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Good filtrations and F -purity of invariant subrings
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Abstract. Let k be an algebraically closed field of positive character-
istic, G a reductive group over k, and V a finite dimensional G-module. Let
B be a Borel subgroup of G, and U its unipotent radical. We prove that if
S = Sym V has a good filtration, then SU is F -pure.

Throughout this paper, p denotes a prime number. Let k be an algebraically
closed field of characteristic p, and G a reductive group over k. Let B be a Borel
subgroup of G, and U its unipotent radical. We fix a maximal torus T contained
in B, and fix a base of the root system Σ of G so that B is negative. For any
weight λ ∈ X(T ), we denote the induced module indG

B(λ) by ∇G(λ). We denote
the set of dominant weights by X+. For λ ∈ X+, we call ∇G(λ) the dual Weyl
module of highest weight λ. We say that a G-module W has a good filtration [1]
if H1(G,W ⊗∇G(λ)) = 0 for any λ ∈ X+.

Let V be a finite dimensional G-module, and S = Sym V . The objective of
this paper is to prove the following.

Theorem 1. If S has a good filtration, then SU is F -pure.

For a commutative ring R and an R-linear map ϕ : M → N of R-modules,
we say that ϕ is pure or R-pure if 1W ⊗ ϕ : W ⊗R M → W ⊗R N is injective
for any R-module W . We say that ϕ is a split mono if there is an R-linear map
ψ : N → M such that ψϕ = 1M . A split mono is pure. A pure map M → N

is a split mono if M/N is finitely presented [8, (5.2)]. A ring homomorphism
ϕ : R → R′ is said to be pure (resp. split) if it is pure (resp. a split mono) as an
R-linear map. A commutative ring R of characteristic p is said to be F -pure (resp.
F -finite) if the Frobenius map FR : R → R given by a 7→ ap is pure (resp. finite)
as a ring homomorphism. F -purity was defined by Hochster–Roberts in 1970’s [7],
[8]. This notion is deeply connected with log-canonical singularity in characteristic
zero [12]. An Fp-scheme X is said to be Frobenius split if OX(1) → F∗OX splits as
an OX(1)-linear map [10]. For the notation X(1), see [9, (I.9.2)]. For an F -finite
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ring R of characteristic p, R is F -pure if and only if SpecR is Frobenius split. If
a nonnegatively graded F -finite noetherian ring R of characteristic p is F -pure,
then ProjR is Frobenius split.

An F -finite noetherian ring R of characteristic p is said to be strongly F -
regular if for any nonzerodivisor a of R, the R(e)-linear map aF e : R(e) → R

(x 7→ axpe

) is R(e)-split [4]. A strongly F -regular F -finite ring is F -regular in the
sense of Hochster–Huneke [5], and hence it is Cohen–Macaulay normal ([6, (4.2)]
and [11, (0.10)]). Under the same assumption as in Theorem 1, SG is strongly
F -regular [3], and in particular, Cohen–Macaulay.

Proof of Theorem 1. Let Γ → [G,G] be the universal covering. Then S

has a good filtration as a Γ-module by [1, (3.1.3), (3.2.7)], and U is identified with
the unipotent radical of a Borel subgroup of Γ. Thus without loss of generality,
we may assume that G is semisimple and simply connected.

Let ρ denote the half sum of positive roots. Let St denote the first Steinberg
module ∇G((p − 1)ρ). For a G-module W and r ≥ 0, W (r) denotes the rth
Frobenius twist of W [9, (I.9.10)]. Note that W (r) = W as an abelian group.
w ∈ W , viewed as an element of W (r) is sometimes denoted by w(r). If R is a G-
algebra, then R(r) is also a G-algebra, and the rth Frobenius map F r : R(r) → R

is a G-algebra map [3].

Lemma 2. There is a (G,S(1))-linear splitting of the Frobenius map 1⊗FS :
St⊗ S(1) → St⊗ S given by x⊗ s(1) 7→ x⊗ sp.

Proof. The same proof as that of (4) in the proof of [3, Theorem 6] works
(r = 1 and d = 0 there). ¤

Let C := k[G]U , where U acts on k[G] right regularly. Then C =⊕
λ∈X+ ∇G(λ), and it is an X+-graded G-algebra.

Lemma 3. There is a (G,C(1))-linear splitting of the Frobenius map 1⊗FC :
St⊗ C(1) → St⊗ C given by x⊗ c(1) 7→ x⊗ cp.

Proof. The product St ⊗∇G(λ)(1) → ∇G(p(λ + ρ) − ρ) is nonzero, since
for x ∈ St \ 0 and y ∈ ∇G(λ) \ 0, xyp 6= 0, as C is an integral domain. Since
St ⊗ ∇G(λ)(1) ∼= ∇G(p(λ + ρ) − ρ) [9, (II.3.19)] and EndG(∇G(µ)) ∼= k for each
µ ∈ X+, the product St⊗∇G(λ)(1) → ∇G(p(λ + ρ)− ρ) is an isomorphism. This
shows that the product m : St ⊗ C(1) → C(p−1)ρ+pX+ is an isomorphism, where
for a subset Λ of X+, CΛ :=

⊕
λ∈Λ∇G(λ).

Thus

St⊗ C
π−→ St⊗ CpX+

m′
−−→ C(p−1)ρ+pX+

m−1

−−−→ St⊗ C(1)
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is the splitting of 1⊗ FC , where π is the projection, and m′ is the product. ¤

Lemma 4. There exists some (G, (S⊗C)(1))-linear splitting of the Frobenius
map 1⊗ F : St⊗ (S ⊗ C)(1) → St⊗ S ⊗ C.

Proof. Follows immediately from Lemma 2 and Lemma 3. ¤

Proof of Theorem 1 (continued). Let Φ : St⊗S⊗C → St⊗(S⊗C)(1)

be a (G, (S ⊗ C)(1))-linear splitting of 1⊗ F as in Lemma 4. Set A := (S ⊗ C)G,
and consider the commutative diagram of (G,A(1))-modules

St⊗A(1) � � //

1⊗F

²²

St⊗ (S ⊗ C)(1)
id //

1⊗F

²²

St⊗ (S ⊗ C)(1)

St⊗A
� � // St⊗ (S ⊗ C).

Φ

66lllllllllllll

Applying the functor HomG(St, ?) to this, we get a commutative diagram

A(1)
id //

F

²²

A(1)
id //

²²

A(1)

A // HomG(St, St⊗ (S ⊗ C))

66mmmmmmmmmmmmmm

of A(1)-modules, see [3, Proposition 1, 5]. Thus F : A(1) → A splits, and A =
(S ⊗ C)G is F -pure.

Finally, as in the proof of [2, (1.2)], A = (S ⊗ C)G ∼= SU (X = Spec S and
H = U there). Thus SU is F -pure. ¤

Corollary 5. Under the same assumption as in Theorem 1, ProjSU is
Frobenius split.
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