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Abstract. In a uniform domain Ω, we present a certain reverse mean
value inequality and a Harnack type inequality for positive superharmonic
functions satisfying a nonlinear inequality −∆u(x) ≤ cδΩ(x)−αu(x)p for x ∈
Ω, where c > 0, α ≥ 0 and p > 1 and δΩ(x) is the distance from a point x
to the boundary of Ω. These are established by refining a boundary growth
estimate obtained in our previous paper (2008). Also, we apply them to show
the existence of nontangential limits of quotients of such functions and to give
an extension of a certain minimum principle studied by Dahlberg (1976).

1. Introduction.

This paper is a continuation of [10], [12]. Therein we studied, from the
point of view of potential theory, positive superharmonic functions u satisfying a
certain nonlinear inequality, for example, −∆u ≤ up, and presented a boundary
growth estimate for them in a bounded smooth domain Ω in Rn (n ≥ 2): if
0 < p ≤ (n+1)/(n−1), then there is a constant C > 0 such that u(x) ≤ CδΩ(x)1−n

for all x ∈ Ω, where δΩ(x) denotes the distance from a point x to the boundary ∂Ω
of Ω. As an application, we showed that if the greatest harmonic minorant of u is
the zero function, then u has nontangential limit 0 almost everywhere on ∂Ω. This
last result was improved in the recent paper [13], using arguments from minimal
fine topology and some techniques from [10]. It was shown, under no additional
assumptions on u, that if 0 < p < n/(n− 2), then u has finite nontangential limits
almost everywhere on ∂Ω. Indeed, this is valid for nonsmooth domains and the
range of p is not affected by the shape of a domain. Concerning this result and
the Fatou-Näım-Doob theorem, we have the following question: if u and v are
positive superharmonic functions, each satisfying a nonlinear inequality as above,

2000 Mathematics Subject Classification. Primary 31B05; Secondary 31B25, 31C45, 35J60.

Key Words and Phrases. boundary growth, nontangential limit, reverse mean value inequal-

ity, Harnack type inequality, convergence property, superharmonic function, semilinear elliptic
equation, uniform domain.

This work was partially supported by Grant-in-Aid for Young Scientists (B) (No. 19740062),
Japan Society for the Promotion of Science.

http://dx.doi.org/10.2969/jmsj/06241043


1044 K. Hirata

then does the quotient u/v have finite nontangential limits almost everywhere on
∂Ω? We will see that the range of p depends on the shape of the domain in this
case and that, if Ω is a smooth domain, then this question is answered in the
affirmative for p ≤ (n + 1)/(n− 1) and that this bound is optimal.

As is well known, positive harmonic functions h have many good properties
such as the mean value equality, the Harnack inequality, the convergence property
and a minimum principle in the sense of Beurling and Dahlberg. In particular, it
is noteworthy that the constant C in the Harnack inequality h(x) ≤ Ch(y) can be
taken near 1 whenever x and y are close to each other.

The main purpose of this paper is to extend, in some sense, the above proper-
ties for positive harmonic functions to positive superharmonic functions satisfying
a nonlinear inequality. As a consequence, we give an answer to the above ques-
tion about nontangential limits. Many of our results are obtained on nonsmooth
domains, after re-studying the relation between a critical exponent of a nonlinear
term and a suitable boundary growth estimate.

2. Preliminaries.

2.1. Positive superharmonic functions satisfying nonlinear in-
equalities.

Let Ω be a bounded domain in Rn (n ≥ 2) and let δΩ(x) denote the distance
from a point x to the boundary ∂Ω of Ω. A lower semicontinuous function u on
Ω taking values in (−∞,∞] is called superharmonic on Ω if u 6≡ ∞ and u satisfies
the following mean value inequality: for any x ∈ Ω and 0 < r < δΩ(x),

u(x) ≥ 1
νnrn

∫

B(x,r)

u(y) dy,

where B(x, r) denotes the open ball of center x and radius r, and νn is the volume of
the unit ball in Rn. Let ∆ be the Laplacian on Rn. Then, for each superharmonic
function u on Ω, there is a unique nonnegative Radon measure µu such that
−∆u = anµu in Ω in the sense of distributions, where an = nνn max{1, n − 2}.
We call µu the Riesz measure associated with u. See [4, Section 4.3].

Let c > 0, α ≥ 0 and p > 1. We investigate the class Sc,p,α(Ω) of positive
superharmonic functions u on Ω whose Riesz measure µu is absolutely continu-
ous with respect to the Lebesgue measure and whose Radon-Nikodým derivative,
written fu, satisfies the nonlinear inequality

fu(x) ≤ cδΩ(x)−αu(x)p for a.e. x ∈ Ω. (2.1)
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In our results stated below, we need not pay attention to the constant c, so we write
Sp,α(Ω) = Sc,p,α(Ω) for simplicity. It is obvious that Sp,α(Ω) includes all positive
continuous solutions u of semilinear elliptic equations of the form −∆u = V up,
where V is any nonnegative measurable function satisfying V (x) ≤ cδΩ(x)−α for
a.e. x ∈ Ω and the equation is understood in the sense of distributions. Also,
positive continuous solutions u of −∆u = Uuq + V up satisfying infΩ u ≥ a > 0
belong to Sp,α(Ω) when 1 < q < p and U and V are nonnegative measurable
functions such that aq−pU(x) + V (x) ≤ cδΩ(x)−α for a.e. x ∈ Ω.

2.2. Uniform domains.
Many results in this paper will be established in the setting of uniform do-

mains. We say that a domain Ω is uniform if there exists a constant CΩ > 1 such
that any pair of points x, y ∈ Ω can be connected by a rectifiable curve γ in Ω
satisfying

`(γ) ≤ CΩ|x− y|, (2.2)

min{`(γ(x, z)), `(γ(z, y))} ≤ CΩδΩ(z) for all z ∈ γ, (2.3)

where ` denotes the length of a curve, and γ(x, z), γ(z, y) denote the subarcs
of γ from x to z and from z to y, respectively. A nontangentially accessible
(abbreviated to NTA) domain, as introduced by Jerison and Kenig, is a uniform
domain satisfying the exterior corkscrew condition: there exists a constant r0 > 0
such that for each ξ ∈ ∂Ω and 0 < r < r0, we find a point x ∈ Rn \ Ω such that
|x− ξ| = r and δΩ(x) ≥ r/CΩ. For ξ ∈ ∂Ω and θ > 1, we denote a nontangential
set at ξ by

Γθ(ξ) = {x ∈ Ω : |x− ξ| ≤ θδΩ(x)}.

If Ω is a uniform domain, then we observe from (2.3) that Γθ(ξ) is nonempty and
that ξ is accessible from Γθ(ξ) whenever θ ≥ CΩ.

Convention. Throughout this paper (except for special cases), we suppose
that Ω is a bounded uniform domain in Rn (n ≥ 3) or a bounded NTA domain in
R2.

2.3. Estimates for the Green function and the Martin kernel.
Let us recall estimates for the Green function and the Martin kernel. The Mar-

tin boundary of a bounded uniform domain coincides with its Euclidean boundary
(see Aikawa [1, Corollary 3]). Let GΩ(x, y) denote the Green function for Ω and
KΩ(x, ξ) the Martin kernel of Ω with pole at ξ ∈ ∂Ω. In arguments below, a point
x0 ∈ Ω is fixed and is the reference point of the Martin kernel, i.e. KΩ(x0, ξ) = 1
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for all ξ ∈ ∂Ω. For convenience, we assume that δΩ(x0) ≥ diam(Ω)/4CΩ. By the
symbol C, we denote an absolute positive constant whose value is unimportant
and may change from line to line. Also, the notation C = C(a, b, . . . ) means that
a constant C depends on a, b, . . . . In particular, C(Ω) stands for a constant de-
pending on CΩ in (2.2)–(2.3) and the diameter of Ω. We say that two positive
functions f1 and f2 are comparable, written f1 ≈ f2, if there exists a constant
C > 1 such that C−1f1 ≤ f2 ≤ Cf1. Then the constant C is called the constant
of comparison. The following estimate is found in [9, Corollary 1.5].

Lemma 2.1. Let θ ≥ CΩ and ξ ∈ ∂Ω. Then there exists a constant C =
C(θ, n, Ω) > 1 such that for all x ∈ Γθ(ξ),

GΩ(x, x0)KΩ(x, ξ) ≥ 1
C
|x− ξ|2−n.

Moreover, the inequality GΩ(x, x0)KΩ(x, ξ) ≤ C|x−ξ|2−n holds for all x ∈ Γθ(ξ)∩
B(ξ, δΩ(x0)/2).

To state a global estimate of the Green function for a nonsmooth domain, we
need an auxiliary set. For each pair of points x, y ∈ Ω, let

B(x, y) =
{

b ∈ Ω :
1

CΩ
min{|x− b|, |b− y|} ≤ |x− y| ≤ 2CΩδΩ(b)

}
.

Observe that this set is nonempty for any pair x, y ∈ Ω. Indeed, the midpoint of
the curve γ occurring in (2.2)–(2.3) lies in B(x, y). Let

gΩ(x) = min{1, GΩ(x, x0)}.

The following estimates are found in [11, Theorem 1.2].

Lemma 2.2. For each x, y ∈ Ω and b ∈ B(x, y),

GΩ(x, y) ≈





gΩ(x)gΩ(y)
gΩ(b)2

(
1 + log+ min{δΩ(x), δΩ(y)}

|x− y|
)

if n = 2,

gΩ(x)gΩ(y)
gΩ(b)2

|x− y|2−n if n ≥ 3,

where log+ t = max{0, log t} and the constant of comparison depends only on n

and Ω.
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Since the Martin kernel at ξ ∈ ∂Ω is given by

KΩ(x, ξ) = lim
Ω3y→ξ

GΩ(x, y)
GΩ(x0, y)

,

we obtain the following estimate (see [11, Lemma 4.2]).

Lemma 2.3. For each x ∈ Ω, ξ ∈ ∂Ω and b ∈ B(x, ξ),

KΩ(x, ξ) ≈ gΩ(x)
gΩ(b)2

|x− ξ|2−n,

where the constant of comparison depends only on n and Ω. Here, in the case
n = 2, we interpret as |x− ξ|2−n = 1.

Also, we have the following.

Lemma 2.4. There exists a constant C = C(n, Ω) such that for each x, y ∈ Ω
and b ∈ B(x, y),

max{gΩ(x), gΩ(y)} ≤ CgΩ(b).

Proof. It is enough to show that gΩ(x) ≤ CgΩ(b). Let r0 > 0 and C1 > 1,
which are determined by the shape of Ω in the Carleson estimate for harmonic
functions (cf. [1, Theorem 1 and Remark 2]). If |x − y| ≤ C1δΩ(x), then the
Harnack inequality shows that gΩ(x) ≈ gΩ(b) since

|x− b| ≤ C|x− y| ≤ C min{δΩ(x), δΩ(b)}.

If |x−y| ≥ r0, then δΩ(b) ≥ |x−y|/C ≥ r0/C, and so gΩ(x) ≤ 1 ≈ gΩ(b). Suppose
that C1δΩ(x) < |x − y| < r0. Let x̃ ∈ ∂Ω be a point such that |x̃ − x| = δΩ(x).
Take z ∈ Ω with |z − x̃| = |x − y| and δΩ(z) ≥ |x − y|/C1. Then the Carleson
estimate implies that

gΩ(x) ≤ CgΩ(z).

Since

|b− z| ≤ |b− x|+ |x− z| ≤ C|x− y| ≤ C min{δΩ(b), δΩ(z)},

we have gΩ(b) ≈ gΩ(z) by the Harnack inequality. Hence gΩ(x) ≤ CgΩ(b). Thus
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the lemma is proved. ¤

3. Decay order of the Green function.

The behavior of the Green function for a nonsmooth domain is complicated
and its decay rate may vary at every boundary point. Nevertheless, we introduce
an important number in our study by

τ = sup{t > 0 : i(t) = 0}, (3.1)

where

i(t) = inf
{

GΩ(x, x0)
δΩ(x)t

: x ∈ Ω
}

.

We give some elementary remarks on τ .

Lemma 3.1. The following statements hold :

( i ) If t < τ , then i(t) = 0.
( ii ) If τ < ∞ and t > τ , then i(t) > 0.

In particular, if τ < ∞, then τ = inf{t > 0 : i(t) > 0}.

Proof. If s < t, then

GΩ(x, x0)
δΩ(x)s

≤ (diamΩ)t−s GΩ(x, x0)
δΩ(x)t

,

and so i(s) ≤ (diamΩ)t−si(t). Since Ω is bounded, we have (i). Also, the definition
of τ implies (ii). ¤

Lemma 3.2. We have 1 ≤ τ < ∞. Moreover, if Ω is a bounded C1,1-domain,
then τ = 1 and i(τ) > 0.

Proof. Let us show that τ < ∞. Using the Harnack inequality, we observe
that there are constants λ = λ(n,CΩ) > 1 and C = C(n, Ω) > 1 such that for all
x ∈ Ω and ξ ∈ ∂Ω,

KΩ(x, ξ) ≤ CδΩ(x)−λ.

See [2, (5.2), p. 260]. Therefore, by Lemma 2.1,
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GΩ(x, x0) ≥ 1
C

δΩ(x)λ+2−n.

Hence τ ≤ λ + 2 − n < ∞. The assertion τ ≥ 1 is well known. In fact, we take
a ball B1 so that Ω ⊂ B1 and ∂Ω ∩ ∂B1 6= ∅. Let ξ ∈ ∂Ω ∩ ∂B1. If x ∈ Γθ(ξ) is
sufficiently close to ξ, then

GΩ(x, x0) ≤ GB1(x, x0) ≤ C|x− ξ| ≤ CδΩ(x).

Hence it must be τ ≥ 1. Moreover, if Ω is a C1,1-domain, then for each η ∈ ∂Ω,
there is a ball B2 such that B2 ⊂ Ω, η ∈ ∂B2 and the radius of B2 is independent
of η (see [3]). This implies that δΩ(x) ≤ CGΩ(x, x0) for all x ∈ Ω, and so τ = 1
in this case. ¤

It is unknown whether i(τ) > 0 always holds for bounded uniform domains.
This is a reason to divide the statements in Theorem 4.1 below.

4. Harmonic growth and exponent of nonlinearity.

In this section, we present a boundary growth estimate for functions in
Sp,α(Ω), which generalizes results in [10], [12]. To derive potential theoretic
properties, we should pay attention to a maximal growth of positive harmonic
functions near the boundary. In view of Lemma 2.1, it is natural to think of
gΩ(x)−1δΩ(x)2−n as a maximal growth. The main result of this section is as fol-
lows.

Theorem 4.1. Let τ be as in (3.1). Suppose that

1 < p ≤ n + τ

n + τ − 2
and α < n + τ − p(n + τ − 2). (4.1)

If u ∈ Sp,α(Ω), then there exist constants C = C(c, α, p, n,Ω) and

β =

{
β(p, n) ≥ 1 if u(x0) > 1,

1 if u(x0) ≤ 1,

such that for all x ∈ Ω,

u(x) ≤ C

gΩ(x)δΩ(x)n−2
u(x0)β . (4.2)
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Moreover, if i(τ) > 0, then the conclusion holds in the case α = n+τ−p(n+τ−2)
as well.

Remark 4.2. Since (n + τ)/(n + τ − 2) ≤ (n + 1)/(n − 1) and n + τ −
p(n + τ − 2) ≤ n + 1− p(n− 1), it follows from [10, Theorem 1.1] that u is locally
bounded. In particular, u(x0) is finite.

By Lemma 2.1, we obtain the following corollary.

Corollary 4.3. Assumptions are the same as in Theorem 4.1. Let ξ ∈ ∂Ω
and θ ≥ CΩ. Then there exists a constant C = C(θ, c, α, p, n,Ω) such that for all
x ∈ Γθ(ξ),

u(x) ≤ Cu(x0)βKΩ(x, ξ), (4.3)

where β is as in Theorem 4.1.

Note that the bound p ≤ (n + τ)/(n + τ − 2) is optimal for (4.2) to hold. See
Section 9. The proof of Theorem 4.1 is similar to that given in [10], [12], but we
need additional arguments. We start with an elementary estimate for harmonic
functions.

Lemma 4.4. If h is a nonnegative harmonic function on Ω, then there exists
a constant C = C(n, Ω) such that for all x ∈ Ω,

h(x) ≤ C

gΩ(x)δΩ(x)n−2
h(x0).

Proof. Lemmas 2.3 and 2.4 imply that for all x ∈ Ω and ξ ∈ ∂Ω,

KΩ(x, ξ) ≤ C

gΩ(x)δΩ(x)n−2
.

Therefore the conclusion follows from the Martin representation. ¤

In the rest of this section, we let u ∈ Sp,α(Ω). By the Riesz decomposition,
every nonnegative superharmonic function is decomposed into the sum of a non-
negative harmonic function and a Green potential of its associated Riesz measure.
Thus we have for all x ∈ Ω,

u(x) = h(x) +
∫

Ω

GΩ(x, y)fu(y) dy, (4.4)
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where h is the greatest harmonic minorant of u on Ω. This yields the following.

Lemma 4.5. The following inequality holds:

∫

Ω

gΩ(y)fu(y) dy ≤ u(x0).

Lemma 4.6. Let n ≥ 3. For each j ∈ N , there exists a constant cj =
c(j, n, Ω) such that for any z ∈ Ω and x ∈ B(z, δΩ(z)/2j+1),

u(x) ≤ cj

gΩ(z)δΩ(z)n−2
u(x0) +

∫

B(z,δΩ(z)/2j)

fu(y)
|x− y|n−2

dy.

Proof. Let z ∈ Ω and x ∈ B(z, δΩ(z)/2j+1). By Lemmas 2.2 and 2.4, we
have for y ∈ Ω \B(z, δΩ(z)/2j),

GΩ(x, y) ≤ C
gΩ(y)
gΩ(x)

|x− y|2−n ≤ C

gΩ(x)δΩ(z)n−2
gΩ(y),

where C depends on j, n and Ω. Since gΩ(x) ≈ gΩ(z) and GΩ(x, y) ≤ |x− y|2−n,
it follows from Lemma 4.5 that

∫

Ω

GΩ(x, y)fu(y) dy ≤ C

gΩ(z)δΩ(z)n−2
u(x0) +

∫

B(z,δΩ(z)/2j)

fu(y)
|x− y|n−2

dy.

Also, since δΩ(x) ≈ δΩ(z) and h ≤ u, we have by Lemmas 4.4

h(x) ≤ C

gΩ(z)δΩ(z)n−2
u(x0).

Therefore the conclusion follows from (4.4). ¤

Lemma 4.7. Let n = 2. For each j ∈ N , there exist constants cj = c(j, Ω)
and C2 = C(Ω) such that for any z ∈ Ω and x ∈ B(z, δΩ(z)/2j+1),

u(x) ≤ cj

gΩ(z)
u(x0) +

∫

B(z,δΩ(z)/2j)

fu(y) log
C2δΩ(z)
|x− y| dy.

Proof. Since Ω is a bounded NTA domain, we observe from the exterior
corkscrew condition that there exists a constant C = C(Ω) such that for any z ∈ Ω
and x, y ∈ B(z, δΩ(z)/2),
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GΩ(x, y) ≤ log
CδΩ(z)
|x− y| .

The rest of the proof is similar to that of Lemma 4.6. ¤

Let z ∈ Ω be fixed. For η ∈ B(0, 1), we define

ψz(η) = gΩ(z)δΩ(z)nfu(z + δΩ(z)η).

For simplicity, we write B(r) = B(0, r) when the center is the origin.

Lemma 4.8. Let p and α be as in Theorem 4.1. Then there exists a constant
C = C(c, α, p, n,Ω) such that for a.e. η ∈ B(1/2),

ψz(η) ≤ C
{
gΩ(z)δΩ(z)n−2u(z + δΩ(z)η)

}p
.

Proof. First, we consider the case that p and α satisfy (4.1). Let

t =
n− α− p(n− 2)

p− 1
.

Then t > τ , and we therefore find a constant C = C(t,Ω) > 1 such that

gΩ(z) ≥ 1
C

δΩ(z)t.

This and (2.1) imply that for a.e. η ∈ B(1/2),

ψz(η) = gΩ(z)δΩ(z)nfu(z + δΩ(z)η)

≤ CgΩ(z)δΩ(z)n−αu(z + δΩ(z)η)p

≤ CgΩ(z)1−pδΩ(z)n−α−p(n−2)
{
gΩ(z)δΩ(z)n−2u(z + δΩ(z)η)

}p

≤ C
{
gΩ(z)δΩ(z)n−2u(z + δΩ(z)η)

}p
.

If i(τ) > 0, then this holds for α = n + τ − p(n + τ − 2) as well. ¤

The following lemma will play an essential role in the proof of Theorem 4.1.

Lemma 4.9. Let p and α be as in Theorem 4.1, and let
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n + τ

n + τ − 2
< q <

n

n− 2
and l =

[
log(q/(q − 1))

log(q/p)

]
+ 1.

Let κ ≥ 1. Then there exists a constant C = C(κ, q, c, α, p, n,Ω) such that for each
1 ≤ j ≤ l,

∫

B(1/2j+1)

ψz(η)κq/p dη ≤ Cu(x0)κq + C

( ∫

B(1/2j)

ψz(η)κ dη

)q

.

Proof. We show this lemma for n ≥ 3. The case n = 2 is also proved in
the same way. Let 1 ≤ j ≤ l and let

Ψz,j(η) =
∫

B(1/2j)

ψz(ζ)
|η − ζ|n−2

dζ.

Making the change x = z + δΩ(z)η and y = z + δΩ(z)ζ in Lemma 4.6, we have
that for any η ∈ B(1/2j+1),

gΩ(z)δΩ(z)n−2u(z + δΩ(z)η) ≤ c0u(x0) + Ψz,j(η), (4.5)

where c0 = max{cj : 1 ≤ j ≤ l}. Let κ ≥ 1. Then, applying the Jensen inequality
to the probability measure

|η − ζ|2−n dζ

/∫

B(1/2j)

|η − ζ|2−n dζ on B

(
1
2j

)
,

we have

Ψz,j(η)κ ≤ C

∫

B(1/2j)

ψz(ζ)κ

|η − ζ|n−2
dζ.

By the Minkowski inequality for integrals and q < n/(n− 2),

( ∫

B(1/2j)

Ψz,j(η)κq dη

)1/q

≤ C

∫

B(1/2j)

ψz(ζ)κ dζ. (4.6)

Also, it follows from Lemma 4.8 and (4.5) that for a.e. η ∈ B(1/2j+1),

ψz(η) ≤ C{c0u(x0) + Ψz,j(η)}p,
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and so ψz(η)κq/p ≤ Cu(x0)κq + CΨz,j(η)κq. Therefore, by (4.6),

∫

B(1/2j+1)

ψz(η)κq/p dη ≤ Cu(x0)κq + C

( ∫

B(1/2j)

ψz(ζ)κ dζ

)q

.

Thus the lemma is proved. ¤

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First, we consider the case n ≥ 3. Let z ∈ Ω be
fixed and let q and l be as in Lemma 4.9. By Lemma 4.6,

gΩ(z)δΩ(z)n−2u(z) ≤ cl+1u(x0) +
∫

B(1/2l+1)

ψz(η)
|η|n−2

dη.

Let s = q/p > 1. Since sl/(sl − 1) ≤ q < n/(n − 2), we have by the Hölder
inequality

gΩ(z)δΩ(z)n−2u(z) ≤ cl+1u(x0) + C

( ∫

B(1/2l+1)

ψz(η)sl

dη

)1/sl

.

Applying Lemma 4.9 l times, we have

∫

B(1/2l+1)

ψz(η)sl

dη ≤ Cu(x0)sl−1q + C

( ∫

B(1/2l)

ψz(η)sl−1
dη

)q

≤ · · ·

≤ CU + C

( ∫

B(1/2)

ψz(η) dη

)ql

,

where

U = u(x0)sl−1q + u(x0)sl−2q2
+ · · ·+ u(x0)ql

.

Since Lemma 4.5 implies

∫

B(1/2)

ψz(η) dη ≤ Cu(x0),

we obtain
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gΩ(z)δΩ(z)n−2u(z) ≤ Cu(x0)β .

Here β = ql if u(x0) > 1; β = 1 if u(x0) ≤ 1. Hence (4.2) is proved for n ≥ 3. When
n = 2, we can let l = 1 in the above by taking a large q, since log(1/|η|) ∈ Lr(B(1))
for any r > 0. See [12]. This completes the proof of Theorem 4.1. ¤

5. Reverse mean value inequality.

In Sections 5–8, we suppose that p > 1 and α ≥ 0 are as in Theorem 4.1,
that is, u ∈ Sp,α(Ω) satisfies (4.2). This section presents a reverse mean value
inequality for functions in Sp,α(Ω). Let σn be the area of the unit sphere in Rn,
and let νn be the volume of the unit ball in Rn. Denote

M (v;x, r) =
1

σnrn−1

∫

∂B(x,r)

v(y) dσ(y),

A (v;x, r) =
1

νnrn

∫

B(x,r)

v(y) dy,

where σ is the surface area measure on ∂B(x, r). By definition, every superhar-
monic function v on Ω satisfies the following mean value inequalities: for each
x ∈ Ω and 0 < r < δΩ(x),

v(x) ≥ M (v;x, r) and v(x) ≥ A (v;x, r). (5.1)

Moreover, A (v;x, r) ≥ M (v;x, r) (see [4, Corollary 3.2.6]). We are interested in
the opposite inequalities of (5.1) in some sense.

Theorem 5.1. Let u ∈ Sp,α(Ω) and let d be any function on Ω such that
d(x) ≥ 2 for all x ∈ Ω. Then there exists a constant C = C(c, α, p, n,Ω) such that
if we put

ρd(x, r) = Cu(x0)β(p−1) r2−α−(p−1)(n−2)

gΩ(x)p−1d(x)α+(p−1)(n−2)
,

where β is the constant in Theorem 4.1, then the following inequalities hold for
any x ∈ Ω and 0 < r ≤ δΩ(x)/d(x) :

{1− ρd(x, r)}u(x) ≤ M (u;x, r) ≤ A (u;x, r). (5.2)

Remark 5.2. In Lemma 6.2 below, we will show that ρd(x, r) can be arbi-
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trary small by taking d(x) large enough. Thus (5.2) is meaningful.

To prove Theorem 5.1, we recall the following lemma (see [4, Corollary 4.4.4]).

Lemma 5.3. Let v be a superharmonic function on an open set which con-
tains B(x, r). Then

v(x) = M (v;x, r) + an

∫ r

0

t1−nµv(B(x, t)) dt,

where an = max{n− 2, 1} and µv is the Riesz measure associated with v.

Proof of Theorem 5.1. Let x ∈ Ω, 0 < r ≤ δΩ(x)/d(x) and y ∈ B(x, r).
Since d(x) ≥ 2, we have δΩ(y) ≥ δΩ(x)/2 ≥ d(x)r/2 and gΩ(y) ≥ gΩ(x)/C. It
follows from Theorem 4.1 that

fu(y) ≤ cδΩ(y)−αu(y)p−1u(y)

≤ Cu(x0)β(p−1)

gΩ(x)p−1(d(x)r)α+(p−1)(n−2)
u(y) =: a(x, r)u(y).

Therefore, by Lemma 5.3 and (5.1),

u(x) ≤ M (u;x, r) + ana(x, r)
∫ r

0

t1−n

∫

B(x,t)

u(y) dydt

≤ M (u;x, r) +
anνn

2
a(x, r)r2u(x),

and so

u(x) ≤ M (u;x, r) + Cu(x0)β(p−1) r2−α−(p−1)(n−2)

gΩ(x)p−1d(x)α+(p−1)(n−2)
u(x).

Thus Theorem 5.1 is proved. ¤

6. Harnack type inequality.

As a consequence of Theorem 5.1, we obtain the following Harnack type in-
equality.

Theorem 6.1. Let u ∈ Sp,α(Ω), and let d and ρd be functions as in Theorem
5.1. Then, for each x ∈ Ω, 0 < r ≤ δΩ(x)/2d(x) and y ∈ B(x, r),
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{1− ρd(x, r)}u(x) ≤
(

1 +
|x− y|

r

)n

u(y).

Proof. Let x ∈ Ω, 0 < r ≤ δΩ(x)/2d(x) and y ∈ B(x, r). Then B(x, r) ⊂
B(y, r + |x− y|) ⊂ Ω. By Theorem 5.1,

{1− ρd(x, r)}u(x) ≤ A (u;x, r)

≤ (r + |x− y|)n

rn
A (u; y, r + |x− y|).

Hence this theorem follows from (5.1). ¤

Lemma 6.2. Let u ∈ Sp,α(Ω) and let ρd be a function as in Theorem 5.1.
Then there exists a constant C = C(c, α, p, n,Ω) with the following property : Let
ε > 0. If a function d satisfies

d(x) ≥ C

√
u(x0)β(p−1)

ε
for all x ∈ Ω,

where β is the constant in Theorem 4.1, then for any x ∈ Ω and 0 < r ≤
δΩ(x)/d(x),

ρd(x, r) ≤ ε.

Proof. Let x ∈ Ω and 0 < r ≤ δΩ(x)/d(x). Consider the case that p and
α satisfy (4.1). If we let

t =
n− α− p(n− 2)

p− 1
,

then t > τ , and so gΩ(x) ≥ δΩ(x)t/C ≥ (d(x)r)t/C for all x ∈ Ω. Then

ρd(x, r) ≤ Cu(x0)β(p−1) r2−α−(p−1)(n+t−2)

d(x)α+(p−1)(n+t−2)
=

Cu(x0)β(p−1)

d(x)2
.

Therefore, ρd(x, r) ≤ ε whenever d(x) ≥
√

Cu(x0)β(p−1)/ε. Moreover, if i(τ) > 0,
then the conclusion holds for α = n + τ − p(n + τ − 2) as well. ¤

Corollary 6.3. Let M > 0 and 0 < κ < 1. Then for each 0 < ε < 1,
there exists a constant dε = d(ε,M, c, α, p, n,Ω) ≥ 2 such that for any x ∈ Ω,
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0 < r ≤ δΩ(x)/4dε and y ∈ B(x, κr),

1− ε

(1 + κ)n
u(x) ≤ u(y) ≤ (1 + κ)n

1− ε
u(x),

whenever u ∈ Sp,α(Ω) satisfies u(x0) ≤ M .

Proof. Let dε = max{C
√

max{1,M}β(p−1)/ε, 2}. Then Lemma 6.2 im-
plies that ρdε(z, t) ≤ ε for all z ∈ Ω and 0 < t ≤ δΩ(z)/dε. Let x ∈ Ω,
0 < r ≤ δΩ(x)/4dε and y ∈ B(x, κr). Then, by Theorem 6.1,

u(x) ≤ (1 + κ)n

1− ε
u(y).

Also, since δΩ(x) ≤ 2δΩ(y), we have r ≤ δΩ(y)/2dε, and so

u(y) ≤ (1 + κ)n

1− ε
u(x).

Thus the corollary is proved. ¤

Recall the quasi-hyperbolic metric kΩ(x, y) on Ω:

kΩ(x, y) = inf
γ

∫

γ

ds(z)
δΩ(z)

,

where the infimum is taken over all rectifiable curves γ connecting x and y in Ω
and ds stands for the line element on γ. Now, let d0 = 4d1/2 for simplicity. A
sequence of balls {B(xj , δΩ(xj)/d0)}N

j=1 is said to be a Harnack chain connecting
x and y if x1 = x, xN = y and xj−1 ∈ B(xj , δΩ(xj)/d0) for j = 2, . . . , N . It is well
known that the smallest number N among Harnack chains connecting x and y is
comparable to kΩ(x, y) + 1, where the constant of comparison depends only on n.
Thus, by using Corollary 6.3 N − 1 times, we have the following.

Corollary 6.4. Let M > 0. Then there exists a constant C =
C(M, c, α, p, n,Ω) > 1 such that for any x, y ∈ Ω,

exp{−C(kΩ(x, y) + 1)} ≤ u(x)
u(y)

≤ exp{C(kΩ(x, y) + 1)},

whenever u ∈ Sp,α(Ω) satisfies u(x0) ≤ M .
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In Sections 7 and 8, we present three applications of Corollary 6.3: the ex-
istence of nontangential limits for quotients of two functions in Sp,α(Ω), an ex-
tension of a minimum principle for positive harmonic functions due to Dahlberg
to functions in Sp,α(Ω), and a Harnack type convergence theorem for a class of
solutions of a certain semilinear elliptic equation.

7. The existence of nontangential limits and a minimum principle.

The boundary behavior of superharmonic functions in a very general setting
was studied by Näım [15] and Doob [7]. Nowadays, their results are known as
the Fatou-Näım-Doob theorem. In our situation, it asserts that for two positive
superharmonic functions u and v on Ω, the quotient u/v has finite minimal fine
limits ν-almost everywhere on ∂Ω, where ν is a measure on ∂Ω appearing in the
Martin representation of the greatest harmonic minorant of v. For the defini-
tion of minimal fine limits and further details, see [4, Section 9]. Note that the
approach regions are not defined geometrically and practically impossible to visu-
alise. Applying their results, we give a nontangential limit theorem for functions
in Sp,α(Ω). A function f on Ω is said to have nontangential limit a at ξ ∈ ∂Ω if

lim
Γθ(ξ)3x→ξ

f(x) = a

for each θ ≥ CΩ.

Theorem 7.1. Let u, v ∈ Sp,α(Ω) and let ν be a measure on ∂Ω appearing
in the Martin representation of the greatest harmonic minorant of v. Then u/v

has finite nontangential limits ν-almost everywhere on ∂Ω.

Proof. By the Fatou-Näım-Doob theorem, we find a subset E of ∂Ω with
ν(E) = 0 such that u/v has finite minimal fine limit, a say, at each ξ ∈ ∂Ω\E. Let
0 < ε < 1, 0 < κ < 1, θ ≥ CΩ, and let dε be the constant in Corollary 6.3, where
M = max{u(x0), v(x0)}. Take an arbitrary sequence {xj} in Γθ(ξ) converging to
ξ. Since the set

⋃
j B(xj , κδΩ(xj)/4dε) is not minimally thin at ξ (see [1, Lemma

5]), there is zj ∈ B(xj , κδΩ(xj)/4dε) such that u(zj)/v(zj) → a as j → ∞. Then
Corollary 6.3 yields that

(1− ε)2

(1 + κ)2n
a ≤ lim inf

j→∞
u(xj)
v(xj)

≤ lim sup
j→∞

u(xj)
v(xj)

≤ (1 + κ)2n

(1− ε)2
a.

Letting κ → 0 and ε → 0, we obtain
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lim
j→∞

u(xj)
v(xj)

= a.

This completes the proof. ¤

The following is a special case of Theorem 7.1.

Corollary 7.2. Let u ∈ Sp,α(Ω) and ξ ∈ ∂Ω. Then u/KΩ(·, ξ) has a finite
nontangential limit at ξ.

Remark 7.3. If p > (n + τ)/(n + τ − 2) or α > n + τ − p(n + τ − 2), then
we can construct a function u ∈ Sp,α(Ω) such that the upper limit of u/KΩ(·, ξ)
along a nontangential set at ξ is infinite. See Section 9. Hence the bounds p ≤
(n + τ)/(n + τ − 2) and α ≤ n + τ − p(n + τ − 2) are optimal to obtain the results
in Sections 6 and 7.

Next, we mention an extension of a certain minimum principle for positive
harmonic functions studied by Dahlberg [6]. See also Beurling [5]. Let F be some
class of positive functions on Ω and let ξ ∈ ∂Ω. We say that a subset E of Ω is
equivalent at ξ for F if the equality

inf
x∈E

f(x)
KΩ(x, ξ)

= inf
x∈Ω

f(x)
KΩ(x, ξ)

(7.1)

holds for all functions f ∈ F . Dahlberg gave characterizations for a set E to
satisfy (7.1) for the class F of all positive harmonic functions. Indeed, he proved
the equivalence of (ii)–(v) in Theorem 7.4 below. We assert that his result can be
extended to the wider class Sp,α(Ω).

Theorem 7.4. Let D be a bounded C1,1-domain in Rn (n ≥ 3) and let
E ⊂ D and ξ ∈ ∂D. Suppose that

1 < p ≤ n + 1
n− 1

and α ≤ n + 1− p(n− 1).

Then the following statements are equivalent :

( i ) E is equivalent at ξ for Sp,α(D);
( ii ) E is equivalent at ξ for the class of all positive harmonic functions on D;
(iii) there exists a number 0 < a < 1 such that

∫

Ea

|x− ξ|−n dx = ∞, (7.2)
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where Ea =
⋃

x∈E B(x, aδD(x));
(iv) (7.2) holds for any 0 < a < 1;
( v ) there exist a number a > 0 and a sequence {xj} in E converging to ξ such

that |xj − xk| ≥ aδD(xj) whenever j 6= k, and that

∞∑

j=1

(
δD(xj)
|xj − ξ|

)n

= ∞.

Proof. We will show that (iv) implies (i). Indeed, the proof follows the
argument in [6, p. 249], because we have Corollary 6.3. Suppose to the contrary
that (i) fails to hold. Then we find u ∈ Sp,α(D) with

inf
x∈E

u(x)
KD(x, ξ)

=: m > s := inf
x∈D

u(x)
KD(x, ξ)

.

Let v(x) = u(x)− sKD(x, ξ). Then

inf
x∈D

v(x)
KD(x, ξ)

= 0. (7.3)

Let C3 > 1 be a constant satisfying m/C2
3 > s. By Corollary 6.3, we find a

constant a > 0 such that for all x ∈ D and y ∈ B(x, aδD(x)),

u(x) ≤ C3u(y) and KD(y, ξ) ≤ C3KD(x, ξ).

Let y ∈ Ea. Then y ∈ B(x, aδD(x)) for some x ∈ E. Since u(x) ≥ mKD(x, ξ), it
follows that

u(y) ≥ 1
C3

u(x) ≥ m

C3
KD(x, ξ) ≥ m

C2
3

KD(y, ξ),

and so

v(y) = u(y)− sKD(y, ξ) ≥
(

m

C2
3

− s

)
KD(y, ξ).

Then assumption (iv) and [6, Theorem 2] imply that the last inequality holds on
the whole of D. This contradicts (7.3). ¤

Remark 7.5. Of course, the above result holds for a bounded Liapunov-Dini
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domain as well (see [6] for the definition of a Liapunov-Dini domain).

8. Harnack type convergence theorem.

Let M > 0 be a constant and let V be a nonnegative measurable function on
Ω such that V (x) ≤ cδΩ(x)−α for a.e. x ∈ Ω. In this section, we suppose that p

and α satisfy (4.1); if i(τ) > 0, then we permit α = n + τ − p(n + τ − 2). Let
S M

p,V (Ω) be the class of all positive continuous solutions u of

−∆u = V up in Ω (in the sense of distributions)

such that u(x0) ≤ M . Note that S M
p,V (Ω) ⊂ Sp,α(Ω). Also, it is not difficult to

see that S M
p,V (Ω) 6= ∅.

Lemma 8.1. S M
p,V (Ω) is locally uniformly bounded and locally uniformly

equicontinuous on Ω.

Proof. The local boundedness of S M
p,V (Ω) follows from Theorem 4.1. Let

us show the local uniform equicontinuity of S M
p,V (Ω). Let E be a compact subset

of Ω and let η > 0. Write

M0 = sup
x∈E,u∈S M

p,V (Ω)

u(x) < ∞,

and consider a constant function d satisfying

d(x) ≡ d ≥ max

{
2, C

√
M0u(x0)β(p−1)

η

}
,

where C and β are constants in Lemma 6.2 and Theorem 4.1, respectively. Apply
Theorem 6.1 with ε = η/M0 and r = dist(E, ∂Ω)/2d. Then

(1− ε)u(z) ≤
(

1 +
|z − w|

r

)n

u(w), (8.1)

whenever z, w ∈ E satisfy |z − w| < r. Take 0 < δ ≤ r with

(
1 +

δ

r

)n

− 1 ≤ η

M0
.

Then (8.1) implies that for any x, y ∈ E with |x− y| < δ,
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u(x)− u(y) ≤ εu(x) +
{(

1 +
δ

r

)n

− 1
}

u(y) ≤ 2η.

Interchanging the roles of x and y, we have |u(x)− u(y)| ≤ 2η. Hence S M
p,V (Ω) is

locally uniformly equicontinuous on Ω. ¤

Lemma 8.2. If {uj} is a sequence in S M
p,V (Ω) converging pointwisely to a

function u on Ω, then the convergence is locally uniform on Ω and u ∈ S M
p,V (Ω)∪

{0}.

Proof. Let ε > 0 and let E be a compact set in Ω. Since {uj} is locally
uniformly equicontinuous on Ω, there is δ > 0 such that |uj(x)− uj(y)| < ε for all
j ∈ N and x, y ∈ E with |x−y| < δ. Then |u(x)−u(y)| ≤ ε and E ⊂ ⋃m

k=1 B(xk, δ)
for some m ∈ N , where x1, . . . , xm ∈ E. By assumption, there is j0 ∈ N such
that |uj(xk) − u(xk)| < ε for all j ≥ j0 and 1 ≤ k ≤ m. For any x ∈ E, we find
1 ≤ k ≤ m with |x− xk| < δ. Therefore

|uj(x)− u(x)| ≤ |uj(x)− uj(xk)|+ |uj(xk)− u(xk)|+ |u(xk)− u(x)| < 3ε.

Hence the convergence is locally uniform on Ω. Also, for φ ∈ C∞0 (Ω),

−
∫

Ω

u∆φdx = − lim
j→∞

∫

Ω

uj∆φdx = lim
j→∞

∫

Ω

V up
jφdx =

∫

Ω

V upφdx.

Hence u ∈ S M
p,V (Ω) ∪ {0} by the minimum principle. ¤

Theorem 8.3. Let {uj} be a sequence in S M
p,V (Ω). Then there exists a

subsequence of {uj} which converges locally uniformly on Ω to a function in
S M

p,V (Ω) ∪ {0}.

Proof. This follows from the Ascoli-Arzelá theorem together with Lemmas
8.1 and 8.2. ¤

9. On the bounds p ≤ (n+τ )/(n+τ−2) and α ≤ n+τ−p(n+τ−2).

This section shows that the bounds p ≤ (n + τ)/(n + τ − 2) and α ≤ n + τ −
p(n + τ − 2) are optimal to obtain (4.2) and the results in Sections 5–7.

Theorem 9.1. Let n ≥ 3, c > 0, and τ be as in (3.1). Suppose that either

( i ) p > (n + τ)/(n + τ − 2) and α ≥ 0, or
( ii ) p > 1 and α > n + τ − p(n + τ − 2)
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holds. Let κ be a number such that

n + τ − 2 < κ < κp :=





2τ + α(n− 2)
n− (n− 2)p

if p <
n

n− 2
,

∞ if p ≥ n

n− 2
.

Then there exist u ∈ Sc,p,α(Ω) ∩ C2(Ω) and a sequence {xj} in Ω with no limit
point in Ω such that

lim
j→∞

δΩ(xj)κu(xj) = ∞.

Proof. A proof is similar to that given in [10], but we need additional
arguments. For the convenience sake of the reader, we provide a proof. Take κ0

with κ < κ0 < κp, and let

γ =
α + κ0(p− 1)

2
and λ = α + κ0p.

Then γ > 1. In fact, if p and α satisfy (i), then

γ >
n + τ − 2

2

(
n + τ

n + τ − 2
− 1

)
= 1;

if p and α satisfy (ii), then

γ >
1
2
{n + τ − p(n + τ − 2) + (n + τ − 2)(p− 1)} = 1.

Let t < τ be taken so that

κ0 <
2t + α(n− 2)
n− (n− 2)p

if p <
n

n− 2
.

Then, in any case,

λ− nγ =
1
2
{(2− n)α + (n− (n− 2)p)κ0} < t.

Also, t < τ implies i(t) = 0, so that there is a sequence {xj} in Ω with no limit
point in Ω such that δΩ(xj) < 1 and
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B

(
xj ,

δΩ(xj)γ

4

)
∩B

(
xk,

δΩ(xk)γ

4

)
= ∅ if j 6= k, (9.1)

gΩ(xj) ≤ δΩ(xj)t for all j, (9.2)

∞∑

j=1

δΩ(xj)t−λ+nγ < ∞. (9.3)

Note that there exists a constant C4 > 1 such that

GΩ(x, y) ≥ 1
C4
|x− y|2−n whenever |x− y| ≤ 1

2
δΩ(x). (9.4)

Let C5 > 0 be a constant such that

c

2α

(
νnC5

2n+4C4

)p

≥ C5, (9.5)

where νn is the volume of the unit ball in Rn, and let fj be a nonnegative smooth
function on Ω such that fj ≤ C5/δΩ(xj)λ and

fj =





C5

δΩ(xj)λ
on B

(
xj ,

δΩ(xj)γ

8

)
,

0 on Ω\B
(

xj ,
δΩ(xj)γ

4

)
.

Define f =
∑∞

j=1 fj . Since (9.2) and the Harnack inequality imply

gΩ(y) ≤ CδΩ(xj)t for all y ∈ B

(
xj ,

δΩ(xj)γ

4

)
,

we have by (9.3)

∫

Ω

gΩ(y)f(y) dy ≤ C
∞∑

j=1

∫

B(xj ,δΩ(xj)γ/4)

δΩ(xj)tfj(y) dy

≤ C
∞∑

j=1

δΩ(xj)t−λ+γn < ∞.

Therefore u =
∫
Ω

GΩ(·, y)f(y)dy is positive and superharmonic on Ω. Moreover,
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the local Hölder continuity of f yields that u ∈ C2(Ω) and −∆u = f in Ω (see
[16, Theorem 6.6]). By the mean value property and (9.4), we have for x ∈
∂B(xj , δΩ(xj)γ/4),

u(x) ≥
∫

B(xj ,δΩ(xj)γ/8)

GΩ(x, y)fj(y) dy =
C5

δΩ(xj)λ

νnδΩ(xj)γn

8n
GΩ(x, xj)

≥ νnC5

2n+4C4
δΩ(xj)−κ0 .

Here we used 2γ − λ = −κ0. By the minimum principle,

u(x) ≥ νnC5

2n+4C4
δΩ(xj)−κ0 for all x ∈ B

(
xj ,

δΩ(xj)γ

4

)
. (9.6)

Therefore

δΩ(xj)κu(xj) ≥ 1
C

δΩ(xj)κ−κ0 →∞ as j →∞.

To complete the proof, we have to show that −∆u(x) ≤ cδΩ(x)−αu(x)p for
all x ∈ Ω. If x 6∈ ⋃

j B(xj , δΩ(xj)γ/4), then

cδΩ(x)−αu(x)p ≥ 0 = f(x) = −∆u(x).

If there is j such that x ∈ B(xj , δΩ(xj)γ/4), then we have by (9.6), (9.5) and (9.1)

cδΩ(x)−αu(x)p ≥ c

2α

(
νnC5

2n+4C4

)p

δΩ(xj)−pκ0−α

≥ C5

δΩ(xj)λ
≥ fj(x) = f(x) = −∆u(x).

Thus Theorem 8.3 is proved. ¤

Two dimensional case is stated as follows.

Theorem 9.2. Let n = 2, c > 0, and τ be as in (3.1). Suppose that either

( i ) p > (2 + τ)/τ and α ≥ 0, or
( ii ) p > 1 and α > 2 + τ − pτ

holds. Assume that there are a constant C > 1 and a sequence {xj} in Ω with no
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limit point in Ω such that δΩ(xj)τ/C ≤ gΩ(xj) ≤ CδΩ(xj)τ for all j. Then there
exists u ∈ Sc,p,α(Ω) ∩ C2(Ω) such that

lim sup
j→∞

gΩ(xj)u(xj) = ∞. (9.7)

Proof. Let λ = α + τp and γ = (λ− τ)/2. Taking a subsequence of {xj}
if necessary, we may assume that {xj} satisfies (9.1) and

δΩ(xj) ≤ e−j3
for all j.

Let C6 > 0 be sufficiently large and let fj be a nonnegative smooth function on Ω
such that fj ≤ C6/j2δΩ(xj)λ and

fj =





C6

j2δΩ(xj)λ
on B

(
xj ,

δΩ(xj)γ

8

)
,

0 on Ω\B
(

xj ,
δΩ(xj)γ

4

)
.

Define f =
∑∞

j=1 fj and u =
∫
Ω

GΩ(·, y)f(y)dy. Then the similar arguments to
the proof of Theorem 9.1 shows that u ∈ Sc,p,α(Ω) ∩ C2(Ω) and u satisfies (9.7).
See also [12, Proof of Theorem 1.2]. ¤

Remark 9.3. The bounds p ≤ (n+τ)/(n+τ−2) and α ≤ n+τ−p(n+τ−2)
are optimal to obtain the results in Sections 5–7. In fact, we may consider a
uniform domain Ω such that there are ξ ∈ ∂Ω, θ ≥ CΩ and C > 1 such that for
any x ∈ Γθ(ξ) near ξ,

δΩ(x)τ

C
≤ gΩ(x) ≤ CδΩ(x)τ . (9.8)

Then we can choose {xj}, satisfying (9.1)–(9.3), from Γθ(ξ). Hence, if p and α

satisfy (i) or (ii), then we can construct u ∈ Sc,p,α(Ω) such that the upper limit
of u/KΩ(·, ξ) along Γθ(ξ) is infinite.

Elementary bounded domains satisfying (9.8) are C1,1-domains (τ = 1),
unions of open balls with fixed size (τ = 1), and polygonal uniform domains.
Here we say that a bounded domain Ω is polygonal if there are finitely many cones
Γ1, . . . ,Γm with the following property: for each ξ ∈ ∂Ω, there are r > 0 and
1 ≤ j ≤ m such that Ω ∩ B(ξ, r) = Γj ∩ B(ξ, r). In fact, the Martin kernels of
uniform cones are homogeneous (see [8], [14]). Hence, in view of the boundary
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Harnack principle and Lemma 2.1, we see that polygonal uniform domains satisfy
(9.8) for some τ ≥ 1 and ξ ∈ ∂Ω.
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