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Abstract. We describe an approach to classification of weighted homoge-

neous Saito free divisors in C3. This approach is mainly based on properties of Lie

algebras of vector fields tangent to reduced hypersurfaces at their non-singular

points. In fact we also obtain a classification of such Lie algebras having similar

properties as ones for discriminants associated with irreducible real reflection

groups of rank 3. Among other things we briefly discuss some applications to the

theory of discriminants of irreducible reflection groups of rank 3, some interesting

relationships with root systems of types E6, E7, E8, and few examples in higher

dimensional cases.

Introduction.

It is well-known that the discriminant D associated with an arbitrary

irreducible real reflection group Wn of rank n can be defined in Cn as zero-set of a

polynomial, the determinant of a square matrix of order n whose entries are

coefficients of vector fields tangent to D at its non-singular points (cf. [15], [16],

[21]). Furthermore, the discriminant is, in fact, a weighted homogeneous reduced

hypersurface of special kind. It is possible to prove [loc. cite] that tangent vector

fields generate a free module over the polynomial ring C ½z1; . . . ; zn�. Following A.

G. Aleksandrov (cf. [3]), a reduced hypersurface is called a Saito free divisor if the

tangent vector fields generate a free module over the polynomial ring. In this

sense, discriminants are Saito free divisors.

The purpose of this paper is to obtain a complete list of weighted

homogeneous Saito free divisors in C3 whose Lie algebras of tangent vector

fields have similar properties as ones for discriminants associated with irreducible

real reflection groups of rank 3, that is, with groups A3, B3 and H3. The key idea

of our approach is to compute the required list in parallel with enumeration of

certain Lie algebras of rank 3 making use of properties of vector fields tangent to

discriminants.
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Let us briefly describe the content of the paper. In the first three sections we

discuss basic notions and results from the theory of Saito free divisors related with

discriminants of finite reflection groups. Then we describe all Lie algebras of three

variables satisfied certain conditions. As a consequence we obtain a total of 17

non-isomorphic Lie algebras associated with different weighted homogeneous

polynomials which define Saito free divisors in C3. In the next two sections we

prove the main result of the paper. It states that the set D of all these polynomials

is the union of 3 subsets DA, DB and DH , containing 2, 7 and 8 elements with

types of homogeneity �A ¼ ð12; 2; 3; 4Þ, �B ¼ ð9; 1; 2; 3Þ and �H ¼ ð15; 1; 3; 5Þ,
respectively. In its turn, they correspond to types of homogeneity of discriminants

associated with reflection groups A3, B3 and H3, respectively. In Section 5 we

prove that any polynomial from D determines an affine hypersurface which can be

regarded as an affine deformation of a singular plane curve having simple

singularities of types E6, E7 or E8. In a more general context (see [5]) such

hypersurfaces can be also considered as affine quasicones over projective weighted

plane curves. In Section 6 we establish close relationships between polynomials

from D and subroot systems of root systems of types E6, E7 or E8. To be more

precise, our result is the following.

There are natural bijections between DB and DH and two sets of corank one

subdiagrams of Dynkin diagram of type E7 and E8, respectively. On the other

hand, there is a natural bijection between DA and the set of corank one

subdiagrams of Dynkin diagram of type E6 invariant under its non-trivial

symmetry.

In section 7 we discuss some related topics while in Appendix we give explicit

representations for coefficient matrices associated with generators of Lie algebras

of tangent vector fields for 17 hypersurfaces determined by polynomials from D.

It should be noted that E. Brieskorn, K. Saito [7] and P. Deligne [10] proved

that the complement C of the discriminant associated with an arbitrary finite

irreducible reflection group is a Kð�; 1Þ-space and the fundamental group �ðC Þ is
an Artin group. That is why it is quite interesting to analyze fundamental groups

of the complement of hypersurfaces determined by the polynomials from D.

Recently T. Ishibe and K. Saito computed these groups explicitly (cf. [12]).

In conclusion we also remark that there are few works devoted to the problem

of classification of Saito free divisors in the context of the theory of arrangements

(see [13]) or non-isolated singularities (see [5]); there are also many other studies

devoted to similar problematic from other points of view (for example, see [9],

[11], [20]).
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1. Affine Saito free divisors.

First let us consider an algebraic version of the original definition of free

divisors; the latter appeared in the context of the theory of unfoldings of functions

with isolated critical points initiated by K. Saito (see [15]). Recall his basic

definition. Let S be an n-dimensional complex manifold, let D be a reduced

hypersurface of S, and let o 2 D. Then locally D is defined by an equation

hðzÞ ¼ 0, where hðzÞ ¼ hðz1; . . . ; znÞ is the germ of a holomorphic function in an

open neighbourhood U of o, hðzÞ has no multiple factors, and hz1; . . . ; zni is a

system of local coordinates in U.

Following K. Saito we denote the coherent sheaf of OS-modules of vector

fields logarithmic along D by DerSðlogDÞ. This OS-module is often called the

module of tangent vector fields; it consists of germs of holomorphic vector fields

� 2 DerðOSÞ on S such that �ðhÞ belongs to the principal ideal ðhÞ�OS. In

particular, the vector field � is tangent toD at its non-singular points. It should be

remarked that DerSðlogDÞ is naturally endowed with structure of Lie algebra

denoted by LD. It is usually called the Lie algebra of vector fields tangent to the

hypersurface D.

The next statement is due to K. Saito [15] and it gives a criterion of freeness

for reduced hypersurfaces in the local situation.

PROPOSITION 1 (Saito’s Criterion). The stalk DerS;oðlogDÞ is a free

OS;o-module if and only if there are n germs of logarithmic vector fields

V 0; . . . ; V n�1 2 DerS;oðlogDÞ such that the determinant of the square matrix M ¼
k�ijk of order n whose entries are coefficients of V i, i ¼ 0; . . . ; n� 1, is equal to �h,

where � is a unit. These vector fields form a basis of DerS;oðlogDÞ.

The hypersurface D is called a Saito free divisor when DerSðlogDÞ is a locally

free OS-module (see [8]). For example, DerSðlogDÞ as well as its OS-dual

�1
SðlogDÞ, the module of logarithmic differential forms with poles along D, are

locally free if D is a smooth hypersurface, a plane curve (see [15], Corollary (1.7)),

or a divisor with strict normal crossings (see [3]). It is not difficult to see that the

system of vector fields V ¼ hV 0; . . . ; V n�1i is involutive; the corresponding Lie

algebra L ðV Þ of rank n is isomorphic to LD.

One can get an affine globalization of this notion as follows. Let now S ¼ An

be the n-dimensional affine space over C , and let R ¼ C ½z1; . . . ; zn� be the

polynomial algebra of n variables. In such a case, a local freeness of DerSðlogDÞ
over R means that this OS-module is stable free over R, that is, for any large

enough N there is a R-module isomorphism

#N : DerSðlogDÞ � RN ! RnþN:
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Of course, the requirement of freeness over the polynomial ring R is much

stronger than the condition of local freeness: any affine hypersurface with free

module DerSðlogDÞ of logarithmic vector fields is a Saito free divisor in the

original sense. However, the converse is not true in general. Of course, Saito’s

Criterion remains still valid for affine hypersurfaces.

2. Discriminants and determinants.

Now we restrict ourselves by the case of affine space of dimension three, that

is, S ¼� C3. Let now p, q and r be positive integers such that p < q < r. We assume

that p; q; r have no common factors > 1. Let R ¼ C ½x; y; z� be the graded

polynomial algebra generated by weighted variables x, y and z with entire positive

weights equal to p, q and r, respectively. Further, denote by @x, @y, @z the partial

derivatives with respect to x, y, z, respectively.

Let E ¼ px@x þ qy@y þ rz@z be a linear vector field; it is usually called the

Euler vector field. If f 2 R is a polynomial such that EðfÞ ¼ df , then f is called

weighted homogeneous of type ðd; p; q; rÞ. The number d is called the degree of f.

Let us now define the following triple of regular vector fields on S:

V 0 ¼ px@x þ qy@y þ rz@z;

V 1 ¼ qy@x þ h22@y þ h23@z;

V 2 ¼ rz@x þ h32@y þ h33@z;

where V 0 is the Euler field and hij 2 R are weighted homogeneous polynomials.

Analogously to notations of Saito’s Criterion one can associate with this triple a

square matrix of the third order whose entries are coefficients of these vector

fields:

M ¼
px qy rz

qy h22 h23

rz h32 h33

0
B@

1
CA:

Let us consider the following requirements on triples of vector fields defined

above.

CONDITION 1.

(i) ½V 0; V 1� ¼ ðq � pÞV 1, ½V 0; V 2� ¼ ðr� pÞV 2;

(ii) ½V 1; V 2� ¼ f0V
0 þ f1V

1 þ f2V
2, where fj 2 R are polynomials for all j ¼ 0; 1; 2;

(iii) h22 ¼ azþ gðx; yÞ, where a 2 C� is a non-zero constant and gðx; yÞ is a
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polynomial depending on x and y only;

(iv) the polynomial F ¼ detðMÞ is not equivalent to the monomial z3 under

weighted changes of variables.

REMARK 1. The first two requirements of Condition 1 imply that the

system of vector fields V ¼ hV 0; V 1; V 2i is involutive. That is, these vector fields
generate Lie algebra L ðV Þ of rank 3 over R. The third requirement yields that

pþ r ¼ 2q and detðMÞ contains the monomial z3 with a non-zero coefficient. That

is, the degree of the polynomial detðMÞ is equal to 3r ¼ 3ð2q � pÞ. If detðMÞ ¼ z3,

then F ¼ 0 defines a non-reduced affine hyperplane D and it is clear that LD is

generated by @x, @y, z@z, that is, L ðV Þ 6¼� LD; it is reasonable to exclude such case

from further considerations with the help of the fourth requirement.

3. Basic examples.

Let W be a finite irreducible reflection group acting on a real vector space of

dimension 3. Let x; y; z be the basic W -invariant polynomials and let F be the

discriminant of W . Then F is a polynomial containing in the graded ring R; it

determines an affine reduced hypersurface D � C3. All vector fields tangent to D

satisfy Condition 1; they generate Lie algebra LD isomorphic to L ðV Þ. The

following three basic examples can be found in [15] or [22].

A3-case: �A ¼ ð12; 2; 3; 4Þ, and

M ¼

2x 3y 4z

3y �x2 þ 4z �1
2
xy

4z �1
2xy

1
4ð8xz� 3y2Þ

0
BB@

1
CCA:

Then detðMÞ ¼ FA;DSC ¼ 1
4
ð�16x4zþ 4x3y2 þ 128x2z2 � 144xy2zþ 27y4 � 256z3Þ.

Further, ½V 0; V 1� ¼ V 1, ½V 0; V 2� ¼ V 2 and ½V 1; V 2� ¼ 1
2 V

0 � 1
2 xV

1 (cf. [2], (6.1)).

B3-case: �B ¼ ð9; 1; 2; 3Þ, and

M ¼
x 2y 3z

2y xyþ 3z 2xz

3z 2xz yz

0
B@

1
CA:

Then detðMÞ ¼ FB;DSC ¼ zð�4x3zþ x2y2 þ 18xyz� 4y3 � 27z2Þ, ½V 1; V 2� ¼ xV 2 �
zV 0 (cf. [2], (6.4)).

H3-case: �H ¼ ð15; 1; 3; 5Þ, and
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M ¼

x 3y 5z

3y 2x2yþ 2z 7xy2 þ 2x4y

5z 7xy2 þ 2x4y 1
2ð15y3 þ 4x4zþ 18x3y2Þ

0
BB@

1
CCA:

Then detðMÞ ¼ FH;DSC ¼ �50z3 þ ð4x5 � 50x2yÞz2 þ ð4x7yþ 60x4y2 þ 225xy3Þz�
135
2
y5 � 115x3y4 � 10x6y3 � 4x9y2. In this case ½V 0; V 1� ¼ 2V 1, ½V 0; V 2� ¼ 2V 2 and

½V 1; V 2� ¼ ð4x3yþ 2y2ÞV 0 þ 4xyV 1.

The aim of the paper is to describe a class of hypersurfaces which can be

regarded as analogues of the discriminants associated with finite irreducible

reflection groups. In particular, they are to be Saito free divisors.

PROBLEM 1. How to describe all triples hV 0; V 1; V 2i of vector fields

satisfying Condition 1 up to weighted changes of variables and the corresponding

Lie algebras L ðV Þ up to weighted algebraic isomorphisms?

4. The main result.

Our solution of Problem 1 can be summarized as follows.

THEOREM 1. In notations of Section 2 the following assertions hold.

(i) If ðp; q; rÞ 6¼ ð2; 3; 4Þ; ð1; 2; 3Þ; ð1; 3; 5Þ, then there are no triples hV 0; V 1; V 2i
of vector fields satisfying Condition 1.

(ii) The remaining cases are described as follows.

ðDAÞ if ðp; q; rÞ ¼ ð2; 3; 4Þ, then up to weighted changes of variables there are

two triples of vector fields satisfying Condition 1; the corresponding polynomials

F ¼ detðMÞ of degree 12 are the following:

FA;1 ¼ 16x4z� 4x3y2 � 128x2z2 þ 144xy2z� 27y4 þ 256z3;

FA;2 ¼ 2x6 � 3x4zþ 18x3y2 � 18xy2zþ 27y4 þ z3:

ðDBÞ if ðp; q; rÞ ¼ ð1; 2; 3Þ, then up to weighted changes of variables there are

seven triples of vector fields satisfying Condition 1; the corresponding polynomials

F ¼ detðMÞ of degree 9 are the following:

FB;1 ¼ zðx2y2 � 4y3 � 4x3zþ 18xyz� 27z2Þ;
FB;2 ¼ zð�2y3 þ 4x3zþ 18xyzþ 27z2Þ;
FB;3 ¼ zð�2y3 þ 9xyzþ 45z2Þ;
FB;4 ¼ zð9x2y2 � 4y3 þ 18xyzþ 9z2Þ;
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FB;5 ¼ xy4 þ y3zþ z3;

FB;6 ¼ 9xy4 þ 6x2y2z� 4y3zþ x3z2 � 12xyz2 þ 4z3;

FB;7 ¼ 1
2
xy4 � 2x2y2z� y3zþ 2x3z2 þ 2xyz2 þ z3:

ðDHÞ if ðp; q; rÞ ¼ ð1; 3; 5Þ, then up to weighted changes of variables there are

eight triples of vector fields satisfying Condition 1; the corresponding polynomials

F ¼ detðMÞ of degree 15 are the following:

FH;1 ¼ �50z3 þ ð4x5 � 50x2yÞz2 þ ð4x7yþ 60x4y2 þ 225xy3Þz� 135
2 y

5 � 115x3y4

� 10x6y3 � 4x9y2;

FH;2 ¼ 100x3y4 þ y5 þ 40x4y2z� 10xy3zþ 4x5z2 � 15x2yz2 þ z3;

FH;3 ¼ 8x3y4 þ 108y5 � 36xy3z� x2yz2 þ 4z3;

FH;4 ¼ y5 � 2xy3zþ x2yz2 þ z3;

FH;5 ¼ x3y4 � y5 þ 3xy3zþ z3;

FH;6 ¼ x3y4 þ y5 � 2x4y2z� 4xy3zþ x5z2 þ 3x2yz2 þ z3;

FH;7 ¼ xy3zþ y5 þ z3;

FH;8 ¼ x3y4 þ y5 � 8x4y2z� 7xy3zþ 16x5z2 þ 12x2yz2 þ z3:

In all cases ðDAÞ, ðDBÞ, ðDHÞ, there are isomorphisms LD ¼� L ðV Þ, where
the zero-set of the corresponding determinant polynomial F ¼ detðMÞ is denoted

by D.

REMARK 2.

1. The first variant of Theorem 1 has been proved by the author in 1992 (see

[17]).

2. The polynomials FA;1, FB;1 and FH;1 are equal to the discriminants FA;DSC;

FB;DSC and FH;DSC associated with irreducible reflection groups of types A3, B3

and H3, respectively (see Section 3).

3. The polynomial FA;2 was found by M. Sato (cf. [23], [17]).

4. Let F ðx; y; zÞ be any polynomial from Theorem 1. If the weights of

variables x; y; z are equal to ð2; 3; 4Þ (or to ð1; 2; 3Þ; ð1; 3; 5Þ), then the zero-set E of

the polynomial F ð0; y; zÞ is a plane curve with a simple singularity of type E6 (or

E7, E8, respectively) (cf. [19]). It should be noted here that the curve defined by

F ð0; y; zÞ ¼ 0 does not depend on the choice of the weighted homogeneous

coordinates ðx; y; zÞ since p < q, r. Moreover, the polynomial F ðx; y; zÞ defines a

family of plane curves E x in yz-space; this family can be considered as an affine

deformation of the curve E ¼ E 0 or an affine quasicone over E .
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5. As was already remarked in Introduction, the complement C of the

discriminants associated with an arbitrary finite irreducible reflection group is a

Kð�; 1Þ-space and the fundamental group �ðC Þ is an Artin group. In this

connection it should be remarked that recently T. Ishibe acquainted the author

with his master thesis where all these fundamental groups are computed (see

[12]).

5. Proof of Theorem 1.

For the proof we need the following technical statement.

LEMMA 1. Assume that m;n; l are positive integers and i; j; k are non-

negative integers satisfied the following conditions:

(a) l 2 f2; 3; 4g;
(b) mðiþ jþ k� 1Þ ¼ nðl� j� 2kÞ;
(c) if m > 1 and n > 1, then m and n are mutually prime.

Then the following conclusions are valid.

(i) Suppose that m > 2.

If l ¼ 2, then ði; j; kÞ ¼ ð0; 0; 1Þ.
If l ¼ 3, then ðj; kÞ ¼ ð0; 0Þ and m ¼ 3; i ¼ nþ 1.

If l ¼ 4, then m ¼ 3; i ¼ n; j ¼ 1; k ¼ 0 or m ¼ 4; i ¼ nþ 1; j ¼ k ¼ 0.

(ii) Suppose that m ¼ 2.

If l ¼ 2, then ði; j; kÞ 2 fð0; 0; 1Þ; ðnþ 1; 0; 0Þg.
If l ¼ 3, then ði; j; kÞ ¼ ðn; 1; 0Þ.
If l ¼ 4, then ði; j; kÞ 2 fðn; 0; 1Þ; ðn� 1; 2; 0Þg.

(iii) Suppose that m ¼ 1.

If l ¼ 2, then ði; j; kÞ 2 fð0; 0; 1Þ; ð2nþ 1; 0; 0Þ; ðn; 1; 0Þg.
If l ¼ 3, then ði; j; kÞ 2 fðn; 0; 1Þ; ðn� 1; 2; 0Þ; ð2n; 1; 0Þ; ð3nþ 1; 0; 0Þg.
If n > 1 and l ¼ 4, then ði; j; kÞ 2 fð2n; 0; 1Þ, ðn� 2; 3; 0Þ, ð2n� 1; 2; 0Þ,

ð3n; 1; 0Þ, ð4nþ 1; 0; 0Þ}.
If n ¼ 1 and l ¼ 4, then ði; j; kÞ 2 fð2; 0; 1Þ; ð1; 2; 0Þ; ð3; 1; 0Þ; ð5; 0; 0Þg.

We omit the proof of this lemma since it is quite elementary.

Now we are able to prove Theorem 1. At first we are going to determine the

polynomials hij, the entries of the matrix M from Section 2. The proof is divided

into few computational steps.

STEP 1. As was also remarked Condition 1 implies that 2q ¼ pþ r. Set

p ¼ m, q ¼ mþ n, r ¼ mþ 2n, where m;n are positive integers. In addition, if

m > 1, then one can assume that m and n have no common factors. Under our

assumptions one obtains
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degh22 ¼ mþ 2n; degh23 ¼ degh32 ¼ mþ 3n; degh33 ¼ mþ 4n;

degxiyjzk ¼ imþ jðmþ nÞ þ kðmþ 2nÞ;

and the following relations:

(c.1) degxiyjzk ¼ degh22 if and only if mðiþ jþ k� 1Þ ¼ nð2� j� 2kÞ.
(c.2) degxiyjzk ¼ degh23 if and only if mðiþ jþ k� 1Þ ¼ nð3� j� 2kÞ.
(c.3) degxiyjzk ¼ degh32 if and only if mðiþ jþ k� 1Þ ¼ nð3� j� 2kÞ.
(c.4) degxiyjzk ¼ degh33 if and only if mðiþ jþ k� 1Þ ¼ nð4� j� 2kÞ.

All the statements below are easy consequences of relations (c.1)–(c.4) and

Lemma 1.

(d.i) The case m > 4: there is a non-zero constant a such that

h22 ¼ az; h23 ¼ h32 ¼ h33 ¼ 0:

(d.ii) The case m ¼ 4: there is a non-zero constant a and a constant b such

that

h22 ¼ az; h23 ¼ h32 ¼ 0; h33 ¼ bxnþ1:

(d.iii) The case m ¼ 3: there is a non-zero constant a and constants b1; b2; b3
such that

h22 ¼ az; h23 ¼ b1x
nþ1; h32 ¼ b2x

nþ1; h33 ¼ b3x
ny:

(d.iv) The case m ¼ 2: the integer n is odd and there is a non-zero constant a1
and constants a2; a3; b1; b2; b3 such that

h22 ¼ a1zþ a2x
nþ1;

h23 ¼ a3x
ny;

h32 ¼ b1x
ny;

h33 ¼ xn�1ðb2xzþ b3y
2 þ b4x

nþ2Þ:

(d.v.1) The case m ¼ 1 and n > 1: there is a non-zero constant a1 and

constants a2; . . . ; a7; b1; . . . ; b10 such that

h22 ¼ a1zþ a2x
nyþ a3x

2nþ1;

h23 ¼ a4x
nzþ a5x

n�1y2 þ a6x
2nyþ a7x

3nþ1;

h32 ¼ b1x
nzþ b2x

n�1y2 þ b3x
2nyþ b4x

3nþ1;

h33 ¼ b5x
n�1yzþ b6x

2nzþ b7x
n�2y3 þ b8x

2n�1y2 þ b9x
3nyþ b10x

4nþ1:

ð1Þ
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(d.v.2) The case m ¼ 1 and n ¼ 1: there is a non-zero constant a1 and

constants a2; . . . ; a7; b1; . . . ; b6; b8; b9; b10 such that

h22 ¼ a1zþ a2x
2yþ a3x

3;

h23 ¼ a4xzþ a5y
2 þ a6x

2yþ a7x
4;

h32 ¼ b1xzþ b2y
2 þ b3x

2yþ b4x
4;

h33 ¼ b5yzþ b6x
2zþ b8xy

2 þ b9x
3yþ b10x

5:

Cases (d.v.1) and (d.v.2) differ by the term xn�2y3 of h23.

STEP 2. Let us analyze three cases (d.i), (d.ii) and (d.iii), subsequently.

Case (d.i). In this case F ¼ detðMÞ is equal to the monomial z3 up to a non-

zero constant; it should be excluded in view of the requirement (iv) of Condition

1.

Case (d.ii). One gets V 1 ¼ ðnþ 4Þy@x þ az@y, V 2 ¼ ð2nþ 4Þz@x þ bxnþ1@z.

Hence, ½V 1; V 2� ¼ bxnð�ax@y þ ðnþ 1Þðnþ 4Þy@zÞ. The involutivity implies that

b ¼ 0 and detðMÞ can be transformed to the monomial z3. It contradicts the

requirement (iv) of Condition 1 again.

Case (d.iii). If n > 1, then n is not divided by 3. In view of the arguments

above one has

V 0 ¼ 3x@x þ ðnþ 3Þy@y þ ð2nþ 3Þz@z;
V 1 ¼ ðnþ 3Þy@x þ az@y þ b1x

nþ1@z;

V 2 ¼ ð2nþ 3Þz@x þ b2x
nþ1@y þ b3x

ny@z:

Hence,

½V 1; V 2� ¼ fð2nþ 3Þb1 � ðnþ 3Þb2gxnþ1@x þ fðnþ 1Þðnþ 3Þb2 � ab3gxny@y

þ ½nðnþ 3Þb3xn�1y2 þ fab3 � ðnþ 1Þð2nþ 3Þb1gxnz�@z:

Therefore one obtains 3½V 1; V 2� ¼ fð2nþ 3Þb1 � ðnþ 3Þb2gxnV 0. This implies the

following relations:

ðnþ 3Þð2nþ 3Þb1 � 2ðnþ 3Þð2nþ 3Þb2 þ 3a1b3 ¼ 0;

3nðnþ 3Þb3 ¼ 0;

�ð2nþ 3Þð5nþ 6Þb1 þ ðnþ 3Þð2nþ 3Þb2 þ 3a1b3 ¼ 0:
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Since n is a positive integer, it follows that b1 ¼ b2 ¼ b3 ¼ 0. That is, detðMÞ can
be transformed to the monomial z3; it is the same contradiction as above.

STEP 3. Case (d.iv). Analogously to the above arguments one gets

V 0 ¼ 2x@x þ ðnþ 2Þy@y þ 2ðnþ 1Þz@z;
V 1 ¼ ðnþ 2Þy@x þ ða1zþ a2x

nþ1Þ@y þ a3x
ny@z;

V 2 ¼ 2ðnþ 1Þz@x þ b1x
ny@y þ xn�1ðb2xzþ b3y

2 þ b4x
nþ2Þ@z:

Since m ¼ 2 one may assume in considerations below that n is odd. Set V 3 ¼
½V 1; V 2� and let us find conditions on aj and bk guaranteed the inclusion

V 3 2 L ðV Þ. Set

U ¼ V 3 �
2ðnþ 1Þa3 � ðnþ 2Þb1

nþ 2
V 1:

It is sufficient to find conditions under which the relation U ¼ 0 holds. The

definition implies that there are polynomials Q1, Q2 2 R such that U ¼
Q1@y þQ2@z. Let us define a vector field W 2 L ðV Þ as follows:

W ¼ ðnþ 2ÞyV 0 � 2xV 1:

Since the both fields U and W don’t contain the differentiation @x, the weight

condition implies that U coincides with xn�1W up to a constant multiple.

Comparing the coefficients of @y of U and W , one gets

U ¼
nðnþ 2Þb1 � a1b3

ðnþ 2Þ2
W: ð2Þ

Now we are going to describe conditions on a1; a2; a3; b1; b2; b3; b4 under which

relation (2) holds. We treat two cases n ¼ 1 and n > 1, separately. Let us first

assume that n ¼ 1. In this case relation (2) implies the following system of

equations:

12a2a3 � 24a2b1 þ 2a1a2b3 þ 9a1b4 ¼ 0;

72a2 þ 12a1a3 � 24a1b1 þ 9a1b2 þ 2a21b3 ¼ 0;

12a23 � 6a3b1 � 9a3b2 � 18a2b3 þ 2a1a3b3 � 81b4 ¼ 0;

12a3 þ 12b1 � 9b2 � 10a1b3 ¼ 0:

Solving this system, one obtains
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a2 ¼ �ð1=12Þa1ð�6b1 þ 3b2 þ 2a1b3Þ;
a3 ¼ ð1=12Þð�12b1 þ 9b2 þ 10a1b3Þ;
b4 ¼ ð1=162Þð36b21 � 27b1b2 � 72a1b1b3 þ 27a1b2b3 þ 26a21b

2
3Þ;

c ¼ ð1=9Þð3b1 � a1b3Þ;

and

a1ð24b1 � 9b2 � 10a1b3Þð24b1 � 9b2 � 2a1b3Þ ¼ 0:

Since a1 6¼ 0, one gets the following two possibilities:

(e.1) 24b1 � 9b2 � 10a1b3 ¼ 0, or (e.2) 24b1 � 9b2 � 2a1b3 ¼ 0.

Let us first treat Case (e.1), that is, b2 ¼ 2
9 ð12b1 � 5a1b3Þ. If b3 6¼ 0, then,

making use of the following change of variables

z ¼ �z0 þ
6b1 � a1b3

36
x2; x ¼

3

a1b3

� �1=2

x0; y ¼
3a1

16b3

� �1=4

y0;

one obtains that detðMÞ can be transformed up to a constant multiple to the

following form:

16x04z0 � 4x03y02 � 128x02z02 þ 144x0y02z0 � 27y04 þ 256z03:

If b3 ¼ 0, then it is not difficult to verify that detðMÞ ¼ 2
27
a1ðb1x2 � 6zÞ3, that is,

detðMÞ can be transformed to z3; it contradicts the requirement (iv) of Condition

1.

Let us consider Case (e.2), that is, b2 ¼ 2
9 ð12b1 � a1b3Þ. If b3 6¼ 0, then, making

use of the following change of variables

z ¼ z0 � 6b1 � a1b3

36
x2; x ¼ 12

a1b3

� �1=2

x0; y ¼ 48a1

b3

� �1=4

y0;

one obtains that detðMÞ can be transformed up to a constant multiple to the

following form:

2x06 � 12x0z0 þ 18x03y02 � 18x0y02z0 þ 27y04 þ z03:

This is, in fact, the polynomial FA;2. If b3 ¼ 0, then it is easy to see that detðMÞ is
exactly the same as in Case (e.1).
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At last let us consider the case n > 1. Since the coefficient of the term xn�2y3

is equal to ðn� 1Þðnþ 2Þb3, one obtains that b3 ¼ 0. Then relation (2) implies

ðnþ 2Þa1b4 � 4ðnþ 1Þa2b1 þ 2ðnþ 1Þa2a3 ¼ 0;

4ðnþ 1Þa1b1 � ðnþ 2Þa1b2 � 2ðnþ 1Þa1a3 � 2ðnþ 1Þ2ðnþ 2Þa2 ¼ 0;

2ðnþ 1Þa23 � 2na3b1 � ðnþ 2Þa3b2 � ðnþ 2Þ2ð2nþ 1Þb4 ¼ 0;

2ðnþ 1Þa3 þ 2ðnþ 1Þb1 � ðnþ 2Þb2 ¼ 0:

Solving this system of equations, one gets

a2 ¼ �
a1b1

ðnþ 1Þðnþ 2Þ
; a3 ¼ b1; b2 ¼

4ðnþ 1Þb1
nþ 2

; b4 ¼ �
2b21

ðnþ 2Þ2
:

As a result one obtains

detðMÞ ¼
4a1fb1xnþ1 � ðnþ 1Þðnþ 2Þzg3

ðnþ 1Þðnþ 2Þ3
;

that is, detðMÞ can be transformed to z3. It contradicts the requirement (iv) of

Condition 1.

STEP 4. Case (d.v.1). Assume now that n ¼ 2 and h22; h23; h32; h33 are the

polynomials given by (1). Then

V 0 ¼ x@x þ 3y@y þ 5z@z;

V 1 ¼ 3y@x þ ða1zþ a2x
2yþ a3x

5Þ@y þ ða4x2zþ a5xy
2 þ a6x

4yþ a7x
7Þ@z;

V 2 ¼ 3z@x þ ðb1x2zþ b2xy
2 þ b3x

4yþ b4x
7Þ@y

þ ðb5xyzþ b6x
4zþ b7y

3 þ b8x
3y2 þ b9x

6yþ b10x
9Þ@z:

We are able to compute relations between the constants a1; a2; . . . ; b10 which

provide that hV 0; V 1; V 2i satisfy Condition 1. In virtue of the requirement (iii) one

can assume that a1 6¼ 0 in considerations below. Taking a suitable weighted

changes of variables

ðx; y; zÞ ¼ ðx0; y0 þ c1x
03; z0 þ c2x

02y0 þ c3x
05Þ

with some constants c1; c2; c3, one may assume that a4 ¼ a5 ¼ a6 ¼ 0. Moreover,
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replacing V 2 by V 2 þ c4x
2ð2yV 0 � xV 1Þ with a suitable constant c4, one may also

assume that b2 ¼ 0. Let us determine conditions under which the commutator

½V 1; V 2� is contained in LD. Set

W ¼ ½V 1; V 2� � ðp1xzþ p2y
2 þ p3x

3yþ p3x
6ÞV 0 � ðq1xyþ q2x

4ÞV 1 � r1x
2V 2;

where p1; . . . ; q2; r1 are constants. Let us now determine a condition under which

the commutator W vanishes. Direct computations show that

p1 ¼ �1
5
ða1b5Þ; p2 ¼ 1

3
a1b7; p3 ¼ 1

27
ð�108b3 þ a1a2b7 þ 9a1b8Þ; p4 ¼ �3ða7 � b4Þ;

q1 ¼ �1
9a1b7; q2 ¼ 1

81ð189b3 � a1a2b7 � 9a1b8Þ; r1 ¼ 1
15ð15b1 þ a1b5Þ:

As a result one gets that

405W ¼ ð9C1xyzþ C2x
4z� C3x

6yþ C4x
9Þ@y

þ ð�135C5y
2z� 27C6x

2y3 � 3C7x
3yz� 27C8x

5y2 þ 27C9x
6z� 9C10x

8y

þ C11x
11Þ@z;

where

C1 ¼ 270a2 � 270b1 þ 72a1b5 þ 5a21b7;

C2 ¼ 6075a3 þ 405a2b1 � 405b21 � 1350a1b3 � 27a1b1b5 þ 405a1b6 þ 5a21a2b7

þ45a21b8;

C3 ¼ �3645a7 þ 945a2b3 þ 405b1b3 þ 12150b4 þ 27a1b3b5 � 5a1a
2
2b7 � 45a1a3b7

�45a1a2b8 � 405a1b9;

C4 ¼ �405a7b1 þ 405a1b10 � 1350a3b3 þ 405a2b4 � 405b1b4 � 27a1b4b5 þ 5a1a2a3b7

þ45a1a3b8;

C5 ¼ 9b5 þ 14a1b7;

C6 ¼ 45a2b7 þ 15b1b7 þ a1b5b7 þ 135b8;

C7 ¼ �2700b3 þ 135a2b5 þ 135b1b5 þ 9a1b
2
5 þ 1620b6 þ 25a1a2b7 þ 495a1b8;

C8 ¼ 45a3b7 þ 30a2b8 þ 15b1b8 þ a1b5b8 þ 270b9;

C9 ¼ 540a7 � 225b4 � 15a3b5 � 15b1b6 � a1b5b6 � 15a1b9;

C10 ¼ 1215b10 þ 45a7b5 � 5a1a7b7 þ 90a3b8 þ 45a2b9 þ 45b1b9 þ 3a1b5b9;

C11 ¼ �405b1b10 � 945a7b3 � 27a1b10b5 � 405a7b6 þ 5a1a2a7b7 þ 45a1a7b8 � 405a3b9:
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Hence, W ¼ 0 if and only if Cj ¼ 0 for all j ¼ 1; 2; . . . ; 11. One can verify that nine

equations Cj ¼ 0 for 1 � j � 11, j 6¼ 4; 11, imply that

a2 ¼ ð270b1 þ 107a21b7Þ=270;
a3 ¼ �a1ð�2430b6 þ 2970a1b1b7 þ 313a31b

2
7Þ=36450;

a7 ¼ a1b7ð1239300b21 � 1224720a1b6 þ 915435a21b1b7 þ 97559a41b
2
7Þ=82668600;

b3 ¼ ð14580b6 � 5535a1b1b7 � 1001a31b
2
7Þ=24300;

b4 ¼ ð�2755620b1b6 þ 1283040a1b
2
1b7 � 867510a21b6b7

þ 609579a31b1b
2
7 þ 63602a51b

3
7Þ=41334300;

b5 ¼ �14a1b7=9;

b8 ¼ �b7ð1080b1 þ 293a21b7Þ=2430;
b9 ¼ b7ð29160b21 � 4374a1b6 þ 19953a21b1b7 þ 2380a41b

2
7Þ=393660;

b10 ¼ �b7ð551124000b31 � 303118200a1b1b6 þ 634230000a21b
2
1b7

þ 19952730a31b6b7 þ 132987420a41b1b
2
7 þ 6967331a61b

3
7Þ=100442349000:

As a result the remaining two equations C4 ¼ C11 ¼ 0 yield the following two

relations

a1ð13392313200b26 þ 2056873500b31b7 � 19647570600a1b1b6b7

þ 6098394825a21b
2
1b

2
7 � 1513549800a31b6b

2
7

þ 1187984070a41b1b
3
7 þ 40787747a61b

4
7Þ ¼ 0;

b7ð297606960000b41 � 2382981444000a1b
2
1b6 þ 1968670040400a21b

2
6

þ 1041024028500a21b
3
1b7 � 2043418201200a31b1b6b7

þ 663011412075a41b
2
1b

2
7 � 252174542760a51b6b

2
7

þ 130912141140a61b1b
3
7 þ 8033686661a81b

4
7Þ ¼ 0:

It is clear that b7 ¼ 0 satisfies the second equation. Hence, since a1 6¼ 0 one gets

b6 ¼ 0. Direct computations show that detðMÞ can be transformed to z3; it

contradicts the requirement (iv) of Condition 1. Let us analyze the case b7 6¼ 0.

Since the above two relations can be considered as polynomials depending on b6
one can compute their resultant:

G ¼ b1ð46305b1 � 2048a21b7Þð8640b1 � 329a21b7Þð540b1 � 119a21b7Þð20b1 þ 3a21b7Þ
	 ð108b1 þ 5a21b7Þð135b1 þ 64a21b7Þð135b1 þ 364a21b7Þ:
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When b7 6¼ 0, then it is not difficult to verify that b6 is uniquely determined for

each solution b1 of the equation G ¼ 0. As a result one gets that ðb1; b6Þ is equal to
one of the following eight couples:

ð0; 1001a31b27=14580Þ; ð�364a21b7=135;�ð1=60Þa31b27Þ;
ð�64a21b7=135;�4229a31b

2
7=43740Þ; ð�3a21b7=20; 139a

3
1b

2
7=29160Þ;

ð�5a21b7=108; 17a
3
1b

2
7=360Þ; ð329a21b7=8640; 3607a31b27=46080Þ;

ð2048a21b7=46305; 288079a31b27=3025260Þ; ð119a21b7=540; 821a31b27=3240Þ:

It should be remarked that in Case (d.v.1) for n > 2 it is possible to verify by

similar considerations that detðMÞ can be transformed to z3. However, in this case

direct computations are very complicated and we omit them. In conclusion, it

remains to analyze Case (d.v.2). In fact, one obtains seven polynomials

FB;1; . . . ; FB;7 by similar considerations as in Case (d.v.1), n ¼ 2. For this reason

we omit again computational details.

Thus, this completes the proof of Theorem 1.

It should be also underlined that there is the following relation between

solutions of the equation G ¼ 0 and the set of polynomials FH;j for j ¼ 1; 2; . . . ; 8.

To be more precise, one has the following statement.

PROPOSITION 2. If b1 is equal to 0;� 364
135 a

2
1b7, � 64

135 a
2
1b7, � 3

20 a
2
1b7, � 5

108 a
2
1b7,

329
8640 a

2
1b7,

2048
46305 a

2
1b7, or 119

540 a
2
1b7, then detðMÞ can be transformed by suitable

weighted changes of variables to the polynomials FH;1, FH;5, FH;4, FH;8, FH;3, FH;6,

FH;2 or FH;7, respectively.

6. Singular loci of hypersurfaces.

As was remarked in Section 1 an arbitrary Saito free divisor has singular locus

of codimension one (see [4]). Let us show how it is possible to analyze properties of

hyperplane sections of singular loci of polynomials from Theorem 1. Thus, let

F ðx; y; zÞ be such a polynomial, let ZF be the affine hypersurface in C3 defined by

F ¼ 0, and let SF be the set of singular points of ZF . Direct computations show

that the intersection SF \ fx 6¼ 0g is a smooth manifold. Let Sj
F , j ¼ 1; 2; . . . ; k, be

the set of irreducible components of SF . It is not difficult to see that each

irreducible component Sj
F is a plane curve. Take a point P 2 Sj

F \ fx 6¼ 0g. The
purpose of this section is to study the hypersurface SF near P.

First let us recall the well-known list of plane curves with simple singularities

at the origin:

An : GAn
ðu; vÞ ¼ unþ1 þ v2 ¼ 0; n 
 1;

1086 J. SEKIGUCHI



Dn : GDn
ðu; vÞ ¼ uðun�2 þ v2Þ ¼ 0; n 
 4;

E6 : GE6
ðu; vÞ ¼ u4 þ v3 ¼ 0;

E7 : GE7
ðu; vÞ ¼ uðu2 þ v3Þ ¼ 0;

E8 : GE8
ðu; vÞ ¼ u5 þ v3 ¼ 0:

We say that the type of singularity of ZF along Sj
F is An if there is an open

neighbourhood U of P and a biholomorphic map ’ of U to an open neighbourhood

U 0 of the origin in C3 such that ’ðZF \ UÞ coincides with fðu; v; wÞ 2 C3 :

GAn
ðu; vÞ ¼ 0g \ U 0 and ’ðPÞ ¼ ð0; 0; 0Þ. Similarly we say that the type of

singularity of ZF along Sj
F is Dn (or Ekðk ¼ 6; 7; 8Þ) if there is an open

neighbourhood U of P and a biholomorphic map ’ of U to an open neighbourhood

U 0 of the origin in C3 such that ’ðZF \ UÞ coincies with fðu; v; wÞ 2 C3 :

GDn
ðu; vÞ ¼ 0g \ U 0 and ’ðPÞ ¼ ð0; 0; 0Þ (or to fðu; v; wÞ 2 C3 : GEk

ðu; vÞ ¼ 0g \ U 0

and ’ðPÞ ¼ ð0; 0; 0Þ).
We state the main result of this section as follows.

THEOREM 2.

(i) There is a natural bijection between the set of polynomials DA and the set of

corank one subdiagrams of Dynkin diagram of type E6 invariant under its non-

trivial involution.

(ii) There are natural bijections between two sets of polynomials DB, DH and two

sets of corank one subdiagrams of Dynkin diagrams of type E7, E8, respectively.

This is a direct consequence of the following proposition. In fact,

A2 þA2 þ A1; A5

are types of corank one subdiagrams of Dynkin diagram of type E6 invariant

under its non-trivial involution. Moreover,

A3 þA2 þ A1; A5 þ A1; D6; D5 þ A1; E6; A4 þ A2; A6

are types of corank one subdiagrams of Dynkin diagram of type E7, while

A4 þ A2 þ A1; A4 þA3 þ A1; D5 þ A2; D7; E6 þ A1; A7; E7; A6 þ A1

are types of corank one subdiagrams of Dynkin diagram of type E8.

PROPOSITION 3. The types of singularities of hypersurfaces defined by
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seventeen polynomials of Theorem 1 are given in the following table.

F Sj
F Type

FA;1 y ¼ 0; z ¼ 1
4 x

2 A1

y ¼
ffiffiffiffiffiffiffiffiffi
� 8

27

q
x3=2, z ¼ � 1

12 x
2 A2

y ¼ �
ffiffiffiffiffiffiffiffiffi
� 8

27

q
x3=2, z ¼ � 1

12 x
2 A2

FA;2 y ¼ 0, z ¼ x2 A5

FB;1 y ¼ 0, z ¼ 0 A3

y ¼ 1
4 x

2, z ¼ 0 A1

y ¼ 1
3 x

2, z ¼ 1
27 x

3 A2

FB;2 y ¼ 0, z ¼ 0 A5

y ¼ � 2
3 x

2, z ¼ 4
27 x

3 A1

FB;3 y ¼ 0, z ¼ 0 D6

FB;4 y ¼ 0, z ¼ 0 D5

y ¼ 9
4 x

2, z ¼ 0 A1

FB;5 y ¼ 0, z ¼ 0 E6

FB;6 y ¼ 0, z ¼ 0 A4

y ¼ 2x2, z ¼ 4x3 A2

FB;7 y ¼ 0, z ¼ 0 A6

F Sj
F Type

FH;1 y ¼ 0; z ¼ 0 A1

y ¼ 2
5 x

3, z ¼ 8
25 x

5 A4

y ¼ � 2
27 x

3, z ¼ 8
81 x

5 A2

FH;2 y ¼ 0, z ¼ 0 A4

y ¼ 12x3, z ¼ 144x5 A3

FH;3 y ¼ 0, z ¼ 0 D5

y ¼ 1
54 x

3, z ¼ 1
162 x

5 A2

FH;4 y ¼ 0, z ¼ 0 D7

FH;5 y ¼ 0, z ¼ 0 E6

y ¼ �x3, z ¼ x5 A1

FH;6 y ¼ 0, z ¼ 0 A7

FH;7 y ¼ 0, z ¼ 0 E7

FH;8 y ¼ 0, z ¼ 0 A6

y ¼ �3x3, z ¼ 9x5 A1

REMARK 3.

1. The author proved this proposition by direct computations. However, some-

what later he found that it can be proved by a method of V. I. Arnol’d (see [6])

which allows one to reduce functions with isolated critical points to normal forms.

2. The author develops this approach (see [18]) and obtains a list of Lie algebras

depending on three variables satisfied certain conditions related with eight

exceptional singularities from the list of Arnol’d. This result produces a number of

Saito free divisors which can be considered as one-parameter deformations of

these singularities. (See also [5] for related topics).

7. Discriminants associated with reflection groups of Ak-type.

Let x2; . . . ; xn be independent variables considered as coefficients of the

polynomial of degree n

PnðtÞ ¼ tn þ x2t
n�2 þ � � � � � � þ xn�1tþ xn:
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Each xk is the k-th elementary symmetric function of roots of the polynomial; this

function is usually called Viète polynomial of weight k. In fact, the polynomial

PnðtÞ defines a versal unfolding of an An�1-singularity.

Let @k be the partial derivative with respect to xk, k ¼ 2; . . . ; n, and let E ¼
2x2@2 þ 3x3@3 þ . . .þ nxn@n be the Euler vector field with respect to weights

2; 3; . . . ; n, so that Exk ¼ kxk, k ¼ 2; 3; . . . ; n. Let us consider the following vector

fields whose coefficients are contained in the polynomial ring R ¼
C ½x2; x3; . . . ; xn�:

V i ¼
Xn�1

j¼1

aiþ1;jðxÞ@jþ1; i ¼ 0; 1; . . . ; n� 2;

Similarly to Section 2 there is defined a square matrix of order ðn� 1Þ associated
with vector fields V 0; V 1; . . . ; V n�2:

M ¼ kaijðxÞk0�i�n�1; 2�j�n:

The following conditions on the system V ¼ hV 0; V 1; . . . ; V n�2i are similar to

Condition 1 on triples of vector fields:

CONDITION 2.

(i) a1iðxÞ ¼ ai1ðxÞ ¼ ðiþ 1Þxiþ1; i ¼ 0; . . . ; n� 2;

(ii) ½V 0; V j� ¼ V j; j ¼ 1; 2; . . . ; n� 2;

(iii) the system V is involutive, that is, R-module generated by V j, j ¼
0; . . . ; n� 2, is a Lie algebra over R.

In particular, the first requirement (i) of Condition 2 implies that V 0 ¼ E.

LEMMA 2 (cf. [15]). Assume that V 0; V 1; . . . ; V n�2 satisfy Condition 2.

Then one has the following relations

V jF ðxÞ ¼ cjðxÞF ðxÞ; j ¼ 0; 1; . . . ; n� 2;

where cjðxÞ, j ¼ 0; 1; . . . ; n� 2, are polynomials.

A typical example of polynomials in question is the discriminant polynomial

of PnðtÞ. To be more precise, if F ðxÞ is the discriminant polynomial of PnðtÞ, then
there are vector fields V 0; V 1; . . . ; V n�2 satisfying Condition 2 such that F ðxÞ ¼
detðMÞ (cf. [15], [21], [22]).

EXAMPLE 1 (see [23]). Let us consider the following system of vector fields:
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V 0 ¼ 2x2@2 þ 3x3@3 þ 4x4@4 þ 5x5@5 þ 6x6@6;

V 1 ¼ 3x3@2 þ ð4x4 � 4
3x

2
2Þ@3 þ ð5x5 � x2x3Þ@4 þ ð6x6 � 2

3x2x4Þ@5 � 1
3x2x5@6;

V 2 ¼ 4x4@2 þ ð40
3
x5 � 2

3
x2x3Þ@3 þ ð36x6 � 4

3
x2x4Þ@4 � 2x2x5@5

þ ð83x2x6 � 4
3x3x5 þ 4

9x
2
4Þ@6;

V 3 ¼ 5x5@2 þ ð16x6 � 16
9
x2x4 þ 1

2
x2
3Þ@3 � 2x2x5@4 � 1

2
x3x5@5 � 1

9
x4x5@6;

V 4 ¼ 6x6@2 þ ð�8
9x2x5 þ 1

9x3x4Þ@3 þ ð83x2x6 � 4
3x3x5 þ 4

9x
2
4Þ@4

� 1
9
x4x5@5 þ ð�10

27
x2
5 þ 8

9
x4x6 þ 8

27
x2
2x6 þ 2

81
x2x

2
4 � 2

27
x2x3x5Þ@6:

Then R-module generated by the system of vector fields V ¼ hV 0; V 1; V 2; V 3; V 4i
is endowed with structure of a Lie algebra over R. Moreover these vector fields

satisfy Condition 2 and detðMÞ is a polynomial which can be considered as an

analogue of the discriminant of the polynomial P6ðtÞ defining a versal unfolding of

an A5-singularity.

It should be remarked that Lie algebra L ðV Þ generated by V j, j ¼ 0; 1; . . . ; 4,

was found in the study of the prehomogeneous vector space ðSLð5Þ 	GLð4Þ;�
�

�
�Þ by T. Yano and J. Sekiguchi under the guidance of M. Sato. Based on this

example M. Sato posed the following question.

PROBLEM 2 (M. Sato). How to describe the set of all polynomials having

the form F ðxÞ ¼ detðMÞ up to weighted changes of variables?

This problem can be directly generalized to the case of Weyl groups, or more

generally, to the case of Coxeter groups (cf. [15], [21]).

We are going to mention some results related with Problem 2. The simplest

example is the following: detðMÞ ¼ xn�1
n . Here are other well-known examples:

(1) If n ¼ 2, then F ðxÞ ¼ x2, the discriminant of P2ðtÞ.
(2) If n ¼ 3, then F ðxÞ ¼ 4x3

2 � 27x2
3, the discriminant of P3ðtÞ.

(3) If n ¼ 4, then there are only two polynomials FA;1 and FA;2 given by

Theorem 1.

(4) If n ¼ 5, then there are at least two polynomials satisfying Condition 2.

The first one is equal to the discriminant of P5ðtÞ, while the second is equal to the

determinant of the following matrix

M ¼

2x2 3x3 4x4 5x5

3x3 x2
2 þ 4x4

5
4 x5

3
10 x2x4

4x4 5x5 � 5
8
x2x4 � 5

8
x2x5

5x5 2x2x4
15
16
x3x4

3
5
x2
4 þ 15

16
x3x5

0
BBBB@

1
CCCCA:
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More exactly, detðMÞ ¼ � 1
20 ð3125x4

5 � 1500x2x
2
4x

2
5 þ 1200x3x

3
4x5 � 60x2

2x
4
4 �

768x5
4Þ.
(5) If n ¼ 6, then there are at least two polynomials satisfying Condition 2.

One is the discriminant of P6ðtÞ, another is the polynomial defined as the

determinant of the matrix associated with fields V 0; V 1; . . . ; V 4 of Example 1.

(6) In the case n > 6 the author knows only examples which are the

discriminants of polynomials Pkþ1ðtÞ, k 
 6, versal unfoldings of Ak-singularities.

Finally we mention about an interesting relationship between Example 1 and

deformations of complete intersections. Let us consider the total space V �
C3

ðx;y;zÞ 	C6
ðu;v;a;b;c;dÞ of the minimal versal deformation of a simple space curve

singularity of type S5. It is defined by the following two equations

x2 þ y2 þ z3 þ byþ czþ dz2 ¼ u;

yzþ ax ¼ v:

Set S ¼ C6
ðu;v;a;b;c;dÞ and consider a natural projection ’ : V ! S. Let D be the

discriminant set of the map ’. A system of free generators h�ð0Þ; �ð1Þ; . . . ; �ð5Þi of

C ½u; v; a; b; c; d�-module DerSðlogDÞ has been computed by A. G. Aleksandrov (see

[2], p. 237). Set Yj ¼ �ðjÞja¼0, j ¼ 0; 1; 2; 4, and Y5 ¼ 1
v
ð�ð5Þ � u

20 �
ð0ÞÞja¼0. Then by

direct computations one gets that Yj, j ¼ 0; 1; 2; 4; 5, are holomorphic vector fields

on C5
ðu;v;b;c;dÞ. Moreover, Lie algebra L ðY Þ is isomorphic to L ðV Þ for the system

V ¼ hV 0; V 1; . . . ; V 4i of Example 1 under the following change of variables

d ¼ �1
3
x2; b ¼ 1

8
x3; c ¼ � 1

12
ðx4 � 1

3
x2
2Þ; v ¼ 1

24
x5; u ¼ 1

8
ðx6 � 1

9
x2x4Þ:

8. Appendix.

Here we write out matrices M associated with polynomials given by Theorem

1 and also write out ½V 1; V 2� for the vector fields V 1; V 2.

ðAiÞ

2x 3y 4z

3y �x2 þ 4z � 1
2 xy

4z � 1
2
xy 1

4
ð8xz� 3y2Þ

0
BB@

1
CCA; ½V 1; V 2� ¼ 1

2yV
0 � 1

2xV
1

ðAiiÞ
2x 3y 4z

3y 1
2
ðz� x2Þ 6xy

4z �2xy 16x3 þ 24y2 � 8xz

0
B@

1
CA; ½V 1; V 2� ¼ �6yV 0 þ 14xV 1
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ðBiÞ
x 2y 3z

2y xyþ 3z 2xz

3z 2xz yz

0
B@

1
CA; ½V 1; V 2� ¼ �zV 0 þ xV 2

ðBiiÞ

x 2y 3z

2y � 2
3
ð2xy� 9zÞ �4xz

3z � 2
3 ðy2 þ 3xzÞ �2yz

0
BB@

1
CCA; ½V 1; V 2� ¼ 2

3yV
1 � 8

3xV
2

ðBiiiÞ

x 2y 3z

2y � 3
5
ðxy� 5zÞ � 6

5
xz

3z � 3
5 y

2 � 6
5 yz

0
BB@

1
CCA; ½V 1; V 2� ¼ 3

5
yV 1 � 6

5
xV 2

ðBivÞ
x 2y 3z

2y 3ð3xyþ zÞ 6xz

3z 0 �3yz

0
B@

1
CA; ½V 1; V 2� ¼ �9zV 0 þ 9xV 2

ðBvÞ
x 2y 3z

2y �24xyþ 2z �2y2 � 32xz

3z �9y2 �12yz

0
B@

1
CA; ½V 1; V 2� ¼ 24zV 0 þ 6yV 1 � 40xV 2

ðBviÞ

x 2y 3z

2y 3xyþ 5
2 z

9
2 y

2 þ 15
2 xz

3z 3
4
ð15y2 þ xzÞ 18yz

0
BB@

1
CCA; ½V 1; V 2� ¼ 15

2 zV
0 � 9

2yV
1 þ 9

2xV
2

ðBviiÞ

x 2y 3z

2y 1
3
ð�4xyþ 7zÞ y2 � 14

3
xz

3z 3
2 ð7y2 � 6xzÞ 12yz

0
BB@

1
CCA; ½V 1; V 2� ¼ 14zV 0 � 9yV 1 � 10

3
xV 2

ðHiÞ

x 3y 5z

3y 2zþ 2x2y 7xy2 þ 2x4y

5z 7xy2 þ 2x4y 1
2
ð15y3 þ 4x4zþ 18x3y2Þ

0
BB@

1
CCA;

½V 1; V 2� ¼ ð4x3yþ 2y2ÞV 0 þ 4xyV 1

ðHiiÞ

x 3y 5z

3y 36x2yþ 6z 90xy2 þ 90x2z

5z � 10
3
ð12x3 � 55yÞxy � 50

3
ð6x3y2 � y3 þ 6x4z� 18xyzÞ

0
BB@

1
CCA;

½V 1; V 2� ¼ ð�60x3yþ 150y2 þ 180xzÞV 0 þ ð60x4 � 250
3
xyÞV 1 þ 54x2V 2
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ðHiiiÞ

x 3y 5z

3y 1
10 ðx2yþ 2zÞ 23

10 xy
2 þ 3

20 x
2z

5z 5xy2 15
2
yð2y2 þ xzÞ

0
BB@

1
CCA; ½V 1; V 2� ¼ 4y2V 0 � 5

2xyV
1 þ 3

20x
2V 2

ðHivÞ

x 3y 5z

3y 1
5
ð�4x2yþ 6zÞ 2

5
xy2 � 2x2z

5z � 20
3 xy2 10

3 yðy2 � 5xzÞ

0
BB@

1
CCA;

½V 1; V 2� ¼ �8y2V 0 þ 10xyV 1 � 2x2V 2

ðHvÞ
x 3y 5z

3y � 9
5
ð4x2y� zÞ � 3

5
xð9y2 þ 16xzÞ

5z �15xy2 �5yðy2 þ 4xzÞ

0
B@

1
CA;

½V 1; V 2� ¼ ð�12y2 þ 12xzÞV 0 þ 10xyV 1 � 12x2V 2

ðHviÞ

x 3y 5z

3y � 3
5
ð3x2y� 4zÞ � 18

5
xð�y2 þ 2xzÞ

5z � 5
3 xð�8y2 þ 5xzÞ 10

3 yð2y2 þ xzÞ

0
BB@

1
CCA;

½V 1; V 2� ¼ ð8y2 þ 16xzÞV 0 � 10xyV 1 � 27
5
x2V 2

ðHviiÞ

x 3y 5z

3y � 3
5
ð2x2yþ zÞ � 3

5
xð�y2 þ 3xzÞ

5z 10
3 xy2 � 5

3 yðy2 � 3xzÞ

0
BB@

1
CCA;

½V 1; V 2� ¼ ð3y2 þ 3xzÞV 0 � 10
3
xyV 1 � 12

5
x2V 2

ðHviiiÞ

x 3y 5z

3y � 3
5 ð24x2y� 7zÞ � 9

5 xð�3y2 þ 28xzÞ
5z � 5

3
xð7y2 þ 20xzÞ 5

3
yð7y2 � 52xzÞ

0
BB@

1
CCA;

½V 1; V 2� ¼ ð�28y2 þ 28xzÞV 0 þ 30xyV 1 � 36x2V 2:
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