Chain-connected component decomposition of curves on surfaces

By Kazuhiro Konno

(Received Dec. 1, 2008)
(Revised Feb. 20, 2009)

Abstract

We prove that an arbitrary reducible curve on a smooth surface has an essentially unique decomposition into chain-connected curves. Using this decomposition, we give an upper bound of the geometric genus of a numerically Gorenstein surface singularity in terms of certain topological data determined by the canonical cycle. We show also that the fixed part of the canonical linear system of a 1 -connected curve is always rational, that is, the first cohomology of its structure sheaf vanishes.

Introduction.

In the study of algebraic surfaces, we often encounter with reducible nonreduced curves. Typical examples are various cycles supported by the exceptional set of a normal surface singularity and singular fibres in a fibred surface. Needless to say, any reducible curve decomposes into a sum of irreducible curves uniquely up to the order. As one may see from the success of 1 -connected curves ([11], [3]), however, it is sometimes more convenient and even natural to treat a connected reducible curve as if it were a single irreducible curve. In other words, some coarser decompositions could be better suited to certain problems than the decomposition into irreducible components.

The purpose of the paper is to revive and recast another canonical way to decompose reducible curves on a smooth surface used by Miyaoka in [10]. Our atomic curves are chain-connected curves [12] (called s-connected divisors in [10]) which themselves are reducible in general. The decomposition theorem (Corollary 1.7) states that every effective divisor on a smooth surface decomposes into a sum of chain-connected curves enjoying nice numerical relations. Furthermore, such an ordered decomposition is essentially unique. We call it a chain-connected component decomposition (a CCC decomposition for short). We know that 1connectivity is a very important notion in the surface theory. However, the class

[^0]of 1-connected curves is not big enough to cover some important classes like fundamental cycles of singularities. The chain-connectivity, a notion which dates back to Kodaira [5], is defined by a weaker condition and covers a considerably wider range.

The present paper is organized as follows. In Section 1, after stating several properties of chain-connected curves, we show that every curve has a CCC decomposition. Though its essential part is roughly stated in [10], the relation between chain-connected curves derived from Proposition 1.5 (1) seems overlooked or slighted there. In Section 2, we study the space of global sections of a nef line bundle on a chain-connected curve and show that the dimension is bounded from above by the degree plus one. Unlike irreducible curves, however, curves attaining the bound are not necessarily rational, usually with a large fixed part of the canonical linear system. In Section 3, we consider the minimal model problem for chain-connected curves. Here, a minimal model is defined to be a subcurve with nef dualizing sheaf and of the same arithmetic genus as the original curve. We show that the minimal model uniquely exists for any chain-connected curve with positive arithmetic genus. The procedure obtaining the model is quite similar to that for a global surface, that is, the subtraction of "(-1)-curves" one by one. The rest of the paper is devoted to exhibiting applications of CCC decompositions in some concrete situations. In Section 4, we study the canonical cycles of numerically Gorenstein surface singularities. Recall that, the canonical cycle of a weakly elliptic, numerically Gorenstein singularity has a natural decomposition, called the elliptic sequence, introduced by S. S. T. Yau [16]. Among other things, he succeeded in bounding the geometric genus by the length of the sequence. It is shown that our decomposition by chain-connected curves coincides with the elliptic sequence in this case. For the other singularities, we give in Theorem 4.1 an upper bound of the geometric genus with the quantity which can be determined by the weighted dual graph of the canonical cycle. It generalizes Yau's result as well as a bound given by Tomaru [14]. In Section 5, we study subcurves of a 1 -connected curve, especially the fixed part of the canonical linear system. We reprove a theorem in $[\mathbf{7}]$ which asserts that the canonical fixed part of a 1-connected curve is rational in the sense that the first cohomology group of the structure sheaf vanishes. Finally in Section 6, we consider subcurves of fibres in a fibred algebraic surface.

The author would like to thank Margarida Mendes Lopes very much for fruitful discussions and for informing him of her excellent unpublished results. He thanks Tadashi Tomaru who kindly answered to his very naive questions on surface singularities, and Miles Reid for historical remarks and pointing out [10] to him. Finally, he thanks the referee for his valuable suggestions which greatly improve and simplify the original arguments.

1. Chain-connected curves.

By a curve, we mean an effective non-zero divisor on a non-singular surface. A line bundle (or an invertible sheaf) on a curve is called nef if it is of non-negative degree on any irreducible components. For a curve D, the arithmetic genus is defined by $p_{a}(D):=1-\chi\left(D, \mathscr{O}_{D}\right)$. If D is on a non-singular surface X, then the dualizing sheaf ω_{D} is defined to be $\mathscr{O}_{D}\left(K_{X}+D\right)$ and we have $2 p_{a}(D)-2=$ $\operatorname{deg} \omega_{D}=D\left(K_{X}+D\right)$. If $D=A+B$ with two curves A and B, then $p_{a}(D)=$ $p_{a}(A)+p_{a}(B)-1+A B$.

Definition 1.1.

(1) Let D_{1} be a non-trivial subcurve of D, i.e., $0 \prec D_{1} \prec D=D_{1}+D_{2}$. The ordered pair $\left(D_{1}, D_{2}\right)$ is called a chain-disconnected partition of D if $\mathscr{O}_{D_{2}}\left(-D_{1}\right)$ is nef or, in other words, if $D_{1} C \leq 0$ for every irreducible component C of D_{2}.
(2) An increasing sequence of curves $D_{0}, D_{1}, \ldots, D_{m}$ is called a connecting chain from D_{0} to D_{m} if (i) the difference $D_{i}-D_{i-1}$ is an irreducible curve C_{i} and (ii) $C_{i} D_{i-1}>0$ for $i=1, \ldots, m$.

Proposition 1.2. The following three conditions on a curve D are equivalent.
(1) D has no chain-disconnected partition.
(2) For any non-trivial subcurve D_{0} of D, there exists a connecting chain D_{0}, \ldots, D_{m} from D_{0} to $D=D_{m}$.
(3) There exists a connecting chain D_{0}, \ldots, D_{m} such that $D=D_{m}$ and D_{0} is an irreducible curve.

Proof.

$(1) \Rightarrow(2)$: Pick up any non-trivial subcurve $D_{0} \prec D$. We inductively construct a connecting chain from D_{0} to D. If we have $0 \prec D_{i} \prec D$, then $\left(D_{i}, D-D_{i}\right)$ is not a chain-disconnected partition of D by (1). Hence, there exists an irreducible component C_{i+1} of $D-D_{i}$ with $D_{i} C_{i+1}>0$. Define D_{i+1} to be $D_{i}+C_{i+1}$, eventually arriving at $D=D_{m}$ for some m.
$(2) \Rightarrow(1)$: Take an arbitrary non-trivial decomposition $D=A+B$. Let $D_{0}, \ldots, D_{m}=D$ be a connecting chain starting from $D_{0}=A$. Then $C_{1}=D_{1}-D_{0}$ is a component of B satisfying $0<C_{1} D_{0}=C_{1} A$. Thus $-A$ cannot be nef on B. Similarly, $-B$ is not nef on A.
$(3) \Rightarrow(1)$: Let $D_{0}, \ldots, D_{m}=D$ be a connecting chain starting from an irreducible curve D_{0}, where $C_{i}=D_{i}-D_{i-1}$ is an irreducible curve. We do the proof by induction on m. When $m=0$, the assertion is clear. Assume that D_{m-1} has no chain-disconnected partition. We derive a contradiction by constructing a chain-disconnected partition of D_{m-1} from that of D_{m}. Let (A, B) be a chain-
disconnected partition of D_{m}. We have neither $A=C_{m}$ nor $B=C_{m}$ by the assumption $C_{m} D_{m-1}>0$. If C_{m} is a component of B, then $\left(A, B-C_{m}\right)$ is a chain-disconnected partition of D_{m-1}. If C_{m} is not a component of B, then $C_{m} B \geq 0, C_{m} \prec A$ and $\mathscr{O}_{B}\left(-\left(A-C_{m}\right)\right)$ is nef, implying that $\left(A-C_{m}, B\right)$ is a chain-disconnected partition of D_{m-1}.

The implication $(2) \Rightarrow(3)$ is clear.
Definition 1.3. $\quad D$ is said to be chain-connected when D satisfies the equivalent conditions (1), (2) and (3) in Proposition 1.2.

Remark 1.4. The notion of chain-connected curves was introduced in [10] as s-connected divisors. Our terminology is taken from [12].

Here are typical examples of chain-connected curves.
i) Let $\mathscr{A}=\bigcup_{i=1}^{N} A_{i}$ be a connected bunch of irreducible curves A_{i}. The intersection form is negative semi-definite on \mathscr{A} if and only if there exists a curve D with support $\subseteq \mathscr{A}$ such that $-D$ is nef on \mathscr{A}. The smallest curve enjoying such a property exists and called the numerical cycle [13]. If the intersection form is negative definite, it is usually called the fundamental cycle ([1], [2]). Numerical cycles are chain-connected, as is easily seen. In fact, it is the biggest chain-connected curve with support \mathscr{A}.
ii) For an integer k, a curve D is called (numerically) k-connected, if ($D-$ Г) $\Gamma \geq k$ for any subcurve $0 \prec \Gamma \prec D$. Any nef and big curve is 1 -connected by Hodge's index theorem. Every 1-connected curve is chain-connected. But the converse does not hold true in general. See, [4, Appendix] for further properties of 1-connected curves.

Proposition 1.5. The following hold.
(1) Let D be a chain-connected curve and Δ a curve. If $\mathscr{O}_{D}(-\Delta)$ is nef, then either $\operatorname{Supp}(D) \cap \operatorname{Supp}(\Delta)=\emptyset$ or $D \preceq \Delta$.
(2) Let D be a chain-connected curve and C an irreducible curve with $D C>0$. Then $D^{\prime}=D+C$ is again chain-connected.
(3) Let D be a curve with connected support. Then there exists the greatest chain-connected subcurve D_{1} of D. Furthermore, $\operatorname{Supp}\left(D_{1}\right)=\operatorname{Supp}(D)$, and $-D_{1}$ is nef on $D-D_{1}$.

Proof. (1) Assume that $\operatorname{Supp}(D) \cap \operatorname{Supp}(\Delta) \neq \emptyset$. Then, since $D \Delta \leq 0$, we can write $D=A+B, \Delta=A+\Gamma$, where $A \succ 0, B \succeq 0, \Gamma \succeq 0$ and the two cycles B, Γ contain no common component. We show that $B=0$. By assumption $\mathscr{O}_{D}(-\Delta)$ is nef and so is $\mathscr{O}_{B}(-\Delta)$. On the other hand, since B has no component in common with $\Gamma, \mathscr{O}_{B}(\Gamma)$ is nef. Hence $\mathscr{O}_{B}(-A)=\mathscr{O}_{B}(-\Delta+\Gamma)$ is nef. If B were
non-zero, the pair (A, B) would be a chain-disconnected partition.
(2) If $D_{0}, \ldots, D_{m}=D$ is a connecting chain starting from an irreducible curve, then so is $D_{0}, \ldots, D_{m+1}=D+C$.
(3) Let D_{1}, D_{2} be maximal chain-connected subcurves of D. The assertion (2) above (plus the connectivity of D) shows that $-D_{i}$ is nef on $D-D_{i}$ and that $\operatorname{Supp}\left(D_{i}\right)=\operatorname{Supp}(D)$. Let us prove that $D_{1}=D_{2}$. We can write $D_{i}=A+B_{i}$, where $A \succ 0$ and B_{1}, B_{2} have no common irreducible component. In particular, $A+B_{1}+B_{2} \preceq D$, that is, $B_{2} \preceq D-D_{1}$. Hence $-D_{1}$ is nef on B_{2}, so that $-A=$ $-D_{1}+B_{1}$ is nef on B_{2}. Then, in view of the chain-connectivity of $D_{2}=A+B_{2}$, we conclude that $B_{2}=0$, i.e., $D_{1} \succeq D_{2}$. By the maximality of D_{2}, this shows the equality $D_{1}=D_{2}$.

Definition 1.6. Let D be a curve with connected support. The greatest chain-connected subcurve of D is called the chain-connected component of D. If D is a curve with several connected components, a chain-connected component of D will mean the chain-connected component of some connected component of D.

From our definition it follows that a chain-connected component of a subcurve $D^{\prime} \preceq D$ is a subcurve of a chain-connected component of D.

Corollary 1.7. Let D be a curve. Then there are a sequence D_{1}, D_{2}, \ldots, D_{r} of chain-connected subcurves of D and a sequence m_{1}, \ldots, m_{r} of positive integers which satisfy
(1) $D=m_{1} D_{1}+\cdots+m_{r} D_{r}$.
(2) For $i<j$, the divisor $-D_{i}$ is nef on D_{j}.
(3) If $m_{i} \geq 2$, then $-D_{i}$ is nef on D_{i}.
(4) For $i<j$, either $\operatorname{Supp}\left(D_{i}\right) \cap \operatorname{Supp}\left(D_{j}\right)=\emptyset$ or $D_{i} \succ D_{j}$.

Sequences as above are unique up to suitable permutations of the indices $1, \ldots, r$ and the number $n(D):=\sum_{i=1}^{r} m_{i}$ is uniquely determined.

Definition 1.8. The ordered decomposition $D=m_{1} D_{1}+\cdots+m_{r} D_{r}$ as in Corollary 1.7 is called a chain-connected component decomposition or a CCC decomposition of D.

Proof of Corollary 1.7. We inductively construct a decomposition as above. Define D_{1} to be a chain-connected component of D and let m_{1} be the maximum of the integers k such that $k D_{1} \preceq D$. (For $k \leq m_{1}-1$, the curve D_{1} is a chain-connected component of $D-k D_{1}$.) Then define D_{2} to be a chain-connected component of $D-m_{1} D_{1}$ and m_{2} be the largest integer such that $D-m_{1} D_{1}-$ $m_{2} D_{2} \succeq 0$. Similar steps give rise to a decomposition which satisfies (1), (2) and (3).

The property (4) immediately follows from (2) and Proposition 1.5 (1).
Let us show the unicity of the decomposition (up to suitable permutations). Let $D=m_{1} D_{1}+\cdots+m_{r} D_{r}$ be a decomposition into chain-connected curves with the properties (1) through (4). Consider the natural partial order \preceq among the D_{i}. Then by (4), D_{1} is a maximal member and by (1) and (2), D_{1} is necessarily a chainconnected component of D. In particular, the choice of D_{1} is exactly the same as the choice of a connected component of D. By definition, $D-m_{1} D_{1}=m_{2} D_{2}+$ $\cdots+m_{r} D_{r}$ is a chain-connected component decomposition of $D-m_{1} D_{1}$. Then obvious induction (on the total number of components) shows the weak unicity. The ambiguity of the order does not arise if the curves $D-m_{1} D_{1}-\cdots-m_{s} D_{s}$ have connected supports for $s=0, \ldots, r$.

In practice, it is sometimes convenient to express a CCC decomposition as $D=\Gamma_{1}+\cdots+\Gamma_{n}$ by putting $\Gamma_{i}:=D_{j}$ for $\sum_{k<j} m_{k}<i \leq \sum_{k \leq j} m_{k}, n=$ $n(D)=\sum_{k=1}^{r} m_{k}$. Then, for $i<j, \mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is nef and, either $\Gamma_{j} \preceq \Gamma_{i}$ or $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}\left(\Gamma_{j}\right)=\emptyset$.

2. Nef line bundles on chain-connected curves.

Let D be a chain-connected curve. It is shown in [10] that $\operatorname{dim} H^{0}\left(D, \mathscr{O}_{D}\right)=$ 1 , so that $p_{a}(D)=\operatorname{dim} H^{1}\left(D, \mathscr{O}_{D}\right)$. Furthermore, for a nef line bundle L on D, $\operatorname{dim} H^{0}(D,-L) \neq 0$ if and only if $L \simeq \mathscr{O}_{D}$ (see, [12] and [6, Lemma 2.2]).

Theorem 2.1. Let D be a chain-connected curve. Let L be a nef line bundle on D and put $d=\operatorname{deg} L \geq 0$. Then $\operatorname{dim} H^{0}(D, L) \leq d+1$. If $\operatorname{dim} H^{0}(D, L)$ attains the maximum $d+1$, then L is generated by global sections. When $d \geq 1$ and $\operatorname{dim} H^{0}(D, L)=d+1$, there exists a decomposition $D=A+B$ which satisfies the following conditions:
(1) $A \succ 0, B \succeq 0$ and the two curves have no common components.
(2) $\left.L\right|_{B} \simeq \mathscr{O}_{B}$ and $\operatorname{dim} H^{1}\left(B, \mathscr{O}_{B}\right)=\operatorname{dim} H^{1}\left(D, \mathscr{O}_{D}\right)$.
(3) L is ample on $A, H^{1}\left(A, \mathscr{O}_{A}\right)=0$ and each irreducible component of A is isomorphic to \boldsymbol{P}^{1}.

Proof. Let $D=\sum_{i} \mu_{i} A_{i}$ be the irreducible decomposition. For each irreducible component A_{i}, we pick up $d_{i}:=\left.\operatorname{deg} L\right|_{A_{i}}$ general points $p_{i, 1}, \ldots, p_{i, d_{i}}$ on A_{i} and put $\delta=\sum_{i} \mu_{i}\left(p_{i, 1}+\cdots+p_{i, d_{i}}\right)$. Then δ is an effective Cartier divisor such that L and $\mathscr{O}_{D}(\delta)$ are numerically equivalent. By the chain-connectivity of D, we have $\operatorname{dim} H^{0}(D, \delta-L) \leq 1$ with equality holding only if $L \simeq \mathscr{O}_{D}(\delta)$. Then $\operatorname{dim} H^{0}\left(D, K_{D}-L\right) \leq \operatorname{dim} H^{0}\left(D, K_{D}-L+\delta\right) \leq p_{a}(D)$. It follows from the Riemann-Roch theorem that $\operatorname{dim} H^{0}(D, L)=\operatorname{dim} H^{0}\left(D, K_{D}-L\right)+\operatorname{deg} L+1-$ $p_{a}(D) \leq \operatorname{deg} L+1$.

Suppose that $\operatorname{dim} H^{0}(D, L)=\operatorname{deg} L+1$. As the above argument shows, we have $\mathscr{O}_{D}(L) \simeq \mathscr{O}_{D}(\delta)$. Since the points defining δ can be chosen arbitrarily (as far as δ satisfies the requirement), we see that $|L|$ is free from base points. Suppose further that $d \geq 1$. Let B be the biggest subcurve of D such that $\left.\operatorname{deg} L\right|_{B}=0$, and put $A=D-B$. Then $\mathscr{O}_{B}(L) \simeq \mathscr{O}_{B}$ and $\left.L\right|_{A}$ is ample. Since $H^{0}\left(D, K_{D}-\delta\right) \simeq H^{0}\left(D, K_{D}\right)$ and the support of δ can move on A, the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(A, K_{D}\right)$ should be the zero map. Hence it follows from the exact sequence

$$
0 \rightarrow \mathscr{O}_{B}\left(K_{B}\right) \rightarrow \mathscr{O}_{D}\left(K_{D}\right) \rightarrow \mathscr{O}_{A}\left(K_{D}\right) \rightarrow 0
$$

that $\operatorname{dim} H^{1}\left(B, \mathscr{O}_{B}\right)=\operatorname{dim} H^{0}\left(B, K_{B}\right)=\operatorname{dim} H^{0}\left(D, K_{D}\right)=p_{a}(D)$. The restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(B, K_{D}\right)$ should be injective, because A, B have no common components and A is in the fixed part of $\left|K_{D}\right|$. Hence $H^{0}\left(A, K_{A}\right)$, which is isomorphic to the kernel, vanishes. In particular, every irreducible component of A is isomorphic to \boldsymbol{P}^{1}.

Corollary 2.2. Let D be a curve and $D=m_{1} D_{1}+\cdots+m_{r} D_{r}$ a CCC decomposition. For a nef line bundle L on D, we have the following estimate of the dimension of global sections of L;

$$
\begin{aligned}
\operatorname{dim} H^{0}(D, L) & \leq \operatorname{deg} L+\sum_{i=1}^{r} m_{i}-\frac{1}{2}\left(D^{2}-\sum_{i=1}^{r} m_{i} D_{i}^{2}\right) \\
& =\operatorname{deg} L+\sum_{i=1}^{r} m_{i}-\sum_{i<j} m_{i} m_{j} D_{i} D_{j}-\sum_{i=1}^{r} \frac{m_{i}\left(m_{i}-1\right)}{2} D_{i}^{2}
\end{aligned}
$$

If the equality is attained in the upper bound, then L is generated by global sections. If $\operatorname{deg} L=0, D^{2}=\sum_{i=1}^{r} m_{i} D_{i}^{2}$ and $\operatorname{dim} H^{0}(D, L)=\sum_{i=1}^{r} m_{i}$, then $L \simeq \mathscr{O}_{D}$ and D_{i} is linearly equivalent to 0 on $\left(m_{i}-1\right) D_{i}+\sum_{j>i} m_{j} D_{j}$.

Proof. Consider the decreasing sequence of ideals

$$
\mathscr{O}_{X}, \mathscr{O}_{X}\left(-D_{1}\right), \ldots, \mathscr{O}_{X}\left(-m_{1} D_{1}\right), \ldots, \mathscr{O}_{X}\left(-m_{1} D_{1}-m_{2} D_{2}\right), \ldots, \mathscr{O}_{X}(-D)
$$

By dividing out by $\mathscr{O}_{X}(-D)$ and tensoring with L, this sequence defines a filtration of L, of which the associated graded module is of the form

$$
\left.L\left(-m_{1} D_{1}-\cdots-m_{k-1} D_{k-1}-j D_{k}\right)\right|_{D_{k}} \quad\left(1 \leq k \leq r, 0 \leq j \leq m_{k}-1\right)
$$

which is a nef line bundle on D_{k}. Applying Theorem 2.1 to each of these modules and almost everything is obvious. The final statement follows from:

1) If a divisor is linearly equivalent to 0 on a curve, so it is on any subcurve.
2) For $0 \leq n_{i}<m_{i}$, the divisor $n_{i} D_{i}+\sum_{j<i} m_{j} D_{j}$ is linearly equivalent to 0 on the curve $\left(m_{i}-n_{i}\right) D_{i}+\sum_{j>i} m_{j} D_{j}$.

Remark 2.3. The inequality in Theorem 2.1 and Corollary 2.2 were already obtained in [10, Corollaries (3.8) and (3.10)].

3. Minimal models.

Definition 3.1. Let D be a curve on a smooth surface X.
(1) A minimal model of D is a subcurve $D_{\min }$ which satisfies the following two conditions:
(a) $\chi\left(D_{\min }, \mathscr{O}_{D_{\min }}\right)=\chi\left(D, \mathscr{O}_{D}\right)$.
(b) $K_{D_{\text {min }}}=\left.\left(K_{X}+D_{\text {min }}\right)\right|_{D_{\text {min }}}$ is nef.
(2) Let D be a reducible curve. An irreducible component E of D is said to be a $(-m)_{D}$-curve if E is isomorphic to \boldsymbol{P}^{1} and $E(D-E)=m$.

Lemma 3.2. Let D be a reducible curve. Let $E \prec D$ be one of its irreducible components and assume that $E D^{\prime}>0$, where $D^{\prime}=D-E$. Then $\left.\operatorname{deg} K_{D}\right|_{E} \geq-1$, $\chi\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right) \geq \chi\left(D, \mathscr{O}_{D}\right)$. Furthermore, the following four conditions on such E are equivalent:
(1) $\left.\operatorname{deg} K_{D}\right|_{E}=-1$.
(2) E is a $(-1)_{D}$-curve, i.e., $E D^{\prime}=1$ and E is isomorphic to \boldsymbol{P}^{1}.
(3) $\chi\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right)=\chi\left(D, \mathscr{O}_{D}\right)$.
(4) The restriction maps $H^{0}\left(D, \mathscr{O}_{D}\right) \rightarrow H^{0}\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right)$ and $H^{1}\left(D, \mathscr{O}_{D}\right) \rightarrow$ $H^{1}\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right)$ are isomorphisms.

Given a $(-1)_{D}$-curve E of D, we have:
(5) If D contains another $(-1)_{D \text {-curve }} E^{\prime} \neq E$ and $D \neq E+E^{\prime}$, then E and E^{\prime} are mutually disjoint and E^{\prime} is again a $(-1)_{D^{\prime}}$-curve of $D^{\prime}=D-E$.
(6) If D is chain-connected, then the subcurve $D^{\prime}=D-E$ is again chainconnected.

Proof. The adjunction formula tells us $\operatorname{deg}\left(\left.K_{D}\right|_{E}\right)=D^{\prime} E+\operatorname{deg} K_{E} \geq$ $D^{\prime} E-2 \geq-1$. This shows the equivalence of the conditions (1) and (2) as well. Furthermore, the exact sequence

$$
0 \rightarrow \mathscr{O}_{E}\left(-D^{\prime}\right) \rightarrow \mathscr{O}_{D} \rightarrow \mathscr{O}_{D^{\prime}} \rightarrow 0
$$

induces the exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(D, \mathscr{O}_{D}\right) \\
& \rightarrow H^{0}\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right) \rightarrow H^{1}\left(E, \mathscr{O}_{E}\left(-D^{\prime}\right)\right) \\
& \rightarrow H^{1}\left(D, \mathscr{O}_{D}\right) \rightarrow H^{1}\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right) \rightarrow 0
\end{aligned}
$$

Then $\chi\left(D^{\prime}, \mathscr{O}_{D^{\prime}}\right)=\chi\left(D, \mathscr{O}_{D}\right)+\operatorname{dim} H^{1}\left(E, \mathscr{O}_{E}\left(-D^{\prime}\right)\right) \geq \chi\left(D, \mathscr{O}_{D}\right)$. The conditions (3) and (4) are both equivalent to the vanishing of $H^{1}\left(E, \mathscr{O}_{E}\left(-D^{\prime}\right)\right)$, which amount to the condition (2).

If $C \neq E$ is irreducible, then $\operatorname{deg}\left(\left.K_{D-E}\right|_{C}\right) \leq \operatorname{deg}\left(\left.K_{D}\right|_{C}\right)$. Hence a $(-1)_{D^{-}}$ curve $E^{\prime} \neq E$ is a $(-1)_{D-E}$-curve unless $D-E$ is irreducible. Thus E^{\prime} is a $(-1)_{D-E}$-curve as well; in other words, $E^{\prime}\left(D-E^{\prime}\right)=E^{\prime}\left(D-E-E^{\prime}\right)=1$, so that $E E^{\prime}=0$.

Suppose that D is chain-connected and that there is a chain-disconnected partition $D-E=A+B$, such that $-A$ is nef on B. Since D is chain-connected, $-A$ is not nef on $B+E$, which means that $E A>0$ and that E cannot be a component of B (on which $-A$ is nef). In particular, $E B \geq 0$ and hence $1 \leq E A=E(D-E-B)=1-E B$. Thus E is disjoint from B, so that $-(A+E)$ is nef on B, contradicting the chain-connectivity of D.

Corollary 3.3. If D is a reducible, chain-connected curve with $p_{a}(D)=$ $-\chi\left(D, \mathscr{O}_{D}\right)+1 \geq 1$, then there exists one and only one minimal model $D_{\min }$ of D. The minimal model $D_{\min }$ of a chain-connected curve D has the following properties:
(1) $D_{\min }$ is chain-connected.
(2) $D_{\min } \succeq \Delta$ for any subcurve $\Delta \preceq D$ with K_{Δ} nef.
(3) $D_{\min } \preceq \Delta$ for any subcurve $\Delta \preceq D$ with $\chi\left(\Delta, \mathscr{O}_{\Delta}\right)=\chi\left(D, \mathscr{O}_{D}\right)$.

Proof. The existence of a chain-connected minimal model is an immediate consequence of Lemma 3.2. The unicity of $D_{\min }$ follows if we check that our minimal model $D_{\text {min }}$ enjoys the properties (2) and (3).

We show (2) by induction on the number of the irreducible components of D. Assume that K_{Δ} is nef. If K_{D} is nef, then $D_{\min }=D$ and the assertion trivially holds. If K_{D} is not nef and D contains a $(-1)_{D}$-curve E, we see that $\Delta \preceq D-E$ for any $(-1)_{D}$-curve E by Lemma 3.2 (5). Hence we see both Δ and $D_{\min }$ are subcurves of $D-E$, and induction works.

Let Δ be a subcurve of D. Since D is chain-connected, we find a connecting chain $\Delta=D_{0}, D_{1}, \ldots, D_{s}=D$, where $E_{i}=D_{i}-D_{i-1}$ is irreducible with $E_{i} D_{i-1} \geq 1$. We prove (3) by induction on s. If $s=0$, then $\Delta=D$ and the assertion is trivial. Assume that $s \geq 1$. If $\chi\left(\Delta, \mathscr{O}_{\Delta}\right)=\chi\left(D, \mathscr{O}_{D}\right)$, then Lemma 3.2
shows that E_{s} is a $(-1)_{D}$-curve of D, and hence the two curves Δ and $D_{\text {min }}$ are subcurves of $D-E_{s}$. Then by our induction hypothesis, $\Delta \succeq D_{\min }$.

Example 3.4. In the usual minimal model theory of surfaces, the exceptional locus which should be blown down is always a union of trees of P^{1} 's. It is not the case for our minimal model theory of curves.

Let E_{1}, E_{2}, E_{3} be three \boldsymbol{P}^{1} 's on a surface X with a triangle configuration and with self-intersection numbers $E_{i}^{2}=-i$. The curve $D=2 E_{1}+2 E_{2}+2 E_{3}$ is chain-connected, with a connecting chain $E_{1}, E_{1}+E_{2}, E_{1}+E_{2}+E_{3}, 2 E_{1}+E_{2}+E_{3}$, $2 E_{1}+2 E_{2}+E_{3}, 2 E_{1}+2 E_{2}+2 E_{3}=D$. We have $D E_{i}=4-2 i, K_{X} E_{i}=i-2$, $\operatorname{deg}\left(\left.K_{D}\right|_{E_{i}}\right)=2-i$, and hence D contains a single $(-1)_{D}$-curve, which is the (-3)curve E_{3}. Then E_{2} is the $(-1)_{D-E_{3}}$-curve and E_{1} is the $(-1)_{D-E_{3}-E_{2}}$-curve. The reduced curve $E_{1}+E_{2}+E_{3}=D-E_{1}-E_{2}-E_{3}$ is the minimal model of D, i.e., $D=2 D_{\text {min }}$.

Example 3.5. If D is not chain-connected, then there may be more than one minimal models. For instance, let $C \subset X$ be an elliptic curve whose normal bundle is an element of infinite order in $\mathrm{Pic}^{0}(C)$. Then $K_{m C}$ is nef on C, while the restriction maps $H^{i}\left(m C, \mathscr{O}_{m C}\right) \rightarrow H^{i}\left(C, \mathscr{O}_{C}\right)$ are isomorphisms $(i=0,1)$. Hence $m C$ is a minimal model of $n C$ for $1 \leq m \leq n$.

Lemma 3.6. Let D be a chain-connected curve and Δ a non-trivial subcurve of D with $p_{a}(\Delta)=p_{a}(D)$. Then $D-\Delta$ decomposes as $D-\Delta=\Gamma_{1}+\cdots+\Gamma_{n}$, where Γ_{i} is a chain-connected curve, $\mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is numerically trivial for $i<j$, and $\Delta+\Gamma_{i}$ is a chain-connected curve satisfying $\Delta \Gamma_{i}=1-p_{a}\left(\Gamma_{i}\right)$ for $i \in\{1,2, \ldots, n\}$.

Proof. We write a CCC decomposition of $D-\Delta$ as $\Gamma_{1}+\cdots+\Gamma_{n}$, where Γ_{i} is a chain-connected curve and $\mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is nef for $i<j$. We have $p_{a}(D)=$ $p_{a}(\Delta)+\sum_{i=1}^{n}\left(p_{a}\left(\Gamma_{i}\right)-1+\Delta \Gamma_{i}\right)+\sum_{i<j} \Gamma_{i} \Gamma_{j}$. Since $p_{a}(\Delta)=p_{a}(D)$ and $\mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is nef for $i<j$, we get

$$
\sum_{i=1}^{n}\left(p_{a}\left(\Gamma_{i}\right)-1+\Delta \Gamma_{i}\right)=-\sum_{i<j} \Gamma_{i} \Gamma_{j} \geq 0
$$

For each i, we have $p_{a}(\Delta) \leq \operatorname{dim} H^{1}\left(\Delta, \mathscr{O}_{\Delta}\right) \leq \operatorname{dim} H^{1}\left(\Delta+\Gamma_{i}, \mathscr{O}\right) \leq$ $\operatorname{dim} H^{1}\left(D, \mathscr{O}_{D}\right)=p_{a}(D)$ from which we get $\operatorname{dim} H^{1}\left(\Delta+\Gamma_{i}, \mathscr{O}\right)=p_{a}(\Delta)$. Then $\operatorname{dim} H^{1}\left(\Delta+\Gamma_{i}, \mathscr{O}\right) \geq p_{a}\left(\Delta+\Gamma_{i}\right)=p_{a}(\Delta)+p_{a}\left(\Gamma_{i}\right)-1+\Delta \Gamma_{i}$ yields $p_{a}\left(\Gamma_{i}\right)-1+\Delta \Gamma_{i} \leq$ 0 . From this and the above (in)equality, we get $\Delta \Gamma_{i}=1-p_{a}\left(\Gamma_{i}\right)$ for any i and see that $\mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is numerically trivial for $i<j$. Furthermore, the equality $p_{a}(D)=p_{a}\left(\Delta+\Gamma_{i}\right)$ is sufficient to imply that $\Delta+\Gamma_{i}$ is chain-connected, by Lemma 3.2 (6).

4. Canonical cycles.

Let (V, o) be (a germ of) a normal surface singularity and $\pi: X \rightarrow V$ the minimal resolution. We denote by Z the fundamental cycle on the exceptional set $\pi^{-1}(o)$. We have three different genera for (V, o) (see [15]):

$$
\begin{aligned}
& p_{f}(V, o):=p_{a}(Z) \quad \text { (fundamental genus) } \\
& p_{a}(V, o):=\max \left\{p_{a}(\Gamma) \mid 0 \prec \Gamma, \operatorname{Supp}(\Gamma) \subset \pi^{-1}(o)\right\} \quad \text { (arithmetic genus) } \\
& p_{g}(V, o):=\operatorname{dim}_{C}\left(R^{1} \pi_{*} \mathscr{O}_{X}\right)_{o} \quad \text { (geometric genus). }
\end{aligned}
$$

We have $p_{f}(V, o) \leq p_{a}(V, o) \leq p_{g}(V, o)$. When $p_{a}(V, o)=1,(V, o)$ is called a weakly elliptic singularity. It is known that $p_{f}(V, o)=p_{a}(V, o)$ if $p_{f}(V, o) \leq 1$ (see, [1], [2], [8] and [15]).
(V, o) is numerically Gorenstein if there exists a (possibly zero) curve Z_{K} with support $\subseteq \pi^{-1}(o)$ such that $-Z_{K}$ is numerically equivalent to K_{X} on $\pi^{-1}(o)$. Such Z_{K} is called the canonical cycle. We have $Z_{K}=0$ if and only if (V, o) is a rational double point. We tacitly neglect such a trivial case in what follows. Note that the dualizing sheaf $\omega_{Z_{K}}$ is numerically trivial by the adjunction formula. We have $p_{g}(V, o)=\operatorname{dim} H^{1}\left(Z_{K}, \mathscr{O}_{Z_{K}}\right)=\operatorname{dim} H^{0}\left(Z_{K}, \omega_{Z_{K}}\right)$ (see, e.g. [13]).

When (V, o) is a weakly elliptic, numerically Gorenstein singularity, S. S. T. Yau [16] introduced a decreasing sequence of fundamental cycles starting from Z, called the elliptic sequence, in order to compute Z_{K}. Furthermore, he gave a bound on $p_{g}(V, o)$ by the length of the sequence. On the other hand, Tomaru [14] considered the case where Z_{K} is sum $Z+E$ of the fundamental cycle Z and its minimal model E for singularities with $p_{f}(V, o)>0$, and showed that $p_{g}(V, o) \leq p_{f}(V, o)+1$ holds. These results of Yau and Tomaru can be generalized as follows:

Theorem 4.1. Let (V, o) be a numerically Gorenstein surface singularity with $p_{f}(V, o)>0, \pi: X \rightarrow V$ the minimal resolution and let $Z_{K}=m_{1} D_{1}+$ $\cdots+m_{r} D_{r}$ be a CCC decomposition of the canonical cycle Z_{K} on $\pi^{-1}(o)$. Put $I=\left\{i \mid D_{i}\right.$ is a minimal member of $\left.\left\{D_{j}\right\}_{j=1}^{r}\right\}$ and $\nu=\# I$. Then the following hold:
(1) D_{1} is the fundamental cycle on $\pi^{-1}(o)$.
(2) $K_{D_{i}}$ is nef for $i \in I$.
(3) $p_{a}\left(D_{i}\right)>0$ for every i and $p_{f}(V, o) \geq \sum_{i \in I} p_{a}\left(D_{i}\right) \geq \nu$.
(4) Assume that $n=\sum_{i=1}^{r} m_{i} \geq 2$. If $m_{1}=1$, then $D_{2}=\operatorname{gcd}\left(D_{1}, Z_{K}-D_{1}\right)$, $p_{a}\left(D_{2}\right)=p_{f}(V, o)$ and $\operatorname{Supp}\left(D_{1}-D_{2}\right) \cap \operatorname{Supp}\left(Z_{K}-D_{1}-D_{2}\right)=\emptyset$. In particular, $m_{2}=1$ if $m_{1}=1$.

Furthermore,
(5) $p_{g}(V, o) \leq \sum_{i=1}^{r} m_{i} p_{a}\left(D_{i}\right)-\sum_{i \in I}\left(p_{a}\left(D_{i}\right)-1\right) \leq(n-\nu) p_{f}(V, o)+\nu$.

If $p_{g}(V, o)$ attains the bound in the first inequality, then (V, o) is a Gorenstein singularity.

Proof.

(1) Since π is the minimal resolution, $K_{X} \equiv-Z_{K}$ is nef on $\pi^{-1}(o)$, where the symbol \equiv means the numerical equivalence. It follows from Proposition 1.5 (1) that $Z \preceq Z_{K}$ and hence $D_{1}=Z$, being the biggest chain-connected curve with support $\pi^{-1}(o)$.
(2) On $D_{i}, K_{D_{i}}$ is numerically equivalent to $-Z_{K}+D_{i}=-\sum_{j<i} m_{j} D_{j}-$ $\sum_{j>i} m_{j} D_{j}-\left(m_{i}-1\right) D_{i}$. If $i \in I$, then $\operatorname{Supp}\left(D_{j}\right) \cap \operatorname{Supp}\left(D_{i}\right)=\emptyset$ for $j>i$ and we have $K_{D_{i}} \equiv-\left.\left(\sum_{j<i} m_{j} D_{j}+\left(m_{i}-1\right) D_{i}\right)\right|_{D_{i}}$. Hence $K_{D_{i}}$ is nef and $p_{a}\left(D_{i}\right)>0$ for $i \in I$.
(3) By (2), we have $p_{a}\left(D_{i}\right)>0$ for any i. We remark that $D_{i} \prec D_{1}$ for any $i \geq 2$, since D_{i} is a chain-connected curve, $\mathscr{O}_{D_{i}}\left(-D_{1}\right)$ is nef by (1) and $\operatorname{Supp}\left(D_{i}\right) \subset \pi^{-1}(o)$. Since any two distinct members in $\left\{D_{i}\right\}_{i \in I}$ do not intersect, we have $\sum_{i \in I} D_{i} \preceq D_{1}$. Then $\sum_{i \in I} p_{a}\left(D_{i}\right)=\sum_{i \in I} \operatorname{dim} H^{1}\left(D_{i}, \mathscr{O}_{D_{i}}\right)=$ $\operatorname{dim} H^{1}\left(\sum_{i \in I} D_{i}, \mathscr{O}\right) \leq \operatorname{dim} H^{1}\left(D_{1}, \mathscr{O}_{D_{1}}\right)=p_{f}(V, o)$.
(4) Assume that $m_{1}=1$ and put $G=\operatorname{gcd}\left(D_{1}, Z_{K}-D_{1}\right)$. Then $D_{2} \preceq G$. We have $2 p_{a}(G)-2=-G\left(Z_{K}-G\right)=-D_{1}\left(Z_{K}-D_{1}\right)+\left(D_{1}-G\right)\left(Z_{K}-D_{1}-G\right)=$ $2 p_{a}\left(D_{1}\right)-2+\left(D_{1}-G\right)\left(Z_{K}-D_{1}-G\right)$. By the choice of $G, D_{1}-G$ has no components in common with $Z_{K}-D_{1}-G$ and hence $\left(D_{1}-G\right)\left(Z_{K}-D_{1}-G\right) \geq 0$. Then $p_{a}(G) \geq p_{a}\left(D_{1}\right)$. On the other hand, clearly $p_{a}(G) \leq p_{a}\left(D_{1}\right)$. Hence $p_{a}(G)=p_{a}\left(D_{1}\right)$ and $\operatorname{Supp}\left(D_{1}-G\right) \cap \operatorname{Supp}\left(Z_{K}-D_{1}-G\right)=\emptyset$. In view of Lemma 3.2 (6), the former is sufficient to imply that G is chain-connected. Thus $G=D_{2}$, being a chain-connected component of $Z_{K}-D_{1}$. The latter assertion for supports (with $G=D_{2}$) shows $m_{2}=1$, because $D_{1}-D_{2}$ has an irreducible component meeting D_{2} by the chain-connectivity of D_{1}.
(5) Recall that $\omega_{Z_{K}}=\mathscr{O}_{Z_{K}}\left(K_{X}+Z_{X}\right)$ is numerically trivial. We get $p_{g}(V, o)=$ $\operatorname{dim} H^{0}\left(Z_{K}, \omega_{Z_{K}}\right) \leq \sum_{i=1}^{r} \sum_{l=0}^{m_{i}-1} \operatorname{dim} H^{0}\left(D_{i}, K_{X}+Z_{K}-\sum_{j<i} m_{j} D_{j}-l D_{i}\right)$ as in the proof of Corollary 2.2. We have $Z_{K}-\sum_{j<i} m_{j} D_{j}-l D_{i}=\left(m_{i}-l\right) D_{i}+$ $\sum_{j>i} m_{j} D_{j}$. Hence, for $i \in I$ and $l=m_{i}-1$, we have $\left(Z_{K}-\sum_{j<i} m_{j} D_{j}-\left(m_{i}-\right.\right.$ 1) $\left.D_{i}\right)\left.\right|_{D_{i}}=\left.D_{i}\right|_{D_{i}}$ and it follows $\mathscr{O}_{D_{i}}\left(K_{X}+Z_{K}-\sum_{j<i} m_{j} D_{j}-\left(m_{i}-1\right) D_{i}\right) \simeq \omega_{D_{i}}$, $-D_{i}\left(\sum_{j<i} m_{j} D_{j}+\left(m_{i}-1\right) D_{i}\right)=\operatorname{deg} \omega_{D_{i}}=2 p_{a}\left(D_{i}\right)-2$ and $\operatorname{dim} H^{0}\left(D_{i}, K_{X}+\right.$ $\left.Z_{K}-\sum_{j<i} m_{j} D_{j}-\left(m_{i}-1\right) D_{i}\right)=p_{a}\left(D_{i}\right)=1-D_{i}\left(\sum_{j<i} m_{j} D_{j}+\left(m_{i}-1\right) D_{i}\right)-$ $\left(p_{a}\left(D_{i}\right)-1\right)$. For the other pairs (i, l), we have $\operatorname{dim} H^{0}\left(D_{i}, K_{X}+Z_{K}-\sum_{j<i} m_{j} D_{j}-\right.$ $\left.l D_{i}\right) \leq 1-D_{i}\left(\sum_{j<i} m_{j} D_{j}+l D_{i}\right)$ by Theorem 2.1. Summing up, we get

$$
p_{g}(V, o) \leq \sum_{i=1}^{r} m_{i}-\frac{1}{2}\left(Z_{K}^{2}-\sum_{i=1}^{r} m_{i} D_{i}^{2}\right)-\sum_{i \in I}\left(p_{a}\left(D_{i}\right)-1\right) .
$$

We have $\sum_{i=1}^{r} m_{i} p_{a}\left(D_{i}\right)=\sum_{i=1}^{r} m_{i}-(1 / 2)\left(Z_{K}^{2}-\sum_{i=1}^{r} m_{i} D_{i}^{2}\right)$ by $0=p_{a}\left(Z_{K}\right)-$ $1=\sum_{i=1}^{r} m_{i}\left(p_{a}\left(D_{i}\right)-1\right)+(1 / 2)\left(Z_{K}^{2}-\sum_{i=1}^{r} m_{i} D_{i}^{2}\right)$. Hence we get the first inequality in (5). If the bound is attained, then the restriction $H^{0}\left(Z_{K}, K_{X}+\right.$ $\left.Z_{K}\right) \rightarrow H^{0}\left(D_{1}, K_{X}+Z_{K}\right)$ is surjective and $\operatorname{dim} H^{0}\left(D_{1}, K_{X}+Z_{K}\right)=1$. This implies that $\omega_{Z_{K}} \simeq \mathscr{O}_{Z_{K}}$, i.e., (V, o) is Gorenstein. The second inequality in (5) follows from the obvious fact: $p_{a}\left(D_{i}\right) \leq p_{f}(V, o)$.

We confirm that a CCC decomposition of Z_{K} induces Yau's elliptic sequence, when (V, o) is a weakly elliptic singularity.

Corollary 4.2. Let (V, o) be a weakly elliptic, numerically Gorenstein singularity and Z_{K} the canonical cycle on its minimal resolution. Then Z_{K} has a unique CCC decomposition of the form $D_{1}+\cdots+D_{n}$, where
(1) $D_{n} \prec D_{n-1} \prec \cdots \prec D_{1}$,
(2) each D_{i} is the fundamental cycle on its support and $p_{a}\left(D_{i}\right)=1 ; D_{1}=Z$ and D_{n} is a minimally elliptic cycle $[8]$,
(3) $\mathscr{O}_{D_{j}}\left(-D_{i}\right)$ is numerically trivial when $i<j$,
(4) $\operatorname{Supp}\left(D_{i}-D_{j}\right) \cap \operatorname{Supp}\left(D_{k}\right)=\emptyset$ for $i<j<k$,
(5) $p_{g}(V, o) \leq n$ with equality holding only if (V, o) is Gorenstein.

In other words, the sequence $D_{n} \prec D_{n-1} \prec \cdots \prec D_{1}$ coincides with Yau's elliptic sequence.

Proof. Let $Z_{K}=m_{1} D_{1}+\cdots+m_{n} D_{n}$ be a CCC decomposition. We know that D_{1} is the fundamental cycle Z by Theorem 4.1 (1). Since everything is clear when $Z_{K}=D_{1}$, we assume $n(D)=\sum_{i=1}^{n} m_{i} \geq 2$.

We first remark that $-D_{1}$ is numerically trivial on $Z_{K}-D_{1}$. If not, then $D_{1}\left(Z_{K}-D_{1}\right)<0$ and we would get $p_{a}\left(Z_{K}-D_{1}\right)>1$ by $p_{a}\left(Z_{K}\right)=p_{a}\left(D_{1}\right)+$ $p_{a}\left(Z_{K}-D_{1}\right)-1+D_{1}\left(Z_{K}-D_{1}\right)$ and $p_{a}\left(Z_{K}\right)=p_{a}\left(D_{1}\right)=1$, which is impossible by $p_{a}(V, o)=1$. In particular, this implies $m_{1}=1$, because we would have $D_{1}\left(Z_{K}-D_{1}\right)=D_{1}^{2}+D_{1}\left(Z_{K}-2 D_{1}\right) \leq D_{1}^{2}<0$ if $m_{1}>1$. Then, by Theorem 4.1 (4), we have $m_{2}=1, p_{a}\left(D_{2}\right)=1, D_{2}=\operatorname{gcd}\left(D_{1}, Z_{K}-D_{1}\right)$ and $\operatorname{Supp}\left(D_{1}-D_{2}\right) \cap$ $\operatorname{Supp}\left(Z_{K}-D_{1}-D_{2}\right)=\emptyset$. Note that $Z_{K}-D_{1}$ is the canonical cycle on its support with a CCC decomposition $Z_{K}-D_{1}=D_{2}+m_{3} D_{3}+\cdots+m_{n} D_{n}$, since $-D_{1}$ is numerically trivial on $Z_{K}-D_{1}$. Therefore, an obvious induction using Theorem 4.1 (4) gives us $m_{i}=1, p_{a}\left(D_{i}\right)=1, D_{i}=\operatorname{gcd}\left(D_{i-1}, Z_{K}-\sum_{j<i} D_{j}\right)$ and $\operatorname{Supp}\left(D_{i-1}-D_{i}\right) \cap \operatorname{Supp}\left(Z_{K}-\sum_{j \leq i} D_{j}\right)=\emptyset$. Now, all the assertions are clear from this and Theorem 4.1, except the statement for D_{n} in (2).

It follows from Theorem 4.1 (2) that $\omega_{D_{n}}$ is nef and, hence, numerically trivial by $p_{a}\left(D_{n}\right)=1$. Since D_{n} is chain-connected and $\operatorname{dim} H^{0}\left(D_{n}, \omega_{D_{n}}\right)=1$, we get $\omega_{D_{n}} \simeq \mathscr{O}_{D_{n}}$. This is sufficient to imply that D_{n} is 2-connected, and hence it is a minimally elliptic cycle.

The last inequality for $p_{g}(V, o)$ in Theorem 4.1 tells us that the geometric genus, which is an analytic invariant, is bounded from above by topological data determined by the resolution dual graph. However, the bound seems rather crude.

Example 4.3. We borrow an example from $[\mathbf{1 4}$, p. 293] and consider $(V, o)=$ $\left\{x_{0}^{2}+x_{1}^{8}+x_{2}^{12+8 t}=0\right\}$. We follow [14] for the numbering of irreducible components A_{i} of the exceptional set. The canonical cycle is given by

$$
Z_{K}=(6 t+8) A_{0}+(3 t+4)\left(A_{1}+A_{2}\right)+3 \sum_{i=0}^{t}(t+1-i)\left(A_{3, i}+A_{4, i}\right) .
$$

For $0 \leq j \leq t$, we put

$$
D_{j+1}=2 A_{0}+A_{1}+A_{2}+\sum_{i=0}^{t-j}\left(A_{3, i}+A_{4, i}\right)
$$

Then D_{1} is the fundamental cycle and D_{t+1} is its minimal model. We further put $D_{t+2}=A_{0}+A_{1}+A_{2}$ and $D_{t+3}=A_{0}$. Then $Z_{K}=3 \sum_{j=1}^{t+1} D_{j}+D_{t+2}+$ D_{t+3} is the CCC decomposition. We know that D_{t+3} is the smallest member of $\left\{D_{j}\right\}$. Furthermore, $p_{f}(V, o)=p_{a}\left(D_{1}\right)=\cdots=p_{a}\left(D_{t+1}\right)=3$ and $p_{a}\left(D_{t+2}\right)=$ $p_{a}\left(D_{t+3}\right)=1$. Hence the bound given in Theorem 4.1 becomes $p_{g}(V, o) \leq 3 \times$ $3(t+1)+1+1=9 t+11$, while it is known that $p_{g}(V, o)=6 t+8$.

5. Subcurves of a 1-connected curve.

We study subcurves of a 1 -connected curve by means of CCC decompositions. Almost all results in this section can be shown also by using the 0-maximality argument as in [9] and [7].

Theorem 5.1. Let Δ be a non-trivial subcurve of a 1-connected curve D and L a line bundle on Δ which is numerically trivial. If $\Delta=\Gamma_{1}+\cdots+\Gamma_{n}$ denotes a CCC decomposition, then $\operatorname{dim} H^{0}(\Delta, L) \leq \Delta(D-\Delta)+\sum_{i<j} \Gamma_{i} \Gamma_{j} \leq \Delta(D-\Delta)$. Furthermore, if $\operatorname{dim} H^{0}(\Delta, L)=\Delta(D-\Delta)$, then the following hold.
(1) $\operatorname{dim} H^{0}(\Delta, L)=n$ and $\mathscr{O}_{\Delta}(L) \simeq \mathscr{O}_{\Delta}$,
(2) $\mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}\left(-\Gamma_{i-1}\right) \simeq \mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}$ for $2 \leq i \leq n$,
(3) Γ_{i} and $D-\Delta$ are 1-connected curves with $\left(D-\Gamma_{i}\right) \Gamma_{i}=(D-\Delta) \Gamma_{i}=1$ for $1 \leq i \leq n$,
(4) $(D-\Delta) \Delta \leq p_{a}(D)-p_{a}(D-\Delta)$ holds, when K_{D} is nef on Δ.

Proof. Let $\Delta=\Gamma_{1}+\cdots+\Gamma_{n}$ be a CCC decomposition, where Γ_{i} is a chainconnected curve and $\mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is nef for $i<j$. We put $a=a(\Delta)=-\sum_{i<j} \Gamma_{i} \Gamma_{j}$. Then $a \geq 0$. Since D is 1 -connected, we have

$$
\begin{equation*}
1 \leq\left(D-\Gamma_{i}\right) \Gamma_{i}=(D-\Delta) \Gamma_{i}+\Gamma_{i} \sum_{j \neq i} \Gamma_{j} \tag{5.1}
\end{equation*}
$$

for each i. Summing up, we get $n \leq(D-\Delta) \Delta+2 \sum_{i<j} \Gamma_{i} \Gamma_{j}$, that is, $n+2 a \leq$ $(D-\Delta) \Delta$. On the other hand, we have $\operatorname{dim} H^{0}(\Delta, L) \leq n-\sum_{i<j} \Gamma_{i} \Gamma_{j}=n+a$ by Corollary 2.2. Therefore, $\operatorname{dim} H^{0}(\Delta, L) \leq n+a \leq(D-\Delta) \Delta-a \leq(D-\Delta) \Delta$, which is what we want.

Assume now that $\operatorname{dim} H^{0}(\Delta, L)=(D-\Delta) \Delta$. Then we have equality signs everywhere in the inequalities appeared in the above discussion. In particular, $a=0$ and $\operatorname{dim} H^{0}(\Delta, L)=n$. The assertions (1), (2) follow from Corollary 2.2. We show (3). Since $\left(D-\Gamma_{i}\right) \Gamma_{i}=1$ by (5.1), we see that Γ_{i} and $D-\Gamma_{i}$ are 1 -connected. We have $(D-\Delta) \Gamma_{i}=1$. Since $\Gamma_{i} \Gamma_{j}=0$ when $i \neq j$, starting from $D-\Gamma_{1}$, we can inductively show that $D-\Gamma_{1}-\cdots-\Gamma_{i}$ is 1-connected. In particular, so is $D-\Delta=D-\sum_{i=1}^{n} \Gamma_{i}$. Finally, we show (4). We have $a(\Delta)=0$ and $\left(D-\Gamma_{i}\right) \Gamma_{i}=1$ for any i. Then

$$
p_{a}(D)=p_{a}(D-\Delta)+(D-\Delta) \Delta-n+\sum_{i=1}^{n} p_{a}\left(\Gamma_{i}\right)
$$

Since K_{D} is nef on Δ, we have $0 \leq\left.\operatorname{deg} K_{D}\right|_{\Gamma_{i}}=\operatorname{deg} K_{\Gamma_{i}}+\left(D-\Gamma_{i}\right) \Gamma_{i}=\operatorname{deg} K_{\Gamma_{i}}+1$. It follows $p_{a}\left(\Gamma_{i}\right)>0$ for each i. Hence $p_{a}(D) \geq p_{a}(D-\Delta)+(D-\Delta) \Delta$.

Quite similarly, one can show the following two corollaries.
Corollary 5.2. Let Δ and D be as in Theorem 5.1. Let $\Delta=\Gamma_{1}+\cdots+\Gamma_{n}$ be a CCC decomposition and put $a=a(\Delta)=-\sum_{i<j} \Gamma_{i} \Gamma_{j}$. If L is a nef line bundle on Δ satisfying $\operatorname{deg} L \leq a$, then $\operatorname{dim} H^{0}(\Delta, L) \leq \Delta(D-\Delta)$ holds. If the equality holds here, then $\operatorname{deg} L=a$, $\operatorname{dim} H^{0}(\Delta, L)=n+2 a$ and each Γ_{i} is a 1 -connected curve satisfying $\left(D-\Gamma_{i}\right) \Gamma_{i}=1$.

Corollary 5.3. Let Δ be a non-trivial subcurve of a 2 -connected curve D. If L is a numerically trivial line bundle on Δ, then $2 \operatorname{dim} H^{0}(\Delta, L) \leq \Delta(D-\Delta)$.

Theorem 5.4. Let L be a line bundle on a 1-connected curve D which is numerically equivalent to K_{D}, and let Z be a non-trivial subcurve of D such that the restriction map $H^{0}(D, L) \rightarrow H^{0}(Z, L)$ is the zero map. Then

$$
p_{a}(Z) \leq \begin{cases}0, & \text { if } L=K_{D} \\ 1, & \text { otherwise }\end{cases}
$$

If $p_{a}(Z)$ attains the bound, then Z is 1 -connected and D decomposes as

$$
D=Z+\Gamma_{1}+\cdots+\Gamma_{n}
$$

where $n=Z(D-Z), \mathscr{O}_{D-Z}(L) \simeq \mathscr{O}_{D-Z}\left(K_{D}\right)$, each Γ_{i} is a 1 -connected curve with $\left(D-\Gamma_{i}\right) \Gamma_{i}=Z \Gamma_{i}=1, \mathscr{O}_{\Gamma_{j}+\cdots+\Gamma_{n}}\left(-\Gamma_{j-1}\right) \simeq \mathscr{O}_{\Gamma_{j}+\cdots+\Gamma_{n}}$ for $2 \leq j \leq n$ and, either $\Gamma_{j} \preceq \Gamma_{i}$ or $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}\left(\Gamma_{j}\right)=\emptyset$ when $i<j$.

Proof. By the assumption, we have $H^{1}(D, L)=0$ unless $L=K_{D}$. It follows from the cohomology long exact sequence for

$$
0 \rightarrow \mathscr{O}_{D-Z}(L-Z) \rightarrow \mathscr{O}_{D}(L) \rightarrow \mathscr{O}_{Z}(L) \rightarrow 0
$$

that $\operatorname{dim} H^{1}(D-Z, L-Z)=\operatorname{dim} H^{0}(Z, L)+\operatorname{dim} H^{1}(D, L)$. By the Riemann-Roch theorem and the adjunction formula, we have $\operatorname{dim} H^{0}(Z, L)=\left.\operatorname{deg} L\right|_{Z}+1-p_{a}(Z)=$ $\left.\operatorname{deg}\left(L-K_{D}\right)\right|_{Z}+\operatorname{deg} K_{Z}+Z(D-Z)+1-p_{a}(Z)=p_{a}(Z)+Z(D-Z)-1$. Hence

$$
\operatorname{dim} H^{0}\left(D-Z, K_{D}-L\right)= \begin{cases}p_{a}(Z)+Z(D-Z), & \text { if } L=K_{D} \\ p_{a}(Z)+Z(D-Z)-1, & \text { otherwise }\end{cases}
$$

Since $K_{D}-L$ is numerically trivial, we get $\operatorname{dim} H^{0}\left(D-Z, K_{D}-L\right) \leq Z(D-Z)-$ $a(D-Z)$ by Theorem 5.1 applied to $\Delta=D-Z$. Hence

$$
p_{a}(Z) \leq p_{a}(Z)+a(D-Z) \leq \begin{cases}0, & \text { if } L=K_{D} \\ 1, & \text { otherwise }\end{cases}
$$

The rest follows from Theorem 5.1.
Corollary $5.5([\mathbf{7}])$. Let D be a 1 -connected curve with $p_{a}(D)>0$ and Z the fixed part of $\left|K_{D}\right|$, that is, the biggest subcurve such that the restriction $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(Z, K_{D}\right)$ is zero. Then $H^{1}\left(Z, \mathscr{O}_{Z}\right)=0$.

Proof. Since $p_{a}(D)>0$, we see that Z is a non-trivial subcurve of D. Furthermore, the restriction $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(Z^{\prime}, K_{D}\right)$ is zero for any subcurve $Z^{\prime} \preceq Z$. By Theorem 5.4, we have $p_{a}\left(Z^{\prime}\right) \leq 0$. Hence $H^{1}\left(Z, \mathscr{O}_{Z}\right)=0$ by [7, Proposition 1.7].

As Theorem 5.4 suggests, it is worth studying curves D such that $p_{a}\left(D^{\prime}\right) \leq 1$ holds for any subcurve $D^{\prime} \preceq D$. For such, we have the following:

Lemma 5.6. Let D be a curve such that $p_{a}\left(D^{\prime}\right) \leq 1$ for any $0 \prec D^{\prime} \preceq$ D. Assume that $p_{a}(D)=1$. Then D is 0 -connected and decomposes as $D=$ $\Gamma_{1}+\cdots+\Gamma_{n}$, where each Γ_{i} is a chain-connected curve with $p_{a}\left(\Gamma_{i}\right)=1$ and $\mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}\left(-\Gamma_{i-1}\right)$ is numerically trivial. In particular, $\Gamma_{i} \Gamma_{j}=0$ and, ether $\Gamma_{j} \preceq$ Γ_{i} or $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}\left(\Gamma_{j}\right)=\emptyset$ for $i<j$. Furthermore, $\operatorname{dim} H^{0}\left(D, \mathscr{O}_{D}\right) \leq n$ with equality holding only when $\mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}\left(-\Gamma_{i-1}\right) \simeq \mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}$ for $2 \leq i \leq n$. If $\operatorname{Supp}(D)$ is connected, then $\operatorname{Supp}(D)=\operatorname{Supp}\left(\Gamma_{1}\right)$ and $\Gamma_{n} \preceq \Gamma_{n-1} \preceq \cdots \preceq \Gamma_{1}$.

Proof. Let D^{\prime} be any non-trivial subcurve of D. We have $p_{a}\left(D^{\prime}\right) \leq 1$ and $p_{a}\left(D-D^{\prime}\right) \leq 1$ by the assumption. Then $1=p_{a}(D)=p_{a}\left(D^{\prime}\right)+p_{a}\left(D-D^{\prime}\right)-1+$ $\left(D-D^{\prime}\right) D^{\prime} \leq 1+\left(D-D^{\prime}\right) D^{\prime}$. Hence $\left(D-D^{\prime}\right) D^{\prime} \geq 0$ and D is 0 -connected. Let $D=\Gamma_{1}+\cdots+\Gamma_{n}$ be a CCC decomposition.

Since $p_{a}(D)=1$ and

$$
p_{a}(D)-1=\sum_{i=1}^{n}\left(p_{a}\left(\Gamma_{i}\right)-1\right)+\sum_{i<j} \Gamma_{i} \Gamma_{j} \leq \sum_{i=1}^{n}\left(p_{a}\left(\Gamma_{i}\right)-1\right) \leq 0,
$$

we see that $p_{a}\left(\Gamma_{i}\right)=1$ and $\mathscr{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}\left(-\Gamma_{i-1}\right)$ is numerically trivial for each i. Then $\operatorname{dim} H^{0}\left(D, \mathscr{O}_{D}\right) \leq n$ by Corollary 2.2.

If D has connected support, then $\operatorname{Supp}\left(\Gamma_{1}\right)=\operatorname{Supp}(D)$ by Proposition 1.2 (3). Hence $\Gamma_{i} \preceq \Gamma_{1}$. Since we have $p_{a}\left(\Gamma_{i}\right)=p_{a}\left(\Gamma_{1}\right)$, Corollary 3.3 implies that every Γ_{i} contains the minimal model of Γ_{1} as a common subcurve. Therefore, $\Gamma_{j} \preceq \Gamma_{i}$ for $i<j$.

6. Subcurves of a multiple fibre.

In this section, F denotes a fibre in a fibred surface of genus $g>0$. We know that the intersection form is negative semi-definite on $\operatorname{Supp}(F)$ by Zariski's lemma. Let D be the numerical cycle on $\operatorname{Supp}(F)$. Then it is 1 -connected and there exists a positive integer m such that $F=m D$. We have $g-1=m\left(p_{a}(D)-1\right)$. When $m>1, F$ is called a multiple fibre and $\mathscr{O}_{D}(D)$ is a torsion element of order m in $\operatorname{Pic}(D)$.

The following is an analogue of Theorem 5.1.

Theorem 6.1. Let $F=m D$ be a multiple fibre. Then, for a given curve Δ with $0 \prec \Delta \preceq F$, the inequality $\operatorname{dim} H^{0}\left(\Delta, \mathscr{O}_{\Delta}\right) \leq-\Delta^{2}+1$ holds. If the upper bound is attained, then Δ has a CCC decomposition of the form $\Delta=k D+\Gamma_{1}+$ $\cdots+\Gamma_{n}\left(n=-\Delta^{2}\right)$, where
(1) $1 \leq k \leq m$,
(2) Γ_{i} is a 1-connected curve with $\Gamma_{i}^{2}=-1$ for $1 \leq i \leq n$,
(3) $\mathscr{O}_{\Gamma_{j}+\cdots+\Gamma_{n}}\left(-\Gamma_{j-1}\right) \simeq \mathscr{O}_{\Gamma_{j}+\cdots+\Gamma_{n}}$ for $1 \leq j \leq n$, where $\Gamma_{0}=k D$.

Proof. Let $k D$ be the maximal multiple of D such that $k D \preceq \Delta$ and put $A=\Delta-k D$. Then $0 \leq k \leq m$ and $\Delta^{2}=A^{2}$.

Assume that $A=0$. Then $k>0$. We consider the exact sequence

$$
0 \rightarrow H^{0}(D,-(i-1) D) \rightarrow H^{0}\left(i D, \mathscr{O}_{i D}\right) \rightarrow H^{0}\left((i-1) D, \mathscr{O}_{(i-1) D}\right)
$$

for $2 \leq i \leq m$. Since $\mathscr{O}_{D}(-(i-1) D) \nsucceq \mathscr{O}_{D}$ and D is 1-connected, we have $\operatorname{dim} H^{0}(D,-(i-1) D)=0$. Hence $\operatorname{dim} H^{0}\left(i D, \mathscr{O}_{i D}\right) \leq \operatorname{dim} H^{0}\left((i-1) D, \mathscr{O}_{(i-1) D}\right)$. By induction, we get $\operatorname{dim} H^{0}\left(i D, \mathscr{O}_{i D}\right) \leq \operatorname{dim} H^{0}\left(D, \mathscr{O}_{D}\right)=1$. In particular, $\operatorname{dim} H^{0}\left(\Delta, \mathscr{O}_{\Delta}\right)=1$.

Assume that $A \neq 0$. We have $\operatorname{dim} H^{0}\left(k D, \mathscr{O}_{k D}\right)=1$ when $k \neq 0$, as shown above. Let $A=\Gamma_{1}+\cdots+\Gamma_{n}$ be a CCC decomposition of A. Since Γ_{i} is chainconnected and $\mathscr{O}_{\Gamma_{i}}(-D)$ is nef, we have $\Gamma_{i} \prec D$ by Proposition 1.5 (1). Then $\Gamma_{i}^{2} \leq-1$ and it follows $A^{2}=\sum_{i=1}^{n} \Gamma_{i}^{2}+2 \sum_{i<j} \Gamma_{i} \Gamma_{j} \leq-n+2 \sum_{i<j} \Gamma_{i} \Gamma_{j}$. Since $\mathscr{O}_{A}(-k D)$ is numerically trivial, we have $\operatorname{dim} H^{0}(A,-k D) \leq n-\sum_{i<j} \Gamma_{i} \Gamma_{j}$ by Corollary 2.2. Hence $\operatorname{dim} H^{0}(A,-k D) \leq n-\sum_{i<j} \Gamma_{i} \Gamma_{j} \leq-A^{2}+\sum_{i<j} \Gamma_{i} \Gamma_{j} \leq$ $-A^{2}$. By the cohomology long exact sequence for

$$
0 \rightarrow \mathscr{O}_{A}(-k D) \rightarrow \mathscr{O}_{\Delta} \rightarrow \mathscr{O}_{k D} \rightarrow 0
$$

we get $\operatorname{dim} H^{0}\left(\Delta, \mathscr{O}_{\Delta}\right) \leq \operatorname{dim} H^{0}(A,-k D)+\operatorname{dim} H^{0}\left(k D, \mathscr{O}_{k D}\right) \leq$ $\operatorname{dim} H^{0}(A,-k D)+1 \leq-A^{2}+1=-\Delta^{2}+1$. If $\operatorname{dim} H^{0}\left(\Delta, \mathscr{O}_{\Delta}\right)=-\Delta^{2}+1$, then k is positive, $a(A)=-\sum_{i<j} \Gamma_{i} \Gamma_{j}=0$ and $\operatorname{dim} H^{0}(A,-k D)=n$. Hence we get (3) by Corollary 2.2. Furthermore, $\Gamma_{i}^{2}=-1$ for $1 \leq i \leq n$. Since $\Gamma_{i} \prec D$ and D is 1-connected, Γ_{i} is also 1-connected.

Corollary 6.2. Let F be a multiple fibre and Z a subcurve of F such that $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(Z, K_{F}\right)$ is zero. Then $p_{a}(Z) \leq 1$. If $p_{a}(Z)=1$, then Z is 0 -connected and F decomposes as

$$
F=Z+\Gamma_{0}+\Gamma_{1}+\cdots+\Gamma_{n}, \quad\left(n=-Z^{2}\right)
$$

where
(1) for $1 \leq i \leq n, \Gamma_{i}$ is a 1-connected curve with $\Gamma_{i}^{2}=-1, Z \Gamma_{i}=1$, and $\mathscr{O}_{\Gamma_{i}}\left(-\left(\Gamma_{0}+\cdots+\Gamma_{i-1}\right)\right) \simeq \mathscr{O}_{\Gamma_{i}}, \mathscr{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right) \equiv 0$ when $i<j$.
(2) Γ_{0} is a positive multiple of the numerical cycle D.

Proof. If the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(Z, K_{F}\right)$ is zero, then the cohomology long exact sequence for

$$
0 \rightarrow \mathscr{O}_{F-Z}\left(K_{F-Z}\right) \rightarrow \mathscr{O}_{F}\left(K_{F}\right) \rightarrow \mathscr{O}_{Z}\left(K_{F}\right) \rightarrow 0
$$

yields $\operatorname{dim} H^{0}\left(F-Z, \mathscr{O}_{F-Z}\right)=-Z^{2}+p_{a}(Z)$. Since $\operatorname{dim} H^{0}\left(F-Z, \mathscr{O}_{F-Z}\right) \leq$ $-Z^{2}+1$ by Theorem 6.1 , we get $p_{a}(Z) \leq 1$. Note that we also have $p_{a}\left(Z^{\prime}\right) \leq 1$ for any subcurve $Z^{\prime} \preceq Z$. If $p_{a}(Z)=1$, then Z is 0 -connected by Lemma 5.6. The rest follows from Theorem 6.1.

Finally, we remark that the following holds:
Proposition 6.3. Let F be a fibre in a relatively minimal fibred surface of genus $g \geq 1$ and E a chain-connected curve contained in the fixed part of $\left|K_{F}\right|$. Then the following hold.
(1) If F is a non-multiple fibre, then $p_{a}(E)=0$ and $-E^{2} \leq g$.
(2) If F is a multiple fibre of multiplicity $m \geq 2$, then $p_{a}(E) \leq 1$. Furthermore, $-E^{2} \leq(g-1) / m$ when $p_{a}(E)=1$, and $-E^{2} \leq(g-1) / m+2$ when $p_{a}(E)=0$.

Proof. Let D be the numerical cycle on $\operatorname{Supp}(F)$. Since E is chainconnected, we have $E \preceq D$ by Proposition 1.5 (1). It is easy to see that the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(D, K_{F}\right)$ is surjective and hence $H^{0}\left(D, K_{F}\right) \rightarrow$ $H^{0}\left(E, K_{F}\right)$ is zero. By the assumption, $\left.K_{F}\right|_{D}$ is a nef line bundle numerically equivalent to K_{D}. Hence we get the assertion for $p_{a}(E)$ by Theorem 5.4. The assertion for E^{2} follows from Theorem 5.1 (4) applied to $\Delta=D-E$, except in the case $(2), p_{a}(E)=0$. For this exceptional case, one can show $-E^{2}=(D-E) E$ $\leq p_{a}(D)+1$ in a similar way.

References

[1] M. Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math., 84 (1962), 485-496.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129136.
[3] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. I.H.É.S., 42 (1973), 171-219.
[4] C. Ciliberto, P. Francia and M. Mendes Lopes, Remarks on the bicanonical map for surfaces of general type, Math. Z., 224 (1997), 137-166.
[5] K. Kodaira, Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20 (1968), 170-192.
[6] K. Konno, Relations in the canonical algebras on surfaces, Rend. Sem. Mat. Univ. Padova, 120 (2008), 227-261.
[7] K. Konno and M. Mendes Lopes, The base components of the dualizing sheaf of a curve on a surface, Archiv der Mathematik, 90 (2008), 395-400.
[8] H. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257-1295.
[9] M. Mendes Lopes, Adjoint systems on surfaces, Bollettino U.M.I.(7), 10-A (1996), 169179.
[10] Y. Miyaoka, On the Mumford-Ramanujam vanishing theorem on a surface, In: Journées de géometrie algébrique d'Angers, Juillet 1979, Algebraic Geometry, Angers, 1979 (ed. A. Beauville), Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980, pp. 239-247.
[11] C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc., 36 (1972), 41-51.
[12] M. Reid, 1-2-3, unpublished note written around 1990.
[13] M. Reid, Chapters on Algebraic Surfaces, Complex algebraic geometry, Park City, UT, 1993, IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, pp. 3-159.
[14] T. Tomaru, On Gorenstein surface singularities with fundamental genus $p_{f} \geqq 2$ which satisfy some minimality conditions, Pacific J. Math., 170 (1995), 271-295.
[15] Ph. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., 92 (1970), 419-454.
[16] S. S. T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc., 257 (1980), 269-329.

Kazuhiro Konno
Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka
Osaka 560-0043, Japan
E-mail: konno@math.sci.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14J29, 14J17.
 Key Words and Phrases. reducible curve, singularity.
 Partially supported by Grant-in-Aid for Scientific Research (B) (No. 16340008), Japan Society for the Promotion of Science (JSPS).

