©2009 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 61, No.4 (2009) pp.971-1011

doi: 10.2969/jmsj/06140971

On the L, analytic semigroup associated with the linear
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Abstract. The paper is concerned with linear thermoelastic plate
equations in the half-space R} = {x = (z1,...,2,) | , > 0}:

ug + A%u+A0=0and 6, — A0 — Ay, =0 in R’ x (0,00),

subject to the boundary condition: ul, _o = Dyul, o =0|, -, =0 and initial
condition:  (u, Dyu,0)|,_y = (uo,v0,00) € 5 = W2 X Ly X Ly, where W7, =
{ue W2 | ul, _o = Dyul,,_, = 0}. We show that for any p € (1,00), the associated
semigroup {T'(t)},5 is analytic in the underlying space J¢,. Moreover, a solution
(u, ) satisfies the estimates:

J_n

. _J_n(l 1
IV (V2 1), (), 0, D, ) < Cgt? 19 | (9, 00|

(t>0)

L(RY)

for j=0,1,2 provided that 1 <p < g<oowhen j=0,1and that l <p<g< o0
when j = 2, where V7 stands for space gradient of order j.

1. Introduction.

In this paper, we shall consider the following equations:
ugp +Au+A0=0and 6, — A0 — Ay, =0 inQxR,. (1.1)

These equations describe a linear thermoelastic plate and they are derived in [6].
In (1.1), u denotes a mechanical variable denoting the vertical displacement of the
plate, while 8 denotes a thermal variable describing the temperature relative to a
constant reference temperature . Since the equations (1.1) represent the transfer
of the mechanical energy to the thermal energy through coupling, we expect that
total energy of the system decays, because of the thermal damping. In fact, when
Q) is a bounded reference configuration, the exponential stability of the associated
semigroup under several different kind of boundary conditions have been proved
by Kim [7], Munoz Rivera and Racke [17], Liu and Zheng [15], Avalos and
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Lasiecka [3], Lasiecka and Triggiani [8], [9], [10], [11] and Shibata [19]. But, more
significant aspect that the equations (1.1) have is that the associated semigroup is
analytic. Namely, although the first equation in (1.1) is a simply dispersive
equation (the product of two Schrédinger equations), the effect from the heat
equation through coupling is strong enough to have analyticity of the total
system. This fact was first proved by Liu and Renardy [13] and then it has been
studied by Liu and Liu [12], Liu and Yong [14] with different dampings in the Lo
framework when  is also a bounded reference configuration (see a book due to
Liu and Zheng [16] for a survey).

The original equations describing the motion and transfer of the energy of
thermo-elastic plate is non-linear and it is widely accepted that the L, approach is
more relevant to handle with the non-linear problem under less regularity
assumption on initial data. Therefore, it is worth while studying the equa-
tions (1.1) in the L, settings. In this respect, recently Denk and Racke [5] proved
the generation of analytic semigroup and its decay property of the Cauchy
problem for equations (1.1) in the L, framework. In fact, they studied more
general system, so called a-0 system, consisting of the following equations:

wy + Su — %0 =0 and 6; + S0 + S%u, =0 inQx R.. (1.2)

where S = (=A)" (n > 0) and «, 8 € [0, 1] are parameters. They proved that the
region of analyticity is the set U = {(«,) | @ > 8,a <28 — (1/2)}. In proving
resolvent estimates in L, spaces they used the theory of parameter-elliptic mixed-
order systems by Denk, Mennicken and Volevich [4]. Moreover, they proved
decay rates for ||(Sl/2u(-,t),ut(~,t),9(~,t))||L4(R") if 2<¢g<o0 and (a, ) is the
analyticity region U, but also if 1/4 < 8 < 3/4 while o = 1/2 (exemplarily). The
equations (1.1) are obtained, setting n =2 and o = 8 =1/2, and therefore the
semigroup associated with (1.1) is analytic and H(Au(~,t),ut(o,t),0(~,t))||Lq(H")
(2 < g < 00) decays polynomially.

Before Denk and Racke [5] the a-f system was independently introduced by
Ammar Khodja and Benabdallah [2] and Mundz Rivera and Racke [18], and the
region of parameters was classified by smoothing property, decay property and
analyticity of associated semigroup by [2], [18], Liu and Liu [12] and Liu and
Yong [14] in the L, or Hilbert space setting.

In this paper, we shall consider the initial boundary value problem for
equations (1.1) in the half-space R’} = {x = (z1,...,2,) € R" | x, > 0} subject to
the initial condition:

u(:r, O) = UO(x)v ut(xv O) = UO(z)a 0(:17, O) - 90($), (13)
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and boundary condition:
u|xn:0 = Dnu|:tn:0 = 0|xn:0 = 0 (14)

We shall show that initial boundary value problem (1.1), (1.3) and (1.4) generates
an analytic semigroup in the L,(R!) framework and we shall show its decay
property. To state our result precisely, introducing the unknown function v = u,
we rewrite (1.1) in the matrix form:

Ut =AU inQx R+, Ult:O = Uv() (15)
where we have set
u U 0 1 0
U = v 5 U() = Vo 5 A = —A2 0 —A . (16)
o 0 A A

To solve the initial boundary value problem (1.5) with (1.4), we consider the
corresponding resolvent problem:

(M —A)U=F inR" (1.7)

subject to the boundary condition (1.4), where I denotes the n X n unit matrix.
To state our main result concerning the resolvent problem, we introduce several
spaces and some symbols. L,(2) and W}"(Q2) stand for the usual Lebesgue space

and || || .~ denote their norms. For
»(®) W)

1 <p < oo the spaces W2 (R), W.,(R}) and W, ,(R") are defined by the
formulas:

and Sobolev space, respectively. Let || ||,

Wio(RY) = {u € W;(RY) | ul, =0},

m n m n (18)
Wi'n(RY) = {u e W' (RY) | ul,, g = Dnul, _ = 0} (m =2,4).

The space 7,(R'}) for right member F'in (1.7) and the space Z,(R,) for solution
U in (1.7) are defined by the formulas:

Hp(RL) ={F="(f.9,h) | f € W;p(RL), g€ L,(RY), h e L,(R})},

n n T 7 <19)
Dy(RY) = {U ="(u,0,0) | u € Wip(RL), ve W2, (RY), 0 € Wy(RL)}.
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Here and hereafter, T M denotes the transposed M. For differentiation we use the
following symbols:

D; = 0/0t, Dju = du/dx;, Dyuw= D" ---Dyvu (o = (ou, ..., o) € Ni),
v0u:u7vluzvu:(D1u7""Dnu)v Vju:(Dgu| lal=a1 + -+ a,=j) (>2),

where N denotes the set of all natural numbers, Ny = N U {0}, and Ny =
Ny x -+ X Ngy. Then, we have the following theorem.

n-times

THEOREM 1.1. Let 1<p<oo and set Cy={ e C\{0}]|ReX>0}.
Then, for any N€ Cy and F=7(f g,h) € #,(R") resolvent equation (1.7)
admits a unique solution U =T (u,v,0) € 2,(R') which satisfies the estimate:

Ly(R?)?

2, o
AT [[(VF+2u, Via, VO, ) < CI(V2fog,h)l
j:O plfty
(1.10)

1 i
STVl ) < CHONS 9, -
=0

Concerning the evolution equation (1.5) with boundary condition (1.4), we
introduce the operator .27, which is defined by the operation:

/U =AU forU e 2,(RY). (1.11)

Then, we have the following theorem.

THEOREM 1.2. Let1l < p < oo. Let p(27,) be the resolvent set of <7,. Then,
C. C p(p) and o/, generates an analytic semigroup {T,(t)},5o on Jp(R).

REMARK 1.3. Theorem1.2 tells us that if we set U(t) = T,(¢t)F for F €
Hp(RY), then U(t) € Z,(R!) for t >0, U(t) satisfies the equation (1.5) and
attains the initial data in the following way:

Jim | T,())U = F| =0

W2(R?)x Ly (R)xLy(RT)

To show some asymptotic behaviour of solutions to (1.5) with boundary
condition (1.4), we use the homogeneous space W' (R'}) instead of W', (R ) for
m = 2,4, which are defined by the following formulas:
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Wi p(RL) = {f € Wi (RY) | Diu € Ly(RY) (la = 2), ul, o = Dyul, _q =0},

Wi p(RL) = {f € Wy (R N W (RY) | Du € Ly(RY) (2 < o] < 4)}.

x,=0

(1.12)

72 ,
Let ||u||w3”<m - For ue W7 p(RY),

. denote the seminorm defined by HVQUHL(R”

what V24 =0 implies that w =0, because ul, _o = Dyul, _y = 0. Therefore,

W;D(Ri) is a Banach space equipped with norm || || - Moreover, C°(RY}) is

W

dense in W;D(Ri). We introduce the spaces j.‘fp(Ri), 2,(A), norm || || and

Jep(RY)

the operator szp by the formulas:

Ho(RL) ={F ="(f.g,h) | f € W p(RY), g€ L,(RY), h e L,(R})},
171, = WP Fg 1), s
QP(RZ) = {U = T(uv v, 0) | u € W;D(‘Ri)v vE W;,D(Ri)7 0 € WpQO(RTJIr)}a

U =AU for U Z,(R").
(1.13)

Concerning the asymptotic behaviour of solutions to equations (1.5) with
boundary condition (1.4), we have the following theorem.

THEOREM 1.4. Let 1 < p < oo. Then, Jz'{p generates an analytic semigroup
{T(t)}59 on Hp(RY}) which satisfies so called Ly-L, estimates. Namely, for any q
with p < q and j=0,1,2 there exists a constant C,, such that there hold the
estimates:

J

IV 0P, . < Coat d

==
Q=

>|F||W") (t>0, F€#,(RY)  (1.14)

T

provided that ¢ < oo when 7 =0, 1 and ¢ < 0o when j = 2.

REMARK 1.5. (1) Since £,(R") C #,(R"), T(t)F =T({t)F for F=
(g, v0,60) € H,(R"), and therefore Theorem 1.4 tells us that solution (u,6) to
the initial boundary value problem (1.1) with (1.3) and (1.4) satisfies the
estimates:

ij(VQU("t)’Diu<'vt)a9('at))|| ’ < Cp-qt_i_g (;}_5) H(V2UQ,’UU,H())|| (t > O)

Ly(R")
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provided that 1 <p < ¢g<oowhen 7=0,1and 1 <p<g < oo when j=2.

(2) Our assumptions on the exponents p and ¢ are optimal from a view point of
Gagliardo-Nirenberg-Sobolev inquality, while the exponents should satisfy
stronger restrictions in Denk and Racke [5] like p > 2 and 1/p+1/¢ = 1.

REMARK 1.6. To make our results clear, we consider (1.1) subject to the
cramped boundary conditions:

ul, o =Aul, =0[, ,=0. (1.15)
As was observed in Liu and Renardy [13], introducing the new variables w = Au

and v = uy, equations (1.1) are rewritten in the matrix form with new unknown
functions: U = T (w, v, 0) as follows:

0 1 0
Ut = -1 0 -1 AU, U|t:0 = (AUQ Vo 90),
0 1 1

subject to the boundary condition: w|, _y =, o =0|, _o=0. Since the

0 1 0
characteristic equation for the matrix: [ —1 0 —1 | is A* — A2 +2)\ — 1, which
0 1 1
has three different roots —a, —3 and —3 (cf. Lemma3.2), there exists a non-
singular matrix B such that

a 0 0 0 1 0
0 3 0|l=B|l-10 —-1]|B".
0 0 0 1 1

Introducing new unknown V = BU = T (vy, vy, v3), finally we have
a 0 0
DV=|[0 8 0|AV (t>0), V|, =0, V|_,=B"(Aug, vo,0).
0 0 3

Namely, we can factorize the system (1.1) with initial condition and boundary
condition (1.15), and therefore we have the theorems corresponding to Theo-
rems 1.1 and 1.2 by using known results for the heat equation. But, in case of
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(1.4), we do not have any nice transformations unlike the case of (1.15), and
therefore we have to treat the essential difficulty arising from the boundry
conditions.

The paper is orginized as follows: In section 2, we shall discuss the resolvent
problem: Al — A = F in the whole space R". We give an exact formula of (A] —
A)_1 by using the Fourier transform and drive the optimal resolvent estimate by
applying the Fourier multiplier theorem, although the resolvent estimates were
obtained by Denk and Racke [5] for the general a-f3 system given in (1.3) by using
the Newton polygon method (cf. also Agranovich and Vishik [1] and Denk,
Mennicken and Volevich [4], Volevich [28]). Because, the results obtained in
Section 2 are used to derive the representation formula of solutions to
equation (1.7) as well as to obtain estimate (1.10). In section 3 we shall derive
a solution formula to equation (1.7) and prepare several technical lemmas to
estimate solutions. In section 4 we prove Theorem1.1. In section 5 we prove
Theorems 1.2 and 1.4. In section 6, we make a remark about the extension of

{Tp(t)}tzo to %1(R1)
2. Analysis in R".
In this section, we consider the resolvent problem:
(M—-—AU=F inR' (2.1)
and we shall prove the following theorem.

THEOREM 2.1. Let1l <p < co. Set

A (R") ={F="(f,9,h) | f € W,(R"), g € L,(R"), h € Ly(R")},
Pp(R") ={U ="(u,v,0) | u € W)(R"), ve W}(R"), 0 e W}(R")}, (2:2)
Y={Ae C\{0}]|arg\| < 7 — €}

Then, there exists an € (0 < € < 7/2) such that for any X\ € X and F =T (f, g,h) €
H,(R") there exists a U ="T(u,v,0) € #,(R") which solves resolvent problem
(2.1) uniquely and satisfies the estimates:

<OV fog.m)|

Ly(R" Ly(R")

2 2 ) ) )
ST (VR Ve, Vi)
=0

J

1 o
E IV7ull, o < CHUANS g DI, -
=0
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REMARK 2.2. ¢ will be given in Lemma 2.4, below.

For a(z) = a(z, . ..

00 = F© = [ e alwydr (€= (6 60)

Applying the Fourier transform to (2.1) we have

AU(€) — A©U() = F(¢) in R",

where we have set

a(é) F(¢) 0 1 0
U =08 |, Fe =49 |, A©=|-lg" 0o ¢
0(¢) 0(¢) 0 —lgF —lg?
If we write
A -1 0
M-AQ=A&=]1" X —g?

0 [¢f A+l

then (2.4) is written in the form:

AN©)T(a(€), (), 0(8)) =" (f(£),4(€), h(§))-

, &) its Fourier transform is defined by the formula:

(2.5)

To solve (2.5), we have to investigate some property of the inverse operator
A,\(f)fl. For this purpose we consider the determinant of A, (), which is given by

the formula:
det Ay (&) = N + A2 + 271" + |¢]°.

LEMMA 2.3.

(2.6)

Let us define a polynominal p(t) by the formula: p(t) =

t3+ 12 + 2t + 1. Then, there exist a real number a (0 < o < 1) and a complex
number 3 (Re s = 1‘70 > 0) such that p(t) = (t + a)(t + B)(t + B), where 3 denotes

the complex conjugate of 3. Moreover, we have
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det Ay(&) = (A + o) (N + BIEP)Y A + BIEP) = 1€ p(N/E]).

PROOF. In view of (2.6), obviously det A, (¢) = [¢°p(A/|€]%). Concerning the
roots of the polynomial p(t), there exists a unique real number « with 0 < o < 1
such that p(—a) = 0, because p(0) =1 >0, f(—1) = -1 < 0 and p'(t) > 0 for all
t € R. Since p is a polynomial with real coefficients, there exists a complex number
B such that p(t) = (t + a)(t + B)(t + ). In particular, we have a + B+ [ =1,
which implies that Ref8= (1 —«)/2 > 0. This completes the proof of the
lemma. (|

LEMMA 2.4. Let «a and (3 be the same numbers as in Lemma?2.3. Let 0 be the
argument of 3, that is 3 =|8|e"’. Let € be a small number such that 0 < e <
(w/2) — 6. Then, we have the estimates:

A+l = sin S (1N + [xllgP) (x = o, 8,) (2.7)

for any X € X, where X, is the same set as in (2.2).

REMARK 2.5. Since Ref >0, we see that 0 <argf <m/2 or 37w/2<
arg 8 < 2m. We consider 8 and 3 at the same time, so that we may assume that
0 < arg 8 < m/2 without loss of generality.

PROOF. Set (=8l and A= |\e. If A€ X, then —7+0+e<T<
7+ 6 — e. Observe that

I+ BIEP = 1BPIA" + IEP1F = I1BPNIBI e + ¢
= [BPIINIBIT)? + I€]* + 2 cos(r — )| A1) (€]

The condition that —m+e<7—60 < m—20 —e <7 implies that cos(t —0) >
cos(—m + €) = — cose, and therefore

-+ BIEP = IBPIIAIBY? + 1¢l" = 2 coselN16] ¢l
= cos clBP[(AB1)* = 2ANIB €l + [€l") + (1 = cos)lBPLANBI ) + el
> 2sin? SGP(NIB + IelY) > [sin SIBI0MIAT + 1)

which implies (2.7). Other two cases in (2.7) are obtained in the similar
manner. g
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Calculating the cofactor matrix of A, (), we have

AN+t A+ g I3
—(A+ P AN+ AP
Ao = ¢° N N+ [l

A+ aleP YO+ BIEPY A + Blel)

and therefore we have

)+ (A +1€%)3() + [€°h(E)

o G
(A8 = (A + BIEP) (A + BlEP)

)

(A2 + NP + 1€ F(e
)

(A algl”
s g = O EPNETO + 20+ PO T NePRE
O+ aleP) O+ AP+ )
. i
o ¢) = K0 = NePa(©) + (02 + I hte)

A+ aleP YA+ BIED A+ BlEP)

To derive a slightly simpler formula than that in (2.8), we use the following
formulas:

)\k 3
— 2.9
A+ aléP) (A + BIEP) A+ BlE) §:A+VMHMV% (2

J

for k=0,1,2. Here and hereafter, we use the following symbols:

n=a Y2 =05, Y3 =03
Ao = Aq, Ao = —Aaﬂ, Asp Aaa _@
p—p -8
_ 3 —B8)3 2.10
Y O Clatc) R W Cnl) R
' p-p ' p—p
a— B)3? a— 3)3?
A1,2 = Aaa27 A2,2 = _Aa( 3 _ﬂ;ﬂ , A3,2 = Aa( 3 _ﬂ;ﬂ
where we have set A, = m We see easily that

Ao+ Ao+ A30=0, Ain+Ay +A31=0, Ao+ Asn+A3,=1 (2.11)
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Combining (2.8) and (2.9), we have

X S [Ajo+ Aja + Aja Ajo+Ajn Ajo . 1
= 20 T e L e 0 M —
=2 |5 Ot Ot G mepieE
3 [ 2
R (Ajo+ A1) 5 Aji+ Aja Ajn o - ]
=) |- TR ) 4 e el L ¥
o) Z i O e M e
X 3.0 Aol AL Ajg+ Aig - 1
0(¢) = 3,0 - Js + g
©O=2 |5t O @ O S
(2.12)
Using (2.11) and the formula:
R S— 5 21<121 2>, (2.13)
A+ylEIEl AN v A+

we have also the representation formula for 4(§) as follows:

. 5 Ajo+Aj1+ A9 4 vi(Ajo +Ajn) . viAj0 ~
= - - -’ - —2 = _h . (2.14
DV st (s vrenar kAl rywar i e

Set
u(e) = F[U@)x), v(z) = F BE)(), (z) = F OE))(x)-

Here and hereafter, fgl[a(f)](x) denotes the Fourier inverse transform of a(€)
which is defined by the formula:

FON0) = o [ e ale)de

To estimate u, v and 0, we use the Fourier multiplier theorem (cf. [20], [24], [25]).

THEOREM 2.6 (Fourier multiplier theorem). Let 1 <p <oo, let S(R")
denote the Schwartz space of rapidly decreasing funtions on R", and let m(§) €
C(R" \ {0}) satisfy the multiplier condition:
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|Dgm(§)] < Colel™*! for any multi-index o € N§.

Then, the operator T defined on /(R") by Tf = }?Wm(f)f’(f)](x) admits an
extension to a bounded linear operator T : L,(R") — L,(R"). Furthermore, the
norm of the operator T is estimated by c(p,n) max{C, | |a| < n/2} with some
absolute constant c(p,n) depending only on n and p.

By (2.7) we have
1D2 (A +%le) ™I < CaeIX + 1€1) 1™
for any multi-index a = (o, ..., a,) € Nj and (A, €) € X, x (R"\ {0}). And also,
D2 (el < Calel ™"

Applying Fourier multiplier theorem to the solution formulas (2.12) and (2.14),
we have immediately the estimates:

< CI(V2f.g,h)l

Ly(R") — Ly(R")

< CI(V2f,g. )

1.
[NV, APV, Vi) |

1
1A, A2V, V20) |

Ly(R") Ly(R")

< CI(V*f,9, 1)l

Ly(R") = Ly(R")

< CIOALS 9 P,

Ly(R") —

1
116, (A2 V6, V20)|

3
(AP, A2V

for any A € 3. This completes the proof of Theorem 2.1.

3. Solution formula and some technical lemmas.

To prove Theorem 1.1, first of all we reduce equation (1.7) to the case where
F = 0. For this purpose, we make the odd extension of F' = (f,g,h) € 7, x(R'})
which is defined as follows: Given k defined on R, k° and &° denote its odd and
even extension to R", that is

_ k(2 x,) (z, >0)

kK (x) = , K(x) =
(@) {—k:(x',—xn) (zn, < 0) (@)

{ k(z', x,) (x, >0)
k’(x’, —.’Bn) (xn < O)

where ©' = (z1,...,2,-1). Using this notation, let (ug,vy,6y) be a solution to the
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whole space resolvent problem (2.1) with F' =T(f°, ¢°, h°), which are defined by
using the formula (2.12) as follows:

R 3 -A70+A71+A7'2 “ Ajo+ A1 Ajo - ]
— J J J 0 ’ k) [0 + b ho
WO =2 | TR O e O e ©
3 [ 2
. (Ajo+ A&l 5 Aji+Ajo Ajn
_ _ MU T RIS 2o i e AL Y) _ T pe
“® Z P W A W )]
. 3.0 Ajolel A Ajo+Ajs ~ ]
g _ 7,0 o(¢y 7, o) + =L 32 po
0(5) ]z:l:_)\+’}/j|£|2f (f) /\+’Yj|§‘2g (f) )\+’Yj|£|2 (f)
(3.1)

Since fe W7 (R) and fl, =0, f° € W)(R") with Du(f*) = (Duf)* and
D?(f°) = (D?f)°, and therefore

199570,y < OIS, ey (=012 1B, ) <200 R), e, (3:2)

Applying Theorem 2.1 and using (3.2), we have

(N — A) (ug, v0,60) = F° =T(f°,¢°,h°) in R", (3.3)

1A, A2V, o), < CUT2F 002,
171w, 80), INEV (w0, 80), T2 (00, B,y < CHOT2 00, e (3.4)
1Mo, AETa0)l, ) < CHONS 0.1, o,
Moreover, thanks to the odd extension of (f,g,h) we have
up=1v9 =6y =0 when z, =0. (3.5)

Setting u =wup+w, v=1vy+ 2 and 0 =6, + 7, we have the equation for new
unknown functions w, z, 7 as follows:

Aw—2z=0
Az + A?w+ AT =0 in R} (3.6)
AM—AT—Az=0
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subject to the boundary conditions:

w

2,=0 — Tlz,=0 = 0, an|z,,:0 = _Dnu0|z,,:0' (3.7)

Setting z = Aw in (3.7), we have

Nw+ A2+ AT =0
WA AT } in R" (3.8)

M — AT - MAw=0

To solve (3.8) with (3.7), we apply the partial Fourier transform with respect to z’
variables to (3.8), and then we have the system of ordinary differential equations:

N+ (D)~ [€1)* 0+ (D)~ [6)7 = 0} in (0.00) 59)
N (D2~ €Y7~ A(D2 €y = 0
subject to the boundary conditions:
@, g =7y o =0, Dyitl, o =Gl, (3.10)
where G = —D,ug. Here and hereafter, for a(z) = a(a’, z,) (¢’ = (z1,...,2,-1)) we

define the partial Fourier transform a(¢',z,) (£ = (&,...,&—-1)) by the formula:
a(¢,xy) :/ e alal xy) da.
Rnfl

To solve (3.9) with (3.10), we consider the characteristic root of the determinant
of the following matrix:

2 2 ¢t 2 2 g2
L(A,g’,t)(A—i_(t €r) -k )

“ME—IEP) A= ()

Then,

w

det L\ 1) = [T+ (€17 = )

J=1

Here and hereafter, y; = a, 7 =  and 3 = (3 are the same as in Lemma 2.3 and
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(2.10). Therefore, the characteristic roots for the system of ordinary differential

equations (3.9) are: £4/7; '\ + I€'> (j=1,2,3). In what follows, let e and ¥,
denote the number given in Lemma 2.4 and the set defined in (2.2), respectively.
When A € ¥, we have

largy; Al <m—e (j=1,2,3) (3.11)

In fact, what A € ¥, means that -7+ 6 + ¢ < argA <7 — 60 —e€. Since 73 = a € R,
arg((’yl)fl)\) =argA. Recall that [f=7, and that argf=060. We have
arg(y;'A) = arg A — 0, which implies that —7 + ¢ < arg((y2)'A) <7 —20 — € <
7 — €. Recall that 43 = 3, and then arg~ys = —60, arg((ys) ' A) = arg A + 6, which

implies that = — e > arg((y3) 'A) > —7m + 20 + € > —7 + €. Therefore, we have
(3.11). In what follows, for the notational simplicity we set

Aj= () A IET (= 1,2,3).
Combining (2.7) with (3.11), we have
3 _ — .
(sin(e/2))2\/ Iy A+ €7 < Re Ay < Aflyl A+ 17, (G=1,2,3). (3.12)

We shall look for the solutions @ and 7 to equation (3.9) of the formulas:

(N € x,) = ZP@ AT FNE x,) = ZQJ i )an

Plugging these formulas into equation (3.9) and wusing the formulas:
(D3 =€) e = (A7 — |¢")! 4™, we have

(N (A3 = 1€)) B + (A — €1)Q; =0 (3.13)
(A= (A7 = E'1))Q; — A(A] — [€'") P =0 (3.14)

From (3.13) we set

21 (A2 — |y
QJ == 2 ’ 712 ‘Pj7
A7 ¢
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and then using the fact that det L(\, &, A;(\, §)) =0, we see that (P}, Q,) also
satisfies (3.14). From this observation, we set

3 A+ (1€ — A;(N€)7)° ,
WA € x,) =Y Pem MM F(\ ¢ a,) = EAS oA,
Z * Z e —A;(n e

Recalling that 3 +#*+2t+1=(t+7){t+%)(t+13) (cf. Lemma2.3 and
(2.10)), we have vj +2v, = 7]2- + 1. Using this formula, we have

(0 1 S /s U e/ S TN
€] — A;(\, &) ;1A vj J

and therefore we arrive at the formulas:

Mu

3
DA E ) =Y P F (N € ) N(E +2) P m (3.15)
=1

J:I

To decide Pj, we use the boundary condition. Plugging the formulas in (3.15) into
the boundary condition, we have
P+P+P=0
—(A1P + Ay Py + A3P3) = G(¢,0) (3.16)
“MOT+ 2P+ (3 +2)P+ (5 +2)P) =0

In view of (3.16), we define the Lopatinski matrix A()\,¢’) by the formula:

1, 1 1
ANE) = -4, —Ay, -4 (3.17)
MN+2 W+2, A +2

)

and then
det AN, &) = —[(% — %) A1 + (3 — 1) A2 + (7 — 73) As] (3.18)

’Y;% —’YZQ A0
(A ! n) = "G 0
w( 7671’1/) (]k@detA(A,f/)e (f )

(3.19)

MY +2)(i =) N A
2\ m,) = — J ~4,02a G
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Setting
w(z) = 9&1[111()\, & x)(@), v(z) = w(z), 7(z) = 9;1[7:()\,5’,xn)](x’) (3.20)

(w,v,0) is a required solution to (3.6) with boundary condition (3.7).
In what follows, we shall estimate w(x), v(x), 7(x). For this purpose, we
introduce some terminologies concerning the Fourier multiplier theorem.

DEFINITION 3.1. Let 1 <p < oo and E be a set in C. Let m(\, &) be a
function defined on = x (R"™\ {0}).
(1) We call m(A, &) a Fourier multiplier of first kind if it satisfies the following
condition: For any multi-index o = (o, ...,0,-1) € Ng’_l, there exists a constant
Cy . depending on o and e such that

DY m(A€)] < CarcdAF + €)Y (A, &) € 2 x (R {0})).

(2) We call m(\, &) a Fourier multiplier of second kind if it satisfies the following
condition: For any multi-index a = (ay,...,a, 1) € Nj', there exists a constant
Cy . depending on o and e such that

1Dg m(\,€)] < Cur ] (A, €) € 2 x (R {0})).

Since (|)\|% +1¢)71T < &7 a Fourier multiplier of first kind is also that of
second kind. The multiplication of several multipliers of first kind and second kind
becomes a Fourier multiplier of second kind. If m(},¢’) is a Fourier multiplier of
first kind or second kind, then setting M,[g](y) = ﬁgl [m(\, &)g(& u)l(Y), by
Theorem 2.6 we have

M < Chp max DYm(\, ¢ 3.21
1M, ) < Cr |a/§_1{<x5/>eax(ﬂ"”\{u})| emN Ol (321)

where C,,, is a constant depending on n and p. The following two lemmas are the
bases of our estimations.

LEMMA 3.2. Let € and X be the same number and set as in Lemma2.4,
respectively. Then, for any real number s and multi-index o/ € Ngfl we have
! s 1 s—|a/
|DE A0 €)'| < Cores (N2 + 1€,
|D?’/|§,|S| < Ca’,5|£l|87‘a ‘7
IDE (4,00 ) +[€1)°] < Carlg"
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where the constants Cy s and Cy s depend on &, €, s and o, s, respectively.

LEMMA 3.3. Let 1 <p< oo and let = be a subset of C. Let my(A\, &) and
ma(\, &) be a Fourier multiplier of first kind multiplier and that of second kind
defined on E x (R"™'\ {0}), respectively. Let us define the operators K,(\) by the
formulas:

[Kj(Ngl(z) = i F (), €A Fe MO 5(e )] (2!) dy,
[Kpp(N)g)(z) = /0 F o' Ima(X, &)|¢ | MOt 5y ] (a') dyn
[Kj3(\)gl(z) = /O Fo' I\ EP AN E 0+ yn)G(E  yn))(@) dy,

where we have set

e AT, _ o€l

MM E ) = AONE) ]

Then, Kj(A) is a bounded linear operator on L,(R') and
15 (Nl ) < Coelal, o,

for any g € L,(R'}) with some constant C,,,= depending onn, p and =.

Lemma3.2 was proved in [22, Lemma 4.4] and [23, Lemma 5.4] and
Lemma 3.3 can be proved by the same argument as in the proof of Lemma 3.4 in
[21].

In what follows, we use the symbol: A;(A, D) D'|" defined by the formula:

(4,00 D) | D' gl(w) = Fo ' [4;(0 €)" €1 3(€  w)) ().
In particuler, we have

b a=c o
LA DYID gl < Coe 30 AT S 1Dl (3:22)

0<c<a o/ |[=b+c

Vi 7 — oy
where D% = D{"--- D% and o = (ay,...,q, 1) € Ny~ In fact, writing
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) 714.7'()\,8)2 -1 - n— llé«k
AN =y = 7%» Zj A€,£MK| "2 BB

and noting that A/(7;A4;(A, f’)|)\|%), i&k/A;(N,€), i&/|¢| are Fourier multipliers of

second kind, by (3.21) we have (3.22).
We shall prepare two lemmas for estimations of w, v and 7 defined in (3.20).

LEMMA 3.4. Let 1< p< oo and let m(\£) be a Fourier multiplier defined
on X, x (R"1\ {0}) of first kind. Let %, (\) (j,k = 1,2,3) be an operator defined
by the formula:

[B;1(N)g](x) :/0 F 7 m E) AL, €)em VAt g(e g )] () dy,.
Then, for any A € ¥, we have
125Nl ) < Coelldll,

PROOF. Using (3.23), we write

[%ﬁk(k)g](x)—/Omf_l[ml(kf')lkléeA-’( St g ya))(2') dyn

+ /0 T ma(\, )¢ |em OOt g(el )] (') dy,
where we have set

mi(X &) = (mA €N/ (AN ENT2), ma(A,€) = (m(A,©)IE)/ AN €).

By Lemma 3.2 we see that my(A, &) and ma(A, &) are Fourier multipliers of first
kind and of second kind, respectively. Therefore, applying Lemma 3.3 we have the
lemma immediately. (]

LEMMA 3.5. Let 1 <p<oo and C.={X€ C|Re)X>0}. Let 1hy(s) be a
function in Ci°(R) such that ¢y(s) =1 for|s| < ry and ¢y(s) =0 for|s| > ry with
some positive numbers rg and r1 such that rg < 1. For A€ C let m(\, &) be a
function defined on suppo(|A|/|€]7). Assume that

1DZm(N,€)| < Cozle| (3.24)
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for any o/ € NI7t X e C, and € € supp o (|A|/|€]7).
(1) Given £ € Ny, we set

CH(Nlgl(@) =

/\71/0 F o [o(M/1EP)E T m(A, &) {em WOt — emlletulyg(e . )] (2') dy,

Then, for any (a,b,c,d) ENB1 witha+b+c+d=0+3, A€ C, and j,k=1,2,3,
we have

IA2[1D5 A\, D)D" €5 (NG, ) < Ceallgl, (3.25)

Ly(R")

(2) Given ¢ € Ny, we set
P Nlgl(@) =
/\71/0 Z & o (IN/IEP)IE T m(A €) (AN, €) — [ ) HNOmg(¢ y,)] (') dyn

Then, for any (a,b,c,d) € Ny witha+b+c+d=£+2, A€ C, and j,k=1,2,3,
we have

NEIDL AL, DD DNl ) < Coallal, (3.26)

REMARK 3.6. We note that C; C X..

PROOF. (1) We write
INEDE AR(A, D) | D6, (V) [g) ()
=A(-1) /0 Fa o(N/IEP)N2IE T m(n &) A\ €)°
(A0, €)= 1€ )e MO @t gy ) (a') dy,
Ay / F o (N/IE B IABIET m(n, €) A\, €)°

. {e_Aj()\vél)('/En""yn) _ e_‘g/l(mn"'yn)}e_Aj()‘fgl)(-Tn"'yn)g(fl, yn)](m/) dyn
=L +1I
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where I, = 0 when b = 0. To estimate I, setting

ni (N €)= (1)1 ALN )N (AN ) = 1€])m(N €),

we write
b :/U Fa Wo(A/[E ) (A €)|€ |l M et gl )] (o) dy-
Using the identity:

A= (4;(08) = 1€D(A;(N &) + 1€ (3.27)

we have

A8 — €] _ Sk A0, e
X (A €) T 1€])

Therefore, by Lemma 3.2 and (3.24) we have
o ’ L) o ——1+d 1 I\ CHb—2) 11— || 1—|e|
[Dg i (A &) < Co|ARIE] (AR +1EDT T < Cul€] (3.28)

when ¢ € supp ¢(|A|/|€7), because a + b+ c+d = £+ 3.
On the other hand,

IDgn(IN/1€'P)] < Car (N + 1677 (3.29)

for any o/ € Nj~! and (\,¢) € C x (R"'\ {0}). In fact, by the Bell formula we
have

Do (IA/1€1%)

lo/|
4 2 o ¢ o _9 o _92
=Y (D) (NP D Lo Dt (AE7) -+ D (IM1€177)
/=1 (:z’l+~~-+n¢}:(x’
s

with suitable coefficients FZ:’ZH_M. Noting that 7y < |)\|/|§/|2§7«1 on

supp xO(IA/I€7) (¢ > 1) and using Lemma 3.2 we have
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|o|

IDEwa(N/IEP)] < C S IXOUA/EPIIN/IER €17 < COAR + 1),
(=1

which shows (3.29).
Combining (3.28) and (3.29), we see that ¢,(|A/]€)))ni(A, &) is a Fourier
multiplier of second kind. Therefore, applying Lemma 3.3 we have

120l ) < Collgl, - (3.30)

Ly(R)

Using (3.27) and setting

na(A, &) = (=)A€ (A, €) Ar(, €)C (v (A (0, €) + 1€1) 7Y,
e_AJ<>‘-,f/)5'7n _ e_lfllmn

AN =g

%j(A’ §/7 13") =
we have

11, = /0 F ¢ oM/ 1€ P)ma0 IE A (€ w + 9a)3(€ s ) (@) -
By Lemma 3.2, (3.24) and the assumption: a + b+ c+d = £+ 3 we have
/ 4 i c— —{— [ ¢t~ —|o/
[Dgna (A €)] < CAP(AR + €)1 < Gl

when ¢ € suppo(|\|/|€']?), which combined with (3.29) implies that na(X, &)
Yo(|A|/|€]?) is a Fourier multiplier of second kind. Therefore, applying Lemma 3.3
we have

MTE, ey < Collgl,

which combined with (3.30) implies (3.25). Employing the same argument as in
proving (3.30) with b =1, we have (3.26), which completes the proof of the
lemma. (I

LEMMA 3.7. Let 1 <p < oo. Let 1(s) be a function in C*(R) such that
Yoo(s) = 1 for|s| > 1 and Y (s) = 0 for|s| < ro with some positive numbers ry and
ry such that ry<ry. For M€ C. let m(\ &) be a function defined on
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supp woo(|)\|/|§’\2). Assume that

D m(A, )] < Ca(IA7 +1¢]) (3.31)

forany o € N7\, M€ Cy and € € supp Voo (|A/I€7). Given £ € Ny we set
> L N —A;(NE) (x ~ ol /
Cgfoo(k)[g](x):xl/o F o' [oo (IN/IEPYAT2m(N, & )em Mt gy, )] (2) dy

Then, for any (a,b,c,d) € Né witha+b+c+d=0+3, € Cy and j,k=1,2,3,
we have

A2, A, DYID[E (NI, ) < Crallgll, - (3.32)

LR

PROOF. Employing the same argument as in proving (3.29), we have

D s (IN/IE')] < Co (N + 16D 77, (3-33)

for any §' € Ny~ and ()\,¢) € C x (R"'\ {0}). First, we consider the case
where d = 0. In this case, we write

INZD AR D)6 (V)]g)(x)

= A F o (A1), ) A2 OO ) (e g Y] (a') dy,

L a
where we have set n(),¢) :)\*1|)\|’§’%|A|5(—1)bA]-(>\,5/)bAk()\,§/)“m(>\,§’). By
Lemma 3.2 and (3.31) we have

, 3 L,a 1 . 1 / 1 /
DA )] < Cal AT 22 + )T A + 1€ < Car (A + 1€
when ¢ € supp oo (|N|/|€])?), because a+b+c=¢+3. Combining this with
(3.33) implies that s (|A|/|€]P)n(),€) is a Fourier multiplier of first kind.
Applying Lemma 3.3, we have (3.32).

When d > 1, we write

IAZDL AL (A, D) |D/|*6" (V) [g] ()

- / F o s (N/1E VAN, )¢ |lem B @mtm ey )] (a') dy,
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where we have set (A, &) = A A 2 (—1)°4;(0, €)" A, (A, €)71¢ " m(A, €). B
Lemma 3.2 and (3.31) we have

IDEn(N€)] < Co AT TE(AR 4 [¢]) e[ < ol

when ¢ € supp 1o (|A|/|€]?), because a4+ b+ ¢+ d = £+ 3 and d > 1. Combining
this with (3.33) implies that ¥ (|A|/|€]*)7(A, €) is a Fourier multiplier of second
kind. Therefore, applying Lemma 3.3 we have (3.32), which completes the proof of
Lemma 3.7. (|

4. A proof of Theorem1.1.

In this section, we shall prove Theorem 1.1. First of all, we shall examine the
behaviour of det A(A,¢).

LEMMA 4.1.  Let A(NE) be the same matriz as in (3.17). Assume that
Re )\ > 0. Then, there exist positive numbers oy and o1 such that

|det A(A, €)= a0l AI€] when |A|/|¢]* < oy,

[det AL E)] > ou(IA2 +1¢])  when [A|/€ > o1/2 (4.1)

Moreover, for any multi-index o/ € Ng”l we have

1DZ (det AN, €))7 < Co|A[ Mg when [A/|€]" <oy, (4.2)
D% (det A\ €))7 < oA+ 1€ when |A[/IE]2 > o/2,  (4.3)

PROOF. Let o1 be a small positive number determined later and we first
consider the case where |A|/|¢|* < o1. For the notational simplicity, we set

=% -7, =7 -7, &= —", (4.4)

and then by (3.18) we have

3 3
det AN &) = =D 8;A;(N &) == 8\ /v A+ ¢ (4.5)
j=1

J=1

Since (/7 't +1 =1+ (Z’yj)_lt + O(t?) as t — 0, it follows from (4.5) that



L, analytic semigroup associated with the linear thermoelastic plate equations 995

det A\, €) = IU§:6{1+ (295) 't + O(E))},
where t = \/|¢/°. Since

= (8= B)la -’ (4.6)

.
i Mw
I
MQ..)
P%

we have
[det A(X, &)| > (1/2)€[[£](18 — Blle — B* = CI¢])

with some constant C > 0. Choose o7 in such a way that Coy < (1/2)|8—
Bllo — 8%, we have

det A(X,€)] > (1/4)|8 = Blla = BPAINET™ when A[/|E] < o1 (47)
Now, we consider the case where |\|/|€']* > (01/2). Set
A HERT E=INHIER T (GG=1,-..,n—1)

By (3.18) we have

det AN, €) = —\/IA| + €]’ D(X,§) (4.8)

where

D) =\ A+ 1€ (08 =93) + /e ' A+1E° (0F = 71) + /0 A+ 1€ (7] =)
What |[A|/|€]> > 01/2 implies that

Al =@ +IEP/ADT = 1+ (2/o)) 7
and therefore the range of (X,é’) is in the following set:

={NE)eCx R (14 (2/a)) ' <IN <1, |[N+|€P=1, Rei>0} (4.9)
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If we show that

det A(N,€) #0 when ReA > 0 and X # 0, (4.10)

then from (4.8) and the fact that Q is compact it follows that infgzcq
ID(X,€)| > 0, which combined with (4.8) and (4.7) implies (4.1).
Therefore, we shall prove (4.10) finally. Suppose that there exists a (A, &) €

C x R"! such that Re A > 0 and det A(), &) = 0. Then, by (3.17) there exists a
(Pl, PQ, Pg) 7é (07070) such that

P+P+P=0,
A (N E) P+ Ag(N, )Py 4 A3 (N, €) Py = 0, (4.11)
(2 +2)P+ (2 +2)P + (¥ +2)Ps = 0.

Set

w
w

’LU(ZE”) = Z PjeiAJ<)"£/)xn, T(In) = -\ Z(,YJQ 4 2)H€7AJ()\,§’):16".

j=1 J=1

Then, by (3.15) and (4.11) we see that w(x,) and 7(x,) satisfy the homogeneous
system of ordinary differential equations:

Nw+ (D2 = €)Y w+ (D) — €))7 =0 (2, > 0),
A — (D2 =€) = AND? = |€P)w=0 (x,>0), (4.12)
w(0) = (Dyw)(0) = 7(0) = 0.

Multiplying the first equation of (4.12) by A\w and the second equation of (4.12) by
7 and integrating the resultant formulas, by integration by parts we have

IAPAw]® + X DZw|® + 2X1¢ | D) + X[ Jwl® = MDyr, Dyw) — A¢)* (7, w)
+ )‘||7'||2 + HDHTHZ + |€/|2||7'||2 + MDyw, Dy1) + A‘§,‘2(wa 7)=0

where (u,v) = [ u(z)v(x) dz and lul|> = (u,u). Taking the real part of the above

formula, we have
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(Re ) [AP[lw]]” + [ Djw]® + 21¢'P|| D]
+ 1€ oll® + 17117 + I Darl® + [P 1 =

Since Re X > 0, we have ||Dn7'||2 =0, which implies that 7 is a constant. But,
7(0) = 0, and therefore 7 = 0, which implies that P, = P, = P; = 0 because A # 0
and {e~ 4O “0},2125 are linearly independent functions. This leads a contra-

diction. Therefore, (4.10) holds.
Now, we shall prove (4.2) and (4.3). To prove (4.2), first we observe that

1D det AN, )| < Cur|A[J¢] 7 (4.13)

for any o/ € Nu~' when ||/|¢'|* < 0. In fact, recalling (4.5) and taking f(t) = %

by the Bell formula we have
DY (det A(X,€)

||

3

_ o 0 (o4 2 / 2

-36, Zfo DD Fa;',...,a;(D§1|5/| ) (D€

o =
|o|>1

where F . are suitable constants. By (4.6) we have
P
3

1 1 3 1
oGO0 AHER) = 5 (G- 04 1) Lo+ e
=1

=1

=1

3
= % (%—£+1>|§’|”‘{Zéj+0(t)} (t=2"M¢[ and |t| < 1).

We may assume that what |A|/|¢/|> < oy implies that I /€7 < 1/2. Since
27 1 6; =0 as follows from (4.4), we have

O A+ IEP)| < Colallg|™

On the other hand, by Lemma 3.2 we have
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‘DO/1|§/|2| . |Da2|§/|2| < Ck|§/|21’,7\a’\

because || + - -+ + |a)| = |&/|. Combining these two inequalities implies (4.13).
To show (4.2), taking f(t) = ¢t1, by the Bell formula we have

3 lo/|
DY (det AN €) =6 {Zf (det A(A,£))

J=1

“,_ 1
&=
\ | 1

Z /r‘“ - (DY det AN, €)) - - (D detA(A,f’))} (4.14)

and therefore using (4.13) and (4.1) we have

|o|

D (det AN, €))7 < Cor Y (@alMIET™H ™ MIET™ 117 < Cor g
(=1

which shows (4.2).
To prove (4.3), first we observe that

DY det AN, €)] < Col(IAP + €))7 (4.15)

for any o/ € N{~'and (\, &) € C; x (R"*\ {0}). In fact, applying Lemma 3.2 to
the formula (3.18), we have (4.15). Combining (4.14), (4.15) and (4.1), when
M€ > 01/2 we have

, |o| | , s ,
|Dg (det A €)) < Cad(det AN E)) AR HIENT T < CalA 41
=1

which shows (4.3). O

Now, we shall discuss the estimation of w, v and 7 defined by (3.19) and

(3.20). Before starting estimations of these function, we give a lemma to estimate
G = —DTLU[).

LEMMA 4.2. Let 1<p<oo and F = (f,g,h) € #,(R). Let uy be the
function defined in (3.1). Then, there exists a W (z) € W3 (R';) such that W|, _, =
Dy, —o and
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a
5 b
NEIDL AV, DYIDTWI, < Gl (D2 g,

for any (a,b,c,d) € Ny witha+b+c+d=3, \€ % and k=1,2,3.

PROOF. 1In view of (3.1) and (2.14), we have

~ el o & o K?ign 2o _ 2 ’}/j”i?ifn ke
ty(&',0) —Z/m{gf (€) ;mg (&) ¢ dén

=1 A+ 5l¢]
where we have set §'(€) = §°(€), (&) = h°(€), K0 = Ajo + Aj1 + Ao, K =A0+
Aj; and k2 = Ajo. Changing the order of the mtegratlons by Fubini’s theorem we
have
DnuO(é- O

0 (o= Wnén _ oiYnn);
/ f yn K/ — E )\ p)/j 5 yn)) (/ (6 )\+7€|§‘2 )an dfn) dyn
S G

If we write A+ 75 [€]° = (& + 14\ €))(& — i4;(N, €)), by the residue theorem

we have

n

/00 (efiyn{n _ eiyn§n)i§n g It 67A](A,§/)y"
)
—o0 A+ ;€17 Vi

and therefore we have

Dnd()(gl,()) = 272/ 448 yn H ’YJ 7yn Z At k k ,yn)) dyy.
J=
Since f(2/,0) = D, f(«',0) = 0, we have
/ e*A./(A,f’)yn,f(ég/’ Yn) dyn = Aj(/\7 5/)72 / e M Dif(é", Yn) dYn,
0 0

and therefore we define W by the formula: W (¢, z,) = 2a(W1 (¢, z,) — Wa(€, zy)),
where we have set
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3 00

Wi(z) = k) /0 F o (AN &) Pem WAt D2 £y )] (') dy
J=1
3 2 00

Walz) =y wiat / T e MOOEm Gy ] (') dy.
j=1 k=1 0

Obviously, we have W(z',0) = D,uo(2’,0). Since Z] ll*ij =0 for k=1,2 as

follows from (2.11), we can write

3
+ZZ& [ E (I e A G g dy

2
7=1 k=1

where we defined vy and 1 by the formulas : 1y = x and 9, =1 — x with
function x € Ci°(R) such that x(s) =1 for |s| <1/2 and x(s) =0 for [s| > 1.
Applying Lemmas 3.5 and 3.7 with £ = 0 we have

IAZID;, AL DY ID [ Wall, ) < Cocll(g: 1)

|L,,(Rl’)

for any (a,b,c,d) € Nﬁ witha+b+c+d=3and ) € X..
On the other hand, given (a,b,¢,d) € Né, studying the cases where d = 0 and
d > 1, by Lemmas 3.2, 3.3 and 3.4 we see easily that

AEIDL A, DD 'WAl, < o DA,

L(R)_

for any A\ € X, which completes the proof of Lemma4.2. O

Under above preparations, we shall estimate w, v and 7. Let W be a function
constructed in Lemma4.2 and set H(zx)=-W(x), and then H(2',0)=
—(Dyup)(2’,0). We start with the estimate of Aw = v and 7. For this purpose,
setting

1 AeiAj()‘vf/)mn -

zj(z) = Fg detANE) H(E, 0)] () (4.16)
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we shall show that

1
1A 25, N2V 25, VE2)), ) < DS 9, 1) (4.17)

L (R Ly(RY)

for any A € Cy = {A € C | ReX > 0}. In fact, using the symbols z; and (3.19) we
have

3 3
() =v(z) =Y bizi(x), T(z) == &z (4.18)
j=1 J=1

where 6; (j=1,2,3) are the same as in (4.4) and & = (7 +2)§; (= 1,2,3).
Therefore, (4.17) and (4.18) imply that

LI N
> ATV (A fw, v, ey < Gl(D2 S g, W, e, (4.19)
=0

for any A € C,.
To prove (4.17), using the Volevich trick [27], we write

o y 1 )\e*A (M) (@ntyn) K , , d 4
%) /0 ¢ laeram eya e S| @dim (420

where Kj\(z) = A;(\, D')*H(x) — Aj(\, D')* D, H(z). Recalling that H = —W and
using Lemma4.2 and (3.22) we have

1KAll, ) < CIDAF 0B, (M€ B0, (421)

L@®y) —

Using a function x(s) € Ci°(R) such that x(s) =1 for |s| < ¢1/2 and x(s) = 0 for
|s| > o1, we devide z; into the following two parts:

)\67‘4.1 (/\16/)<$n,+y71)

det A(N, €)A;(\, &)

2ix(a) = / e [xmwm SR ) | @) dyn (422)

for N =0 and oo, where xp = X, Xoo =1 — x and o is the same constant as in
Lemma4.1. To prove (4.17), for a =0, 1, 2 and o/ € N"! with |o/| <2 —a we
write
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IN2D% D21l () = (—1)* ] / T en (IN/1E PYmaw (M, €)
|§/|6_AJ()\,£/)(1:R+Z/”)kjk(§l7 yn)]('r/) dyn

where we have set maq (A, &) = A (det A\, €)) A (€) A;(x, €)1t
N = o0, then we assume that d > 1. By (4.2), (4.3) and Lemma 3.2 we have

D maw (A €)] < Cyl¢] V! (4.23)

for any § € Ni7', A€ C; and ¢ €suppxn(|A|/[€?). On the other hand,
employing the same argument as in the proof of (3.29), we have

/ 1 —|la/
1Dg X (/1)) < Cor(IAE + 1€/ (4.24)
which combined with (4.23) implies that m,.(\,&)xx(A|/|€]7) is a Fourier

multiplier of second kind. Therefore, applying Lemma 3.3 and using (4.21) we
have

ABIDE D2zl < GI(D2 g, ) (4.25)

Ly(Ry) "
for any (a,o’) € Ny with a+ |¢/| <2, where we assume that |o/| > 1 when

N = oco.
When N = oo and |¢/| = 0, we write

a —a e¢) _
AEDE 51 (@) = (1) [ 5 A€ PIman(3,6)
L " o~
‘)\|26 A](/\,g )(:cn,+y,,,)Kj)\ (5/, yn)](fﬂ,) dyn

1 a
where we have set m, (), &) = MA|"2(det A(X, €)' N2A4;(\, €)% By (4.3) and
Lemma 3.2 we have

3 1 TG
DY mag(A\€)] < Ca(Al2 + €))7

for any § € NI\, Ae C. and € € supp xoo(|N/[€[*), which combined with
(4.24) implies that yoo(JAl/|€'[*)mao(X, &) is a Fourier multiplier of first kind.
Therefore applying Lemma 3.3 and using (4.21), we have
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a _
NEIDE 2l e, < GRS 01,

for any A€ C,, which combined with (4.25) implies (4.17), because z; =
Zj0 F Zjoo-
Now, we shall show that

1.
1AV, Vi), ) < CHDLS g R, - (4.26)

Ly(R")

Since Zj’:l 6; =0 as follows from (4.4), by (4.16) and (4.18) we devide w(z) into
the following two parts:

3 —A; ANz _ o€ "2
St o MIER) 7o o,
U)()(l’) = - (S]Jf/ [ det A()\7§/) H(f 70)‘| (1" )5

le SOz (I/1ET)

o A( w3 H(E, 0)1 ().

where xo and x. are the same functions as in (4.22). First we consider wy(x).
Using the Volevich trick, we write

3 [e%e} —A (/\,f/)(-'1771,+y71,) —_ _lfl‘(wn"'yn) 112
. , | (e e Ixo(IA/1€7) > (el /
- Z.: 5"/0 e [ (det AN, €))4;(0,€)° K’A(E’y")l )

AN ) — [€)e By (A /1€ ) &
(detA(Aafl)) ]()‘75/)

+Zé/ T

—wo( )‘HUO( )

(g ’ TL)] (x/)dyn

where we have set Kj = —(A;(\, D)W — A;(\,D')’D,W) and N;, =
—Aj(\, D')’W. By (4.21), Lemma4.2 and (3.22) we have

[N, ) < G2 g, (4.27)
for any A € C, and j=1,2,3. If we set
ml(A,€) = Adet A €)1 4, (0, )~

for k=0,1, then we have
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3 00
uble) = oo [ 2 [/ P m )

=1
(e~ A @ntun) _ e—\f’l(zrnern))Kj/\(g" yn)} (') dy,,
3 00
wlo) =3 ox " [ 7 [/ 0 €)
=1

(450, €) = €D M@t Ny (¢ ) | (@)
By (4.2) and Lemm 3.2 we have
|DEmE (A, €)] < Cule| ]

for any o € N{”', A€ Cy and ¢ € supp xo(|Al/|¢€'[?). Therefore, applying
Lemma 3.5 and using (4.27) we have

1,
1AV wo, Viwo)ll, ) < Goll(DLf 9. R, (4.28)

(RY)

for any A € C,.
Finally, we consider wy (z). Using the Volevich trick, we write

Woo (2)
3 0
=> ! /0 F e MOty (NI )N P ma N, €)Kin (€ 3))() dy
j=1

where we have set moo(A7§'):A|A|%(detA(A,5’))*1Aj(x,g’)*2. By (4.3) and
Lemma 3.2 we have

/ 1 _
D mag(0, )] < Car (N2 + 1)

for any o/ € NI7', A€ Cy and € € supp xoo(|A/|€])?). By Lemma3.7 and (4.27)
we have

1
NIV e, V)l ) < Coll(DES B, e

for any A € C., which combined with (4.28) implies Theorem 1.1.
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5. Generation of analytic semigroup and its asymptotic behaviour.

In this section, we shall show Theorems 1.2 and 1.4. First, we shall give

A PROOF OF THEOREM 1.2 Let <7, be the operator defined in (1.9). By
Theorem 1.1 &7, is densely defined, closed operator on J7,(R'}). Let p(</,) and

(M — ,;zfp)_l be the resolvent set and resolvent operator of o7, respectively. Set
_ _T ,

||F||%’,,(R’() - HfHW,’f(RD + ||(g7 h)HL,,(R"’) fOI‘ F - (fa ga h) € %P(Ri) Thena by Theo—

rem 1.1 we see that C C p(«/,) and that there exists a constant M > 0 such that

NI =)' Fl, < M F| (5.1)

Hyp(RY)
for any A€ C, with |A\|>1 and F € JZ,(R"). If we write A\ — .o/, = (i3 —
) (I — a(iff — o7,) ") for A= —a+i8 (a > 0), by (5.1) we see that whenever

Mal|f| ™' <1 and A = —a + if3, the resolvent (A — 7,) " exists and satisfies the
estimate:

NI =) FIl, ) < 2MIFIL, (5.2)

for any F'e€ 7)(R). If we set A, ={\ € C||argA| < (7/2) + p, |A| > 1} with
p=tan"1(1/M), then A C p(<7,) and the estimate (5.2) holds for any A € A,
which shows that ./, generates an analytic semigroup on J#,(R!). This
completes the proof of Theorem 1.2. (I

Now, we shall prove Theorem 1.4. The idea is the same as in the proof of
Theorem 1.2 as above, but we have to consider any small neighborhood of A = 0 to
get polynomial decay rate of solutions to (1.1), (1.3) and (1.4). For this purpose,
we use %(Ri) and 7, instead of JC(R) and ).

A PROOF OF THEOREM 1.4 Let J7,(R"), 2,(), | I, ., and o/, be the
same as in (1.13). Since CSO(RK)3 C Dy(H) C jfp(Ri) and C’{f&(Rﬁ)3 is dense in
%p(R1)7 by Theorem 1.1 we see that %p is a densely defined, closed operator on
%”,,(R’fr). Let p(<7,) and (M — 7,)”" be the set and the resolvent operator of <7,

respectively. Then, by Theorem 1.1 we see that C C p(<7,) and that there exists
a constant C independent of A € C, and F € #,(R") such that

MIOT =)' FI,, <CIFI . (5:3)
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Employing the same argument as in the proof of Theorem 1.2, by (5.3) we see that

whenever C’04|ﬁ|_1 <1, a>0and A = —a+1if3, the resolvent (AI — ﬁp)_l exists
and satisfies the estimate:

-1
MIOT =)' FI,, < 2CIFI, (5.4)

for any F € jfp(Ri) Therefore, setting o = tan~!(1/C), we have

g, = {A \ {0}’|argx\‘ < g+ cr} C p(t,) (5.5)

and (5.4) holds for any X € Z,. It follows from these facts that %p is a sectorial

operator, and therefore <7, generates an analytic semigroup {Tp(t)}t20 on

H,(RY).

Now, we shall show the estimate (1.14). First we consider the case where
p=gq. Let 6 be a number such that 7/2 < § < (7/2) 4+ ¢ and then by (5.3) and
(5.4) for any § > 0 we have

-1
NI = ,) Pl <2CIFI, (5.6)

whenever A € § + Zg = {6 + z | Jarg 2| < (7/2) + 0}. Let I'f be contours defined by
the formulas:

e A =6+ sel®t?) (s:00—0); Ty : A= &+ se 03 (s:0— 00),

and set I's = T'; ULy . Then, by well-known theory of analytic semigroup (cf. I. L.
Vrabie [26, Chapter 7, Section 7.1]) we have

. 1 .
T,(t) = / M — 7,) HdA
Ts

" 2mi

By (5.4) and Fubini’s theorem, we have

. 1 ) .
DIT,(t) = o= NeM(NI — o7,) " dX.

7'(1*[5

After this observation, by the theorem of Cauchy in the theory of functions of one
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complex variable we change the contour from I's to I's; which is defined by
s = F;t U C; UTy,, where

| A=6+s5¢"D) (5:00 = 1/t); Cy: A=6+ (1/t)e” (s : 9+g — —<9+—>>;
Ty, A=6+se D) (s: 1/t — o).
Then, using (5.6), we see easily that

for any F € J,(R"), where C; is independent of § > 0 and F € #,(R"). Letting
6 — 0 we have

IDITOFI, ., < Ct I

+

(5.7)

(B
for any ¢ > 0 and F' € }fp(R’}r). Since
DT, (t)F = AT,(t)F, T,(t)F € 9,(R")

for any t > 0 and F € %ﬂp(Ri) as follows from theory of analytic semigroup, we
have

NT,(t)F — AT, (t)F = ~T,(t)F — D;T,(t) F  (t > 0)

for any v > 0. Therefore applying Theorem 1.1 with A = ~, by (5.7) with j = 0 and
1 we have

IIVQTp(ﬂFIIy,N(RD < C(||vi})(t)Fva NPT F Il ) < COHEDIFIL, -

H(RY)
Since C' is independent of v > 0, letting v — 0 we have

27 -1
IVL,OF, . <CUIF]

Hp(RY)

for any ¢t > 0 and F € pr(Ri) To obtain
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IVE,0F, < COHIFL (5.9)

for any ¢ >0 and FE%%(R"), we use (5.7) With j=0, (5.8) and the

interpolation inequality: ||Vv||” < M||V2||2 . Combining (5.7), (5.8)

ol

and (5.9), we have the estimate (1.14) when p = q.
Now, we consider the case where p < ¢ < oo. First to consider the case where

n((1/p) — (1/q)) < 1, we use the Gagliardo-Nirenberg-Sobolev inequality:

)
10l ey < Coall Vol el . (5.10)

)

By (5.7) with j =0, (5.8) and (5.9) we have

. _1_"(1_1)
IVT,AFN, ) < Coat LN R (5.11)

%/',,(RD
for j =0, 1 provided that p < ¢ < oo and n((1/p) — (1/¢)) < 1. At this point, we
remark the following fact: Since C[?C(Rﬁ)3 is dense in %Q(Rﬁ’r) for 1 < ¢ < oo, by
(5.11) we can extend {Tp(t)}tzo to %ﬂq(R’}r) for any ¢ with p < ¢ < oo, and
therefore from now on we write {T(t)}tzo instead of {Tp(t)}tzo- Of course, the
inequalities (5.7), (5.8) and (5.9) hold, replacing T}, (t) by 7'(t) and exponent p by
g, respectively. Moreover, inequality (5.11) holds, replacing T,(t) by T(t) and
exponents p and ¢ by g and r whenever p < ¢ <r < oo and n((1/¢q) — (1/r)) < 1

To prove (1.14) in the case where j = 0 and n((1/p) — (1/q)) > 1, we choose
qo, -, in such a way that gy =¢q > ¢ > > Q1 > =P and n((1/gj1) —
(1/g)) <1 (j= O., L,...,4—1). Since {T'(t)};5, is semigroup, we have
T(t)F = T(t/ﬁ) T(t/¢)F, and therefore applying (5.3) with j=0 /¢-times
implies that

- n,( 1 1) 7@(171)
IT(t) H g (B/0) TN GRS Gt N EN

/f J(RY)
3=0

which shows that the estimate (1.14) holds for j = 0.

For the gradient estimate, we choose ¢; in such a way that p < ¢1 < ¢ <
and n((1/q;) — (1/q)) < 1. The semigroup property implies that V7'(t)F =
VT(t/2)[T(t/2)F], and therefore by (5.11) with j =1 and (1.14) with j =0 we
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have

. 1 n(l 1) .
IVT@OFN, , < Coalt/2)* 2\ TR,

4

_%_g(l_l)
< Gy gCpg (t/2) U

Hp(RL)

Analogously, writing V2T'(t)F = V2T'(t/2)[T(t/2)F], by (5.8) and (1.14) with j =
0 we have

- -4 (1)
IV TWF, . < Coat N VUFI,

forany ¢t > 0 and F' € %”,,(Ri), where to use (5.8) we needed the restriction that
p < g < 0o, which completes the proof of Theorem 1.2.

6. Concluding remark.

For any F', G € C{°(R'}), we have
(T(t)F,G) = (F,T()G),

where (Uy,Us) = 22:1 fRK uji (2)ujp(z) dz for Uy =T (ury, ugk, ugi) (k=1,2). By
(1.14) we have

(FOFG)I < IFI, , ITOCI, . <Cout FIFI, 1G],

where p’ is a dual exponent of p, from which it follows that

. _ﬂ<1_1>
ITOF, . < Coot "N VI, (6.1)

for any F € C’(?‘J(R:i)3 and ¢t > 0. Since C'SO(RZ)3 is dense in %ﬂl(Ri), we can
extend {T(t)}f,zo to 1 (R') and we have (6.1) for any p with 1 < p < oco.
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