©2010 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 62, No. 3 (2010) pp. 767–788 doi: 10.2969/jmsj/06230767

L^p -independence of spectral bounds of Schrödinger-type operators with non-local potentials

By Yoshihiro TAWARA

(Received Aug. 27, 2008) (Revised Apr. 15, 2009)

Abstract. We establish a necessary and sufficient condition for spectral bounds of a non-local Feynman-Kac semigroup being L^p -independent. This result is an extension of that in [24] to more general symmetric Markov processes; in [24], we only treated a symmetric stable process on \mathbb{R}^d . For example, we consider a symmetric stable process on the hyperbolic space, the jump process generated by the fractional power of the Laplace-Beltrami operator, and prove that by adding a non-local potential, the associated Feynman-Kac semigroup satisfies the L^p -independence.

1. Introduction.

In this paper, we consider the L^p -independence of spectral bounds of Schrödinger-type operators with non-local potential. The main objective is to extend our results in [23] and [24] to more general Schrödinger-type operators.

Let X be a locally compact separable metric space and m a positive Radon measure on X with full support. Let $\mathbf{M} = (X_t, \mathbf{P}_x)$ be a conservative m-symmetric Hunt process on X and denote by $(N(x, dy), H_t)$ the Lévy system of \mathbf{M} ([10, Definition A.3.7]). Let F be a symmetric function on $X \times X$ in a certain class \mathscr{J}_{∞} (see Definition 2.2) and define a discontinuous additive functional $A_t(F)$ by

$$A_t(F) = \sum_{0 < s \le t} F(X_{s-}, X_s).$$

We denote by \mathscr{L} the L^2 -generator of M and define a Schrödinger-type operator formally by

$$\mathscr{H}^{F}f = \mathscr{L}f + \mu_{H}Ff, \quad \mu_{H}Ff = \int_{X} \left(e^{F(x,y)} - 1\right)f(y)N(x,dy)\mu_{H}(dx),$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 60J25; Secondary 60J75.

 $Key\ Words$ and Phrases. Feynman-Kac formula, $L^p\text{-}\mathrm{independence},$ Dirichlet form, Markov process.

where μ_H is the measure in the Revuz correspondence to the positive continuous additive functional H_t . We denote by $\{p_t^F\}_{t>0}$ the semigroup generated by \mathscr{H}^F , $p_t^F = \exp(t\mathscr{H}^F)$. Then the semigroup $\{p_t^F\}_{t>0}$ is expressed by the non-local Feynman-Kac semigroup,

$$p_t^F f(x) = \boldsymbol{E}_x[\exp(A_t(F))f(X_t)]$$

We define the L^p -spectral bound of $\{p_t^F\}_{t>0}$ by

$$\lambda_p(F) = -\lim_{t \to \infty} \frac{1}{t} \log \left\| p_t^F \right\|_{p,p} \quad 1 \le p \le \infty,$$

where $\|p_t^F\|_{p,p}$ is the operator norm from $L^p(X;m)$ to $L^p(X;m)$. The main theorem in this paper is as follows: Suppose that the function F belongs to the class \mathscr{J}_{∞} . Then $\lambda_p(F)$ is independent of p if and only if $\lambda_2(F) \leq 0$. In [23], Takeda proved this statement for Schrödinger-type operators with local potential, and in [24] we did it for Schrödinger-type operators whose principal part is the fractional Laplacian, $-\frac{1}{2}(-\Delta)^{\alpha/2}$.

For a classical Schrödinger-type operator $\frac{1}{2}\Delta + V$ on \mathbf{R}^d , B. Simon [18] proved the L^p -independence and K.-Th. Sturm in [20], [21] extended it to Schrödingertype operator on Riemannian manifolds. For the proof of the L^p -independence, they used the heat kernel estimates of Schrödinger-type operators. Our method in this paper is completely different from those in [18], [20] and [21]. The approach in this paper is similar to that in [23] and [24]. We shall use arguments in Donsker-Varadhan's large deviation theory. However, our method is more general than that in [24]; we used in [24] the heat kernel estimate for the α -stable process on \mathbb{R}^d , due to Bass and Levin [5]. However, it is not applicable for general Hunt processes. Instead of the heat kernel estimate for the α -stable process, we use facts that the Feynman-Kac semigroup $\{p_t^F\}_{t>0}$ possesses the doubly Feller property, $p_t^F(\mathscr{B}_b(X)) \subset C_b(X)$ and $p_t^F(C_\infty(X)) \subset C_\infty(X)$. Here $C_\infty(X)$ is the space of continuous functions on X such that vanishing at infinity. Moreover, we derive the invariance of $C_u(X)$, $p_t^F(C_u(X)) \subset C_u(X)$, where $C_u(X)$ is the space of uniformly continuous bounded functions on X such that $\lim_{x\to\infty} f(x)$ exists. In our argument, the invariance of $C_u(X)$ plays a crucial role. In fact, we extend the Markov process on the one-point compactification X_{∞} by making the adjoint point ∞ a trap, and use the upper bound of the large deviation for the extended Markov process. Then the so-called Donsker-Varadhan's I-function, say I_F , of the extended Markov process is a function on the space of probability measures on X_{∞} not X. We make a connection between the modified I-function and the original one. To show that $\bar{I}_F(\delta_{\infty}) = 0$, that is, there exists no contribution of adjoined point ∞ , we need the invariance of $C_u(X)$. To prove the properties of the Feynman-Kac semigroup stated above, we apply a result of Chung [8] which was devoted to the stability of the doubly Feller property under transform by multiplicative functionals. We summarize in Proposition 3.1 properties equivalent to the invariance of $C_{\infty}(X)$, which is an extension of a result of Azencott [4].

We use qualitative properties of the Feynman-Kac semigroup for the proof of the L^p -independence. As a result, we can treat more general Schrödinger semigroups. In Section 5, we shall give an example of non-local Feynman-Kac semigroup satisfying the L^p -independence as follows: Employing results in McGillivray [15] and Ôkura [16], we prove that our assumptions (I)–(IV) are preserved by a certain subordination. We thus see that our main theorem is applicable for the α -stable process on the hyperbolic space, that is, the subordinated process of the Brownian motion generated by $-\frac{1}{2}(-\Delta)^{\alpha/2}$. Here Δ is the Laplace-Beltrami operator on the hyperbolic space. It is well-known that the spectral bounds of Laplace-Beltrami operator on the hyperbolic space is equal to $(d-1)^2/8$ (e.g. Davies [9]). By the spectral theorem, the L^2 -spectral bound of the α -stable process is equal to $(d-1)^{\alpha}/2^{1+\alpha}$. We construct a function $F \in \mathscr{J}_{\infty}$ such that $\lambda_2(F) \leq 0$ by Lemmas 4.7 and 4.8. We thus conclude that the spectral bounds of $-\frac{1}{2}(-\Delta)^{\alpha/2} + \mu_V F$ is L^p -independent, where μ_V is the Riemannian volume.

We close the introduction with some words on notation. For a topological space X, we use $\mathscr{B}(X)$ to denote the set of all Borel set (or functions) on X. If $\mathscr{C} \subset \mathscr{B}(X)$, then \mathscr{C}_b (resp. \mathscr{C}_+) denotes the set of bounded (resp. non-negative) functions in \mathscr{C} . For a subset $A \subset X$, we denote by 1_A the indicator function of A and by A^c the complement of A. We use c, C, \ldots , etc as positive constants which may be different at different occurrences.

2. Notations.

Let X be a locally compact separable metric space and X_{∞} the one-point compactification of X with adjoined point ∞ . Let m be a positive Radon measure on X with full support. Let $\mathbf{M} = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, \mathbf{P}_x, X_t, \zeta)$ be an m-symmetric Hunt process on (X, m). Here $\{\mathcal{M}_t\}_{t\geq 0}$ is the minimal (augmented) admissible filtration, $\theta_t, t \geq 0$ is the shift operator satisfying $X_s(\theta_t) = X_{s+t}$ identically for $s, t \geq 0$, and ζ is the lifetime of \mathbf{M} . We denote that $(N, H) = (N(x, dy), H_t)$ is the Lévy system of \mathbf{M} , that is, N is a kernel on $X_{\infty} \times \mathscr{B}(X_{\infty})$ and H is a positive continuous additive functional of \mathbf{M} such that for any nonnegative measurable function F on $X_{\infty} \times X_{\infty}$ vanishing on the diagonal set and any $x \in X_{\infty}$,

$$\boldsymbol{E}_{x}\bigg[\sum_{0 < s \leq t} F(X_{s-}, X_{s})\bigg] = \boldsymbol{E}_{x}\bigg[\int_{0}^{t} \int_{X_{\infty}} N(X_{s}, dy)F(X_{s}, y)dH_{s}\bigg].$$

From Assumption (II) below, we may replace X_{∞} by X in the definition of the Lévy system. Throughout this paper, we assume that the Hunt process M is transient. Moreover, we assume that the semigroup of M, $p_t f(x) = \mathbf{E}_x[f(X_t)]$, possesses the following properties:

- (I) (Irreducibility) If a Borel set A is p_t -invariant, that is, for any $f \in L^2(X;m) \cap \mathscr{B}_b(X)$ and t > 0, $p_t(1_A f)(x) = 1_A(x)p_t f(x)$ m-a.e. x, then A satisfies either m(A) = 0 or $m(X \setminus A) = 0$.
- (II) (Conservativeness) $p_t 1 = 1$.
- (III) (Strong Feller Property) $p_t(\mathscr{B}_b(X)) \subset C_b(X)$.
- (IV) (Invariance of $C_{\infty}(X)$) $p_t(C_{\infty}(X)) \subset C_{\infty}(X)$.

Let us denote by $(\mathscr{E}, \mathscr{F})$ the Dirichlet form on $L^2(X; m)$ generated by M; by the right continuity of sample paths of M, $\{p_t\}_{t>0}$ can be extended to an $L^2(X; m)$ -strongly continuous semigroup, say $\{T_t\}$ ([10, Lemma 1.4.3]). Then $(\mathscr{E}, \mathscr{F})$ is defined by

$$\begin{cases} \mathscr{F} = \left\{ u \in L^2(X; m) : \lim_{t \to 0} \frac{1}{t} (u - T_t u, u)_m < \infty \right\}, \\ \mathscr{E}(u, v) = \lim_{t \to 0} \frac{1}{t} (u - T_t u, v)_m, \quad u, v \in \mathscr{F}. \end{cases}$$

It follows from Assumption (IV) that $(\mathscr{E}, \mathscr{F})$ is regular and thus each function u in \mathscr{F} admits a quasi-continuous version \tilde{u} (cf. [10, Theorem 2.1.3]). In the sequel we always assume that every function $u \in \mathscr{F}$ is represented by its quasi-continuous version.

We call a Borel measure μ on X smooth if it satisfies the following conditions:

- 1. μ charges no set of zero capacity,
- 2. there exists an increasing sequence $\{F_n\}$ of closed sets such that $\mu(F_n) < \infty$ for all n and $\lim_{n\to\infty} \operatorname{Cap}(K \setminus F_n) = 0$ for any compact set K.

For given smooth measure μ , we denote by $A_t(\mu)$ the positive continuous additive functional in the Revuz correspondence (cf. [10, Theorem 5.1.4]): For any $f \in \mathscr{B}_+(X)$ and γ -excessive function h,

$$\lim_{t \to 0} \frac{1}{t} \boldsymbol{E}_{h \cdot m} \left[\int_0^t f(X_s) dA_s(\mu) \right] = \int_X f(x) h(x) \mu(dx).$$

Under Assumption (II), we obtain the next expression of the Dirichlet form \mathscr{E} due to Beurling and Deny:

Spectral bounds of Schrödinger-type operators

$$\mathscr{E}(u,u) = \mathscr{E}^{(c)}(u,u) + \frac{1}{2} \int_{X \times X} (u(x) - u(y))^2 N(x,dy) \mu_H(dx).$$

Here, $\mathscr{E}^{(c)}$ is the continuous part of $(\mathscr{E}, \mathscr{F})$ and μ_H is the Revuz measure of positive additive functional H (see [10, Section 3.2]).

REMARK 2.1. We see from Assumption (III) and symmetry of $\{p_t\}_{t>0}$ that the semigroup $\{p_t\}_{t>0}$ admits an integral kernel $\{p(t, x, y)\}$ with respect to the measure m.

Let $\{G_{\beta}(x,y)\}_{\beta>0}$ the resolvent kernel defined by

$$G_{\beta}(x,y) = \int_0^{\infty} e^{-\beta t} p(t,x,y) dt, \quad \beta > 0.$$

We simply write G(x, y) for the Green function $G_0(x, y)$. The existence of the Green function follows from the transience of M.

DEFINITION 2.1 (Kato measure and Green tight measure). Suppose that μ is a signed smooth measure associated with a positive continuous additive functional $A_t(\mu)$.

1. A smooth measure μ is said to be *Kato measure* (in notation, $\mu \in \mathscr{K}$) if

$$\lim_{t \to 0} \sup_{x \in X} \boldsymbol{E}_x[A_t(|\boldsymbol{\mu}|)] = 0.$$

2. A measure $\mu \in \mathscr{K}$ is said to be *Green tight measure* (in notation, $\mu \in \mathscr{K}_{\infty}$) if for any $\epsilon > 0$ there exist a compact subset K and a positive constant $\delta > 0$ such that

$$\sup_{x \in X} \int_{K^c} G(x, y) |\mu|(dy) \le \epsilon$$

and for any Borel set $B \subset K$ with $|\mu|(B) < \delta$,

$$\sup_{x\in X}\int_B G(x,y)|\mu|(dy)\leq \epsilon.$$

REMARK 2.2. A Green tight measure μ is Green-bounded:

$$\sup_{x \in X} \int_X G(x, y) |\mu|(dy) < \infty$$

(see Chen [6, Remark 2.1]).

DEFINITION 2.2 (Class \mathscr{J}_{∞}). Let F be a bounded measurable function on $X \times X$ vanishing on the diagonal $\triangle = \{(x, x) : x \in X\}$. We say that F belongs to the class \mathscr{J}_{∞} , if

$$\mu_F(dx) = \left(\int_X F(x, y) N(x, dy)\right) \mu_H(dx) \in \mathscr{K}_{\infty}.$$
(2.1)

Here, μ_H is the Revuz measure corresponding to H.

In the remainder of this paper, we assume that F is symmetric, F(x, y) = F(y, x). For $F \in \mathscr{J}_{\infty}$, we define a symmetric Dirichlet form $(\mathscr{E}_F, \mathscr{F})$ by

$$\mathscr{E}_F(u,u) = \mathscr{E}^{(c)}(u,u) + \frac{1}{2} \int_{X \times X} (u(x) - u(y))^2 e^{F(x,y)} N(x,dy) \mu_H(dx).$$

Furthermore, we set $F_1 = e^F - 1 \in \mathscr{J}_{\infty}$, and define another bilinear form \mathscr{E}^F by

$$\mathscr{E}^{F}(u,u) = \mathscr{E}_{F}(u,u) - \int_{X} u^{2} d\mu_{F_{1}}$$
$$= \mathscr{E}(u,u) - \int_{X \times X} u(x)u(y)F_{1}(x,y)N(x,dy)\mu_{H}(dx), \quad u \in \mathscr{F}.$$

We see that $(\mathscr{E}^F, \mathscr{F})$ is a lower semi-bounded closed symmetric form by Albeverio and Ma [2, Theorem 4.1], [3, Proposition 3.3]. Denote by \mathscr{L}^F the self-adjoint operator associated with $(\mathscr{E}_F, \mathscr{F})$ and \mathscr{H}^F the self-adjoint operator associated with $(\mathscr{E}^F, \mathscr{F})$. Then \mathscr{L}^F and \mathscr{H}^F are formally written by

$$\mathscr{L}^F f = \mathscr{L} f + \left(\int_X (f(y) - f(x)) F_1(x, y) N(x, dy) \right) \mu_H(dx)$$

and

$$\mathscr{H}^F f = \mathscr{L} f + \mu_H F f = \mathscr{L}^F f + \mu_H V^F f,$$

where

Spectral bounds of Schrödinger-type operators

$$\mu_H \mathbf{F} f = \left(\int_X f(y) F_1(x, y) N(x, dy) \right) \mu_H(dx),$$

$$\mu_H V^F f = \left(\int_X F_1(x, y) N(x, dy) \right) f(x) \mu_H(dx)$$

(Chen and Song [7, Remark 1]). Indeed, we have by the formal calculation,

$$\begin{split} \mathscr{E}_{F}(f,g) &= \mathscr{E}^{(c)}(f,g) + \frac{1}{2} \int_{X \times X} e^{F(x,y)} (f(y) - f(x)) (g(y) - g(x)) N(x,dy) \mu_{H}(dx) \\ &= (-\mathscr{L}^{(c)}f,g)_{m} + \frac{1}{2} \int_{X \times X} (f(y) - f(x)) (g(y) - g(x)) N(x,dy) \mu_{H}(dx) \\ &+ \frac{1}{2} \int_{X} (e^{F(x,y)} - 1) (f(y) - f(x)) (g(y) - g(x)) N(x,dy) \mu_{H}(dx) \\ &= (-\mathscr{L}f,g)_{m} + \frac{1}{2} \int_{X \times X} (e^{F(x,y)} - 1) (f(y)g(y) + f(x)g(x)) N(x,dy) \mu_{H}(dx) \\ &- \frac{1}{2} \int_{X \times X} (e^{F(x,y)} - 1) (f(y)g(x) + f(x)g(y)) N(x,dy) \mu_{H}(dx) \end{split}$$

where $\mathscr{L}^{(c)}$ is the self-adjoint operator associated with $(\mathscr{E}^{(c)}, \mathscr{F})$. Furthermore, by the symmetry of the Lévy system,

$$\begin{split} &= (-\mathscr{L}f,g)_m + \int_{X \times X} F_1(x,y)f(x)g(x)N(x,dy)\mu_H(dx) \\ &\quad - \int_{X \times X} F_1(x,y)f(y)g(x)N(x,dy)\mu_H(dx) \\ &= (-\mathscr{L}f,g)_m - \int_{X \times X} F_1(x,y)(f(y) - f(x))g(x)N(x,dy)\mu_H(dx) \\ &= (-\mathscr{L}^F f,g)_m. \end{split}$$

Analogously, $\mathscr{E}^{F}(f,g) = (-\mathscr{H}^{F}f,g)_{m}$. Let $\{p_{t}^{F}\}_{t>0}$ be the L^{2} -semigroup generated by \mathscr{H}^{F} : $p_{t}^{F} = \exp(t\mathscr{H}^{F})$. Then, using the discontinuous additive functional $A_{t}(F) = \sum_{0 < s \leq t} F(X_{s-}, X_{s})$, the semigroup $\{p_{t}^{F}\}_{t>0}$ is expressed by

$$p_t^F f(x) = \mathbf{E}_x[\exp(A_t(F))f(X_t)].$$
(2.2)

In fact, for $F \in \mathscr{J}_{\infty}$, let $M_t = A_t(F_1) - A_t^p(F_1)$, where

$$A_t^p(F_1) = \int_0^t \left(\int_X F_1(X_s, y) N(X_s, dy) \right) dH_s.$$
 (2.3)

By the definition of the Lévy system, we see that M_t is a local martingale. Then the Doléans-Dade exponential M_t^F of M_t is defined by

$$M_t^F = \exp(M_t) \prod_{0 < s \le t} (1 + \Delta M_s) \exp(-\Delta M_s), \ \Delta M_s = M_s - M_{s-1}$$

(cf. He, Wang and Yan [13, Theorem 9.39]). Noting that $\Delta M_{s-} = F_1(X_{s-}, X_s)$, we have

$$M_t^F = \exp\left(A_t(F) - A_t^p(F) + A_t(F) - A_t(F_1)\right) = \exp\left(A_t(F) - A_t^p(F_1)\right).$$
(2.4)

The semigroup

$$T_t^F f(x) = \boldsymbol{E}_x \big[M_t^F f(X_t) \big]$$

is identical to the one generated by $(\mathscr{E}_F, \mathscr{F})$ (cf. [7, Theorem 4.8]). Let (X_t, \mathbf{P}_x^M) be the transformed process of \mathbf{M} by M_t^F : $\mathbf{P}_x^M(d\omega) = M_t^F \cdot \mathbf{P}_x(d\omega)$. We then see from (2.4) that the transformed semigroup by the non-local Feynman-Kac functional $\exp(A_t(F))$ is identical to the transformed semigroup of \mathbf{P}_x^M by the Feynman-Kac functional $\exp(A_t^p(F_1))$:

$$p_t^F f(x) = \mathbf{E}_x^M \left[\exp(A_t^p(F_1)) f(X_t) \right].$$
(2.5)

3. Non-local Feynman-Kac semigroups.

In this section, we shall show some properties of the non-local Feynman-Kac semigroup $\{p_t^F\}_{t>0}$ transformed by $F \in \mathscr{I}_{\infty}$. Let K be a Borel set and σ_K the first hitting time of K, $\sigma_K = \inf\{t > 0 : X_t \in K\}$. The next proposition is an extension of Proposition 3.1 in Azencott [4]. We think that the proposition is of independent interest. Hence we state the proposition in a complete way, while we only use a part of Proposition 3.1.

PROPOSITION 3.1. Let M be a Hunt process that satisfies the properties (II) and (III). Then the following properties are equivalent to each other:

(A): **M** possesses the property (IV), that is, for each t > 0 and $f \in C_{\infty}(X)$,

$$\lim_{x \to \infty} p_t f(x) = 0$$

(B): For each $\beta > 0$ and $f \in C_{\infty}(X)$,

$$\lim_{x \to \infty} G_{\beta} f(x) = 0.$$

(C): For each t > 0 and compact set K,

$$\lim_{x \to \infty} P_x(\sigma_K \le t) = 0.$$

(D): For each $\beta > 0$ and compact set K,

$$\lim_{x \to \infty} \boldsymbol{E}_x[e^{-\beta \sigma_K}] = 0.$$

Proof.

(A) \Rightarrow (B): Let f be a strictly positive function in $C_{\infty}(X)$. By properties (II) and (IV), $G_{\beta}f$ is a strictly positive continuous function in $C_{\infty}(X)$. (B) \Rightarrow (C): Put $c = \inf_{x \in C} c_{\alpha}f(x) \ge 0$. Since for $\beta \ge 0$.

(B) \Rightarrow (C): Put $c = \inf_{x \in K} G_{\beta} f(x) > 0$. Since for $\beta > 0$,

$$\boldsymbol{P}_{x}[\sigma_{K} \leq t] \leq e^{\beta t} \boldsymbol{E}_{x}\left[e^{-\beta\sigma_{k}}\right] \leq \frac{e^{\beta t}}{c} \boldsymbol{E}_{x}\left[e^{-\beta\sigma_{K}} G_{\beta}f(X_{\sigma_{K}})\right]$$

and

$$\begin{aligned} \boldsymbol{E}_{x} \Big[e^{-\beta\sigma_{K}} G_{\beta} f(X_{\sigma_{K}}) \Big] &= \boldsymbol{E}_{x} \Big[e^{-\beta\sigma_{K}} \boldsymbol{E}_{X_{\sigma_{K}}} \left[\int_{0}^{\infty} e^{-\beta t} f(X_{t}) dt \right] \Big] \\ &\leq \boldsymbol{E}_{x} \Big[\int_{\sigma_{K}}^{\infty} e^{-\beta t} f(X_{t}) dt \Big] \leq G_{\beta} f(x), \end{aligned}$$

we have the implication.

(C) \Rightarrow (A): Let f be a nonnegative function in $C_{\infty}(X)$. By the property (III), we only have to show that $\lim_{x\to\infty} p_t f(x) = 0$. For any $\epsilon > 0$, there exists compact set K such that $f(x) < \epsilon$ for all $x \notin K$. Then $f(X_t) \leq ||f||_{\infty} 1_{\{\sigma_K \leq t\}} + \epsilon 1_{\{\sigma_K > t\}} \leq ||f||_{\infty} 1_{\{\sigma_K \leq t\}} + \epsilon$. Thus,

$$p_t f(x) = \boldsymbol{E}_x[f(X_t)] \le \|f\|_{\infty} \boldsymbol{P}_x(\sigma_K \le t) + \epsilon.$$

(C) \Rightarrow (D): By the property (C), for arbitrary $\beta > 0$, compact set K and $\epsilon > 0$, there exist t > 0 and $U \subset K^c$ such that $e^{-\beta t} < \epsilon$ and $P_x(\sigma_K \leq t) < \epsilon$ for all $x \in U$. Hence we have,

$$\begin{aligned} \boldsymbol{E}_{x} \big[e^{-\beta \sigma_{K}} \big] &= \boldsymbol{E}_{x} \big[e^{-\beta \sigma_{K}}; \sigma_{K} \leq t \big] + \boldsymbol{E}_{x} \big[e^{-\beta \sigma_{K}}; \sigma_{K} > t \big] \\ &\leq \boldsymbol{P}_{x} (\sigma_{K} \leq t) + e^{-\beta t} \boldsymbol{P}_{x} (\sigma_{K} > t) \leq 2\epsilon. \end{aligned}$$

We get desired claim.

 $(D) \Rightarrow (C)$: It follows from the following inequality:

$$\boldsymbol{E}_{x}\left[e^{-\beta\sigma_{K}}\right] \geq \boldsymbol{E}_{x}\left[e^{-\beta\sigma_{K}}\boldsymbol{1}_{\{\sigma_{K}\leq t\}}\right] \geq e^{-\beta t}\boldsymbol{P}_{x}(\sigma_{K}\leq t).$$

THEOREM 3.2. Let $F \in \mathscr{J}_{\infty}$.

(i) There exist constants c and $\kappa(F)$ such that

$$\left\|p_t^F\right\|_{p,p} \le c e^{\kappa(F)t}, \quad 1 \le \forall p \le \infty, \ t > 0.$$

Here $\|\cdot\|_{p,q}$ means the operator norm from $L^p(X;m)$ to $L^q(X;m)$,

- (ii) {p_t^F}_{t>0} is a strongly continuous symmetric semigroup on L²(X;m) and the closed form corresponding to p_t^F is identical to (𝔅^F, 𝔅),
- (iii) $p_t^F(\mathscr{B}_b(X)) \subset C_b(X),$
- (iv) $p_t^F(C_\infty(X)) \subset C_\infty(X),$
- (v) $p_t^F(C_u(X)) \subset C_u(X)$ and $\lim_{x\to\infty} p_t^F f(x) = \lim_{x\to\infty} f(x)$, where $C_u(X)$ is the space of uniformly continuous bounded functions on X such that $\lim_{x\to\infty} f(x)$ exists.

PROOF. The statements (i) and (ii) follow from results in Albeverio, Blanchard and Ma [1]. Next, we show the invariance of $C_{\infty}(X)$ and the strong Feller property of $\{p_t^F\}_{t>0}$ using Theorem 3 in Chung [8]. By the definition of the Lévy system, we have

$$E_{x}[A_{t}(F_{1})] = E_{x}\left[\int_{0}^{t} \left(\int_{X} F_{1}(X_{s}, y)N(X_{s}, dy)\right) dH_{s}\right] = E_{x}[A_{t}(\mu_{F_{1}})],$$
$$\lim_{t \to 0} \sup_{x \in X} E_{x}[A_{t}(|F_{1}|)] = \lim_{t \to 0} \sup_{x \in X} E_{x}[A_{t}(|\mu_{F_{1}}|)] = 0$$

for all $F_1 \in \mathscr{J}_{\infty}$. We have

$$\boldsymbol{E}_{x}\left[\exp(A_{t}(F))\right] = \boldsymbol{E}_{x}\left[\exp\left(\sum_{0 < s \leq t} F(X_{s-}, X_{s})\right)\right]$$
$$= \boldsymbol{E}_{x}\left[\prod_{0 < s \leq t} (1 + F_{1}(X_{s-}, X_{s}))\right]. \tag{3.1}$$

Furthermore, the Stieltjes exponential of $A_t(F_1)$ is equal to $\prod_{0 < s \leq t} (1 + F_1(X_{s-}, X_s))$ (see e.g. Sharpe [17, Section 71] and Ying [25]). Lemma 2.1 in [25] says that the right hand side of (3.1) is less than or equal to $(1 - \sup_{x \in X} E_x[A_t(F_1)])^{-1}$. Thus, $\exp(A_t(F))$ satisfies conditions (a)–(c) in [8], that is, Theorem 3 in [8] is applicable for $\exp(A_t(F))$. Hence we show properties (iii) and (iv).

(v) Since $f(x) - f(\infty) \in C_{\infty}(X)$ and $p_t^F f(x) = p_t^F(f(x) - f(\infty)) + f(\infty)p_t^F 1(x)$, it is enough to prove that

$$\lim_{x \to \infty} p_t^F \mathbf{1}(x) = \lim_{x \to \infty} \mathbf{E}_x[\exp(A_t(F))] = 1.$$

For a non-negative function $F \in \mathscr{J}_{\infty}$ and a compact set $K \subset X$, define $F_K(x, y) = 1_K(x)F(x, y)$. We then have

$$\boldsymbol{E}_{x}[\exp(A_{t}(F_{K}))] = \boldsymbol{E}_{x}\left[\exp(A_{t}(F_{K})); \sigma_{K}' > t\right] + \boldsymbol{E}_{x}\left[\exp(A_{t}(F_{K})); \sigma_{K}' \le t\right]$$
$$= \boldsymbol{P}_{x}(\sigma_{K}' > t) + \boldsymbol{E}_{x}\left[\exp(A_{t}(F_{K})); \sigma_{K}' \le t\right].$$

Here, $\sigma'_K = \inf\{t > 0 : X_{t-} \in K\}$. By Theorem A.2.3 in [10] and Proposition 3.1, $\lim_{x\to\infty} \mathbf{P}_x(\sigma'_K > t) \ge \lim_{x\to\infty} \mathbf{P}_x(\sigma_K > t) = 1$. Since

$$\boldsymbol{E}_{x}\big[\exp(A_{t}(F_{K}));\sigma_{K}'\leq t\big]\leq \boldsymbol{E}_{x}\big[\exp(A_{t}(2F))\big]^{1/2}\boldsymbol{P}_{x}\big(\sigma_{K}'\leq t\big)^{1/2},$$

we see

$$\lim_{x \to \infty} \boldsymbol{E}_x[\exp(A_t(F_K))] = 1.$$

Moreover, using Lemma 2.1 in [25] again, we have

$$\sup_{x \in X} \mathbf{E}_{x} [\exp(A_{t}(F_{K^{c}}))] = \sup_{x} \mathbf{E}_{x} [1 + F_{1,K^{c}}(X_{s-}, X_{s})]$$
$$\leq \frac{1}{1 - \sup_{x \in X} \mathbf{E}_{x} [A_{t}(F_{1,K^{c}})]}.$$

By the definition of \mathscr{J}_{∞} , for any $\epsilon > 0$ there exists a compact set K such that

$$\sup_{x \in X} \boldsymbol{E}_x[A_t(F_{1,K^c})] \le \sup_{x \in X} \int_{K^c} G(x,y)(\mu_{F_1})(dy)$$
$$\le \epsilon.$$

We then see that

$$\limsup_{x \to \infty} \boldsymbol{E}_x[\exp(A_t(F))] = \limsup_{x \to \infty} \boldsymbol{E}_x\left[\exp(A_t(F_K))\exp(A_t(F_{K^c}))\right]$$
$$\leq \limsup_{x \to \infty} \left[\boldsymbol{E}_x[\exp(A_t(2F_K))]^{1/2}\boldsymbol{E}_x[\exp(A_t(2F_{K^c}))]^{1/2}\right]$$
$$\leq 1.$$

In addition,

$$\begin{split} \liminf_{x \to \infty} \boldsymbol{E}_x[\exp(A_t(F))] &\geq \liminf_{x \to \infty} \boldsymbol{E}_x[\exp(-A_t(F^-))] \\ &\geq \Big\{ \limsup_{x \to \infty} \boldsymbol{E}_x[\exp(A_t(F^-))] \Big\}^{-1} \geq 1. \end{split}$$

Hence we see that for any $F \in \mathscr{J}_{\infty}$, $\lim_{x\to\infty} \mathbf{E}_x[\exp(A_t(F))] = 1$.

4. L^p -independence of spectral bounds.

In this section, we give the sketch of the proof of the main theorem (see [23] and [24] for more details) and proofs of two lemmas (Lemmas 4.7 and 4.8) which play the important role of producing of the L^p -independence.

Let $\mathscr{P}(X)$ be the set of probability measures on X equipped with the weak topology. Define a function $I_{\mathscr{E}^F}$ on $\mathscr{P}(X)$ by

$$I_{\mathscr{E}^F}(\nu) = \begin{cases} \mathscr{E}^F(\sqrt{f}, \sqrt{f}) & \text{if } \nu = f \cdot dm, \\ \infty & \text{otherwise.} \end{cases}$$

Let $\{R^F_\alpha\}_{\alpha>\kappa(F)}$ be the resolvent of the Schrödinger-type operator \mathscr{H}^F , that is,

for $f \in \mathscr{B}_b(X)$,

$$R_{\alpha}^{F}f(x) = \int_{0}^{\infty} e^{-\alpha t} p_{t}^{F}f(x)dt$$
$$= \mathbf{E}_{x} \bigg[\int_{0}^{\infty} \exp(-\alpha t + A_{t}(F))f(X_{t})dt \bigg].$$

Here, $\kappa(F)$ is the constant in Theorem 3.2 (i). Set

$$\mathscr{D}_{++}(\mathscr{H}^F) = \big\{ \phi = R^F_{\alpha}g : \alpha > \kappa(F), g \in C_u(X) \text{ with } g \ge \epsilon \text{ for some } \epsilon > 0 \big\}.$$

For $\phi = R^F_{\alpha}g \in \mathscr{D}_{++}(\mathscr{H}^F)$, let

$$\mathscr{H}^F \phi = \alpha \phi - g,$$

and define a function I_F on $\mathscr{P}(X)$ by

$$I_F(\nu) = -\inf_{\phi \in \mathscr{D}_{++}(\mathscr{H}^F)} \int_X \frac{\mathscr{H}^F \phi}{\phi} d\nu.$$

It is known in Takeda [22, Proposition 4.3] that

$$I_{\mathscr{E}^F}(\nu) = I_F(\nu), \quad \forall \nu \in \mathscr{P}(X).$$

We define a transition probability $\bar{p}_t(x, dy)$ on $(X_{\infty}, \mathscr{B}(X_{\infty}))$; for $E \in \mathscr{B}(X_{\infty})$,

$$\bar{p}_t(x, E) = \begin{cases} p_t(x, E \setminus \{\infty\}), & x \in X, \\ \delta_{\infty}(E), & x = \infty. \end{cases}$$

Let \bar{M} be a Markov process on X_{∞} with transition probability $\bar{p}_t(x, dy)$. \bar{M} is an extension of M with ∞ being a trap. Furthermore, for $F \in \mathscr{J}_{\infty}$, we define $\{\bar{p}_t^F\}_{t>0}$ and $\{\bar{R}_{\alpha}^F\}_{\alpha>\kappa(F)}$ by

$$\bar{p}_t^F f(x) = \bar{E}_x[\exp(A_t(F))f(X_t)],$$
$$\bar{R}_{\alpha}^F f(x) = \int_0^\infty e^{-\alpha t} \bar{p}_t^F f(x)dt, \quad f \in \mathscr{B}_b(X_\infty).$$

Then $\bar{R}^F_{\alpha}f(x) = R^F_{\alpha}f(x)$ for $x \in X$ and $\bar{R}^F_{\alpha}f(\infty) = f(\infty)/\alpha$. Set

$$\mathscr{D}_{++}(\bar{\mathscr{H}}^F) = \left\{ \phi = \bar{R}^F_{\alpha}g : \alpha > \kappa(F), g \in C(X_{\infty}) \text{ with } g(x) > 0 \right\}.$$

We see that for $\phi = \bar{R}^F_{\alpha}g \in \mathscr{D}_{++}(\mathscr{H}^F)$, $\lim_{x\to\infty} \phi(x) = g(\infty)/\alpha$ by Theorem 3.2 (v). Let us define a function on $\mathscr{P}(X_{\infty})$ the set of probability measures on X_{∞} , by

$$\bar{I}_F(\nu) = -\inf_{\phi \in \mathscr{D}_{++}(\bar{\mathscr{H}}^F)} \int_{X_{\infty}} \frac{\bar{\mathscr{H}}^F \phi}{\phi} d\nu, \quad \nu \in \mathscr{P}(X_{\infty})$$

where $\bar{\mathscr{H}}^F \phi = \alpha \bar{R}^F_{\alpha} g - g$ for $\phi = \bar{R}^F_{\alpha} g \in \mathscr{D}_{++}(\bar{\mathscr{H}}^F)$. We then have

$$\bar{I}_F(\delta_\infty) = 0, \tag{4.1}$$

because $\bar{\mathscr{H}}^F \phi(\infty) = 0$ for any $\phi \in \mathscr{D}_{++}(\bar{\mathscr{H}}^F)$.

Let L_t be the occupation distribution, that is,

$$L_t(A) = \frac{1}{t} \int_0^t 1_A(X_s) ds, \quad t > 0, \ A \in \mathscr{B}(X).$$
(4.2)

Then $L_t \in \mathscr{P}(X)$.

PROPOSITION 4.1 (Kim [14, Theorem 4.1 and Remark 4.1]). Let $F \in \mathscr{J}_{\infty}$. Then for a closed set $K \subset \mathscr{P}(X_{\infty})$ and an open set $G \subset \mathscr{P}(X)$

$$\limsup_{t \to \infty} \frac{1}{t} \log \sup_{x \in X} \boldsymbol{E}_x[\exp(A_t(F)); L_t \in K] \le -\inf_{\nu \in K} \bar{I}_F(\nu),$$
$$-\inf_{\nu \in G} I_F(\nu) \le \liminf_{t \to \infty} \frac{1}{t} \log \boldsymbol{E}_x[\exp(A_t(F)); L_t \in G].$$

Note that $\mathscr{P}(X_{\infty}) \setminus \{\delta_{\infty}\}$ and $(0,1] \times \mathscr{P}(X)$ are in one-to-one correspondence through the map:

$$\nu \in \mathscr{P}(X_{\infty}) \setminus \{\delta_{\infty}\} \mapsto \left(\nu(X), \hat{\nu}(\bullet) = \nu(\bullet)/\nu(X)\right) \in (0, 1] \times \mathscr{P}(X).$$

$$(4.3)$$

Then, the next lemma can be proved by the same manner as that in [23, Lemma 3.1] and [24, Lemma 3.3]:

LEMMA 4.2. For $\nu \in \mathscr{P}(X_{\infty}) \setminus \{\delta_{\infty}\},\$

$$\bar{I}_F(\nu) = I_F(\nu) = \nu(X) \cdot I_{\mathscr{E}^F}(\hat{\nu}).$$

We have the next inequality through the one-to-one map (4.3).

$$\inf_{\nu \in \mathscr{P}(X_{\infty}) \setminus \{\delta_{\infty}\}} \bar{I}_{F}(\nu) = \inf_{0 < \theta \le 1, \nu \in \mathscr{P}(X)} (\theta I_{\mathscr{E}^{F}}(\nu)) \le 0.$$

Moreover, $\bar{I}_F(\delta_{\infty}) = 0$ from (4.1). Thus, the next corollary holds as follows.

COROLLARY 4.3.

$$\inf_{\nu \in \mathscr{P}(X_{\infty})} \bar{I}_F(\nu) = \inf_{0 \le \theta \le 1, \nu \in \mathscr{P}(X)} (\theta I_{\mathscr{E}^F}(\nu)) = \inf_{0 \le \theta \le 1} \left(\theta \inf_{\nu \in \mathscr{P}(X)} I_{\mathscr{E}^F}(\nu) \right).$$
(4.4)

Let us denote by $\|p_t^F\|_{p,p}$ the operator norm of p_t^F from $L^p(X)$ to $L^p(X)$ and define

$$\lambda_p(F) = -\lim_{t \to \infty} \frac{1}{t} \log \|p_t^F\|_{p,p}, \quad 1 \le p \le \infty.$$

Noting that $\sup_{x \in X} \mathbf{E}_x[\exp(A_t(F))]$ equals $\|p_t^F\|_{\infty,\infty}$, we see that

$$\lim_{t \to \infty} \frac{1}{t} \log \sup_{x \in X} \boldsymbol{E}_x[\exp(A_t(F))] = -\lambda_{\infty}(F).$$

Hence we have

$$\lambda_{\infty}(F) \ge \inf_{0 \le \theta \le 1} \left(\theta \inf_{\nu \in \mathscr{P}(X)} I_{\mathscr{E}^F}(\nu) \right)$$
(4.5)

by Proposition 4.1 and the equation (4.4).

By the spectral theorem, $\lambda_2(F)$ is identical to the bottom of the spectrum of $-\mathscr{H}^F$ and by the variational formula for the bottom of spectrum

$$\lambda_2(F) = \inf_{\nu \in \mathscr{P}(X)} I_{\mathscr{E}^F}(\nu).$$
(4.6)

Combining (4.5) and (4.6), we then have the following inequality: For any $F \in \mathscr{J}_{\infty}$,

$$\lambda_{\infty}(F) \ge \inf_{0 \le \theta \le 1} \left(\theta \inf_{\nu \in \mathscr{P}(X)} I_{\mathscr{E}^F}(\nu) \right) = \inf_{0 \le \theta \le 1} (\theta \lambda_2(F)).$$
(4.7)

If $\lambda_2(F) \leq 0$, then $\inf_{0 \leq \theta \leq 1}(\theta \lambda_2(F)) = \lambda_2(F)$. Hence we have:

COROLLARY 4.4. If $\lambda_2(F) \leq 0$, then

$$\lambda_{\infty}(F) \ge \lambda_2(F).$$

The inequality, $\lambda_2(F) \geq \lambda_{\infty}(F)$, holds generally because

$$\left\|p_t^F\right\|_{2,2} \le \left\|p_t^F\right\|_{\infty,\infty}$$

by the symmetry and the positivity of p_t^F . Since

$$\|p_t^F\|_{2,2} \le \|p_t^F\|_{p,p} \le \|p_t^F\|_{\infty,\infty}$$

by the Riesz-Thorin interpolation theorem, we can conclude that if $\lambda_2(F) \leq 0$, then the L^p -independence holds. Now we state main theorem.

THEOREM 4.5. Let $F \in \mathscr{J}_{\infty}$. Then $\lambda_2(F) = \lambda_p(F)$ for all $1 \leq p \leq \infty$ if and only if $\lambda_2(F) \leq 0$.

PROOF. On account of Corollary 4.4, we have only to prove the "only if" part. Suppose that $\lambda_2(F) > 0$. Then

$$\lambda_{\infty}(F) \ge \inf_{0 \le \theta \le 1} \theta \inf_{\nu \in \mathscr{P}(X)} I_{\mathscr{E}^F}(\nu) = \inf_{0 \le \theta \le 1} \theta(\lambda_2(F)) = 0$$

by (4.7). By Theorem 3.2 (v), $\lim_{x\to\infty} p_t^F 1(x) = 1$, which implies that $\|p_t^F\|_{\infty,\infty} \ge 1$ and $\lambda_{\infty}(F) \le 0$. Therefore if $\lambda_2(F) > 0$, then $\lambda_{\infty}(F) = 0$.

COROLLARY 4.6. Suppose that $\lambda_2(0) = 0$. If $F \in \mathscr{J}_{\infty}$, then $\lambda_2(F) = \lambda_p(F)$ for all $1 \le p \le \infty$.

PROOF. By Theorem 4.5, we only have to prove that $\lambda_2(F) \leq 0$ for any $F \in \mathscr{J}_{\infty}$. That is, for any positive $\mu \in \mathscr{K}_{\infty}$,

$$\lambda_2(\mu) = \inf\left\{\mathscr{E}_F(u,u) + \int_X u^2 d\mu : u \in \mathscr{F}, \|u\|_2 = 1\right\} = 0.$$

We see from [19, Theorem 3.1], for all $u \in \mathscr{F}$ such that $||u||_2 = 1$,

$$\int_X u^2 d\mu \le C \|G\mu\|_{\infty} \mathscr{E}(u, u).$$

Since the boundedness of F, there exists a constant C' such that $\mathscr{E}_F(u, u) \leq C'\mathscr{E}(u, u)$ for all $u \in \mathscr{F}$. We then have

$$\lambda_2(\mu) \le \left(\mathscr{E}_F(u, u) + \int_X u^2 d\mu\right)$$
$$\le \left(C' + C \|G\mu\|_{\infty}\right) \mathscr{E}(u, u).$$

We get desired claim.

Next two lemmas play the important role of producing of the $L^p{\rm -}$ independence.

LEMMA 4.7. If

$$\inf \left\{ \mathscr{E}(u,u) : u \in \mathscr{F}, \int_{X \times X} u(x)u(y)F_1(x,y)N(x,dy)\mu_H(dx) = 1 \right\} < 1, \quad (4.8)$$

then

$$\inf\left\{\mathscr{E}^F(u,u): u\in\mathscr{F}, \|u\|_2=1\right\}<0.$$

PROOF. Let ϕ be a function such that (4.8) holds. Let $\psi = \phi/\|\phi\|$. Then we have

$$\begin{aligned} \mathscr{E}^{F}(\psi,\psi) &= \mathscr{E}(\psi,\psi) - \int_{X\times X} \psi(x)\psi(y)F_{1}(x,y)N(x,dy)\mu_{H}(dx) \\ &= \frac{1}{\|\phi\|_{2}^{2}} \bigg(\mathscr{E}(\phi,\phi) - \int_{X\times X} \phi(x)\phi(y)F_{1}(x,y)N(x,dy)\mu_{H}(dx) \bigg) < 0. \quad \Box \end{aligned}$$

LEMMA 4.8. Let $F \in \mathscr{J}_{\infty}$, $F \geq 0$ and $F \not\equiv 0$ and define $F_1^{\theta} = e^{\theta F} - 1$. Then there exists $u \in \mathscr{F}$ such that

$$\mathscr{E}(u,u) < 1 \text{ and } \int_{X \times X} u(x)u(y)F_1^{\theta}(x,y)N(x,dy)\mu_H(dx) = 1$$
(4.9)

783

holds for sufficiently large θ .

PROOF. Let $v \in \mathscr{F}$ such that $v \ge 0$, $\int v(x)v(y)F_1(x,y)N(x,dy)\mu_H(dx) = 1$ and

$$\begin{split} k(\theta) &= \frac{\int v(x)v(y)F_1(x,y)N(x,dy)\mu_H(dx)}{\int u(x)u(y)F_1^{\theta}(x,y)N(x,dy)\mu_H(dx)} \\ &= \frac{1}{\int v(x)v(y)F_1^{\theta}(x,y)N(x,dy)\mu_H(dx)}. \end{split}$$

Obviously, $k(\theta) \to 0$ as $\theta \to \infty$. Thus $u = \sqrt{k(\theta)}v$ satisfies (4.9) for sufficiently large θ .

5. Examples.

5.1. α -stable processes on Euclidean space.

Let (X_t, \mathbf{P}_x) be a symmetric α -stable process on \mathbf{R}^d $(0 < \alpha < 2, \alpha < d)$, the pure jump process generated by $\frac{1}{2}(-\Delta)^{\alpha/2}$. Let $(\mathscr{E}^{(\alpha)}, \mathscr{F}^{(\alpha)})$ be the symmetric Dirichlet form generated by (X_t, \mathbf{P}_x) . Then $\lambda_2(0) = 0$. We thus have by Corollary 4.6;

THEOREM 5.1 ([24, Theorem 3.8]). Let $F \in \mathscr{J}_{\infty}$. Then

$$\lambda_p(F) = \lambda_2(F) \quad 1 \le \forall p \le \infty.$$

5.2. Subordination.

In this section, we consider " α -stable processes" on (X, m) generated by the subordination procedure ([15] and [16]). Let (X_t, \mathbf{P}_x) be a Hunt process on (X, m) satisfying assumptions (I)–(IV). Let $\gamma_t^{\alpha}(s)$ $(s > 0, 0 < \alpha < 2)$ be the unique continuous function satisfying

$$e^{-ta^{\alpha/2}} = \int_0^\infty e^{-as} \gamma_t^{(\alpha)}(s) ds, \quad a, t > 0$$

(see Yosida [26, Chapter IX Section 11] for more details). Define

$$p_t^{(\alpha)} f(x) = \int_0^\infty \boldsymbol{E}_x[f(X_s)] \gamma_t^{(\alpha)}(s) ds, \quad t > 0.$$
 (5.1)

Then $\{p_t^{(\alpha)}\}_{t>0}$ is a strongly continuous sub-Markovian semigroup on $L^2(X;m)$.

We have the corresponding Dirichlet form by

$$\begin{cases} \mathscr{E}^{(\alpha)}(u,u) = \int_0^\infty \lambda^{\alpha/2} d(E_\lambda u, u), \quad u \in \mathscr{F}^{(\alpha)}, \\ \\ \mathscr{F}^{(\alpha)} = \left\{ u \in L^2(X;m) : \int_0^\infty \lambda^{\alpha/2} d(E_\lambda u, u) < \infty \right\} \end{cases}$$

Furthermore, there exists a Hunt process $M^{(\alpha)}$ properly associated to $(\mathscr{E}^{(\alpha)}, \mathscr{F}^{(\alpha)})$ ([15, Theorem 3.2]).

THEOREM 5.2 ([16, Theorem 3.2]). If a Hunt process M is transient, then so is $M^{(\alpha)}$.

THEOREM 5.3. If a Hunt process M satisfies (I)-(IV), then so is $M^{(\alpha)}$.

PROOF. (I): Take any $p_t^{(\alpha)}$ -invariant set A and $f \in L^2(X; m), f > 0$.

$$1_A(x)(p_t^{(\alpha)}f(x)) = 1_A(x) \int_0^\infty \boldsymbol{E}_x[f(X_s)]\gamma_t^{(\alpha)}(s)ds$$
$$= \int_0^\infty 1_A(x)\boldsymbol{E}_x[f(X_s)]\gamma_t^{(\alpha)}(s)ds$$
$$= \int_0^\infty 1_A(x)p_sf(x)\gamma_t^{(\alpha)}(s)ds.$$

Furthermore,

$$p_t^{(\alpha)}(1_A f(x)) = \int_0^\infty p_s(1_A f(x)) \gamma_t^{(\alpha)}(s) ds.$$

Since $\gamma_t^{(\alpha)}(s) > 0$, $p_s(1_A f(x)) = 1_A p_s f(x)$ a.e. s and the irreducibility of p_t , m(A) = 0 or $m(X \setminus A) = 0$.

(II): It is obvious by the conservativeness of $\{p_t\}_{t>0}$ and $\int_0^\infty \gamma_t^{(\alpha)}(s)ds = 1$.

(III) and (IV): From $\gamma_t^{(\alpha)}(s)ds$ being bounded measure and the dominated convergence theorem, (III) and (IV) hold.

Remark 5.1. In Theorem 5.3, each property (I)–(IV) holds independent on other properties.

5.3. " α -stable process" on the hyperbolic space.

Let \mathbf{H}^d be a hyperbolic space of dimension d ($d \geq 2$) with volume element v. Let \mathbf{M} be a Brownian motion on \mathbf{H}^d with the Dirichlet form (\mathscr{E}, \mathscr{F}). Then the Brownian motion is transient (see e.g. Grigor'yan [11, pp. 148–149]) and the corresponding transition density has an exact expression (see e.g. Grigor'yan and Noguchi [12, Theorem 1.1]). The corresponding Dirichlet form is expressed by

$$\mathscr{E}(u,u) = \frac{1}{2} \int_{\mathbf{H}^d} (\nabla u, \nabla u) dv = \int_0^\infty \lambda d(E_\lambda u, u), \quad u \in \mathscr{F},$$
(5.2)

where \mathscr{F} is the closure of $C_0^{\infty}(\mathbf{H}^d)$ with respect to the norm; $\mathscr{E}_1(\cdot, \cdot)^{1/2} = (\mathscr{E}(\cdot, \cdot) + (\cdot, \cdot))^{1/2}$. We construct an example of producing the L^p -independence for non-local Feynman-Kac semigroups:

EXAMPLE 5.1. Let M be the Brownian motion on H^d where the corresponding Dirichlet form is defined as in (5.2). Let $M^{(\alpha)}$ be a Hunt process defined as in (5.1). It is well-known that

$$\inf\left\{\mathscr{E}^{(\alpha)}(u,u): u \in \mathscr{F}^{(\alpha)}, \int u^2 dv = 1\right\} = \frac{1}{2} \left(\frac{(d-1)^2}{4}\right)^{\alpha/2}$$

from

$$\inf\left\{\mathscr{E}(u,u): u \in \mathscr{F}, \int u^2 dv = 1\right\} = \frac{1}{2} \frac{(d-1)^2}{4}$$

(see [9, p. 177]). Thus, $\lambda_2(0) > 0$, i.e. the L^p -independence does not hold. Let F be in \mathscr{J}_{∞} such that $F \ge 0$ and $F \not\equiv 0$. Lemmas 4.7 and 4.8 yield that

$$\inf\left\{\mathscr{E}^{(\alpha),\theta F}(u,u): u \in \mathscr{F}, \int_{\boldsymbol{H}^d} u^2 dv = 1\right\} < 0$$
(5.3)

for sufficiently large θ . We can conclude that $\lambda_p(\theta F)$ is independent of p for large θ .

References

- S. Albeverio, P. Blanchard and Z.-M. Ma, Feynman-Kac semigroups in terms of signed smooth measures, In: Random Partial Differential Equations, Internat. Ser. Numer. Math., 102, Birkhäuser, Boston, 1991, pp. 1–31.
- [2] S. Albeverio and Z.-M. Ma, Perturbation of Dirichlet forms lower semiboundedness,

closability, and form cores, J. Funct. Anal., 99 (1991), 332-356.

- [3] S. Albeverio and Z.-M. Ma, Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms, Osaka J. Math., 29 (1992), 247–265.
- [4] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France, 102 (1974), 193-240.
- [5] R. Bass and D. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933–2953.
- [6] Z.-Q. Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc., 354 (2002), 4639–4679.
- [7] Z.-Q. Chen and R. Song, Conditional gauge theorem for non-local Feynman-Kac transforms, Probab. Theory Relat. Fields, 125 (2003), 45–72.
- [8] K. L. Chung, Doubly Feller process with multiplicative functional, Seminar on Stochastic Processes, 1985, Birkhäuser, Boston, 1986, pp. 63–78.
- [9] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.
- [10] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994.
- [11] A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 135–249.
- [12] A. Grigor'yan and M. Noguchi, The heat kernel on hyperbolic space, Bull. London Math. Soc., 30 (1998), 643–650.
- [13] S. W. He, J. G. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992.
- D. Kim, Asymptotic properties for continuous and jump type's Feynman-Kac functionals, Osaka J. Math., 37 (2000), 147–173.
- I. McGillivray, A recurrence condition for some subordinated strongly local Dirichlet forms, Forum Math., 9 (1997), 229–246.
- [16] H. Ökura, Recurrence and transience criteria for subordinated symmetric Markov processes, Forum Math., 14 (2002), 121–146.
- [17] M. Sharpe, General Theory of Markov Processes, Pure and Applied Mathematics, 133, Academic Press, 1988.
- [18] B. Simon, Brownian motion, L^p properties of Schrödinger semigroups and the localization of binding, J. Funct. Anal., 35 (1982), 215–229.
- P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal., 5 (1996), 109–138.
- [20] K.-Th. Sturm, On the L^p-spectrum of uniformly elliptic operators on Riemannian manifolds, J. Funct. Anal., **118** (1993), 442–453.
- [21] K.-Th. Sturm, Schrödinger semigroups on manifolds, J. Funct. Anal., 118 (1993), 309– 350.
- [22] M. Takeda, Asymptotic properties of generalized Feynman-Kac functionals, Potential Anal., 9 (1998), 261–291.
- [23] M. Takeda, L^p-independence of spectral bounds of Schrödinger type semigroups, J. Funct. Anal., 252 (2007), 550–565.
- [24] M. Takeda and Y. Tawara, L^p-independence of spectral bounds of non-local Feynman-Kac semigroups, Forum Math., 21 (2009), 1067–1080.
- [25] J. Ying, Dirichlet forms perturbated by additive functionals of extended Kato class, Osaka J. Math., 34 (1997), 933–952.
- [26] K. Yosida, Functinal Analysis, 6th ed., Springer-Verlag, Berlin, 1980.

Yoshihiro TAWARA

Mathematical Institute Tohoku University Aoba, Sendai 980-8578, Japan E-mail: sa5d11@math.tohoku.ac.jp

Current address: Division of General Education Nagaoka National College of Technology 888 Nishikatakai, Nagaoka Niigata 940-8532, Japan E-mail: tawara@nagaoka-ct.ac.jp