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Abstract. We consider geometric decompositions of aspherical 4-
manifolds which fibre over 2-orbifolds. We show that no such manifold ad-
mits infinitely many fibrations over hyperbolic base orbifolds and that “most”
Seifert fibred 4-manifolds over hyperbolic bases have a decomposition induced
from a decomposition of the base.

Introduction.

An n-manifold M admits a geometric decomposition if it has a finite collec-
tion S of disjoint connected 2-sided hypersurfaces such that each component of
M −∪S∈S S is geometric of finite volume, i.e., is homeomorphic to Γ\X, for some
geometry X and lattice Γ. We shall call the hypersurfaces S cusps and the com-
ponents of M − ∪S∈S S pieces of M . The decomposition is proper if the set of
cusps is nonempty.

We shall consider the possible geometric decompositions of aspherical orbifold
bundles in dimension 4. A closed 4-manifold E is an orbifold bundle if there is
an orbifold fibration p : E → B over a 2-dimensional base orbifold, with regular
fibre F an aspherical surface. (Here “surface” shall mean closed 2-orbifold without
exceptional points.) Let π = π1(E), φ = π1(F ) and β = πorb

1 (B), and let θ : β →
Out(φ) be the characteristic homomorphism (or monodromy).

We show first that if χ(E) > 0 then E admits only finitely many orbifold
fibrations. On the other hand, if B is the torus, χ(F ) < 0 and π/π′ has rank at
least 3 there are fibrations with fibre of arbitrarily large genus. In Section 2 we
give an example to show that a 4-manifold which is finitely covered by a product
of closed surfaces need not be an orbifold bundle. In Section 3 we give necessary
and sufficient conditions for an aspherical orbifold bundle E with hyperbolic fibre
to have one of the geometries H2 ×E2, H3 ×E1 or H2 ×H2. (These are easy
extensions of results on bundle spaces from [5].) The only other possible geometry
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is H4; whether there are any such examples seems to be a difficult question.
In Section 4 we constrain the possible geometries of pieces of a given orbifold
bundle. In Section 5 and Section 6 we introduce the notions of (algebraically)
horizontal and vertical decompositions, and show that no decomposition can have
both algebraically horizontal and algebraically vertical cusps.

The main results are in Section 7 and Section 8. Although a Seifert fibred
4-manifold with hyperbolic base is geometric if and only if the monodromy is
finite, we shall show that most such manifolds have a vertical decomposition into
pieces of type H2 × E2. Decompositions of type F 4 are much more restricted;
the Seifert fibred 4-manifolds admitting such decompositions are orientable, have
general fibre the torus and the orientable cover of the base is a surface.

If G is a group G′, ζG and
√

G shall denote the commutator subgroup, centre
and Hirsch-Plotkin radical of G, respectively. (In all the cases considered here√

G is the maximal normal nilpotent subgroup of G, and in many cases
√

G is
abelian.) Let T , Kb and Tg be the torus, Klein bottle and closed orientable
surface of genus g, respectively, and let To be the once-punctured torus and P be
the thrice-punctured sphere (the “pair of pants”).

1. Bounding the orbifold fibrations of a given 4-manifold.

The orbifold bundles with flat fibre (χ(F ) = 0) are precisely the Seifert bun-
dles in 4 dimensions. Every torsion-free group which is virtually an extension of a
surface group by Z2 arises in this way, and two such Seifert bundles are isomorphic
if and only if their group extensions are equivalent [12]. The extension is in turn
determined by the group π, since χ(B) < 0 implies that φ is the unique maximal
solvable normal subgroup of π. (Note that in [12] “Seifert bundle” is used to mean
a codimension 2 foliation with all leaves compact, in other words, what we call an
orbifold bundle here. Vogt gives also a corresponding result for orbifold bundles
with χ(F ) < 0, subject to an additional arithmetic hypothesis which implies that
φ is a characteristic subgroup.) Thus if E is Seifert fibred over a hyperbolic base,
the Seifert fibration is essentially unique. If however E is an H2 ×E2-manifold,
it may fibre over the torus in infinitely many ways, with fibre of arbitrarily high
genus!

If π is a torsion-free extension of an aspherical 2-orbifold group β by a PD2-
group φ with χ(φ) < 0 then the extension is realized by an orbifold bundle p,
and the bundle is determined up to bundle isomorphism by the group extension
[12]. If moreover the action θ : β → Out(φ) has infinite image and nontrivial
kernel then φ is unique and so p is determined by π. (See Theorems 5.5 and 7.3
of [4] and Theorem 5.3 of [12].) If θ has finite image, there is at most one other
such subgroup, and π is the group of an H2 ×H2-manifold. (See Theorem 7.3 of
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[4].) We shall show that any orbifold bundle space E with χ(E) nonzero has only
finitely many orbifold fibrations.

Simple Euler characteristic considerations sometimes limit the possible singu-
larities of the base orbifold.

Lemma 1. Let π be a torsion-free group which has a normal PD2-subgroup
φ with quotient β a 2-orbifold group. If g ∈ β has finite order n then n divides
χ(φ).

Proof. Let H be the preimage in π of the cyclic subgroup of β generated
by g. Then H is torsion free and [H : φ] = n. Therefore H is a PD2-group, and
χ(φ) = nχ(H). ¤

In particular, β is torsion free if χ(φ) = −1, while the base orbifold B has no
reflector curves or cone points of order 2 if χ(φ) is odd.

If an orbifold B has a d-fold cover which is a surface S then χorb(B) = χ(S)/d,
and if moreover S is aspherical then χorb(B) = χvirt(πorb

1 (B)).

Theorem 2. Let π be a torsion-free group which has a normal PD2-
subgroup φ with quotient a hyperbolic 2-orbifold group. If χ(π) > 0, the set of
such subgroups is finite.

Proof. Let B be the set of normal PD2-subgroups φ C π such that π/φ

is a hyperbolic orbifold group. If φ ∈ B then χ(φ)χorb(π/φ) = χ(π) > 0. The
smallest value of |χorb(β)| for β a hyperbolic orbifold is |χorb(S2(2, 3, 7))| = 1/42.
Hence 0 < |χ(φ)| ≤ 42χ(π). Similarly, |χorb(π/φ)| ≤ χ(π), since |χ(φ)| ≥ 1. Hence
there are only finitely many possible isomorphism classes of quotients. For each
φ ∈ B let dφ be the least index of a torsion-free normal subgroup in π/φ. Then
d = lcm{dφ | φ ∈ B} is finite.

Let π̂ be the intersection of all subgroups of π of index dividing d. This is a
characteristic subgroup of finite index. If φ ∈ B then π̂/φ ∩ π̂ is a PD2-group.
There are finitely many such normal subgroups of π̂ [8]. If ψ is another such group
and φ ∩ π̂ = ψ ∩ π̂, the image of ψ in π/φ is a finite normal subgroup, and so is
trivial. Thus ψ ≤ φ, and hence ψ = φ. Therefore B is finite. ¤

If π/φ = Z2 and π/π′ has rank 2 then φ is the unique normal PD2-subgroup
with quotient Z2. We may adapt the work of [3] to see that there are infinitely
many such subgroups φ when the rank is at least 3.

Theorem 3. Let E be a 4-manifold with a fibration p : E → T with fibre F

a closed hyperbolic surface. If β1(E) > 2 then there are such fibrations with fibre
genus arbitrarily large.
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Proof. Let φ = Ker(p∗), and let q : π = π1(E) → Z be an epimorphism
with φ < κ = Ker(q). Then κ ∼= φ o Z, and κ is the group of an aspherical
3-manifold. Restriction maps H1(π;Z) = Hom(π, Z) onto the subgroup Hfix

of H1(κ;Z) = Hom(κ,Z) of homomorphisms invariant under conjugation by el-
ements of π. This subgroup has rank at least 2, since π/π′ has rank at least
3.

We may construct distinct epimorphisms pn : κ → Z in Hfix such that
pn → p∗|κ in (R⊗Hfix)/R×. Let p̃n : π → Z be a homomorphism with p̃n|κ = pn.
Then qn = (p̃n, q) : π → Z2 is an epimorphism with kernel Ker(qn) = Ker(pn).
As in Theorem 4.2 of [3], for n large Ker(pn) is finitely generated, and hence is
a PD2-group, by the coherence of κ, and |χ(Ker(pn))| → ∞ as n increases. This
proves the theorem, since qn may be realized by a fibration fn : E → T . ¤

If E is an orientable H2 × E2-manifold then π = π1(E) is virtually φ × Z2

and E fibres over T if and only if π′ ∩√π = 1.

2. Virtual bundle spaces.

A closed 4-manifold is a virtual bundle space if it has a finite regular covering
space which fibres over a surface. If a torsion-free group π is virtually an extension
of one surface group by another, is it the group of an aspherical 4-manifold? We
may assume that π has a normal subgroup G which is an extension of a PD2-group
G/K by a normal PD2-subgroup K. If K is characteristic in G (and hence normal
in π) then π is the group of an orbifold bundle, by Theorem 7.3 of [4].

If χ(π) > 0 and π is virtually a product, it is realized by some H2 × H2-
manifold, by Theorem 5 of [5], and has an index-2 subgroup which is an orbifold
bundle group, but need not itself be such a group. Let G be a PD2-group with
ζG = 1 and let λ : G → Z be an epimorphism. Choose x ∈ λ−1(1), and let
K = λ−1(2Z), so y = x2 is in K. Then

π =
〈
K ×K, t | t(k, l)t−1 = (xlx−1, k) ∀ (k, l) ∈ K ×K, t4 = (y, y)

〉

is torsion-free and has no normal subgroup which is a PD2-group. (This corrects
the example after Theorem 5 of [5], which has torsion.)

Our question remains open when χ(φ) < 0 and θ : β → Out(φ) is injective
(type III of [7]). There are examples of this type in Section 14 of Chapter V of
[1] with at least two such normal PD2-groups. Must π have a characteristic PD2-
subgroup? Must there be at most two normal PD2-subgroups with quotient an
orbifold group?
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3. Geometries on orbifold bundles with hyperbolic fibre.

Suppose that F is hyperbolic (χ(F ) < 0). The next result extends Theorem 8
of [5]. (The assertion regarding decompositions has been modified, as the argument
involving splitting π/φ over C/C ∩ φ is wrong. See the example following the
theorem.)

Theorem 4. Let E be the total space of an aspherical F -bundle over a
2-orbifold B with χorb(B) = 0 and χ(F ) < 0. Then

(1) E admits the geometry H2 ×E2 if and only if θ has finite image;
(2) E admits the geometry H3×E1 if and only if Ker(θ) has two ends and Im(θ)

contains the class of a pseudo-Anasov homeomorphism of F ;
(3) otherwise E is not geometric.

If Ker(θ) 6= 1 then E has a finite covering space with a geometric decomposition.

Proof. Note that flat 2-orbifold groups are 2-dimensional crystallographic
groups. In particular, a non-trivial normal subgroup of πorb

1 (B) must be infinite,
and so the hypotheses on θ are preserved on passage to subgroups of finite index.

The arguments of Theorem 8 of [5] extend to this situation. The only point
that needs explanation is in showing that the algebraic conditions of part (2)
suffice. Suppose that Ker(θ) has two ends and Im(θ) contains the class of a pseudo-
Anasov homeomorphism ψ. Since Im(θ) ∼= β/Ker(θ) is virtually Z, it has a normal
subgroup generated by the image of ψk for some k ≥ 1. Let N be the mapping
torus of ψk and ν = π1(N). Then N is an H3-manifold and π has a normal
subgroup of finite index isomorphic to ν × Z. Hence

√
π ∼= Z, since

√
ν = 1 and

π is torsion-free. Since
√

φ = 1 the image of
√

π in β is an infinite cyclic normal
subgroup. Since β has an infinite cyclic normal subgroup, its holonomy group has
exponent 2. Therefore it has at least one other independent infinite cyclic normal
subgroup. Thus there is a homomorphism λ : π → Isom(E1) with λ(

√
π) ∼= Z,

and the construction of the cited theorem may be carried through. ¤

Let X(31) and X(41) be the exteriors of the trefoil and figure-eight knots.
The longitudes and meridians of the knots determine homeomorphisms ∂X(31) ∼=
∂X(41) ∼= S1 × S1. Let N1 = X(31) × S1 and N2 = X(41) × S1, and let f :
∂N2

∼= ∂N1 be the homeomorphism which preserves the longitudinal coordinate
but swaps the other two coordinates. Then E = N1 ∪f N2 fibres over T with fibre
T2 and injective monodromy. This manifold is not geometric, but is the union of
an H2 ×E2-manifold X(31)× S1 with an H3 ×E1-manifold X(41)× S1.

If, instead, we identify the boundaries of N1 and N2 so that the meridians and
longitudes match, we obtain a bundle with monodromy generated by a reducible
self-homeomorphism of T2 and Ker(θ) ∼= Z.
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If B is also hyperbolic then χ(E) > 0 and π1(E) has no solvable subgroups of
Hirsch length 3. No such bundle space admits the geometry H2(C), by Corollary
13.7.2 of [4]. Hence the only possible geometries on E are H2 × H2 and H4.
There are no known examples of H4-manifolds which are also bundle spaces.

Theorem 5. Let E be an aspherical orbifold bundle space with χ(E) > 0.
Then the following are equivalent :

(1) E admits the geometry H2 ×H2;
(2) E is finitely covered by a cartesian product of surfaces;
(3) θ has finite image.

If E is an H4-manifold then θ is injective.

Proof. The argument of Theorem 9 of [5] applies almost without change.
¤

The PD+
2 -group of genus 4 embeds in the mapping class group of genus 2, and

so there are such bundle spaces with θ injective [10]. Are there infinitely many
such with given base and fibre? In [2] it is shown that for any given surfaces B and
F there are at most finitely many bundles for which π has no abelian subgroup of
rank > 1. (For such groups θ must be injective.)

Such bundle spaces need not be geometric. Let B = F = T2. Then B retracts
onto S1 ∨ S1. Mapping one generator of F (2) to the involution τ which swaps
the summands of F and the other to cτc−1 where c is a Dehn twist gives rise to
a bundle with base and fibre of genus 2 and Im(θ) ∼= D∞ = Z/2Z ∗ Z/2Z. Thus
Im(θ) is infinite, but θ is not injective.

4. The possible pieces of a proper decomposition.

If χorb(B) = χ(F ) = 0 then E has geometry E4, N il3×E1, N il4 or Sol3×E1,
and has no proper geometric decomposition. Thus we may assume henceforth that
F or B is hyperbolic.

Theorem 6. If an aspherical orbifold bundle space E has a proper decom-
position then either

(1) χorb(B) = 0, the pieces are H3 × E1- or H2 × E2-manifolds and the cusps
are flat ; or

(2) χ(F ) = 0, the pieces are H2 ×E2-manifolds and the cusps are flat ; or
(3) χ(F ) = 0, the pieces are F 4-manifolds and the cusps are N il3-manifolds; or
(4) χ(E) > 0, the pieces are reducible H2 × H2-manifolds and the cusps are

H2 ×E1-manifolds.
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Proof. This follows from Theorem 1 of [5], with the following observations.
Firstly, nonuniform S̃L×E1-manifolds are also H2×E2-manifolds, and vice versa
[6].

Secondly, if χ(F ) = 0 then
√

φ ∼= Z2 is an abelian normal subgroup. Hence√
φ is contained in the group of every cusp, and hence of every piece. Thus there

can be no pieces of type H3 ×E1.
Thirdly, if Γ\X is a piece of a geometric decomposition then c.d.Γ = 3 and so

φ ∩ Γ 6= 1. Hence if χ(F ) < 0 we must have φ ∩ √Γ = 1, and so φ ∩ Γ centralizes√
Γ. It follows that Γ\X cannot have type F 4 if χorb(B) = 0.

Finally, if χ(E) 6= 0 then π has no poly-Z subgroups of Hirsch length 3, and
so we may eliminate pieces with geometry H4, H2(C) or irreducible H2 ×H2.
Moreover, the inclusions of the cusps must be π1-injective, since E is aspherical.
Therefore no reducible H2 ×H2 piece can be finitely covered by the product of
two punctured surfaces, and so the cusps must be H2 ×E1-manifolds. ¤

The conclusions of this theorem hold also for virtual bundle spaces.
Each of the first three possibilities may be realized by some closed 4-manifold

which fibres over a surface. In the final case, when χ(E) > 0, any such manifold
must be geometric, as we show next.

Theorem 7. Let M be an aspherical closed 4-manifold with a proper geomet-
ric decomposition with at least one piece which is a reducible H2 ×H2-manifold.
Then M is the total space of an orbifold bundle, and is itself a reducible H2×H2-
manifold.

Proof. Let N = Γ\H2 ×H2 be a piece of the decomposition which is a
reducible H2 × H2-manifold. Then N is finitely covered by a product F × G,
where F and G are hyperbolic surfaces. One of the factors, G say, must be closed,
since M is aspherical. Then B = pr2(Γ)\H2 is a closed H2-orbifold. Projection
onto the second factor induces an orbifold bundle pN : N → B with general fibre
a closed surface and monodromy of finite order. The boundary components are
H2×E1-manifolds, and so have an essentially unique Seifert fibration. Hence the
contiguous pieces are also reducible H2×H2-manifolds, and are orbifold bundles
over the same base B. Since M is connected, all pieces are of this type, and the
projections pN for the various pieces give rise to an orbifold bundle p : M → B.
The intersection of the kernels of the action of πorb

1 (B) on the fundamental groups
of the regular fibres of the pieces has finite index in πorb

1 (B). Therefore M is
homotopy equivalent to a reducible H2×H2-manifold M1, by Theorem 9.9 of [4].
We may arrange that the hypotheses of Theorem 4.1 of [12] hold, and so M is
itself geometric. ¤
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Conversely, every reducible H2 × H2-manifold has a 2-fold covering space
which is an orbifold bundle, by Corollary 9.8.1 of [4].

Corollary. If an aspherical orbifold bundle space E with χ(E) > 0 has a
proper geometric decomposition then it is an H2 ×H2-manifold. ¤

5. Horizontal and vertical cusps.

A cusp S of a geometric decomposition of E is horizontal if it is transverse to
all the fibres Fb = p−1(b). If the base is a surface then p|S is a submersion, and
the leaf space of the foliation of S by the components of S ∩ Fb (for b ∈ B) is a
surface which finitely covers B.

The following example shows that S ∩ Fb need not be connected. Let M(τ)
be the mapping torus of the involution τ which swaps the summands of F = T2 =
T#T . Then E = M(τ)×S1 fibres over T with fibre F . Let C be a non-separating
essential simple closed curve in To, and let D = c ∪ τ(C). Then M(τ |D)× S1 is a
cusp in E which meets each fibre in two circles.

A cusp S is vertical if it is a union of fibres. Thus S = p−1(A) for some
1-dimensional suborbifold A ⊂ B. Since S is connected, A must be either a
circle S1 or a reflector interval I. Note that πorb

1 (I) is the infinite dihedral group
D∞ = Z/2Z ∗ Z/2Z.

Lemma 8. Let S be a cusp and σ = π1(S). Then

(1) either φ < σ or σ ∩ φ ∼= Z;
(2) φ < σ ⇔ p∗σ has two ends ;
(3) σ ∩ φ ∼= Z ⇔ [β : p∗σ] is finite;
(4) if S is horizontal then σ ∩ φ ∼= Z;
(5) if S is vertical then φ < σ, p∗σ ∼= Z or D∞ and β splits over p∗σ.

Proof. The groups σ∩φ and p∗σ are infinite, since c.d.σ = 3 while c.d.φ =
v.c.d.β = 2. If [φ : σ ∩ φ] is finite then φ ≤ σ, since φ is a normal subgroup of
a free product (or HNN extension) with amalgamation over σ. If [φ : σ ∩ φ] is
infinite then σ ∩ φ is free.

Suppose first that S is flat or is a N il3-manifold. Then σ is virtually poly-Z,
of Hirsch length h(σ) = 3. Since h(σ) = h(σ ∩ φ) + h(p∗σ), either h(σ ∩ φ) = 1
and h(p∗σ) = 2, in which case σ ∩ φ ∼= Z and [β : p∗σ] is finite, or h(σ ∩ φ) = 2
and h(p∗σ) = 1, in which case φ < σ and p∗σ has two ends.

Otherwise, S is an H2 ×E1-manifold, and
√

φ ∼= Z is centralized by a sub-
group of index at most 2 in σ. In this case F and B are hyperbolic, and so
centralizers in φ are cyclic, while centralizers in β are finite or have two ends.
Therefore if

√
σ ∩ φ 6= 1 then

√
σ ∩ φ ∼= Z. Hence p∗σ is virtually a PD2-group,
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and so [β : p∗σ] is finite. If
√

σ ∩ φ = 1 then p∗σ has two ends, and σ ∩ φ is a
PD2-group. Hence [φ : σ ∩ φ] is finite, and so φ < σ.

The final two implications are clear. ¤

We shall say that S is algebraically horizontal if σ ∩ φ ∼= Z, and that it is
algebraically vertical if φ ≤ σ. It is clear from the lemma that these possibilities are
disjoint and exhaustive. Are there cusps which are neither horizontal nor vertical
(up to isotopy)?

Lemma 9. Let S be an algebraically horizontal cusp. Then the bundle projec-
tion induced over some finite covering of the base admits a section. In particular,
π is virtually a semidirect product.

Proof. Since S is an algebraically horizontal cusp, it is flat (if χ(E) = 0)
or is an H2 × E1-manifold (if χ(E) 6= 0). After passing to a finite covering, if
necessary, we may assume that B is a surface, S ∼= B × S1 and p|S is homotopic
to the projection pr1 : S → B. Since pr1 has an obvious section, there is a section
s : B → E with image contained in S, by the homotopy lifting property. It follows
that π is a semidirect product. ¤

If π is a semidirect product then β is torsion-free, and so B is a surface. Let
B = B1 ∪ D2, where B1 = ∨rS1. We may construct a partial section for p over
B1 which realizes a given splitting : β → π for p∗. It is then easy to extend this
to a section over B.

If χ(φ) < 0 then ζφ = 1 and so π is a semidirect product if and only if θ

factors through Aut(φ). (A perhaps more transparent necessary condition is that
π/φ′ must be virtually a semidirect product.)

6. Horizontal and vertical decompositions.

A geometric decomposition of an orbifold bundle space E is horizontal or ver-
tical if all the cusps are horizontal or vertical, respectively. It follows immediately
from Theorem 6 that if E is an orbifold bundle with χ(E) = 0 and χ(F ) < 0 then
E has no vertical decomposition, while if χ(E) = 0 and χorb(B) < 0 it has no hor-
izontal decomposition. Some bundle spaces (such as direct products B × F ) may
admit both horizontal and vertical decompositions. However no decomposition
can involve both types.

Lemma 10. No geometric decomposition of an aspherical bundle space E

has both algebraically horizontal and algebraically vertical cusps.

Proof. If χ(E) = 0 then either χorb(B) = 0 and every cusp is algebraically
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horizontal or χ(F ) = 0 and every cusp is algebraically vertical. Suppose that
χ(E) > 0 and S is an algebraically horizontal cusp. Then S is an H2 × E1-
manifold. After passing to a finite covering, if necessary, we may assume that
there is a section s : B → E with image contained in S, by Lemma 9. Clearly
s(B) ∩ Fb = s(b), for all b ∈ B and so s∗[B] • [F ] 6= 0. (Here it suffices to use F2

coefficients.) Thus it is not possible to homotope F off s(B). In particular S must
meet every algebraically vertical cusp. ¤

A geometric decomposition of a manifold M determines a graph of groups G
whose underlying graph has vertices the set of pieces and edges the set of cusps, and
for which the vertex and edge groups are the fundamental groups of these spaces.
There is an epimorphism πG → π1(M), by van Kampen’s theorem, and this is
an isomorphism if M is aspherical. If E is an orbifold bundle with a geometric
decomposition in which the cusps are algebraically vertical then φ is a normal
subgroup of each vertex and edge group, and the quotients determine another
graph of groups G with the same underlying graph. Clearly β = π/φ ∼= πG .
The following lemma is a partial converse. I am grateful to Peter Scott for the
argument.

Lemma 11. Let G be a finite graph of groups and f : β → πG a homomor-
phism. Then B has a corresponding decomposition along a 1-dimensional suborb-
ifold.

Proof. Let M be a finite regular covering of B which is a closed surface,
and let H = Aut(M/B). Then there is a β-equivariant map from M̃ = B̃ to a
β-tree T corresponding to the splitting. This induces a H-equivariant map from
M to π1(M)\T . Using Stallings’ method of “binding ties”, we may construct a
H-equivariant homotopy of this map to one for which the preimage of each edge of
π1(M)\T is a single closed curve in M . This projects to a 1-orbifold in B which
induces the given splitting. ¤

If C is a 1-submanifold of Tg such that all the complementary components
have χ < 0 then β0(C) ≤ 3g − 3, with equality if and only if the complementary
components are all copies of P . It follows easily that any bundle space admits only
finitely many vertical geometric decompositions, up to bundle equivalence induced
by a self-homeomorphism of the base.

Let π be the group with presentation

〈
a, b, c, d, e, f, x, y | [a, b][c, d][e, f ] = 1, xax−1 = ab, ycy−1 = cd,

[x, y] = e, xc = cx, ya = ay, x, y ® b, d, e, f
〉
.
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Then π is the group of an orientable 4-manifold E which fibres over T with fibre
of genus 3. Since θ is injective, E is not geometric. The cusps in any geometric
decomposition of a bundle space with flat base are infrasolvmanifolds, and so
cannot be algebraically vertical. Since no subgroup of finite index in β = Z2

admits, a section E has no algebraically horizontal cusps, and hence E has no
geometric decomposition.

7. H2 × E2-decompositions of Seifert fibred 4-manifolds.

All Seifert fibred 4-manifolds over flat bases are geometric, of type E4, N il4,
N il3×E1 or Sol3×E1. If the base is hyperbolic then the 4-manifold is geometric if
and only if the monodromy has finite order. (See [9], [11] or Chapter 9 of the 2007
revision of [4].) No such Seifert fibred 4-manifold has a horizontal decomposition.
However “most” have vertical decompositions, as we show next.

We must ensure that the base has a suitable decomposition into hyperbolic
pieces. A 2-orbifold with nonempty boundary is hyperbolic unless it is a disc
with one cone point (D(p)) or with two cone points of order 2 (D(2, 2)), or is the
quotient of one of these by reflection across a diameter through the cone point(s)
(D(p) or D(2, 2)) or separating the cone points (D(2)).

Lemma 12. Let E be Seifert fibred over an aspherical base B. If g ∈ π has
image p∗g ∈ β of finite order n then θ(p∗g) = 1 unless n = 2 and det(θ(p∗g)) = −1.

Proof. If g 6= 1 and p∗g has order n then gn is a nontrivial element of φ

which is fixed by θ(p∗g). Since θ(p∗g) has determinant 1, both eigenvalues are 1,
and since it has finite order, θ(p∗g) = I. ¤

Theorem 13. Let E be Seifert fibred over a hyperbolic base B. Then E is
an H2 × E2-manifold if F = Kb, and otherwise has a vertical decomposition of
type H2×E2, unless B or its orientable cover has a cone point of order 2 at which
the action reverses the orientation of the fibre.

Proof. If F = Kb then Out(φ) is finite. Hence E is an H2×E2-manifold.
Moreover all pieces in any proper geometric decomposition are of type H2 ×E2.

If F = T then Out(φ) = GL(2,Z) is virtually free. Therefore Im(θ) =
πG where G is a finite graph of finite groups. If Im(θ) is finite then E is an
H2×E2-manifold. Otherwise B has a proper decomposition along a 1-dimensional
suborbifold into pieces {B1, . . . , Bn} on which θ has finite image, by Lemma 11. We
may clearly assume this decomposition is minimal, and that the orientable cover
of B has no cone point of order 2, at which the action has eigenvalues {1,−1}. If
there were a piece Bi

∼= D(p) or D(p), then adjoining Bi to the contiguous piece
Bj would merely add a relation to πorb

1 (Bj), and so θ(πorb
1 (Bi ∪ Bj)) would still
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be finite. Similarly, if there were a piece Bk
∼= D(2, 2), D(2, 2) or D(2) then we

may annex Bk to its neighbour while retaining this finiteness since the action at
each cone point of the orientable cover is trivial. Thus we may assume that there
are no such pieces in the decomposition of B. Hence each piece Bi is hyperbolic.
The corresponding pieces of E are H2 ×E2-manifolds. ¤

The argument simplifies if Im(θ) ≤ SL(2,Z). For then θ factors through the
fundamental group of the (possibly bounded) surface underlying the base orbifold
B, by Lemma 12.

The condition on cone points of order 2 can be weakened, but some such
condition is needed, as the following example shows. Let π be the group with
presentation

〈
a, b, v, w, x, y, z | ab = ba, v2 = w2 = x2 = a, vbv−1 = wbw−1 = b−1,

xb = bx, y2 = z2 = ab, yay−1 = zaz−1 = ab2,

yby−1 = zbz−1 = b−1, vwx = yz
〉
.

The images of a and b generate a normal subgroup A ∼= Z2, with quotient
β = π/A ∼= πorb

1 (B), where B is the hyperbolic 2-orbifold S2(2, 2, 2, 2, 2). Let
G,H, J,K, L, P be the subgroups generated by {A, v}, {A,w}, {A, x}, {A, y},
{A, z} and {A, vwx}, respectively. Then

π ∼= (G ∗A H ∗A K) ∗P (K ∗A L).

These subgroups are each torsion-free, and hence so is π. Therefore π = π1(E),
where E is a Seifert manifold with base B and regular fibre T , by Theorem 7.4
of [4]. The action θ of πorb

1 (B) on
√

π = A is generated by θ(u) =
(

1 0
0 −1

)
and

θ(x) =
(

1 0
2 −1

)
. Hence Im(θ) ∼= Z/2Z ∗ Z/2Z is infinite and has infinite index

in GL(2,Z). Thus E is not geometric and has no pieces of type F 4. On the
other hand B has no proper decomposition into hyperbolic pieces, and so E has
no geometric decomposition at all. Are there any other such examples?

Most H2 × E2-manifolds also admit proper vertical decompositions. The
exceptions have base orbifold with no proper geometric decomposition. (These
have orientable cover S2(2, 2, 2, 2, 2) or S2(2, 2, 2, s), for some s > 2, or S2(p, q, r),
for some {p, q, r} such that (1/p) + (1/q) + (1/r) < 1.)

There is an analogous result for orbifold bundles E with χ(E) > 0. If the base
B has at most one cone point of order 2 then E has a vertical decomposition (with
pieces reducible H2 ×H2-manifolds) if and only if θ factors through a virtually
free group. If D(2, 2) is a suborbifold of B, there are orbifold bundles with base
B which have no vertical decomposition.
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8. F 4-decompositions of Seifert fibred 4-manifolds.

The Seifert fibred 4-manifolds with decompositions of type F 4 are much more
restricted.

We shall first recall the salient properties of the geometry F 4. It has model
space R2 ×H2, and isometry group the semidirect product Isom(F 4) = R2 ×α

SL±(2,R), where SL±(2,R) is the subgroup of GL(2,R) consisting of matrices
of determinant ±1, and α is the natural action of SL±(2,R) on R2. This group
acts on R2 ×H2 as follows: if u ∈ R2 and A =

(
a b
c d

) ∈ SL(2,R) then u(v, z) =
(u + v, z) and A(v, z) = (Av, (az + b)/(cz + d)) for all (v, z) ∈ R2 × H2. The
matrix D =

(
1 0
0 −1

)
acts via D(w, z) = (Dw,−z̄) for all (v, z) ∈ R2 ×H2.

If Γ is an F 4-lattice then
√

Γ = Γ ∩ R2 ∼= Z2. The quotient Γ/
√

Γ is a
subgroup of SL±(2,R) which preserves the lattice

√
Γ, and so is conjugate into

GL(2,Z). Let Γ0 = Γ∩Isom(F 4)0 be the intersection with the identity component
of the isometry group. Then Γ0/

√
Γ acts discretely with finite covolume on H2

through its image in PSL(2,R). All F 4-manifolds are orientable. (See [13] for
more details.)

Lemma 14. Let Γ be an F 4-lattice. Then Γ0/
√

Γ is torsion-free.

Proof. Suppose that g ∈ Γ0 has image [g] in SL(2,R). If [g]n = 1 then
gn ∈ √Γ is an eigenvector for [g], and so the eigenvalues are ±1. Since det[g] = 1
it follows that [g] = ±I2. Since Γ is torsion-free, we must have [g] = 1. ¤

Thus if the base orbifold is orientable, it is a surface. If it is not orientable,
it may have reflector curves. For example, let {e, f} be the standard basis for
Z2, and let Γ be the subgroup of Isom(F 4) generated by Z2 o SL(2,Z)′ and
δ = ((1/2)e,D). Then Γ is an F 4-lattice, Γ0 = Z2 o SL(2,Z)′ and Γ/

√
Γ ∼=

F (2)oZ/2Z has 2-torsion. The base orbifold is the quotient of To by a reflection,
since SL(2,Z)′\H2 ∼= To. (We could use any torsion-free subgroup of finite index
in SL(2,Z) which is normalized by D, instead of SL(2,Z)′, to obtain further
examples.)

Theorem 15. Let E be Seifert fibred over a hyperbolic base B. Suppose that
E has a decomposition of type F 4. Then

(1) E is orientable;
(2) d = [GL(2,Z) : Im(θ)] is finite;
(3) 24χorb(B) is a nonzero integer which is divisible by d;
(4) the orientable cover of B is a surface;
(5) if B = Tg and Im(θ) ∼= F (r) then r ≤ g, r−1 divides 2(g−1) and the number

of pieces of the decomposition is at most (2(g − 1))/(r − 1).
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Proof. The geometric pieces of E are orientable and their boundary
components are Nil3-manifolds. Self-homeomorphisms of Nil3-manifolds are
orientation-preserving, by Theorem 8.5 of [4]. Therefore E must be orientable.

Let β ∼= G be the representation of β as a graph of groups induced by the
decomposition of E. The edge groups have two ends and the vertex groups are
the groups of non-compact hyperbolic orbifolds of finite area, and so are virtually
free. The action θ embeds each such vertex group Gv as a subgroup of finite index
dv in GL(2,Z). Hence

χvirt(Gv) = dvχvirt(GL(2,Z)) =
1
24

dvχ(SL(2,Z)′) = − 1
24

dv.

Hence 24χorb(B) = 24χvirt(β) = 24Σχvirt(Gv) = −Σdv. Since d = [GL(2,Z) :
Im(θ)] divides dv for each vertex v, it divides 24χorb(B).

The orientation preserving subgroups of the vertex groups are torsion-free, by
Lemma 14, and so the orientable cover of B is nonsingular.

Suppose that B = Tg. If f : β → F (r) is a surjection then H1(f ;F2) is
injective, and the image is self-annihilating under the cup product pairing into
H2(β;F2). Therefore r ≤ g. The remaining assertions follow easily from the
equation

2(g − 1) = |χ(B)| = Σ|χ(Gv)| = (Σ[F (r) : θ(Gv)])(r − 1). ¤

In particular, every such manifold also has vertical decompositions of type
H2 ×E2. If the necessary conditions of the final part of Theorem 15 hold, must
E have such a decomposition?

If r ≤ g then π1(Tg) maps onto F (r), and so there are T -bundles over Tg

with Im(θ) ∼= F (r) and of finite index in SL(2,Z). However if g = 5 and r = 4
no such bundle has a decomposition of type F 4, since r − 1 = 3 does not divide
2(g − 1) = 8.

If B = Tg and Im(θ) ∼= F (g) any such decomposition of E is induced by a
partition B = B1 ∪ B2, with χ(B1) = χ(B2) = 1 − g. Since B1 and B2 are each
orientable and have a common boundary, they are homeomorphic. The number
of boundary components lies between 1 and g + 1, and is congruent to g + 1 mod
(2). Hence there are [g/2] + 1 essentially distinct partitions of the base into two
homeomorphic pieces. The two possibilities with g = 2 are illustrated by Examples
1 and 2 of Section 3 of [5]. We may use these to construct examples with base
of genus g > 2 and Im(θ) ∼= F (2), by pulling back such examples over suitable
Z/(g − 1)Z-coverings of the base T2.

In general, Im(θ) may have torsion. Let X =
(

1 0
2 1

)
, Y =

(
1 2
0 1

)
, U = −X and
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V = −Y . Then {X, Y } and {U, V } each freely generate subgroups of finite index
in SL(2,Z), and UV = XY . The image of each of these subgroups in PSL(2,Z) is
the level-2 congruence group Γ2

∼= F (2), which acts on H2 with quotient Γ2\H2 ∼=
intP . (See Example 2 of Section 3 of [5].) In fact π1(P ) = 〈x, y, z | z = xy〉, where
x, y, z correspond to the boundary components. The standard integer lattice Z2

and the matrices X and Y (or U and V ) together generate an F 4-lattice. Let E+

and E− be the corresponding T -bundle spaces over P , with Im(θ) generated by
{X, Y } and {U, V }, respectively, and whose interiors are F 4-manifolds. We may
then assemble two copies of E+ and two copies of E− into a T -bundle over T3, by
first doubling E+ along the boundary components corresponding to x and y and
E− along the sides corresponding to u and v, and then identifying the remaining
boundary components. The monodromy of the resulting bundle is generated by
{X, Y, U, V } and hence by {X, Y,−I2}, and so has nontrivial torsion.

Since T2 retracts onto S1 ∨ S1 we may define a T -bundle with base T2 and
Im(θ) = SL(2,Z) by mapping one generator of F (2) to the involution

(
0 1
−1 0

)
and

the other to
(

0 1
−1 1

)
. This 4-manifold surely has no decomposition of type F 4.

Manifolds with F 4-decompositions need not be Seifert fibred. There is an F 4-
manifold which is Seifert fibred over the once-punctured torus To, corresponding
to the isomorphisms π1(To) ∼= F (2) ∼= SL(2,Z)′. On passing to a suitable 2-
fold covering of the base, we obtain a manifold which is Seifert fibred over the
twice-punctured torus, with homeomorphic cusps. On passing to a further 2-
fold covering, we obtain an F 4-manifold X which is Seifert fibred over the twice-
punctured pretzel surface B, and such that the two cusps are homeomorphic to the
same Nil-coset space. Such a coset space admits self-homeomorphisms which do
not preserve the fibration over S1 induced by the Seifert fibration of X over B. The
closed 4-manifold obtained by identifying the cusps via such a homeomorphism is
not Seifert fibred.
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