x) := Im Vθ,∞(x) + r.
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Then using the following inequality

∥∥(σθ(c,D) + Vθ,∞(x) + t + M̃0 + 1 + ir)f
∥∥2

=
(
(σ̃1,θ(c,D) + Ṽ1,θ + t)2f, f

)
+

(
(σ̃2,θ(c,D) + Ṽ2,θ)2f, f

)

+
({

i[σ̃1,θ(c,D), Ṽ2,θ(x)]− i[σ̃2,θ(c,D), Ṽ1,θ(x)]
}
f, f

)

≥ (
(σ̃1,θ(c,D) + Ṽ1,θ)2f, f

)

+
({

i[σ̃1,θ(c,D), Ṽ2,θ(x)]− i[σ̃2,θ(c,D), Ṽ1,θ(x)]
}
f, f

)
,

we can prove the desired result (40) in a manner similar to that in the proof of
Lemma 2.6. ¤

Proof of Proposition 2.1.

(a) Fix θ ∈ Ω. Since s(c,D) and 〈x〉M are closed operators with domains
H1(R3) and L2

M (R3), respectively, and S is a common core for them, it follows
from Lemma 2.7 that L+(c, θ) defined on S is closable and its closure has domain
D(L+(c, θ)) = DM . Apparently, the same results hold for L+,∞(c, θ).

Next we prove that z belongs to the resolvent set of L+(c, θ) if (−Re z) > 0
is large enough. If the resolvent set of L+(c, θ) is proved to be nonempty, then the
compactness of the resolvent follows immediately from the fact that the domain
of L+(c, θ) is DM and Rellich’s criterion. We shall begin by giving the proof for
L+,∞(c, θ) by constructing a parametrix for L+,∞(c, θ).

Let

N1(c, θ) :=
{
σθ(c, ξ) + Vθ,∞(x) ∈ C;x ∈ R3, ξ ∈ R3

}
.

We first show that it is contained in some cone:

N1(c, θ) ⊂ C1 := {w ∈ C; | Im w| < B Re(w + b)} (41)

for some b > 0 and B > 0 independent of c ≥ 1 and θ ∈ Ω with |Re θ| ≤ ρ0 for
fixed ρ0 > 0. Indeed, by Lemma 2.2 there are positive constants K and R1 such
that

| Im Vθ,∞(x)| ≤ K Re Vθ,∞(x) (42)

for |x| > R1. Thus, since {Vθ,∞(x) ∈ C; |x| ≤ R1} is a bounded set, we see that
there are constants B1 > 0 and b1 > 0 such that
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{Vθ,∞(x) ∈ C;x ∈ R3} ⊂ C1,V := {w ∈ C; | Im w| < B1 Re(w + b1)}. (43)

Moreover, it is easy to see that

{σθ(c, ξ) ∈ C; ξ ∈ R3} ⊂ C1,σ := {w ∈ C; | Im w| ≤ B2 Re w} (44)

for some B2 > 0. Hence (41) follows immediately from (43) and (44).
Suppose (−Re z) > 0 is sufficiently large. Then by (6), (31) and (41) we

prove that

p+(z, x, ξ) := σθ(c, ξ) + Vθ,∞(x)− z

has the inverse

q+(z, x, ξ) =
1

p+(z, x, ξ)

and

p+(z, x, D)q+(z, x, D) = I + r0(z, x, D),

where r0(z, x, ξ) satisfies

∣∣∂α
ξ ∂β

x r0(z, x, ξ)
∣∣ ≤ Kαβ |p+(z, x, ξ)|−1. (45)

Thus we see that

‖r0(z, x, D)‖ ≤ K0|Re z + b|−1

for some K0 > 0 and b > 0 (see (41)) by the Calderon-Vaillancourt theorem,
and that the inverse (r0(z, x, D) + I)−1 exists as a bounded operator L2 → L2 if
(−Re z) > 0 is large enough. Hence we have

p+(z, x, D)q+(z, x, D)(I + r0(z, x, D))−1 = I (46)

in L2. In the same way as above we have q+(z, x, D)p+(z, x, D) = I + r1(z, x, D),
where r1 satisfies the same properties as r0, and

(I + r1(z, x, D))−1q+(z, x, D)p+(z, x, D) = I (47)



1330 H. T. Ito and O. Yamada

if (−Re z) > 0 is large enough. Consequently, it follows from (46) and (47) that
z belongs to ρ(L+,∞(c, θ)), the resolvent set of L+,∞(c, θ), if (−Re z) > 0 is large
enough. By (43) the set {Vθ,∞(x) ∈ C;x ∈ R3} is contained in the cone C1,V ,
and thus it is easy to see that the numerical range of the multiplication operator
Vθ,∞(x) is contained in the cone. Similarly, the numerical range of the operator
σθ(c,D) is contained in the cone C1,σ by (44). Thus, the numerical range of
L+,∞(c, θ) is contained in the cone C1. Hence, if (−Re z) > 0 is large, then the
estimate

∥∥(L+,∞(c, θ)− z)−1
∥∥ ≤ 1

−b− Re z
(48)

holds, and so z belongs to ρ(L+(c, θ)) and

(L+(c, θ)− z)−1 = (L+,∞(c, θ)− z)−1
(
I + Vθ,0(L+,∞(c, θ)− z)−1

)−1

if ‖Vθ,0‖(−b− Re z)−1 < 1.
(b) Let f ∈ DM . Then both ‖Vθf‖ and ‖σθ(c,D)f‖ are uniformly bounded

in θ in any compact set in Ω, and both (Vθf, u) and (σθ(c,D)f, u) are analytic
functions of θ for each u ∈ S . Thus L+(c, θ)f is an L2-valued analytic function
of θ ∈ Ω for each f ∈ DM . Hence we have concluded that {L+(c, θ)}θ∈Ω is an
analytic family of type (A). Since U (t) maps DM onto DM , the relation (22) is
valid by the definition of L+(c, θ).

(c) Suppose θ belongs to the set Ω+(0) := {θ ∈ Ω+; |Re θ| < ρ0} for a positive
constant ρ0. Using Lemma 2.6, we can show that L−(c, θ) defined on S is closable
and its closure has domain DM as in the case of L+(c, θ).

Next we shall prove that for each c ≥ 1 and each θ ∈ Ω+ there is a large
constant r(c, θ) > 0 such that {z ∈ C; Im z < −r(c, θ)} belongs to the resolvent
set of L−(c, θ). As in the case L+(c, θ) we shall first give the proof for L−,∞(c, θ).
Let

N2v(θ) :=
{
Vθ,∞(x) ∈ C;x ∈ R3

}
,

N2s(c, θ) :=
{− σθ(c, ξ)− 2mc2 ∈ C; ξ ∈ R3

}
.

It follows from Lemma 2.2 that there are positive constants K and R1 such that

K−1(Im θ)Re Vθ,∞(x) ≤ Im Vθ,∞(x) ≤ K(Im θ)Re Vθ,∞(x) (49)

for |x| > R1. Thus taking account of the fact that {Vθ,∞(x) ∈ C; |x| ≤ R1} is
bounded, we see that
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N2v(θ) ⊂ Ñ2v(θ) := {w ∈ C;A1 Im θ < arg(w − w1) < A2} (50)

for some w1 ∈ C and positive constants A1 and A2 with A2 < π/2, where A1, A2

and w1 are independent of θ ∈ Ω+(0). Moreover, it is easy to verify that (see
Lemma 2.3)

N2s(c, θ) ⊂ Ñ2s(θ) := {w ∈ C;A3 ≤ arg(w + 2mc2) ≤ (π −A4 Im θ)} (51)

for some constant A3 and A4 with π/2 < A3 < π, where A3 and A4 are independent
of c ≥ 1 and θ ∈ Ω+(0). Let

N2(c, θ) := {−σθ(c, ξ)− 2mc2 + Vθ,∞(x) ∈ C;x ∈ R3, ξ ∈ R3}.

Since it is contained in the set

N2s(c, θ) + N2v(θ) := {ws + wv ∈ C;ws ∈ N2s(c, θ), wv ∈ N2v(θ)},

it follows from (50) and (51) that there are positive constants A5, A6 and w0 ∈ C

independent of c ≥ 1 and θ ∈ Ω+(0) such that

N2(c, θ) ⊂ Ñ2s(c, θ) + Ñ2v(θ) ⊂ C2(c, θ), (52)

where

C2(c, θ) := {w ∈ C;A5 Im θ < arg(w − w0 + 2mc2) < π −A6 Im θ}.

Let

p−(z, x, ξ) := −σθ(c, ξ)− 2mc2 + Vθ,∞(x)− z

for z ∈ C \C2(c, θ). Then by (6), (32), (52) and Lemma 2.5 we see that its inverse

q−(z, x, ξ) =
1

p−(z, x, ξ)

exists and

p−(z, x, D)q−(z, x, D) = I + r2(z, x, D),

for some r2(z, x, ξ) satisfying
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∣∣∂α
ξ ∂β

x r2(z, x, ξ)
∣∣ ≤ Kαβ |p−(z, x, ξ)|−1.

Here each constant Kαβ depends on c and θ (see (32)).
Thus as in the case of p+(z, x, D) we have

‖r2(z, x, D)‖ ≤ Kθ(Im w0 − Im z)−1 < 1

for some constant Kθ > 0 if (− Im z) > 0 is sufficiently large. Therefore the inverse
(I + r2(x,D))−1 : L2 → L2 exists and

p−(z, x, D)q−(z, x, D)(I + r2(z, x, D))−1 = I

in L2. In the same way as above we have q−(z, x, D)p−(z, x, D) = I + r3(z, x, D),
where r3 satisfies the same properties as r2, and

(I + r3(z, x, D))−1q−(z, x, D)p−(z, x, D) = I. (53)

Hence we conclude that z ∈ ρ(L−,∞(c, θ)) if Im z < −r(c, θ) for some constant
r(c, θ) > 0. Since the numerical range of the operator L−,∞(c, θ) is contained in
the cone C2(c, θ), we prove that, if (− Im z) > 0 is large, then

∥∥(L−,∞(c, θ)− z)−1
∥∥ ≤ 1

Im w0 − Im z
(54)

and z belongs to the resolvent set of L−(c, θ) if ‖Vθ,0‖(Im w0 − Im z)−1 < 1 in the
same way as in the proof of (a) above. Moreover, since D(L−(c, θ)) = DM , the
resolvent (L−(c, θ)− z)−1 is a compact operator.

(d) In the same way as in the case L+(c, θ), we can prove that L−(c, θ) is an
analytic family of type (A) and satisfies

L−(c, θ + t) = U (t)L−(c, θ)U (t)−1

for each t ∈ R and θ ∈ Ω+.
(e) We may assume that the numerical range of L−(c, θ) is contained in the

cone C2(c, θ) if (− Im w0) > 0 is large since the difference Vθ(x)−Vθ,∞(x) = Vθ,0(x)
is bounded, and so its spectrum is contained in C2(c, θ),

σ(L−(c, θ)) ⊂ C2(c, θ), (55)
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since the spectrum consists of eigenvalues only. Moreover, we see that {z ∈ C;
Im z < Im w0} ⊂ ρ(L−(c, θ)) and

∥∥(L−(c, θ)− z)−1
∥∥ ≤ 1

Im w0 − Im z
,

for z with Im z < −r0, where r0 := − Im w0.
(f) It is easy to see that L−(c, θ)f → L−(c)f strongly as Ω+ 3 θ → 0 for any

f ∈ S . Moreover, (L−(c) − z)S is dense in L2 since S is a core of L−(c), and
the above argument shows that ‖(L−(c, θ) − z)−1‖ is uniformly bounded in θ for
each c. Thus, using the resolvent equation

(L−(c, θ)− z)−1 − (L−(c)− z)−1

= −(L−(c, θ)− z)−1(L−(c, θ)− L−(c))(L−(c)− z)−1,

we have the desired result. ¤

3. Analytic Family.

In this section we will show that self-adjoint operators defined as a boundary
value of some type of analytic family of closed operators can be classified into two
types by following the idea of Aguilar and Combes [2] (see also [5], [16]).

Let T be a self-adjoint operator and {T (θ)}θ∈Ω+ a family of closed operators
in a Hilbert space H , where Ω+ = {θ ∈ C; 0 < Im θ < a} for some a > 0. We
assume the following:

(A1): {T (θ)}θ∈Ω+ is an analytic family in the sense of Kato (see [12], [16]).
(A2): Each T (θ) has compact resolvent.
(A3): There is a strongly continuous one-parameter unitary group {U(t)}t∈R

such that

U(t)T (θ)U(t)∗ = T (θ + t) (56)

for t ∈ R and θ ∈ Ω+.

By (A1) and (A2) each T (θ) has a purely discrete spectrum and the eigen-
values are analytic functions or branches of one or several analytic functions, and
(A3) implies that the eigenvalues of T (θ) is invariant when θ is changed to θ + t

if t is real. Thus, each eigenvalue is a constant function of θ ∈ Ω+ (see e.g. [2],
[16]). Therefore we obtain
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Proposition 3.1. Suppose (A1)∼(A3). Then there is a discrete set Σ in
C such that σ(T (θ)) = σd(T (θ)) = Σ for all θ ∈ Ω+.

Let C± = {z ∈ C;± Im z > 0}. A self-adjoint operator T is related to the
analytic family {T (θ)}θ∈Ω+ in the following sense.

(A4): There is a nonempty open set O0 ⊂ C− \ Σ such that

w − lim
t→+0

(T (it)− z)−1 = (T − z)−1 (weakly)

for each z ∈ O0.

For each s ∈ R define a self-adjoint operator T (s) by T (s) := U(s)TU(s)∗.
Then T (0) = T and

w − lim
t→+0

(T (s + it)− z)−1 = w − lim
t→+0

U(s)(T (it)− z)−1U(s)∗

= U(s)(T − z)−1U(s)∗ = (T (s)− z)−1

by (A3). Thus the self-adjoint operators T (s), s ∈ R, are regarded as boundary
values of the operator-valued function T (θ) defined on Ω+. The following propo-
sition shows that the eigenvalues of T (θ) are located in the closed upper half plane
C+ = {z ∈ C : Im z ≥ 0}.

Proposition 3.2. Suppose (A1)∼(A4). Then Σ ⊂ C+.

Proof. Let A be the generator of U(t), i.e. U(t) = e−itA, and let P(·) be
the spectral projection for A. Then D := {u ∈ H ;P([−M, M ])u = u for some M}
is dense in H , and e−iwAu is an entire function of w for each u ∈ D . Moreover,
e−iwAD = D for each w ∈ C. We fix z ∈ O0 and f , g in D and write fθ = U(−θ)f
for simplicity. Then we have the identity by (A3):

(
(T (θ + t)− z)−1f, g

)
=

(
(T (θ)− z)−1ft, gt

)
(57)

for all θ ∈ Ω+ and all t ∈ R, and by the use of analyticity of both sides in t we
get

(
(T (θ + η)− z)−1f, g

)
=

(
(T (θ)− z)−1fη, gη

)
(58)

if θ ∈ Ω+, θ + η ∈ Ω+. Therefore, by (A4) we have
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(
(T − z)−1f, g

)
= lim

t→+0

(
(T (it)− z)−1f, g

)

= lim
t→+0

(
(T (θ)− z)−1fit−θ, git−θ

)

=
(
(T (θ)− z)−1f−θ, g−θ

)
. (59)

Since (T (θ)−z)−1 and (T−z)−1 are analytic in C−\Σ and in C−, respectively, the
above equality holds for all z ∈ C− \ Σ. Since {f−θ; f ∈ D} = {g−θ; g ∈ D} = D

is dense in H , we see that (T (θ)−z)−1 is analytic in z ∈ C−, and so C−∩Σ = φ.
¤

From the key relation (59), which is valid for each z ∈ C−, we get

(
(T − z)−1fθ, gθ

)
=

(
(T (θ)− z)−1f, g

)
(60)

for θ ∈ Ω+, z ∈ C− and f, g ∈ D .

Let B(H ) be the set of bounded operators on H .

Lemma 3.3. Let Q(θ) be a B(H )-valued function defined on the strip Γ :=
{θ ∈ C; | Im θ| ≤ b} for some b > 0 such that

(a) Qf,g(θ) := (Q(θ)f, g) is bounded and continuous on Γ and is analytic in the
interior Γo := {θ ∈ C, | Im θ| < b} for each f, g in a dense set D0 in H
and that

(b)
‖Q(θ + t)‖ = ‖Q(θ)‖

for all θ ∈ Γ and all t ∈ R.
Then Q(θ) is a B(H )-valued bounded analytic function of θ in Γo.

Proof. Since

sup
t∈R

|Qf,g(t± ib)| ≤ ‖Q(±ib)‖‖f‖‖g‖

by (b), we use Hadamard’s three line theorem (see [15]) to have

|Qf,g(θ)| ≤ ‖Q(−ib)‖(1/2)(1−(Im θ/b))‖Q(ib)‖(1/2)(1+(Im θ/b))‖f‖‖g‖, θ ∈ Γ

for f, g ∈ D0. This implies that ‖Q(θ)‖ is bounded on Γ since D0 is dense.
Therefore it follows that (Q(θ)f, g) is analytic in Γo for all f, g ∈ H , and so Q(θ)
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is a B(H )-valued bounded analytic function of θ ∈ Γo. ¤

For E ∈ R, let γ be a positively-oriented small circle |z −E| = ε enclosing E

with {z ∈ C; 0 < |z − E| ≤ ε} ∩ Σ = φ and let

Pθ(E) = − 1
2πi

∫

γ

(T (θ)− z)−1dz.

Then this operator is the eigenprojection associated with E ∈ σd(T (θ)) = Σ if
E ∈ Σ and Pθ(E) = 0 otherwise. Moreover, for each E ∈ Σ the projection-valued
function Pθ(E) is analytic in θ ∈ Ω+. In particular, the dimension of the range of
Pθ(E) is independent of θ for each E.

The following is our main result in this section. Let Ps(·) be the spectral
projection of T (s) for s ∈ R.

Theorem 3.4. Suppose (A1)∼(A4). Then

(a) σd(T (θ)) ∩ R = σp(T ) for all θ ∈ Ω+. Moreover, for each E ∈ σp(T ) and
s ∈ R, we have

lim
Ω+3θ→s

‖Pθ(E)−Ps({E})‖ = 0. (61)

In particular, the eigenvalues of T are discrete and each eigenvalue has finite
multiplicity.

(b) Either
(I) T has a purely discrete spectrum, i.e. σ(T ) = σd(T )

or
(II) σ(T ) = R, σsc(T ) = φ

holds. In particular, we have σ(T ) \ σp(T ) ⊂ σac(T ) in the case of (II).
(c) If Σ ∩ (C \R) 6= φ or Σ = φ, then the case (II) holds. Thus, Σ = σp(T ) in

the case of (I).
(d) Suppose the case (I) above holds and fix z 6∈ σd(T ). Then the resolvent (T (θ)−

z)−1 has an analytic continuation of θ from Ω+ to Ω := {θ ∈ C; | Im θ| < a}.

Hereafter we call T a boundary value of the analytic family {T (θ)}θ∈Ω+ and
each element of Σ a resonance of T , when {T (θ)}θ∈Ω+ is given.

Now we discuss two simple and typical examples of T from the point of view
of this theorem, though the detail is omitted. Let us consider two Schrödinger
operators
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H+ := −∆ + |x|2, H− := ∆ + |x|2 in L2(R3).

It is known that they are essentially self-adjoint on S (see e.g. [10], [15]) and H+

is known as the harmonic oscillator.
We denote by the same notation H± their self-adjoint extensions. Define

H+(θ) := −e−2θ∆ + e2θ|x|2, | Im θ| < π

4
.

Then we can prove that each H+(θ) is a closed operator with domain D(H+(θ)) =
D(∆)∩D(|x|2) and has compact resolvent and that the family {H+(θ)} forms an
analytic family of type (A). Moreover, we can see that H+ is a boundary value of
the analytic family restricted to 0 < Im θ < π/4 and that H− is a boundary value
of the family of operators

H−(θ) := e−2θ∆ + e2θ|x|2 = e(π/2)i
(− e−2(θ−(π/4)i)∆ + e2(θ−(π/4)i)|x|2)

= iH+

(
θ − π

4
i

)

for 0 < Im θ < π/4. Since H+(θ) is an analytic family of type (A) for −π/4 <

Im θ < π/4, the theorem implies that H+ is of type (I) in (b). In particular,
σ(H+(θ)) = σd(H+(θ)) = σd(H+) = {λlmn; l, m, n = 0, 1, 2, . . . }, where

λlmn = (2l + 1) + (2m + 1) + (2n + 1) = 2(l + m + n) + 3. (62)

Furthermore, by virtue of this fact we know that σ(H−(θ)) = σd(H−(θ)) =
{iλlmn; l, m, n = 0, 1, 2, . . . }, i.e., H− has nonreal resonances. Thus, it follows
by (c) that H− is of type (II) and has a purely absolutely continuous spectrum
with σ(H−) = R.

Before giving the proof of the theorem we define T (θ) := T (θ)∗ for θ ∈ Ω−,
where Ω− := {θ ∈ C;−a < Im θ < 0}. Then σ(T (θ)) = σd(T (θ)) = Σ :=
{z ∈ C; z ∈ Σ} and (T (θ) − z)−1 = ((T (θ) − z)−1)∗, θ ∈ Ω−, z ∈ O0, where
O0 := {z ∈ C; z ∈ O0}. Moreover, the projection Pθ(E) is defined also for
θ ∈ Ω−. The assumptions (A1), (A2) and (A3) are satisfied even if Ω+ is replaced
by Ω−, and moreover,

(A4)′ w − lim
t→−0

(T (it)− z)−1 = (T − z)−1, z ∈ O0

follows from (A4) immediately.
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Proof of Theorem 3.4. We use the idea of the dilation analytic method
by Aguilar and Combes [2] (see also [16]).

(a) Let E ∈ R and θ ∈ Ω+. We know that the resolvent (T (θ)− z)−1 has the
form (see e.g. [12], [16])

(T (θ)− z)−1 = −Pθ(E)
z − E

−
L∑

k=2

B−k

(z − E)k
+ B(z), (63)

for z near E, where each B−k is a finite rank operator and B(z) is analytic near
E. We first note that a functional calculus for the self-adjoint operator T and (59)
give

(P0({E})f, g) = lim
ε→+0

(−iε)
(
(T − (E − iε))−1f, g

)

= lim
ε→+0

(−iε)
(
(T (θ)− (E − iε))−1f−θ, g−θ

)

for f, g ∈ D . Therefore, noting that {fθ; f ∈ D} = D is dense for each θ ∈ C, we
see that Bj = 0 for all j = 2, . . . , L and

(
P0({E})fθ, gθ

)
= (Pθ(E)f, g) (64)

for θ ∈ Ω+ if f, g ∈ D since (f−θ)θ = f . Similarly, (64) is also true for θ ∈ Ω−
because Pθ(E)∗ = Pθ(E) for E ∈ R. Now we define Pθ(E) := Pθ({E}) for θ ∈ R.
Consequently, we see that (64) is true for all θ ∈ Ω and that

‖Pθ+t(E)‖ = ‖Pθ(E)‖

for θ ∈ Ω and t ∈ R. Let

Pf,g(θ) := (Pθ(E)f, g)

for θ ∈ Ω. If f, g ∈ D , this is equal to the entire function (P0({E})fθ, gθ) of θ.
Fix b > 0 with b < a. Then

∣∣Pf,g(θ)
∣∣ ≤ ‖fθ‖‖gθ‖ ≤

(
max
|t|≤b

‖fit‖
)(

max
|t|≤b

‖git‖
)

if | Im θ| ≤ b. Thus we can apply Lemma 3.3 to conclude that Pθ(E) is analytic in
Ω because b > 0 is arbitrary if b < a. In particular, we have
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Pθ(E) → Pθ0(E) (65)

as Ω+ 3 θ → θ0 ∈ R in the operator norm and so

∥∥Pθ(E)− Pθ0(E)
∥∥ < 1

if |θ − θ0| is small enough. Since dim Pθ(E) is independent of θ ∈ Ω+, the above
inequality implies that dimPθ(E) is actually independent of θ ∈ Ω. Therefore we
have σp(T ) = Σ ∩R.

(b) We first note that (59) holds for any z ∈ C− and θ ∈ Ω+. Thus, for any
compact interval J ⊂ R \ σp(T ) the limit

lim
ε→+0

(
(T − (λ− iε))−1f, g

)
= lim

ε→+0

(
(T (θ)− (λ− iε))−1f−θ, g−θ

)

=
(
(T (θ)− λ)−1f−θ, g−θ

)

exists uniformly in λ ∈ J for any f, g ∈ D and θ ∈ Ω+ since J is contained in
C \Σ, which is the resolvent set of T (θ) for θ ∈ Ω+. This means that J ⊂ ρ(T ) or
J ⊂ σac(T ) since D is dense. Suppose J ⊂ ρ(T ). Then, (T − z)−1 has the analytic
continuation from C− to C+ across the interval J . Thus, (59) holds for z ∈ C+\Σ
and so ((T − z)−1f, g) is a meromorphic function with the poles Σ ∩R = σp(T ).
Since D is dense this means σ(T ) = σd(T ).

(c) Suppose Σ ∩ (C \R) 6= φ and there would be an interval J ⊂ ρ(T ) ∩R,
then (59) holds for z ∈ C+\Σ. The right-hand side in (59) has poles at Σ∩(C \R)
for some f, g ∈ D , but the left-hand side is analytic in C+. This is a contradiction.
Suppose Σ = φ. Then σp(T ) = φ by (a) and the case (II) should hold.

(d) Suppose σ(T ) = σd(T ) = Σ, then since both (T (θ)− z)−1 and (T − z)−1

are analytic in z ∈ C \ σd(T ), (60) holds for all z 6∈ σd(T ) and θ ∈ Ω+ if f, g ∈ D .
Recall that T (θ) = U(θ)TU(θ)∗ for θ ∈ R and T (θ) = T (θ)∗ for θ ∈ Ω−. Then
we can easily see that (60) holds for all θ ∈ Ω if z 6∈ σd(T ) and f, g ∈ D since
z 6∈ Σ = σd(T ) and

(
(T (θ)− z)−1f, g

)
=

(
(T (θ)− z)−1g, f

)

=
(
(T − z)−1gθ, fθ

)

=
(
(T − z)−1fθ, gθ

)

for θ ∈ Ω−. Fix z 6∈ σd(T ) and define
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Rf,g(θ) :=
(
(T (θ)− z)−1f, g

)

for f, g ∈ H . Since

‖(T (θ + t)− z)−1‖ = ‖(T (θ)− z)−1‖

for θ ∈ Ω and t ∈ R, and since Rf,g(θ) = ((T − z)−1fθ, gθ) for f, g ∈ D, we can
prove that (T (θ)− z)−1 is analytic in Ω, as (a) is proved by using Lemma 3.3. ¤

4. Resonances.

In this section we give the proofs of Theorems 1.1, 1.2 and 1.3. We apply The-
orem 3.4 to the relativistic Schrödinger operators L±(c) as follows; H = L2(R3),
Ω+ = Ω+, T = L±(c), T (θ) = L±(c, θ), U(t) = U (t). Indeed, Proposition 2.1
guarantees this application, and it will be shown that L+(c) is of type (I) and
L−(c) is of type (II) in (b) of Theorem 3.4.

Proof of Theorem 1.1. Taking account of Proposition 2.1, we have the
theorem as an immediate consequence of Proposition 3.1. ¤

Proof of Theorem 1.2. As stated in the beginning of this section, The-
orem 3.4 can be applied to L−(c), and then it follows that σ(L−(c, θ)) =
σd(L−(c, θ)) = Σ−(c) is independent of θ ∈ Ω+ and σ(L−(c, θ)) ∩R = σp(L−(c))
is a discrete set. Moreover, the multiplicity of each eigenvalue of L−(c) is finite.
We have only to prove that L−(c) is not of type I. We fix θ ∈ Ω+. Then it fol-
lows from (55) that σ(L−(c, θ)) ∩ R is contained in a bounded interval. Since
σ(L−(c, θ)) = Σ−(c), there exists a constant K > 0 independent of θ such that
σp(L−(c))∩ ((−∞,−K]∪ [K,∞)) = φ. Hence the number of eigenvalues (if exist)
is finite and each multiplicity is finite. Since the dimension of L2(R3) is infinite,
this implies that L−(c) should not be of type (I). Consequently, we have proved
the theorem. ¤

The rest of this section is devoted to the proof of Theorem 1.3. We write

L(c, θ) = L1(c, θ) + W (c, θ), (66)

where

L1(c, θ) :=
(

L+(c, θ)I2 0
0 L−(c, θ)I2

)
.
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Lemma 4.1. Fix θ ∈ Ω and let

W0(c, θ) := Uc(e−θD)Vθ,0(x)Uc(e−θD)−1 − Vθ,0(x),

W∞(c, θ) := Uc(e−θD)Vθ,∞(x)Uc(e−θD)−1 − Vθ,∞(x).

Then, there exists a constant K > 0 such that

∥∥〈x〉〈D〉W∞(c, θ)〈x〉−M
∥∥ ≤ K,

∥∥W∞(c, θ)〈x〉−M+1
∥∥ ≤ Kc−1 (67)

for all c ≥ 1, and

lim
c→∞

W0(c, θ)f = 0 (68)

strongly for each f ∈ L2(R3)4. In particular, we have

lim
c→∞

W0(c, θ)
(√−∆ + 1 + 〈x〉M)−1 = 0 (69)

in the operator norm.

Proof. Using (19) and the assumption (V2) we can prove (67) with the
help of the calculus of pseudodifferential operators. Since U(e−θD/c) converges
strongly to I as c → ∞, we have (68). (69) follows immediately from (68) since
(
√−∆ + 1 + 〈x〉M )−1 is compact. ¤

Proposition 4.2.

(a) L(c, θ) defined on S 4 is closable and its closure (denoted by the same notation
L(c, θ)) has domain D(L(c, θ)) = (DM )4 for θ ∈ Ω+.

(b) The resolvent set of L(c, θ), θ ∈ Ω+, is not empty and its resolvent (L(c, θ)−
z)−1 is compact. Moreover, L(c, θ) is an analytic family of type (A) in θ ∈ Ω+.

(c) There is a large constant T > 0 independent of c such that

s− lim
Ω+3θ→0

(L(c, θ)− z)−1 = (L(c)− z)−1 (70)

for all z ∈ C with Re z < −T and Im z < −T .

Proof.

(a) Since both L+(c, θ) and L−(c, θ) are closed operators with domain DM

and S is a common core for them, L1(c, θ) is a closed operator with domain (DM )4
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and S 4 is a core. Thus (67) shows that

W∞(c, θ)(L1(c, θ)− z)−1

= 〈x〉−1〈D〉−1 · 〈D〉〈x〉W∞(c, θ)〈x〉−M · 〈x〉M (L1(c, θ)− z)−1

is compact since 〈x〉−1〈D〉−1 is compact. Moreover, W0(c, θ)(L1(c, θ)−z)−1 is also
compact because (L1(c, θ) − z)−1 is compact. Hence W (c, θ) is L1(c, θ)-compact
and thus L(c, θ) is a closed operator with domain (DM )4 and S 4 is a core.

(b) We first prove the estimate

∥∥〈x〉M−1(L+,∞(c, θ)− z)−1
∥∥ ≤ K|Re z|−min(1/M,1) (71)

for all z such that (−Re z) > 0 is sufficiently large. When 0 < M ≤ 1, this follows
immediately from (48), and thus we shall consider the case M > 1. If (−Re z) > 0
is sufficiently large, then (46) implies

(
L+,∞(c, θ)− z

)−1 = q+(z, x, D)(1 + r0(z, x, D))−1 (72)

and ‖r0(z, x, D)‖ < 1/2. The symbol q+(z, x, ξ) satisfies

∣∣∂α
ξ ∂β

x (〈x〉M−1q+(z, x, ξ))
∣∣ ≤ Kαβ

〈x〉M−1

|Re p+(z, x, ξ)| ≤ K ′
αβ

〈x〉M−1

Re Vθ,∞(x)− Re z

≤ K ′′
αβ

1
(〈x〉M − Re z)1/M

≤ K ′′′
αβ

1
(−Re z)1/M

,

from which we have

∥∥〈x〉M−1q+(z, x, D)
∥∥ ≤ K(−Re z)−1/M ,

and so

∥∥〈x〉M−1(L+,∞(c, θ)− z)−1
∥∥ ≤ K ′(−Re z)−1/M .

Thus we have (71). In a similar way we have

∥∥〈x〉M−1(L−,∞(c, θ)− z)−1
∥∥ ≤ K| Im z|−min(1/M,1) (73)

for all z such that (− Im z) > 0 is sufficiently large. Therefore, by (67) we have
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shown that

∥∥W∞(c, θ)(L1,∞(c, θ)− z)−1
∥∥ ≤ K|z|−min(1/M,1)

for z ∈ ZT := {z ∈ C; (9/8)π < arg z < (11/8)π, |z| > T} if T is large enough,
where L1,∞(c, θ) is defined by replacing L±(c, θ) by L±,∞(c, θ), respectively, in the
definition of L1(c, θ). If T is large, then we also see that

∥∥W0(c, θ)(L1,∞(c, θ)− z)−1
∥∥ ≤ K|z|−1, z ∈ ZT

by (48) and (54). Hence we have obtained the estimate

∥∥W (c, θ)(L1,∞(c, θ)− z)−1
∥∥ ≤ K|z|−min(1/M,1), z ∈ ZT

for large T . Using (48), (54) and the resolvent equation, we have

(L1(c, θ)− z)−1 = (L1,∞(c, θ)− z)−1
(
I + Vθ,0(c, θ)(L1,∞(c, θ)− z)−1

)−1
,

if z ∈ ZT with large T and

∥∥W (c, θ)(L1(c, θ)− z)−1
∥∥ <

1
2
.

Hence such z belongs to the resolvent set of L(c, θ) and

(L(c, θ)− z)−1 = (L1(c, θ)− z)−1
(
I + W (c, θ)(L1(c, θ)− z)−1

)−1
.

Since L1(c, θ) has compact resolvent, the above formula shows that L(c, θ) also
has compact resolvent. Furthermore, it is not difficult to verify that L(c, θ)f
(f ∈ (DM )4) is analytic in θ. Therefore {L(c, θ)}θ∈Ω+ is an analytic family of type
(A). Let U4(t) := U (t)I4, where U (t) is the dilation group. Then by definition
we see that

U4(t)L(c, θ)U4(t)−1 = L(c, θ + t)

for all θ ∈ Ω+ and all t ∈ R. Thus the spectrum of L(c, θ) is independent of
θ ∈ Ω+.

(c) Let us introduce a family of operators
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H̃(c, θ) := ce−θα ·D + βmc2 −mc2 + Vθ(x)

for θ ∈ Ω+. Then, noting that

L(c, θ) = Uc(eθD)H̃(c, θ)Uc(eθD)−1 (74)

on S 4 and that both Uc(eθD) and Uc(eθD)−1 map S 4 onto S 4 and (DM )4

onto (DM )4, respectively, we know that H̃(c, θ), θ ∈ Ω+ is a closed operator with
domain (DM )4 and so has compact resolvent. Moreover, σ(H̃(c, θ)) = σ(L(c, θ))
is independent of θ ∈ Ω+. Using (50) we easily see that the numerical range
Nu(H̃(c, θ)) of H̃(c, θ) is contained in the half plane

Im z ≥ − tan(Im θ)Re z + b1 (75)

for some b1 independent of θ ∈ Ω+. Since the spectrum of H̃(c, θ) consists of
eigenvalues only, it is contained in the half plane (75), and there exist constants
K > 0 and T > 0 such that ‖(H̃(c, θ) − z)−1‖ ≤ 1/(|z| − K) for all z with
Re z < −T and Im z < −T . Thus the spectrum of L(c, θ) is contained in the half
plane (75) and ‖(L(c, θ) − z)−1‖ is uniformly bounded in θ ∈ Ω+ for each z as
above. Noting that S 4 is a common core of L(c) and L(c, θ), we have

(L(c, θ)− z)−1u

= (L(c)− z)−1u− (L(c, θ)− z)−1(L(c, θ)− L(c))(L(c)− z)−1u (76)

for u ∈ (L(c)− z)S 4. We can easily prove that

‖(L(c, θ)− L(c))f‖ → 0

as Ω+ 3 θ → 0 for each f ∈ S 4. Thus it follows from the uniform boundedness
of ‖(L(c, θ)− z)−1‖ that

s− lim
Ω+3θ→0

(L(c, θ)− z)−1f = (L(c)− z)−1f (77)

for each f ∈ (L(c)− z)S 4 and z with Re z < −T and Im z < −T . Since (L(c)−
z)S 4 is dense, we obtain (70). ¤

This proposition shows that L(c) is a boundary value of the analytic family
{L(c, θ)}θ∈Ω+ .
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Proposition 4.3.

(a) The set Σ(c) := σd(L(c, θ)) is independent of θ ∈ Ω+ and satisfies

Σ(c) ⊂ C+, Σ(c) ∩R = σp(L(c)).

Moreover, the multiplicity of each eigenvalue (if exists) of L(c) is finite.
(b) σ(L(c)) = R and σsc(L(c)) = φ. In particular, σ(L(c))\σp(L(c)) ⊂ σac(L(c)).

Proof. Since L(c) is a boundary value of the analytic family {L(c, θ)}θ∈Ω+ ,
we have only to prove that L(c) is of type (II) in (b) of Theorem 3.4. To do so
we first show that L(c) is not bounded below. We take a function φ ∈ C∞0 (R3)4

such that ‖φ‖ = 1 and (α ·Dφ, φ) 6= 0, and define φλ(x) := |λ|3/2φ(λx) for λ ∈ R,
λ 6= 0. Then ‖φλ‖ = 1 and (cα · Dφλ, φλ) = λ(cα · Dφ, φ), and the support
of φλ(x) is contained in some bounded set for all λ with |λ| ≥ 1, and hence
((βmc2 + V (x))φλ, φλ) is uniformly bounded for |λ| ≥ 1. Thus (H(c)φλ, φλ) is
not bounded above nor below in λ, which implies that H(c) is not bounded above
nor below, and so is L(c). However, the set of the eigenvalues of L(c, θ), θ ∈ Ω+,
is contained in the half plane (75), and so the set of the eigenvalues of L(c) is
bounded from below since σ(L(c, θ)) ∩R = σp(L(c)). Therefore, we see that L(c)
should not be of type (I). Consequently, we have proved that L(c) is of type (II).

¤

Remark. We call an element of Σ(c) a resonance of L(c), and in [1] eigen-
values of H̃(c, θ), which are independent of θ ∈ Ω+, are called resonances of
H(c) − mc2. The above equality (74) shows that these two sets of resonances
coincide.

Proof of Theorem 1.3. Theorem 1.3 follows from this proposition and
the above remark. ¤

Remarks.

( i ) It is a natural question whether or not there is a resonance. In the next
section we will show that there are resonances near each eigenvalue of the
Schrödinger operator S = −(2m)−1∆ + V (x) if c is large enough.

( ii ) As shown in the proof of Proposition 4.2(c), the resonances of L(c) are
contained in the half-plane (75). Hence, the set of the eigenvalues of H(c)
is bounded from below.
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5. Nonrelativistic Limit for H(c) − mc2.

In this section we study the operators L±(c, θ) and L(c, θ) in the nonrel-
ativistic limit and give the proof of Theorem 1.4. Furthermore, we study the
nonrelativistic limit of the spectral projection of H(c) − mc2 at the end of this
section.

Recall that we fix a constant L > 0 and an open interval I ⊂ R with I ∩
σd(S) = {λj }N

j=1 and define a set O := {z ∈ C; Re z ∈ I, | Im z| < L}.

Proposition 5.1. Fix θ ∈ Ω+. There are constants c0 > 0 and K > 0 such
that O ⊂ ρ(L−(c, θ)) and

∥∥(L−(c, θ)− z)−1
∥∥ ≤ Kc−2 (78)

for all c > c0 and all z ∈ O.

Proof. Combining (52) and the boundedness of Vθ,0, we may assume that
the numerical range of L−(c, θ) is contained in the cone C2(c, θ) with some new
w0, and so the spectrum of L−(c, θ) is contained in the cone since the spectrum
consists of only eigenvalues and each eigenvalue is in the numerical range. Hence, if
c is sufficiently large, the set O and the cone have no intersection and the distance
between them is larger than const.c2. Hence we obtain the estimate (78). ¤

Let S(θ) := −(2m)−1e−2θ∆ + Vθ(x), θ ∈ Ω. The following proposition shows
that the Schrödinger operator S is of type (I) in Theorem 3.4.

Proposition 5.2.

(a) S(θ) defined on S is closable and its closure (denoted by the same notation
S(θ)) has the domain D(S(θ)) = D(−∆) ∩ L2

M (R3).
(b) The resolvent set of S(θ) is not empty and its resolvent is compact. In partic-

ular, S(θ) has a purely discrete spectrum.
(c) {S(θ)}θ∈Ω is an analytic family of type (A), and

U (t)S(θ)U (t)−1 = S(θ + t)

for all θ ∈ Ω and t ∈ R.
(d) The spectrum of S(θ) is independent of θ, and in particular, coincides with

that of S.

Outline of the proof. We see that L+(c, θ)f → S(θ)f as c → ∞ for
each f ∈ S and θ ∈ Ω. Thus, since s(c, ξ) → |ξ|2 as c → ∞, we have by Lemma
2.7
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‖(S(θ)− z)f‖2 + ‖f‖2 ≥ K1‖∆f‖2 + K2

∥∥〈x〉Mf
∥∥2

, f ∈ S (79)

for some positive constants K1 and K2. Using this estimate and an argument
similar to that in the proof of Proposition 2.1, we can obtain the proposition.

We next study the nonrelativistic limit of L+(c, θ). First of all we consider the
operators σθ(c,D) and−e−2θ(2m)−1∆ with θ ∈ Ω and c ≥ 1. It is known that S is
a common core of them and that D(σθ(c,D)) = H1(R3) and D(−e−2θ(2m)−1∆) =
H2(R3). Moreover, it is easy to see that all z ∈ C with Re z < 0 belong to the
resolvent sets of them.

Lemma 5.3. Let G be a compact set in {z ∈ C; Re z < 0} and fix θ ∈ Ω.
Then there is a constant K > 0 such that

sup
z∈G

∥∥∥∥(σθ(c,D)− z)−1 −
(
− e−2θ

2m
∆− z

)−1∥∥∥∥ ≤ Kc−2 (80)

for c ≥ 1.

Proof. We estimate the symbol of (σθ(c,D)−z)−1−(−e−2θ(2m)−1∆−z)−1

for θ = 0 for simplicity. By a simple calculation we have

√
c2|ξ|2 + m2c4 −mc2 − |ξ|2

2m
=

−c2|ξ|4
2m

(√
c2|ξ|2 + m2c4 + mc2

)2

and so

(√
c2|ξ|2 + m2c4 −mc2 − z

)−1 −
( |ξ|2

2m
− z

)−1

= F1F2F3,

where F1 = (2m)−1(
√

c2|ξ|2 + m2c4 −mc2)(
√

c2|ξ|2 + m2c4 −mc2 − z)−1, F2 =
(
√

c2|ξ|2 + m2c4 + mc2)−1 and F3 = |ξ|2((2m)−1|ξ|2 − z)−1. Since |F1|, c2|F2|
and |F3| are uniformly bounded in ξ ∈ R3, c ≥ 1 and z ∈ G, we have the desired
result. ¤

Using the above lemma we can prove that L+(c, θ) converges to S(θ) in the
norm resolvent sense.

Lemma 5.4. Let G be a compact set in {z ∈ C; Re z < 0} such that G ∩
(σ(S)∪σ(L+(c))) = φ for all c ≥ 1 and fix θ ∈ Ω. Then there is a constant K > 0
such that
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sup
z∈G

∥∥(L+(c, θ)− z)−1 − (S(θ)− z)−1
∥∥ ≤ Kc−2

for c ≥ 1.

Proof. Let z ∈ G. Then z ∈ ρ(S(θ)) ∩ ρ(L+(c, θ)) and the following
resolvent equation holds:

(L+(c, θ)− z)−1 − (S(θ)− z)−1

= −(L+(c, θ)− z)−1(L+(c, θ)− S(θ))(S(θ)− z)−1 (81)

on (S(θ) − z)S . Since S is a core of S(θ) it holds on the whole space L2(R3).
Similarly, we have

(S(θ)− z)−1 =
(
− e−2θ

2m
∆− z

)−1

−
(
− e−2θ

2m
∆− z

)−1

Vθ(S(θ)− z)−1, (82)

(L+(c, θ)− z)−1 = (σθ(c,D)− z)−1 − (L+(c, θ)− z)−1Vθ(σθ(c,D)− z)−1. (83)

Here we note that (L+(c, θ)− z)−1Vθ ⊂ (Vθ(L+(c, θ)− z)−1)∗ and D(L+(c, θ)) =
DM ⊂ D(Vθ) allow us to consider (L+(c, θ)− z)−1Vθ as a bounded operator. We
also know from Lemma 2.7 that ‖(L+(c, θ) − z)−1Vθ‖ is uniformly bounded in
c ≥ 1. Thus substituting (82) and (83) into the right-hand side of (81) and noting
that

∥∥(− (2m)−1e−2θ∆− z
)−1(L+(c, θ)− S(θ))(σθ(c,D)− z)−1

∥∥ ≤ Kc−2

for some K > 0 by (80), we arrive at the desired result. ¤

Proposition 5.5. Let G be a compact set in ρ(S) and fix θ ∈ Ω. Then
there are constants c0 > 0 and K > 0 such that G ⊂ ρ(L+(c, θ)) for c ≥ c0 and

sup
z∈G

∥∥(L+(c, θ)− z)−1 − (S(θ)− z)−1
∥∥ ≤ Kc−2

for c ≥ c0.

Proof. Lemma 5.4 implies that L+(c, θ) converges to S(θ) in the gener-
alized sense and so the proposition follows immediately from Theorem 2.25 and
(3.10) in Chapter IV of [12], since ρ(S) = ρ(S(θ)). ¤
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This result implies that for each eigenvalue λ (with multiplicity n) of S there
exist n eigenvalues (counting multiplicity) λj(c), j = 1, . . . , n, of L+(c) near λ for
large c and λj(c) → λ as c →∞.

Define Oε := O \ ∪N
j=1Bε(λj). Then we have the following proposition.

Proposition 5.6. Fix θ ∈ Ω+. Then for any ε > 0 there exists cε > 0 such
that Oε ⊂ ρ(L(c, θ)) ∩ ρ(S) for c > cε and

lim
c→∞

sup
z∈Oε

∥∥∥∥(L(c, θ)− z)−1 −
(

(S(θ)− z)−1I2 0
0 0

) ∥∥∥∥ = 0. (84)

Proof. If c is large enough, it follows from Propositions 5.1 and 5.5 that
Oε ⊂ ρ(L1(c, θ)) and that ‖(L±(c, θ) − z)−1‖ is uniformly bounded in c and z ∈
Oε, and thus it follows from Lemmas 2.6 and 2.7 that ‖〈x〉M (L±(c, θ) − z)−1‖
is uniformly bounded in c and z ∈ Oε. Therefore by the use of (67) we have for
large c

sup
z∈Oε

∥∥W∞(c, θ)(L1(c, θ)− z)−1
∥∥ ≤ Kc−1. (85)

Since c ≥ 1, a simple calculation shows that 2s(c, ξ) − |ξ| ≥ 0 for |ξ| ≥ 1 and
s(c, ξ) + 1 ≥ |ξ| for |ξ| ≤ 1. Thus we have immediately

sup
c≥1

∥∥√−∆ + 1(s(c,D) + 1)−1
∥∥ < ∞,

and so Lemmas 2.6 and 2.7 imply

sup
c≥1,z∈Oε

∥∥(√−∆ + 1 + 〈x〉M)
(L1(c, θ)− z)−1

∥∥ < ∞.

Therefore, writing

W0(c, θ)(L1(c, θ)− z)−1

= W0(c, θ)
(√−∆ + 1 + 〈x〉M)−1(√−∆ + 1 + 〈x〉M)

(L1(c, θ)− z)−1

and using (69), we get

lim
c→∞

∥∥W0(c, θ)(L1(c, θ)− z)−1
∥∥ = 0
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uniformly in z ∈ Oε. Consequently, we obtain

lim
c→∞

∥∥W (c, θ)(L1(c, θ)− z)−1
∥∥ = 0

uniformly in z ∈ Oε. Hence we can find a large cε such that the bounded inverse
of I + W (c, θ)(L1(c, θ)− z)−1 exists, so that Oε ⊂ ρ(L(c, θ)) for c ≥ cε and

(L(c, θ)− z)−1 = (L1(c, θ)− z)−1(I + W (c, θ)(L1(c, θ)− z)−1)−1.

Hence

lim
c→∞

∥∥(L(c, θ)− z)−1 − (L1(c, θ)− z)−1
∥∥ = 0 (86)

uniformly in z ∈ Oε. Combining Propositions 5.1, 5.5 and this estimate, we get
the desired result. ¤

Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Let

Pj(A) :=
−1
2πi

∫

|z−λj |=ε

(A− z)−1dz

be the eigenprojection for an operator A associated with the eigenvalues in the
open disc |z − λj | < ε. Then we have

lim
c→∞

∥∥∥∥Pj(L(c, θ))−
(

Pj(S(θ))I2 0
0 0

) ∥∥∥∥ = 0 (87)

by Proposition 5.6. Thus, since dimPj(S(θ)) = dimPj(S), we have
dimPj(L(c, θ)) = 2 dimPj(S) = 2mj if c is large. Since the resonances of
H(c)−mc2 coincide with those of L(c) and since there is no resonance of H(c)−mc2

in C−, we have proved the theorem. ¤

Using Proposition 5.6, we have a result on the nonrelativistic limit of the
spectral projection of the Dirac operator.

Proposition 5.7. Let I = [α, β] be an interval such that I ∩ σ(S) = {λ0}
with α < λ0 < β or I ∩ σ(S) = φ. Then we have

s− lim
c→∞

PH(c)−mc2(I)f = Pf, (88)
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for each f ∈ L2(R3)4, where

P =
(
PS({λ0})I2 0

0 0

)
(89)

if I ∩ σ(S) = {λ0} and P = 0 if I ∩ σ(S) = φ, where PA(·) denotes the spectral
projection of a self-adjoint operator A.

Remark. A similar result replaced f by

(
I2 0
0 0

)
f

has already been proved in more general cases in [11].

Proof. Since Uc(D)PH(c)−mc2(I)Uc(D)−1 = PL(c)(I) and Uc(D),
Uc(D)−1 → I strongly as c →∞, we have only to prove

s− lim
c→∞

PL(c)(I)f = Pf. (90)

Using Theorem 1.4 we first note that there is a constant c0 > 0 such that α,
β 6∈ σp(L(c)) for all c > c0 since the real resonances of L(c) coincide with the
eigenvalues of L(c). Let f be in the dense set

{
f ∈ L2(R3)4; fθ := U4(−θ)f has an analytic continuation from R to C

}
.

Then by the relation

(
(L(c)− z)−1f, f

)
=

(
(L(c, θ)− z)−1f−θ, f−θ

)

for Im z < 0 (see (59)) we have

(PL(c)(I)f, f) = lim
ε→+0

−1
π

Im
( ∫ β

α

(
(L(c)− E + iε)−1f, f

)
dE

)

= lim
ε→+0

−1
π

Im
( ∫ β

α

(
(L(c, θ)− E + iε)−1f−θ, f−θ

)
dE

)

=
−1
π

Im
( ∫

γ

(
(L(c, θ)− z)−1f−θ, f−θ

)
dz

)
,
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where γ is the positively oriented half round from α to β in the lower half-plane
(in which there is no resonance of L(c)). Hence using Proposition 5.6 and denoting

Qθ(z) :=
(

(S(θ)− z)−1I2 0
0 0

)
,

we get

lim
c→∞

(PL(c)(I)f, f) =
−1
π

Im
( ∫

γ

(
Qθ(z)f−θ, f−θ

)
dz

)

=
−1
π

Im
( ∫

γ

(Q0(z)f, f)dz

)

=
−1
2πi

∫

γ+eγ
(Q0(z)f, f)dz = (Pf, f),

where we denote by γ̃ the positively oriented half round from β to α in the upper
half-plane. Since both PL(c)(I) and P are orthogonal projections, we can easily
see that this result implies (90). ¤

6. Nonrelativistic limits for H(c) + mc2 and H(c).

In Section 5 we have considered the resonances of H(c) −mc2 in a bounded
domain O when c is large, and have shown that they are closely related with the
eigenvalues of S in the domain. In this section we will consider those of H(c) +
mc2 and H(c) in a bounded domain O1. We show that, if c is sufficiently large,
there is no resonance of H(c) in O1, but there are resonances of H(c) + mc2 near
“resonances” (in O1) of the operator S̃ := (2m)−1∆+V (x) defined on S . Here we
should remark that the essential self-adjointness of S̃ requires some conditions, for
example, M ≤ 2 in our assumptions. But, we do not need to assume the essential
self-adjointness because, as we see below, the location of resonances of H(c)+mc2

does not depend on the spectrum of a self-adjoint extension of S̃ but the one of
the dilated operator S̃(θ) := (2m)−1e−2θ∆ + Vθ(x), θ ∈ Ω+. Therefore, we do not
need any condition on M > 0 in the following results.

Proposition 6.1.

(a) S̃(θ) defined on S is closable and its closure (denoted by the same notation
S̃(θ)) has the domain D(S̃(θ)) = D(−∆) ∩ L2

M (R3).
(b) The resolvent set of S̃(θ) is not empty and its resolvent is compact. In partic-

ular, S̃(θ) has a purely discrete spectrum.
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(c) {S̃(θ)}θ∈Ω+ is an analytic family of type (A), and

U (t)S̃(θ)U (t)−1 = S̃(θ + t)

for all θ ∈ Ω+ and t ∈ R.
(d) The spectrum of S̃(θ) is independent of θ, which is denoted by Σ̃.

Remark. We call an element of Σ̃ a resonance of S̃ even if there are many
self-adjoint extensions of S̃.

Outline of the proof. We see that (L−(c, θ)+ 2mc2)f → S̃(θ)f as c →
∞ for each f ∈ S and θ ∈ Ω+. Thus, since s(c, ξ) → |ξ|2 as c → ∞, we have by
Lemma 2.6

∥∥(S̃(θ)− z)f
∥∥2 + ‖f‖2 ≥ K1‖∆f‖2 + K2

∥∥〈x〉Mf
∥∥2

, f ∈ S (91)

for some positive constants K1 and K2. Using the estimate we can obtain the
proposition in a manner similar to that in the proof of Proposition 2.1.

Moreover, as in the proof of Proposition 5.5 we can prove

Proposition 6.2. Let G be a compact set in C \ Σ̃ and fix θ ∈ Ω+. Then
there are constants c0 > 0 and K > 0 such that G ⊂ ρ(L−(c, θ)+2mc2) for c ≥ c0

and

sup
z∈G

∥∥(L−(c, θ) + 2mc2 − z)−1 − (S̃(θ)− z)−1
∥∥ ≤ Kc−2

for c ≥ c0.

By Propositions 6.1 and 6.2 we have the following corollary.

Corollary 6.3.

(a) Σ̃ ⊂ C+.
(b) If S̃ = (2m)−1∆ + V (x) defined on S is an essentially self-adjoint operator,

then the self-adjoint extension (denoted by the same notation S̃) is of type (II)
as a boundary value of the analytic family {S̃(θ)}θ∈Ω+ .

Remark. The essential self-adjointness and the absolute continuity of the
spectrum of S̃ under the condition M ≤ 2 have been extensively studied by many
papers (see, e.g. [24] and its references).
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Proof.

(a) If there exists an eigenvalue of Σ̃ in C−, then Proposition 6.2 implies that
there exist eigenvalues of L−(c, θ) + 2mc2 near it for large c > 0. But, this
contradicts the fact that the eigenvalues of L−(c, θ) are all in C+. Hence we
have proved (a).

(b) Taking account of the fact that the numerical range of S̃(θ) is contained in
the cone {w ∈ C;A1 Im θ < arg(w − w0) < π − A1 Im θ} for some w0 ∈ C

and A1 > 0, we can prove, as in the proof of (f) in Proposition 2.1, that
(S̃(θ) − z)−1f converges to (S̃ − z)−1f strongly as Ω+ 3 θ → 0 for all f ∈
L2(R3) and for all z with (− Im z) > 0 sufficient large. Hence we can prove
(b) as in the proof of Theorem 1.2. ¤

Let O1 be a bounded open set in C. In the proof of (a) of Proposition 2.1
we see that there are positive constants K0, b and b0 such that z ∈ ρ(L+(c, θ))
and ‖(L+(c, θ) − z)−1‖ ≤ K0(−b − Re z)−1 if Re z < −b0. Thus the following
proposition follows.

Proposition 6.4. Fix θ ∈ Ω+. There are constants c0 > 0 and K > 0 such
that O1 ⊂ ρ(L+(c, θ) + 2mc2) and

∥∥(L+(c, θ) + 2mc2 − z)−1
∥∥ ≤ Kc−2 (92)

for all c > c0 and all z ∈ O1. Moreover, the same results hold with mc2 in place
of 2mc2.

Let O1 ∩ Σ̃ = {µj}j=1,...,N0 and let nj be the algebraic multiplicity of the
eigenvalue µj of S̃(θ) (independent of θ ∈ Ω+).

Now we state our main result in this section. Since we can prove this result
in almost the same way as in the proof of Theorem 1.4 by considering L(c)+2mc2

in place of L(c) with the help of Propositions 6.2 and 6.4, we omit the proof.

Theorem 6.5. For any small ε > 0 there exists a constant cε > 0 such
that there is no resonance of H(c) + mc2 in O1 \ ∪N0

j=1B
+
ε (µj) and there are 2nj

resonances of H(c) + mc2 in B+
ε (µj) for each j = 1, . . . , N0, if c > cε.

We next consider the case H(c) and show that there is neither eigenvalue nor
resonance in any bounded set in C if c > 0 is sufficiently large. We note that the
proof of Proposition 5.1 shows that the proposition with L−(c, θ)+mc2 in place of
L−(c, θ) is valid. Thus, combining this with Proposition 6.4 we see that for each
θ ∈ Ω+ there is a constant c0 > 0 such that O1 is contained in the resolvent set of
L1(c, θ) + mc2 and the estimate
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∥∥(L1(c, θ) + mc2 − z)−1
∥∥ ≤ Kc−2 (93)

holds for all c > c0 and all z ∈ O1. Hence, as in the proof of Proposition 5.6, we
can prove O1 ⊂ ρ(L(c, θ) + mc2) if c > 0 is sufficiently large, and so we have the
following.

Theorem 6.6. Let O1 be a bounded open set. Then there is a constant
c0 > 0 such that there is neither eigenvalue nor resonance of H(c) in O1 if c > c0.

Finally, we discuss a typical example, V (x) = |x|γ , γ > 0, though the detail is
omitted. It is easy to see that the potential satisfies our assumptions (V1)∼(V3).
The operator H

(γ)
+ := −∆ + |x|γ in L2(R3) is self-adjoint with a core S and has

a purely discrete spectrum {νj}∞j=1 and H
(γ)
+ = H

(γ)
+ (0), where

H
(γ)
+ (θ) := −e−2θ∆ + eγθ|x|γ = e−2θ

(−∆ + e(2+γ)θ|x|γ)
, θ ∈ C.

Note that, if γ = 2, each νj can be written explicitly (see Section 3). We can
see that H

(γ)
+ (θ) is a closed operator with domain D(∆) ∩ D(|x|γ) for −π <

(2+γ) Im θ < π, i.e., θ ∈ Ωγ := {θ ∈ C;−β0 < Im θ < β0}, where β0 := π(2+γ)−1

and has compact resolvent. Moreover, the family {H(γ)
+ (θ)} forms an analytic

family of type (A) and the set of their eigenvalues (independent of θ) coincides with
the set {νj}∞j=1. Next we consider the operator H

(γ)
− := ∆ + |x|γ = −(−∆− |x|γ).

It is known that the operator H
(γ)
− defined on S is an essentially self-adjoint

operator if and only if 0 < γ ≤ 2 (cf. [15]). But, for any γ > 0 we can see that

H
(γ)
− (θ) := e−2θ∆ + eγθ|x|γ = −e−2θ

(−∆− e(2+γ)θ|x|γ)

is a closed operator with domain D(∆)∩D(|x|γ) and with a core S for θ ∈ Ωγ
+ :=

{θ ∈ C; 0 < Im θ < β0} and has compact resolvent. Moreover, there is a simple
relation between H

(γ)
+ (θ) and H

(γ)
− (θ),

H
(γ)
− (θ) = −e−2iβ0H

(γ)
+ (θ − iβ0),

for θ ∈ Ωγ
+. Hence the set of the eigenvalues of H

(γ)
− (θ), which is independent of

θ and is Σ̃ in Proposition 6.1, coincides with the set {−e−2iβ0νj}∞j=1. Proposition
6.2 implies that if Σ̃ has a nonreal element λ there exists a nonreal resonance λ(c)
of L−(c) for large c such that λ(c) + 2mc2 → λ as c → ∞. Hence if V (x) = |x|γ
and m = 1/2, then the above argument implies that L−(c) has nonreal resonances
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for large c. Furthermore, in this case Theorems 1.4 and 6.5 say that there are
resonances of H(c) near each −e−2iβ0νj −mc2 and each νj + mc2 if c > 0 is large.
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[ 5 ] I. W. Herbst, Dilation analyticity in constant electric field, Comm. Math. Phys., 64

(1979), 279–298.

[ 6 ] P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory, Springer-Verlag, 1996.

[ 7 ] W. Hunziker, On the nonrelativistic limit of the Dirac theory, Comm. Math. Phys., 40

(1975), 215–222.

[ 8 ] W. Ichinose, On essential selfadjointness of the relativistic Hamiltonian of a spinless par-

ticle in a negative scalar potential, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 241–
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