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A variant of Jacobi type formula for Picard curves
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Abstract. The classical Jacobi formula for the elliptic integrals
(Gesammelte Werke I, p. 235) shows a relation between Jacobi theta constants
and periods of ellptic curves E(A):w? = 2(z —1)(2 — A). In other words, this
formula says that the modular form 93,(7) with respect to the principal
congruence subgroup I'(2) of PSL(2,Z) has an expression by the Gauss
hypergeometric function F(1/2,1/2,1;1 — \) via the inverse of the period map
for the family of elliptic curves E()) (see Theorem 1.1). In this article we show a
variant of this formula for the family of Picard curves C(\,A2):w® =
2(z—=1)(z = A1)(z — A2), those are of genus three with two complex parameters.
Our result is a two dimensional analogy of this context. The inverse of the period
map for C(A1,\2) is established in [S] and our modular form ¥3(u,v) (for the
definition, see (2.7)) is defined on a two dimensional complex ball 2 =
{2Rev + |u|2 < 0}, that can be realized as a Shimura variety in the Siegel upper
half space of degree 3 by a modular embedding. Our main theorem says that our
theta constant is expressed in terms of the Appell hypergeometric function
Fi(1/3,1/3,1/3,1;1 = A, 1= A).

1. Introduction.

Consider the family of elliptic curves
EN:w’ =z2(z-1)(z=X) AXA—=1)#0.

For a real parameter \ in the interval (0, 1), take the ratio of the periods

o dz 0 dz
T /1 N 1)(Z—A)//oo NZeERICED)

here we may suppose that 7 is pure imaginary with Im(7) > 0. We have the theta
representation of the A-invariant
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Here, 9, indicates the Jacobi theta constant

N 2 .
: J , I\ K
V() = E exp [m(n—&—§) T+27TZ(’I’L+§) 51 for r € H={Im7 > 0}.

nez

So (1.1) holds for all 7 € H, and it is the inverse of the period map for the family of
E()). Recall the Jacobi formula relating the elliptic integral and the theta
constant:

THEOREM 1.1 (see [J], p. 235).  Under the relation (1.1) we have

2 v p(E L 2L [T dz
190°<T)_F<2’2’1’1 A>_7r/1 VeE—D)z=—(1-N) (1-2)

Note that at first (1.2) is valid only for pure imaginary 7 € H. By making
analytic continuation we get the equality on the whole H. The classical theorem
of arithmetic geometric mean by Gauss says

L el (1.3)
M,z) \227 7 ") '

Here M(a,b) denotes the arithmetic geometric mean with the initial positive
values a, b, and F(a, 3,7;x) indicates the Gauss hypergeometric function.
According to the duplication formula (see [Ga])

PBa(2r) = 5 (Br) + (),

95,(27) = Yoo (7)o (7),

by putting @ = 93, (7)/9%,(7) we can derive the Gauss AGM theorem (1.3) from
the above Jacobi formula. In fact, we have
1
M3(r), 031 (7)) = Tim o (9(2'7) + 55, (2'7)) = Tim () = 1.
So we have 92,(7) M(1,z) = 1.
In this article we show a variant of this Jacobi formula for the Picard
curves (2.1).
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As an application of our main theorem, we give a new proof of the three terms
AGM theorem discovered in [K-S1, Theorem 2.2]. As a byproduct we show a one
variable variant of the Jacobi formula (Theorem 4.1) for the Borweins curves
(4.1) which was originally shown by J. M. Borwein and P. B. Borwein in [B-B].
Analogous results corresponding to the extended Gauss AGM in [K-S2] will be
published elsewhere.

2. Jacobi type formula for the Picard curves.

2.1. The Picard modular form revisited.
We consider Picard curves of genus three with projective parameters:

C€) s w’ = 2(z — &) (2 — &1)(2 — &), (2.1)

where

EeE={[&:&:6&] € P(C): §66(% — &) (& — &)(& — &) # 0}

The Jacobian variety Jac(C(€)) of C(§) has a generalized complex multiplication
by v/—3 of type (2,1). In fact we have a basis of holomorphic differentials

dz dz zdz
p=pr=—, pr=—0, p3=—>.
w w w

Put A\ =& /&, A2 = &/&. For the moment we assume 0 < A\; < Ay < 1. We may
choose a canonical basis {A1, Ay, A3, By, Bo, B3} of H1(C, Z) with the following
property (2.2) that is used in [S]. We put a graphic configuration for it in Figure 1,
here we put cut lines starting from branch points in the lower half z-plane to get
simply connected sheets. The real line (resp. the dotted line, the chained line)
indicates a path on the first sheet (resp. the second sheet, the third sheet).

!.-.-._.-._._.-._._._._L.‘..r.;._.l

B A4 ron o Ay

o a. E:}lll P : O
s Stk T

Figure 1. homology basis.
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Setting p(z,w) = (z,ww), we have
Bs = p(B1), A3 = —p*(A1), By = —p*(Ay), (22)

here w stands for exp[27mi/3]. We have A;B; = ¢;;. Put

no:/saﬂh:—/ ¢7n2=/<ﬁ~ (2.3)
Ay By Ay

They can be extended as multivalued analytic functions on the (A1, \2)-space
P*(C). Tt holds

Mo fAl ¥1 —w’ fA3 1
mil=|-Jpe|=| —Joe |
2 Ja, 1 —w? [5, 1
fAl Pi —w ng Pi
—w fBJ vi | =1 — f33 ©i for i =2,3. (2.4)
fA2 Pi —w fBZ Pi

Set

0= (/Aj%), 2y = (/B]%)y (1<4,5<3).

The normalized period matrix of C(£) is given by = Q7. By the relations of
periods (2.4) together with the symmetricity 'Q = 0, we can rewrite

u? 2w’ 2 wu? —wv
1-w wu 1-w
N=07'0, = 2 —w? 2.5
=070 = wu w u , (2.5)
wu? —wv U P20y
1-w 1-w

here we put u = n2/my, v="m1/m. So we set Q= Q(u,v). The Riemann period
relation Im ©Q > 0 induces the inequality 2Re (v) + |ul> < 0. We set

D ={n=[n:m:m| € P:nHT <0} = {(u,v) € C’2:21:{e(v)+|u|2 < 0},
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here we put H =

O = O
O O =
_ o O

) . We define our period map ® : Z — Z by

(I)(Ala )‘2) = ["707 m, 772]
Set the Picard modular group

I = {g€ GLy(2lw) : 'gHg = H},

bt 1 N
andsetI'(vV/—3)={g €Tl :g=I3modv—3}. Theelementg= | po» q 1o | €T
acts on Z by p3s @3 T3

9(u,v) = < (2.6)

3+ @u+Tr3u P2+ qu+ rzU)
pi+qu+ru pr+qutru)

Let a = (a1, a2,0a3),b = (b1, b2, b3) be in @Q®. Set the Riemann theta constant

a
0[
b

here ) is a variable on the Siegel upper half space of degree 3. We use the

Q) = Z exp[mi(n + a)Q'(n + a) + 2mi(n + a)'b],

neZ®

following Riemann theta constants and their Fourier expansions (see [S, p. 327],
also [K-S1, formula (1.3)]):

sutwo)— o] © 1/6 0
REUTT 3 160 k3

(Quv) = Y PTEH(pu)g" (2.7)
]

WEZ|w

with an index k € Z, where Tr(p) = p+ @, N(p) = pi and

H(u) = exp L/% uﬂ 9 [ 1? 2

(=), g =exp| 2]

Apparently it holds ¥x(u, v) = 9443(u,v), so k runs over {0,1,2} = Z/3Z.
The following properties are established.

Fact 2.1.
(i) ([P], [D-M], [T], [S, p. 349]) The period map ® induces a biholomorphic
isomorphism from the &space P? to the Satake compactification 2/T'(v/—3) of

2/T(V=3).
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(ii) ([S, p. 327]) The map A : 2 — P? defined by

AT, 11, 12]) = [0o(u, 0)*, 91 (u, 0)*, D2(w, 0)7] (2.8)
gives the inverse of the period map .

(iii) ([S, p. 329]) The projective group I'(v/—3)/{1,w,w?} is generated by

1 0 0 1 0 0 1 0 0
g1 = 01 0 ) g2 = W_w2 1 0 ) 93 = w-—1 1 w-1 )
0 0 w 0 0 1 1—w® 0 1
1 w=—uw? 0 1 w—1 w-—1
g=10 1 0], =10 1 0
0 0 1 0 1-w 1
Let G denote the group generated by g1, ..., gs.
(iv) ([S, p. 346]) We have the automorphic property:
Di(g(u,v))’ = (p1 + qrv + r1u)’ 9y (u, v)° (2.9)
Pt @1 M
forg=|p ¢ r | €qG.
b3 q3 T3

(v) The compactification /G is obtained by attaching 4 points corresponding to
P() = [vaflaé.Z} = [17070],])1 = [03130}’])2 = [07071]3P3 = [17171] to @/G Put QZ =
O(P) fori = 0,1,2,3. Here we note that ®(P3) = Q3 = limy,0.y——o00(©, V).

gl):0
P
—
AN
¢ -space n-space

Figure 2. Correspondence between &-space and 2.
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According to Fact 2.1 (ii), we have an isomorphism between %2/I'(v/—3) and
£-space P%:

(&J & :52) = (19(3)(“7 U) : ﬂ?(uav) : 193(“’7”)) (2'10)

PROPOSITION 2.1.  The C-vector space of modular forms with the automor-
phic property as in (2.9) is generated by 93 (u,v), 93 (u,v) and 93(u,v).

PROOF. This is an easy consequence of Fact 2.1 (ii) and (iv). O

2.2. Main Theorem.
In this subsection we use the Appell hypergeometric function

(a,m +n)(b,m)(,n)

(¢,m + n)mln!

Fl(a,bv blac; )‘17>\2): Z

m,n>0

ATAT for [Ay] <1, Ao <1 (2.11)

with

(am):{a(a—i—l)'u(a—{—n—l) for n >0,
1 for n = 0.

We have the integral representation

F 00 / !
Fi(a,b,b',c; A1, M) = ) ) / P 1) T T = M) (2= N)
1

F'(a)'(c—a

THEOREM 2.1 (A Jacobi type formula in two variables).  Under the relation

1 (u,v 59, U,V 3
(he) = ( e ;) 2.12)

stated in Fact 2.1, we have

ﬁo(u,v):C()E( ,1;1—)\1,1—)\2>, (213)
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REMARK 2.1. By using the power series expansion of Fj, we have the
equality (2.13) for an arbitrary point in a neighborhood of the set {(u,v) € Z:
u=0,v <0} in 2. By making the analytic continuation of the both sides we have
the equality on the whole domain Z.

COROLLARY 2.1. We have
s s 111 5
197‘,(’&711) :C{) Ai F] §,§,§71;1—A1,1—A2 ; (Z:172) (214)

REMARK 2.2.  According to some classical literature (also in [M-T-Y]), it
holds

3/2
Co :19[ r —> . (2.15)

D= D=
| I
N
IS
Il
‘ w
[~
~
oo

@

™

ko)
/N
ot
3
ﬁ
—
~_—
N
—

2.3. Application to a three terms AGM theorem.

In [K-S1], a new three terms arithmetic geometric mean Ms(a,b,c) is
introduced. For three positive numbers a,b,c, set a new triple (a',,c¢') with
d=3i(a+b+c), V®+ = 1(a®+ bc+ Fa+ ab® + b + ca?), b — B =
#_—3 (a —b)(b— ¢)(c— a). Define our AGM process by

(a,7 bl? C/) = w(a’ b, C)'

We can take a nice choice of the cubic roots for ', ¢ so that 1/*(a, b, c) is a triple of
positive numbers again. Thus, we get a unique positive number

Ms(a, b, c) := lim ¢"(a,b, c).

n—oo

For the proof of the convergence of ¥"(a,b,c) see [K-S1, Theorem 2.1]. As a
consequence of Main Theorem we obtain a new proof of the three terms AGM
theorem in [K-S1, Theorem 2.2, p. 134]:

COROLLARY 2.2 (Three terms AGM theorem).

1 111 A
i - bl g il-ah1=y), <Ly <1). (216
M;(1,z,y) 1(3 373 r y) (|| lyl <1). (2.16)

Observing the following isogeny formula (see [K-S1, Theorem 1.1, p. 132])
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1
190(\/ —3u, 3’1)) = g (190 + % + 192),
1
93 (V—3u, 3v) + 95(V—3u, 3v) = 3 (0391 + 9392 + 9590 + V0] + 9103 + 9203),
1
93 (V—=3u, 3v) — 93(V=3u, 3v) = —— (Jy — 1) (1 — 92) (5 — ),
i ( u, 3v) — U ( u, 3v) 3\/3( o — ) (P — %) (Pg — Do)

we obtain the above corollary by the exactly analogous argument in the

introduction.
EXAMPLE 2.1. We have

111 11
Fl _7_7_71;_7_ _L
3'3 3 22

(We get it from

1 11—z 1
F a,b,a+b+§,1—x =F 2a,2b,a+b+§, 5 , F a,b,a+b+§,1

VAl (a+b+3)

Tla+3HT(b+1)’

see [Go, p. 115].) Put 2 = y = 1/+/2. By three times procedure 1) for them, we get
a forty digits approximation

1 1 1
w (452 7)
= 1.159595266963928365769992051570020881945 - - -
N
NORGN

With one more step we get 120 digits.

of

3. Proof of the Main Theorem.

Note that Jx(u,v) (k=0,1,2) is holomorphic on 2. The period 7y =
fA1 (z(z — 1)(z — A1) (z — A2))?dz is a single valued holomorphic function on
2 via the relation (2.12). So we denote 1y = ng(u,v) in this sense. We compare the
behavior of Jy(u,v) and ny(u,v).

The period 7 is not equal to zero for any affine parameters Aj, Ao. So ng(u, v)
has only zeros possibly on ®({& = 0}).

We have
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LEMMA 3.1.  9x(u,v) (k=0,1,2) does not vanish at any point (u,v) on ®(Z).

Although this is due to [S p. 316], there we used the original expression of
theta functions by Picard. And the statement is not so visible. So we give a direct
proof in the Appendix.

By the above argument 9Jy(u,v) =0 on ®({{ = 0}). ¥y may have other
divisor components in 2 — ®(E).

Pt @1 N
For anelement g= | po ¢ 12 | € G, there are actions on (u,v) € Z given
bs g T3

by (2.6) and on the triple (ng,n1,12) by

g(m) = (9(m), 9(m), 9(n2))
= (P10 + @ + 12, P21 4+ @M + Tam2, P30 + @3+ T302).

Namely 7o(u, v)* has the same automorphic property as P (u,v) (k=0,1,2).
Now we claim

Po(u, v)3 = ang’(u,v) (3.1)

for some constant o.
By Proposition 2.1, we have

= oy + 1t + et (3.2)

for some constants cg, ¢, co. Set Div(ng) (resp. Div(dy)) be the divisor of ny(u,v)
(resp. ¥o(u,v)). The support of Div(ng) is contained in that of Div(y). And the
order of Div(rnp) is not smaller than that of Div(dy). Take two different points
Rl, Rg on DiV(T]o).

By substituting R; and Ry in (2.10), we have

Because these two projective points are different, it holds ps — qr # 0. On the
other hand, by making possible cancellation of zeros in (3.2) we have

{O:O—chl—i-qcz
0=0+4rc; + sco.

So we have ¢; = ¢ = 0. Thus we have the equality (3.1).
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Now let us determine the value a. Suppose 0 < A\ < A3 < 1. We have
o = / (2(z = Dz = M)z = X)) Pdz =1 / (2(z = D)(z = M)(z = \o)) " Pdz
A 0

with some constant c¢;. Now recall the integral representation

/

F<C) > b+b’7cz_ cfaflz_wsz_ - .
)/lz (e = 1)z —2) (s — y) Ve

Fi(a,bV,c; ="
1((17 ) 7Ca$7y> I‘(a)F(c—a

By changing the variable z = 1 — 2/ we have

111

=cfi|{-,-,=,;1=X,1—-X
Mo C2 1<35373a5 1, 2)

with some constant cy. Hence we have

111

190(”)1}):ﬁF1(§7§7§a1;1_)\171_)\2>

with some constant 3. If we put £ = P3 = [1, 1, 1], it corresponds to (§ : & : &) =
(1:1:1). So the right hand side is equal to 8F;(1/3,1/3,1/3,1;0,0) = 8. Recall
that ®(P3) = limy—0y——oc(u,v). According to the Fourier expansion in (2.7) we
have

1
lim  do(u,v) = HO0) =9 ° | (0, —w?).
(u,0)—(0,—00) %
1
So we have 8 =19 |9 | (0, —w?). Thus, we obtained the required equality. O
6

4. Degeneration to the case of Borweins’ case.

As a degenerate case A = A\; = A9, we obtain the Jacobi type formula for the
Borweins curves (see [B-B], [K-S1, p. 141])

w = 2(z—1)(z— N2 (4.1)

Set
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Bo(7) = Z (. Z (62777'7/3

) m?—mn+n?

e Zw| mmnezZ
. . ) m?—mn+n?
6, (T) — § eQmTr(;l,)/SqN(y,) — E €2m(7n,+n)/3 (627r1,7'/3>
HEZ W] mnez

q = exp[2mit/3], N(p) = pp, Tr(p) = p + 7.

Putting u = 0,7 = —iv/3v in (2.12) we have the expression of A = A\ = Ag:

(4.2)

THEOREM 4.1 (Borweins [B-B, p. 695]).  Under the relation (4.2), we have

0o (7) :F<1 2 1;1—)\).

3’3’

This equality is obtained just as the case A = A; = A9, namely the case u = 0,
in the main theorem.

REMARK 4.1. Borweins have shown this theorem by using their AGM
theorem. But we proved it directly with modular arguments. So our theorem
induces their AGM theorem also. This is the context discussed in the proof of
Corollary 2.2.

5. Appendix.

We give a direct proof of Lemma 3.1. For it, we need some preparatory
propositions. The equalities in first three propositions should be understood as
those on the Jacobian variety Jac(C(£)).

Set w="(¢1,92,p3), and set P, =the point at infinity, Py = (z,w) =
(0,0), P, = (&,0), P, = (&1,0), Py = (&,0) on C(§). According to Proposition I-1
in [S, p. 319], we have

PROPOSITION 5.1.

2 2 2 2
P, 1 ! 1 i 1
/ w==-|(Ql1]+]| 1 ,/ w==-0Q]0 ,/ w==1| 0
Py 3 Py 3 Py 3
\ 1 -1 \ 1 ‘ -1
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According to Proposition I-2 in [S, p. 326], we have

PROPOSITION 5.2.  The Riemann constant A with respect to the homology
basis {Ay, ..., B3} and the terminal point Py is given by

) 0 0
0 0

We have

Rl R,1
2A=/ w+...+/ w
Py Py

for a positive canonical divisor K = Ry + ...+ Ry. According to Corollary 3.6 in
[M, p. 160], we have

PROPOSITION 5.3.  ¥(z,Q) = 0 if and only if it holds

Q1 Q2
z:A—</ w—|—/ w>
R’)O R’)O

for some positive divisor Q1 + Qs.
So we have

PROPOSITION 5.4.  For a given positive divisor Q1+ Q2+ Q3, we have
f(P)= 19(2,‘;:1 Jplw— f;;w— A,Q) =0 if and only if K —(Q1+ Q2+ Q3) is
represented by a positive divisor.

PrROOF. If we have Q1 + Q2+ @3+ Ry = K for a point R;, put Ry = P.

Then we have
3 Qi Ry Ry P
Z/ w+/ w+/ w—/ w=2A. (5.1)
i=1 Y Px Py Py Py

By Proposition 5.3, it holds f(P) = 0.
In case f(P) =0, we must have (5.1). It means

O +Q+Qs+R+Ry—P=K.
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Considering the residue of a meromorphic differential, we know that it happens
only if the left hand side is a positive divisor. So we are forced to have a
cancellation Ry = P. Consequently K — (Q1 + Q2 + Q3) is a positive divisor. [

By the theorem of Riemann (see [M, Theorem 3.1, p. 149]), we have:

REMARK 5.1. If f(P) is not identically zero, it has exactly three zeros

P = le Q?a Q3~

Now we can consider our theta functions. We have

0 0
Po(u,v) =0 G QL1 +]1][,92] xsome unit
0 0
0 0

=9 Q2/3]1+]2/3]—-A,Q| xsome unit

0 0
P Py Py P,
—19</ w+/ w+/ w—/ w—A,Q) X some unit.
Rﬁo Poc Poc P@o

We have (p1) =Py + Pi+ P, + P, (p2) = 4P, (¢3) =3P+ Px. So K — (P +
P, + Py) cannot be realized by a positive divisor. So it holds ¥g(u, v) # 0 for any
point (u,v) € ®(2).

We have

Py Py P, P
ﬂl(u,v):ﬂ(/ w—i—/ w—i—/ w—/ w—A,Q)xsomeunit,
Py Py Py P
Py By Py Py
ﬂg(u,v):ﬂ(/ w+/ w+/ w—/ w—A,Q)xsomeunit.
Py Pw Py Py

So we show that ¥ (u,v)¥2(u,v) # 0 for any point (u,v) € ®(Z) in an analogous

way. Thus we have proved Lemma 3.1. ([
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