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Abstract. On the harmonic Bergman space of the half space in Rn, we

show that if the product of two or more Toeplitz operators with harmonic symbols

that have certain boundary smoothness has finite rank, then one of the symbols

must be identically 0. Our methods require the number of factors in the product

to depend on the dimension n.

1. Introduction.

For a fixed positive integer n > 1, let H ¼ Rn�1 �Rþ be the upper half-space

where Rþ denotes the set of all positive real numbers. We will sometimes write

point z 2 H as z ¼ ðz0; znÞ where z0 2 Rn�1 and zn > 0. Let V be the volume

measure on H. Throughout the paper we write dw ¼ dV ðwÞ for simplicity. For

1 � p � 1, we let Lp ¼ LpðH; V Þ.
The harmonic Bergman space b2 is the space of all complex-valued harmonic

functions f on H satisfying

jjfjj2 :¼
Z
H

jf j2 dV
� �1=2

<1:

The space b2 is a closed subspace of L2 and thus is a Hilbert space. Basic

structures of harmonic Bergman spaces b2 are studied in [9]. For more general

Banach space of harmonic functions on the half-space, see [10], [11] and

references therein.

It is easily seen that each point evaluation is a bounded linear functional on

b2. Thus, to each z 2 H, there corresponds a unique function Rz ¼ Rðz; �Þ in b2

which has the reproducing property:
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fðzÞ ¼
Z
H

fRz dV ; z 2 H ð1:1Þ

for all f 2 b2. The kernel Rðz; wÞ is called the harmonic Bergman kernel and its

explicit formula is well known:

Rðz; wÞ ¼ 4

n�n

nðzn þ wnÞ2 � jz� wj2

jz� wjnþ2
; z; w 2 H ð1:2Þ

where �n is the volume measure of the unit ball of Rn and w ¼ ðw0;�wnÞ. Note

that Rðz; wÞ is real and thus the complex conjugation in (1.1) can be removed. See

[1] for details and related facts.

Let R be the Hilbert space orthogonal projection from L2 onto b2. Then the

reproducing property (1.1) leads us to the integral realization of the projection R

as follows:

R ðzÞ ¼
Z
H

 ðwÞRðz; wÞ dw; z 2 H ð1:3Þ

for functions  2 L2. For a function u 2 L1, the Toeplitz operator Tu with symbol

u is defined by

Tuf ¼ RðufÞ

for f 2 b2. Note that Tu is clearly bounded on b2.

Recently, the first two authors [3] investigated the problem of characterizing

zero products of several Toeplitz operators on the holomorphic Bergman space of

the ball in Cn. With harmonic symbols having some boundary regularity, their

results assert that a product of Toeplitz operators can be the zero operator only in

the trivial case, namely, only when one of the factor is the zero operator.

Analogous polydisk versions are also proved in [4]. Quite recently, those zero

product results have been generalized to finite rank product results in [5]. For

some time, this ‘‘zero product problem’’, or more generally the ‘‘finite rank

product problem’’, has been studied in various situations. See [3], [4] and

references therein for the history of the zero product problem.

Working on higher dimensional balls or polydisks, the authors of [3], [4]

devised a new scheme completely different from the earlier ones that were

restricted to the one dimensional case. To be short, that new scheme is to

decompose Toeplitz operators into a sum of the ‘‘major’’ and ‘‘error’’ parts, and
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utilize suitable test functions. Obviously, such a new scheme has another

advantage that it may work on more general settings. In this paper we extend that

scheme in two directions; the harmonic Bergman space on the unbounded domain

H. With major adjustments to fit to those new settings, we investigate the finite

rank product problem and obtain similar results.

In what follows we let h1 be the class of all bounded harmonic functions on

H. Also, we let H ¼ H [ @H where @H ¼ Rn�1 � f0g denotes the boundary of H,

not including 1. The following is one of our main results.

THEOREM 1.1. Let u1; u2 2 h1 \ CðH [W Þ for some nonempty relatively

open set W � @H. If Tu1Tu2 has finite rank, then either u1 ¼ 0 or u2 ¼ 0.

In the case where symbols have Lipschitz continuous extensions to the

boundary, our method applies to multiple products. Recall that the Lipschitz

class on a domain X � Rn of order � 2 ð0; 1�, denoted by ��ðXÞ, is the class of all

complex functions f on X such that jfðzÞ � fðwÞj ¼ Oðjz� wj�Þ for z; w 2 X. Note

that Lipschitz functions on X necessarily extend to Lipschitz functions on X of

the same order. In what follows we let �� ¼ ��ðHÞ. Also, given � 2 ð0; 1� and

� 2 @H, we say f 2 ��ð�Þ if f is a Lipschitz function of order � in some

neighborhood of �.

For Lipschitz symbols, our result is as follows.

THEOREM 1.2. Let u1; . . . ; unþ1 2 �� \ h1 for some �. If Tu1 � � �Tunþ1
has

finite rank, then uj ¼ 0 for some j.

We also have the following local version, but with a loss of a factor.

THEOREM 1.3. Let u1; . . . ; un 2 ��ð�Þ \ h1 for some � and � 2 @H. If

Tu1 � � �Tun has finite rank, then uj ¼ 0 for some j.

REMARK.

(1) The number of factors in our results comes from the methods we use and

may not be critical.

(2) Note that the identity operator is also a Toeplitz operator (with constant

symbol 1). Thus, if a zero (or finite rank) product theorem holds for a certain

number of factors, it also holds for any smaller number of factors.

(3) The unboundedness of H indeed causes a trouble with our method.

Theorems 1.2 and 1.3 are harmonic analogues of results in [5]. Analogous zero

product theorems, with one more factor, are also proved in [5]. However, for

harmonic analogues of those zero product theorems, our method does not work.

The difficulty is caused by the fact the estimate in Lemma 2.2 below always
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diverges for c ¼ 0. This is in contrast to the case of bounded domains where the

corresponding growth rate is usually logarithmic.

(4) Dealing with Toeplitz products with harmonic symbols in the present

paper, we do not mean that a single Toeplitz operator with harmonic symbol has

been well studied. In fact even the characterization for a compact Toeplitz

operator with harmonic symbol does not seem to appear yet in the literature. In

the last section we included a proof that if a Toeplitz operator with harmonic

symbol is compact, then it is trivial.

In Section 2, we collect technical estimates to be used later. In Section 3, we

prove preliminary results concerning the mapping properties of R on Lipschitz

spaces, certain boundary behavior of Berezin transform and some basic properties

of test functions. In Section 4, we prove our main theorems. Finally, in Section 5,

we remark that the zero operator is the only compact Toeplitz operator with

harmonic symbol.

CONSTANTS. In the rest of the paper we use the same letter C, often

depending on the allowed parameters, to denote various positive constants which

may change at each occurrence. For nonnegative quantities X and Y , we often

write X . Y or Y & X if X is dominated by Y times some inessential positive

constant. Also, we write X � Y if X . Y . X.

2. Auxiliary estimates.

As is mentioned in the Introduction, the main idea of our proofs is to follow

the schemes of [3], [4]. That is, we decompose each factor into major and error

parts and employ suitable test functions. Thanks to the fact that H is a product

domain, major parts are quite simple to deal with; see Lemmas 3.4 and 3.5.

However, caused by the fact that H is an unbounded domain, error parts require

substantially complicated and technical estimates. All those estimates are

collected in this section.

It is clear from (1.2) that there is a constant C ¼ CðnÞ such that

jRðz; wÞj � C

jz� wjn

for z; w 2 H. We will frequently and tacitly use this basic inequality for the rest of

the paper. Suggested by this inequality, we need to estimate integrals introduced

below.

Given c and s real, let
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�c;sðz; wÞ ¼
1þ jlog znjs þ jlogwnjs þ jlogjz� wjjs

jz� wjnþc

for z; w 2 H and define corresponding integrals Ic;sðz; wÞ by

Ic;sðz; wÞ ¼
Z
H

�c;sð�; wÞ
j� � zjn

d�:

Estimates of these integrals will take care of error terms in repeated Toeplitz

integrals which arise in the course of our proofs.

We introduce some auxiliary integrals depending on parameters s � 0 and c

real. First, let

Jc;sðzÞ ¼
Z
H

jlogwnjs þ jlogjw� zjjs

jw� zjnþc
dw

for z 2 H. Given a > 0, we decompose the integral Jc;sðzÞ into two pieces

Jc;sðzÞ ¼ Uc;sðz; aÞ þ Lc;sðz; aÞ

where Uc;sðz; aÞ and Lc;sðz; aÞ are integrals defined by

Uc;sðz; aÞ ¼
Z
HnBaðzÞ

jlogwnjs þ jlogjw� zjjs

jw� zjnþc
dw

Lc;sðz; aÞ ¼
Z
H\BaðzÞ

jlogwnjs þ jlogjw� zjjs

jw� zjnþc
dw:

Here, BaðzÞ denotes the Euclidean ball in Rn with center at z and radius a > 0.

Note that H \ BaðzÞ ¼ ; if a � zn. So, Uc;sðz; aÞ ¼ Jc;sðzÞ and Lc;sðz; aÞ ¼ 0 for

a � zn. We will often use the notation

LsðtÞ ¼ jlog tjs; t > 0

for simplicity. We begin with the following lemma.

LEMMA 2.1. Let c > 0 and s � 0. Then the following estimates hold for 0 <

� < 1=2 and a > 0:
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Z 1

�

jlog rjs

r1þc
dr � ��cjlog �js; ð2:1ÞZ �

0

jlog rjs

r1�c
dr � �cjlog �js; ð2:2ÞZ 1

a

jlog rjs

r1þc
dr � a�cð1þ jlog ajsÞ: ð2:3Þ

The constants suppressed above are independent of � and a.

PROOF. For a proof of (2.1) and (2.2), see [3, Lemma 3.4]. To see (2.3), we

consider three cases a < 1=2, 1=2 � a � 2 and a > 2 separately. First, we have by

(2.2)

Z 1

a

jlog rjs

r1þc
dr � a�cjlog ajs � a�cð1þ jlog ajsÞ

for a > 2. Next, we have

Z 1

a

jlog rjs

r1þc
dr � 1 � a�c � a�cð1þ jlog ajsÞ:

for 1=2 � a � 2. Finally, we have by (2.1)

Z 1

a

jlog rjs

r1þc
dr � 1þ

Z 1

a

jlog rjs

r1þc
dr � 1þ a�cjlog ajs � a�c½1þ jlog ajs�

for a < 1=2. The proof is complete. �

For the integrals Jc;sðzÞ, we have the following estimate.

LEMMA 2.2. Let s � 0 and c be real. Then the following estimates hold for

z 2 H:

Jc;sðzÞ �
z�cn ð1þ jlog znjsÞ for c > 0

1 for c � 0.

�

The constant suppressed above is independent of z.

PROOF. Let z 2 H. We may assume z ¼ ð00; znÞ. Note
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jw� zj � zn þ wn þ jw0j � 2jw� zj ð2:4Þ

for all z; w 2 H. Thus we have

J1 :¼
Z
H

LsðwnÞ
jw� zjnþc

dw �
Z 1

0

Z
Rn�1

LsðwnÞ
ðwn þ zn þ jw0jÞnþc

dw0 dwn:

Thus, integration in polar coordinates yields

J1 �
Z 1

0

LsðtÞ
ðtþ znÞ1þc

dt

( ) Z 1

0

rn�2

ð1þ rÞnþc
dr

� �
: ð2:5Þ

Note that the first integral of the above diverges for c � 0. Thus we have

Jc;sðzÞ & J1 ¼ 1 for c � 0.

Assume c > 0 for the rest of the proof. Since the second integral of (2.5) is

finite, we have by (2.3)

J1 �
Z zn

0

LsðtÞ
ðtþ znÞ1þc

dtþ
Z 1

zn

LsðtÞ
ðtþ znÞ1þc

dt

� z�1�c
n

Z zn

0

LsðtÞ dtþ
Z 1

zn

LsðtÞ
t1þc

dt

� z�cn ½1þ LsðznÞ�:

Note that this implies the lower estimate of Jc;sðzÞ. Also, since

J2 :¼
Z
H

Lsðjw� zjÞ
jw� zjnþc

dw �
Z
RnnBzn ð0Þ

LsðjxjÞ
jxjnþc

dx �
Z 1

zn

LsðrÞ
r1þc

dr;

we have by (2.3)

J2 . z�cn ½1þ LsðznÞ�:

Now, combining the estimates of J1 and J2, we have the upper estimate of Jc;sðzÞ.
The proof is complete. �

Next, we have the following estimate for the integrals Uc;sðz; aÞ.

LEMMA 2.3. Let s � 0 and c be real. Then the following estimates hold for
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z 2 H and a > 0:

Uc;sðz; aÞ �
1þ jlog ðzn þ aÞjs

ðaþ znÞc
if c > 0

1 if c � 0.

8<:
The constants suppressed above are independent of z and a.

PROOF. Let z 2 H and a > 0. In case a < zn the lemma goes back to Lemma

2.2, because Uc;sðz; aÞ ¼ Jc;sðzÞ. So, assume a � zn for the rest of the proof. Also,

we may assume z ¼ ð00; znÞ. We first prove the lower estimate. Since the set

H nBaðzÞ contains all points w with wn � a and jw0j � a, we have by (2.4)

Uc;sðz; aÞ &
Z 1

a

Z
jw0 j�a

LsðwnÞ
ðwn þ zn þ jw0jÞnþc

dw0 dwn

�
Z 1

a

Z 1

a

LsðtÞ
ðtþ zn þ rÞnþc

rn�2 dr dt

¼
Z 1

a

LsðtÞ
ðtþ znÞ1þc

Z 1

a=ðtþznÞ

rn�2

ð1þ rÞnþc
dr dt:

Since a=ðtþ znÞ < 1 for t � a, the inner integral of the above is bigger than some

positive constant. Thus we have

Uc;sðz; aÞ &
Z 1

a

LsðtÞ
ðtþ znÞ1þc

dt:

For c � 0, this integral diverges and thus Uc;sðz; aÞ ¼ 1. For c > 0, we have by

(2.3)

Z 1

a

LsðtÞ
ðtþ znÞ1þc

dt �
Z 1

a

LsðtÞ
t1þc

dt � a�c½1þ LsðaÞ�

and thus

Uc;sðz; aÞ & a�c½1þ LsðaÞ�;

which is equivalent to the desired lower estimate; recall zn � a.

We now assume c > 0 and prove the upper estimate. We will show
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Uc;sðz; aÞ . a�c½1þ LsðaÞ�; ð2:6Þ

which is again equivalent to the desired upper estimate. By (2.4) we have

Uc;sðz; aÞ .
Z Z

wnþjw0 j�a�zn

LsðwnÞ þ Lsðwn þ zn þ jw0jÞ
ðwn þ zn þ jw0jÞnþc

dw0 dwn

.

Z Z
tþr�a�zn

LsðtÞ þ Lsðtþ zn þ rÞ
ðtþ zn þ rÞ2þc

dr dt

¼
Z 1

a�zn

Z 1

0

þ
Z a�zn

0

Z 1

a�zn�t

: ¼ U1 þ U2:

We first consider the integral U1. By (2.3) we have

U1 .

Z 1

a�zn

1þ LsðtÞ þ Lsðtþ znÞ
ðtþ znÞ1þc

dt

� a�c½1þ LsðaÞ� þ
Z 1

a�zn

LsðtÞ
ðtþ znÞ1þc

dt:

Since tþ zn � t for t � a and tþ zn � a for a� zn � t � a, we have by (2.3)

Z 1

a�zn

LsðtÞ
ðtþ znÞ1þc

dt ¼
Z 1

a

LsðtÞ
ðtþ znÞ1þc

dtþ
Z a

a�zn

LsðtÞ
ðtþ znÞ1þc

dt

.

Z 1

a

LsðtÞ
t1þc

dtþ a�1�c
Z a

0

LsðtÞ dt

� a�c½1þ LsðaÞ�

and thus conclude that U1 is dominated by a�c½1þ LsðaÞ�. For the integral U2, it is

easily seen that

U2 . a�1�c
Z a

0

LsðtÞ dtþ a

Z 1

a

LsðrÞ
r2þc

dr:

This, together with (2.3), implies that U2 is also dominated by a�c½1þ LsðaÞ�.
Thus we obtain (2.6), as required. The proof is complete. �

We now turn to the estimate of integrals Lc;sðz; aÞ. For c > 0, the trivial
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inequality Lc;sðz; aÞ � Jc;sðzÞ will be enough for our purpose. For c � 0, we need

the following estimate.

LEMMA 2.4. Given c � 0 and s � 0, there is a constant C ¼ Cðc; sÞ such that

Lc;sðz; aÞ � C � 1þ jlog znjsþ1 þ jlog ajsþ1 if c ¼ 0

a�cð1þ jlog znjs þ jlog ajsÞ if c < 0

(

for z 2 H and a > zn.

PROOF. Let c � 0 and s � 0. Let z 2 H and a > zn. We may assume

z ¼ ð00; znÞ. Writing

Lc;sðz; aÞ ¼
Z
H\BaðzÞ

LsðwnÞ
jw� zjnþc

dwþ
Z
H\BaðzÞ

Lsðjw� zjÞ
jw� zjnþc

dw

: ¼ L1 þ L2;

we will show that both integrals L1 and L2 satisfy the desired estimates.

The estimate for the second integral L2 is simpler. Since H \ BaðzÞ �
BaðzÞ nBznðzÞ, we have by integration in polar coordinates and (2.1)

L2 .

Z a

zn

LsðrÞ
r1þc

dr ð2:7Þ

. z�cn

Z a=zn

1

LsðrÞ þ LsðznÞ
r1þc

dr ð2:8Þ

�
logða=znÞ½Lsða=znÞ þ LsðznÞ� if c ¼ 0

a�c½Lsða=znÞ þ LsðznÞ� if c < 0

(

.
Lsþ1ðaÞ þ Lsþ1ðznÞ if c ¼ 0

a�c½LsðaÞ þ LsðznÞ� if c < 0.

(
ð2:9Þ

Next, we estimate L1. Since zn þ wn � jw� zj and jw0j � jw� zj, we have by (2.4)
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L1 .

Z a�zn

0

Z
jw0 j<a

LsðwnÞ
ðwn þ zn þ jw0jÞnþc

dw0 dwn

�
Z a�zn

0

Z a

0

LsðtÞ
ðtþ zn þ rÞnþc

rn�2 dr dt

¼ z�cn

Z a=zn�1

0

LsðtznÞ
ð1þ tÞ1þc

Z a=znð1þtÞ

0

rn�2

ð1þ rÞnþc
dr dt: ð2:10Þ

Thus, for c < �1, we see from (2.3) that

L1 . z�cn

Z a=zn�1

0

LsðtznÞð1þ tÞ�1�c
Z a=znð1þtÞ

0

r�2�c dr dt

. zna
�1�c

Z a=zn

0

LsðtÞ þ LsðznÞ dt

� a�c½1þ Lsða=znÞ þ LsðznÞ�
. a�c½1þ LsðznÞ þ LsðaÞ�:

Note that we have

L1 . z�cn

Z a=zn�1

0

LsðtznÞ
ð1þ tÞ1þc

1þ
Z a=znð1þtÞ

1

dr

r2þc

( )
dt ð2:11Þ

for �1 � c � 0. If c ¼ 0, then from (2.11) and (2.9) that

L1 . 1þ
Z a=zn

1

LsðtÞ þ LsðznÞ
t

dt . 1þ Lsþ1ðznÞ þ Lsþ1ðaÞ:

Similarly, if �1 < c < 0, then we obtain

L1 . z�cn

Z a=zn

0

LsðtÞ þ LsðznÞ
t1þc

dt . a�c½1þ LsðznÞ þ LsðaÞ�:

If c ¼ �1, we see from (2.11) and (2.3) that
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L1 . zn

Z a=zn

0

LsðtznÞ½1þ logða=znÞ þ logð1þ tÞ� dt

. zn½1þ logða=znÞ�
Z a=zn

0

LsðtÞ þ LsðznÞ dt

. a½1þ LsðznÞ þ LsðaÞ�;

which completes the proof. �

REMARK. Recall Lc;sðz; aÞ ¼ 0 for a � zn. Thus the estimate in Lemma 2.4

is far from being sharp as a=zn ! 1. However, as long as the behavior Lc;sðz; aÞ as
a=zn ! 1 is concerned, one may get a better upper bound as follows:

Lc;sðz; aÞ . z�cn ða=zn � 1Þðnþ1Þ=2½1þ Lsða� znÞ þ LsðznÞ�: ð2:12Þ

In order to see this, assume zn < a � 2zn. Then, since jw� zj � zn for jw� zj < a

and aþ tþ zn � zn for 0 � t � a� zn, we have

L1 � z�n�cn

Z a�zn

0

LsðtÞ½a2 � ðtþ znÞ2�ðn�1Þ=2 dt

� z�n�cn zðn�1Þ=2
n

Z a�zn

0

LsðtÞða� t� znÞðn�1Þ=2 dt

¼ z�cn ða=zn � 1Þðnþ1Þ=2
Z 1

0

Lsðtða� znÞÞð1� tÞðn�1Þ=2 dt

. z�cn ða=zn � 1Þðnþ1Þ=2½1þ Lsða� znÞ�:

Similarly, we have

L2 . z�cn ða=zn � 1Þðnþ1Þ=2½1þ LsðznÞ�:

Now, combining these estimates, we obtain (2.12). Note that the above argument

works even for c > 0. Thus (2.12) is also valid for c > 0.

We are now ready to prove the following estimate.

PROPOSITION 2.5. Given c > �n and s � 0, there exists a constant C ¼
Cðc; sÞ such that
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Ic;sðz; wÞ � C �
w�c
n �0;sþ1ðz; wÞ if c > 0

�c;sþ1ðz; wÞ if c � 0

(

for z; w 2 H.

PROOF. Let c > �n, s � 0 and fix z; w 2 H. Decompose H into three pieces

E1, E2 and E3 given by

E1 ¼ f� 2 H : 2jz� wj � j� � wjg
E2 ¼ f� 2 H : jz� wj=2 � j� � wj < 2jz� wjg
E3 ¼ f� 2 H : j� � wj < jz� wj=2g

and consider corresponding integrals

Ij :¼
Z
Ej

1þ LsðwnÞ þ Lsð�nÞ þ Lsðj� � wjÞ
j� � zjnj� � wjnþc

d�

for j ¼ 1; 2; 3.

We now estimate the integrals introduced above. First, using the inequalities

j� � zj � j� � wj � jz� wj � j� � wj � jz� wj � j� � wj=2

valid for � 2 E1, we have

I1 . ½1þ LsðwnÞ�
Z
E1

d�

j� � wj2nþc
þ
Z
E1

Lsð�nÞ þ Lsðj� � wjÞ
j� � wj2nþc

d�

¼ Unþc;sðw; a1Þ þ ½1þ LsðwnÞ�Unþc;0ðw; a1Þ

where a1 ¼ 2jz� wj. Since nþ c > 0, we conclude

I1 . �c;sðz; wÞ . �c;sþ1ðz; wÞ ð2:13Þ

by Lemma 2.3. Next, using the inequalities

j� � zj � j� � wj þ jz� wj � j� � wj þ jz� wj < 3jz� wj

and jz� wj � j� � wj valid for � 2 E2, we obtain
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I2 .
1þ LsðwnÞ þ Lsðjz� wjÞ

jz� wjnþc
Z
H\Ba2 ðzÞ

d�

j� � zjn

þ
1

jz� wjnþc
Z
H\Ba2 ðzÞ

Lsð�nÞ
j� � zjn d�

�
½1þ LsðwnÞ þ Lsðjz� wjÞ�L0;0ðz; a2Þ þ L0;sðz; a2Þ

jz� wjnþc

where a2 ¼ 3jz� wj and thus conclude

I2 . �c;sþ1ðz; wÞ ð2:14Þ

by Lemma 2.4. Finally, using the inequalities

j� � zj � j� � zj � jz� wj � j� � wj � jz� wj=2

valid for � 2 E3, we obtain

I3 .
1þ LsðwnÞ
jz� wjn

Z
H\Ba3 ðwÞ

d�

j� � wjnþc

þ
1

jz� wjn
Z
H\Ba3 ðwÞ

Lsð�nÞ þ Lsðj� � wjÞ
j� � wjnþc

d�

¼
½1þ LsðwnÞ�Lc;0ðw; a3Þ þ Lc;sðw; a3Þ

jz� wjn

where a3 ¼ jz� wj=2. Accordingly, for c > 0, we have by Lemma 2.2

I3 .
w�c
n ½1þ LsðwnÞ�

jz� wjn
. w�c

n �0;sþ1ðz; wÞ: ð2:15Þ

Meanwhile, for c ¼ 0, we have by Lemma 2.4

I3 .
1þ Lsþ1ðwnÞ þ Lsþ1ðjz� wjÞ

jz� wjn
� �0;sþ1ðz; wÞ: ð2:16Þ

Also, for �n < c < 0, we have by Lemma 2.4

I3 .
jz� wj�c½1þ LsðwnÞ þ Lsðjz� wjÞ�

jz� wjn
. �c;sþ1ðz; wÞ: ð2:17Þ
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Now, since �c;sþ1ðz; wÞ � w�c
n �0;sþ1ðz; wÞ for c > 0, we conclude the proposition by

(2.13)–(2.17). The proof is complete. �

3. Some preliminary results.

In this section we prove some preliminary results: (i) the mapping properties

of R on (local) Lipschitz spaces, (ii) the boundary continuous extension property

of Berezin transform and (iii) some basic properties of test functions. Some of

these results may be of independent interest.

3.1. Lipschitz spaces.

In the holomorphic case it is well known on bounded strictly pseudoconvex

domains that Lipschitz spaces (of non-integer order) are invariant under Bergman

projections. This is a consequence of a theorem due to Ahern and Schneider [2].

The harmonic analogue is noticed by Kang and Koo [8] on bounded smooth

domains. We need to establish the analogous result, as well as its local version, on

our unbounded domain H.

Let Dj be the differentiation with respect to the j-th component, i.e.,

DjfðwÞ ¼ @f=@wjðwÞ. If both variables z and w are present, we will let Dzj or Dwj

etc, in place of Dj, to specify the variable of differentiation. For the derivatives of

Rðz; wÞ we have the following size estimate for a given multi-index �:

jD�
zRðz; wÞj �

C

jz� wjnþj�j ð3:1Þ

for some constant C ¼ Cð�Þ; see [9].

The proof of the following lemma is parallel to the well known argument and

thus omitted; see [12, Lemma 6.4.8].

LEMMA 3.1. If a function f 2 C1ðHÞ satisfies

jrfðzÞj � z��1
n ; z 2 H

for some � 2 ð0; 1Þ, then f 2 ��.

Let bp be the subspace consisting of all harmonic functions in Lp. The case

p ¼ 2 of the following theorem will be used later. The general case 1 < p <1 is

included, because it may be of some independent interest.

THEOREM 3.2. Let 0 < � < 1, 1 < p <1 and � 2 @H. Then
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R½Lp \ ��� � bp \ �� ð3:2Þ

and

R½Lp \ ��ð�Þ� � bp \ ½�� þH ð�Þ� ð3:3Þ

where H ð�Þ denotes the class of all functions harmonic on some open set

containing H [ f�g.

The proof of (3.2) below is also parallel for most part to the well known

argument. The only difference is that we need the b1-cancelation property ([9,

Theorem 2.2]): If f 2 b1, then Z
Rn�1

fðx; tÞ dx ¼ 0 ð3:4Þ

for every t > 0.

PROOF. We first show (3.2). Let f 2 Lp \ ��. It is well known that

R : Lp ! bp is a bounded projection; see [9, Theorem 3.2]. Thus we only need to

prove Rf 2 ��. Put F ¼ Rf and let z 2 H. Differentiating under the integral sign,

we have

DjF ðzÞ ¼
Z
H

fðwÞDzjRðz; wÞ dw

for each j. Note that each function DzjRðz; �Þ is integrable on H by (3.1). Hence

the b1-cancelation property (3.4) yields

DzjF ðzÞ ¼
Z
H

fðwÞDzjRðz; wÞ dw ¼
Z
H

ðfðwÞ � fðzÞÞDzjRðz; wÞ dw

for each j. Since f 2 ��, this, together with (3.1), implies

jrF ðzÞj .
Z
H

dw

jz� wjnþ1�� � z��1
n ;

the last equivalence comes from Lemma 2.2. So, we conclude (3.2) by Lemma 3.1.

We now show (3.3). Let f 2 Lp \ ��ð�Þ. Then f 2 ��ðUÞ for some bounded

neighborhood U of �. Choose a neighborhood U1 of � such that U1 � U . Pick a
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smooth cut-off function  on Rn with 0 �  � 1 such that  ¼ 1 on U1 and  ¼ 0

on Rn n U . We certainly have f 2 ��ðH n UÞ. Also, we have f 2 ��ðUÞ, because
 is smooth. Let z 2 H \ U and w 2 H n U. Pick a point a 2 @U that stays closest

to z. Since  ðaÞ ¼ 0 and  2 ��ðUÞ, we have

j ðzÞj ¼ j ðzÞ �  ðaÞj � C1jz� aj� � C1jz� wj�

for some constant C1 > 0 independent of z and w. Since jfj is bounded on U, say

by C2, we obatin

jfðzÞ ðzÞ � fðwÞ ðwÞj ¼ jfðzÞ ðzÞj � C1C2jz� wj�:

Thus f 2 �� and R½f � 2 �� by (3.2). Meanwhile, since

R½f � f �ðzÞ ¼
Z
HnU1

fðwÞð1�  ðwÞÞRðz; wÞ dw;

we see that R½f � f � extends to a harmonic function across U1 \ @H. So, we have

(3.3). The proof is complete. �

REMARK. It is known that the kernel Rðz; wÞ also reproduces b1-functions.

So, the proof of (3.2) shows the following (even with p ¼ 1): For � 2 ð0; 1Þ,
1 � p <1 and f 2 bp, we have f 2 �� if and only if jrfðzÞj ¼ Oðz��1

n Þ. The same

characterization extends to p ¼ 1, namely, for functions f 2 h1. This latter

assertion can be verified by means of the modified reproducing formula ([9,

Lemma 5.6]) for harmonic Bloch functions.

3.2. Berezin transform.

Recall that the Berezin transform eT of a bounded linear operator T on b2 is

defined by

eT ðzÞ ¼ hTrz; rzi; z 2 H

where rz ¼ RzkRzk�1
2 is the normalized kernel. Clearly, these Berezin transforms

are continuous on H. Moreover, Berezin transforms of Toeplitz products has the

continuous extension property up to the boundary, when the inducing symbols

are continuous at a boundary point as in the next theorem.

THEOREM 3.3. Suppose that functions u1; . . . ; uN 2 L1 are continuous at

� 2 @H. Let T ¼ Tu1 � � �TuN . Then eT continuously extends to H [ f�g and
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eT ð�Þ ¼ ðu1 � � �uNÞð�Þ.

This theorem is the harmonic analogue of [3, Proposition 2.1] (for the

holomorphic Bergman spaces of the ball in Cn) whose proof utilizes auto-

morphisms. One may also use the maps �z introduced in the proof of Lemma 3.4

to modify the proof of [3, Proposition 2.1]. Here, we provide below a different

proof that may work on more general settings. Also, since rz ! 0 uniformly on

compact sets as z! 1, the theorem remains true for � ¼ 1 by an easy

modification.

PROOF. We first prove

lim
z!�

kTurzk2 ¼ 0 ð3:5Þ

for any function u 2 L1 that continuously extends to � with uð�Þ ¼ 0. Let z 2 H.

Note kTurzk2 ¼ kRðurzÞk2 � kurzk2. Thus, for � > 0 small, we have

kTurzk22 �
Z
H

juðwÞj2jrzðwÞj2 dw

¼
Z
jw��j<�

þ
Z
jw��j��

juðwÞj2jrzðwÞj2 dw

� sup
jw��j<�

juðwÞj2 þ kuk21
Z
jw��j��

jrzðwÞj2 dw:

ð3:6Þ

Note jRðz; wÞj . jz� wj�n by (1.2). Meanwhile, since

jz� wj � jw� �j � jz� �j; w 2 H;

we have by Lemma 2.2

Z
jw��j��

jrzðwÞj2 dw . Rðz; zÞ�1 �� jz� �jð Þ1�n
Z
H

dw

jz� wjnþ1

� zn�1
n �� jz� �jð Þ1�n

for z sufficiently close �. Note that the last expression above converges to 0 as

z! �. Hence, taking the limit z! � with � fixed and then taking the limit �! 0

in (3.6), we conclude (3.5), as desired.

Now, put cj ¼ ujð�Þ. Then an inductive argument yields
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T ¼ Tc1 � � �TcN þ
XN
j¼1

Tu1 � � �Tuj�1
Tuj�cjTcjþ1

� � �TcN :

Note Tc ¼ cI for constants c where I is the identity operator on b2. Also, note

Tuj�cjrz ! 0 in b2 as z! � by (3.5) for each j. Thus we see from the above that

ðT � c1 � � � cNIÞrz ! 0 in b2 and thus eT ðzÞ ! c1 � � � cN as z! �. This completes the

proof. �

3.3. Test functions.

We introduce our test functions and prove some basic properties. We fix the

reference point

e :¼ ð00; 1Þ 2 H

for the rest of the paper. Also, we use the notation D ¼ Dn to emphasize the

normal differentiation. Our test functions will be the functions �kt defined by

�kt ¼ DkRte

for integers k � 0 and t > 0.

In the next two lemmas we observe information on how test functions grow

along the diagonal and on how major part of a given Toeplitz operator acts on test

functions. It is clear from (3.1) that there is a constant C ¼ Cðn; kÞ such that

jDkRzðwÞj �
C

jz� wjnþk
ð3:7Þ

for z; w 2 H. Moreover, the upper bound on the right side turns out to be precise

along the diagonal, as in the next lemma.

LEMMA 3.4. Given an integer k � 1, there is a constant ck ¼ ckðnÞ > 0 such

that

DkRzðzÞ ¼ ð�1Þkckz�n�kn

for z 2 H.

PROOF. Let k � 1 be an integer and z 2 H. A straightforward calculation

yields
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RzðwÞ ¼ z�nn Reð�zðwÞÞ ð3:8Þ

for w 2 H where �zðwÞ ¼ z�1
n ðw0 � z0; wnÞ. Applying Dk to both sides of the above,

we obtain

DkRzðwÞ ¼ z�n�kn DkReð�zðwÞÞ

for w 2 H. Thus, evaluating at w ¼ z, we have DkRzðzÞ ¼ z�n�kn DkReðeÞ. In order

to compute DkReðeÞ, note that we have

ReðwÞ ¼
4

n�n
gðjw0j; 1þ wnÞ

by (1.2) where

gðs; tÞ ¼ ðn� 1Þt2 � s2

ðs2 þ t2Þðnþ2Þ=2 :

Thus, using gð0; tÞ ¼ ðn� 1Þt�n and real-analyticity, we have

DkReðeÞ ¼
4

n�n

dk

dtk
gð0; tÞ

� �
t¼2

¼ ð�1Þk
4

n�n2nþk
ðnþ k� 1Þ!
ðn� 2Þ!

;

as required. The proof is complete. �

LEMMA 3.5. The identity

TwnD
kRz ¼ �

1

2
Dk�1Rz

holds for integers k � 1 and z 2 H.

PROOF. We first recall a reproducing formula. Among many other

reproducing formulas obtained in [9], we recall that the kernel Rðz; wÞ has the

following generalized reproducing property ([9, Lemma 4.6]):

uðzÞ ¼ ð�2Þm

m!

Z
H

wmn D
muðwÞRðz; wÞ dw
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for integers m � 0 and functions u 2 b2.

Let k � 1 be an integer and fix z 2 H. Note that Dk�1Rz 2 b2 by (3.7). Thus

the lemma follows from the above generalized reproducing property (with m ¼ 1

and u ¼ Dk�1Rz). �

4. Proofs of main Theorems.

In this section, we prove our main results. We introduce some notation. First,

in conjunction with Proposition 2.5, we let Logs, s � 0, denote the class of all

harmonic functions f on H such that

kfkLogs :¼ sup
w2H

jfðwÞj
�0;sðw; eÞ

<1:

Note TuLog
s � Logsþ1 for each s � 0 and u 2 L1 by Proposition 2.5. Also, given

1 < p <1 and s � 0, the estimateZ
H

j�0;sðw; eÞjp dw � Inp�n;spðe; eÞ

yields Logs � Lp by Proposition 2.5. Next, we let D be the class of all harmonic

functions on H such that

sup
w2H

juðwÞjð1þ jwjnÞ <1:

Note Rz 2 D for each z 2 H. Also, note Log0 ¼ D. Finally, given nontrivial

functions f; g 2 b2, we let f 	 g denote the rank-one operator on b2 defined by

ðf 	 gÞh ¼ hh; gif

for h 2 b2.

The following is the key lemma for our results.

LEMMA 4.1. Let u1; . . . ; um 2 L1. Let ffjgNj¼1 and fgjgNj¼1 be linearly

independent collections of functions in b2. Assume

Tu1Tu2 � � �Tum ¼
XN
j¼1

fj 	 gj
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on b2. Then fj; gj 2 Logm for all j. If, in addition, u1; . . . ; um 2 ��ð�Þ for some

� 2 ð0; 1Þ and � 2 @H, then fj; gj 2 ��ð�Þ for all j.

PROOF. We first show fj 2 Logm for all j. Put T ¼ Tu1Tu2 � � �Tum . Given

z 2 H, we have TumRz 2 TumD ¼ TumLog
0 � Log1 by the remarks above. Repeat-

ing similar arguments, we have TRz 2 Logm. Note TRz ¼
PN

j¼1 gjðzÞfj by (1.1).

Thus, for arbitrary points z1; . . . ; zN in H, we have

TRz1

..

.

TRzN

0BB@
1CCA ¼

g1ðz1Þ . . . gNðz1Þ

..

. ..
.

g1ðzNÞ . . . gNðzNÞ

0BBB@
1CCCA

f1

..

.

fN

0BB@
1CCA:

By [5, Lemma 2.4] we can pick some points z1; . . . ; zN 2 H such that the N �N

matrix in the above displayed equation is invertible. Now, since functions TRzj all

belong to Logm, we conclude that fj 2 Logm for all j, as desired.

Let � 2 ð0; 1Þ and � 2 @H. Then, given u 2 L1 \ ��ð�Þ, we have by Theorem

3.2

Tu½b2 \ ��ð�Þ� � R½L2 \ ��ð�Þ� � b2 \ ½�� þH ð�Þ� � b2 \ ��ð�Þ;

because H ð�Þ � ��ð�Þ and functions in �� are easily seen to have extensions in

��ðRnÞ. Thus, if u1; . . . ; um 2 L1 \ ��ð�Þ, then

T ½b2 \ ��ð�Þ� � b2 \ ��ð�Þ

and, in particular, TRzj 2 ��ð�Þ for each j. Thus we conclude fj 2 ��ð�Þ for all j.
Since T 


u ¼ Tu and ðf 	 gÞ
 ¼ g	 f in general where the superscript 
 denotes

the Hilbert space adjoint operator, we have

T 
 ¼ Tum � � �Tu1 ¼
XN
j¼1

gj 	 fj:

Now, what we’ve proved above implies the assertions on functions gj. The proof is

complete. �

Using Lemma 4.1, we obtain the following growth estimates for finite rank

operators, when applied to test functions.
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LEMMA 4.2. Let u1; . . . ; um 2 L1 and put T ¼ Tu1Tu2 � � �Tum . Let 1 < p <1
and k � 1 be an integer. If T has finite rank, then there exists a constant C ¼
Cðp; k; T Þ such that

jT�kt ðteÞj � C
1þ jlog tjm

tkþnð1�1=pÞ

for all 0 < t < 1. If, in addition, u1; . . . ; um 2 ��ð0Þ for some � 2 ð0; 1Þ, then there

exists a constant C ¼ Cðk; T Þ such that

jT�kt ðteÞj �
C

tk��
ð4:1Þ

for 0 < t < 1.

PROOF. Assume T has finite rank, say N . Then there exists linearly

independent collections ffjgNj¼1 and fgjgNj¼1 of functions in b2 such that

T ¼
PN

j¼1 fj 	 gj and thus

T�kt ðteÞ ¼
XN
j¼1

h�kt ; gjifjðteÞ

for t > 0. Note that functions fj; gj all belong to Logm by Lemma 4.1. Let q be the

conjugate exponent of p. Recall Logm � Lq and note

Z
H

j�kt ðwÞj
p dw .

Z
H

dw

jte� wjpðnþkÞ
� tn�pðnþkÞ

for t > 0 by (3.7) and Lemma 2.2. Hence, applying Hölder’s inequality and

denoting the Lq-norm by k kq, we obtain

jT�kt ðteÞj .
�0;mðte; eÞ
tkþnð1�1=pÞ

XN
j¼1

kgjkqkfjkLogm

.
1þ jlog tjm

tkþnð1�1=pÞ

XN
j¼1

kgjkqkfjkLogm
ð4:2Þ

for 0 < t < 1. This completes the proof of the first part of the lemma.

Now, assume further u1; . . . ; um 2 ��ð0Þ for some � 2 ð0; 1Þ and show (4.1).
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Note that functions fj; gj all belong to ��ð0Þ by Lemma 4.1. Thus

jT�kt ðteÞj �M
XN
j¼1

jh�kt ; gjij

whereM ¼ sup0<t<1;j jfjðteÞj <1. So, in order to complete the proof of (4.1), it is

sufficient to show that, given a function g 2 L2 \ ��ð0Þ, there is a constant C ¼
Cðk; gÞ such that

jh�kt ; gij �
C

tk��
ð4:3Þ

for 0 < t < 1. Assume g 2 ��ðUÞ where U is some neighborhood of 0. Let 0 < t < 1.

Note �kt 2 b1 by (3.7). Thus we have

h�kt ; gi ¼ h�kt ; g� gð0Þi

by the b1-cancelation property (3.4). Meanwhile, we have

jh�kt ; g� gð0Þij �
Z
H

jgðwÞ � gð0Þj
jte� wjnþk

dw ¼
Z
H\U

þ
Z
HnU

jgðwÞ � gð0Þj
jte� wjnþk

dw:

Using the Lipschitz condition at 0, we have by Lemma 2.2

Z
H\U

jgðwÞ � gð0Þj
jte� wjnþk

dw .

Z
H

dw

jte� wjnþk��
�

1

tk��
:

Also, we have by Hölder’s inequality

Z
HnU

jgðwÞ � gð0Þj
jte� wjnþk

dw . kgk2
Z
HnU

dw

jte� wj2ðnþkÞ

( )1=2

þ jgð0Þj
Z
HnU

dw

jte� wjnþk
:

Note that the integrals on the right side of the above are bounded uniformly in t

by Lemma 2.3. Now, combining these estimates, we have (4.3) and thus conclude

(4.1). The proof is complete. �
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We also need a uniqueness result for harmonic functions as in the next

lemma. This lemma is proved on the ball in [3, Proposition 4.1] and we omit the

proof which is much simpler on the half-space. Note that Du always exists by the

reflection principle (see [1, Theorem 4.12]) in the hypothesis of the next lemma.

LEMMA 4.3. Suppose that u is a function harmonic on H and continuous on

H [W for some nonempty relatively open setW � @H. If both u and Du vanish on

W , then u ¼ 0 on H.

We are now ready to prove our main results. Our proof of Theorem 1.1 will

depend on Theorem 1.3, which in turn depends on the proof Theorem 1.2. So, we

first prove Theorem 1.2.

PROOF OF THEOREM 1.2. Put T ¼ Tu1 � � �Tunþ1
and assume T has finite

rank. Since T has finite rank (and thus is compact) and rz ! 0 weakly in b2 as

z! @H (see [6, Lemma 5.2]), we have eT ðzÞ ! 0 as z! @H. It follows from

Theorem 3.3 that u1 � � �unþ1 ¼ 0 on @H.

If u1 ¼ 0 on H, there is nothing to do. So, assume that u1 is not identically 0.

Since a bounded harmonic function is recovered by the Poisson integral of its

boundary values, u1 vanish nowhere (by continuity) on some nonempty relatively

open subset of @H, say W1. If u2 is not identically 0 on W1, we can find a smaller

relatively nonempty open set W2 � W1 on which u2 also vanishes nowhere.

Continuing this process, we see that there exists a nonempty relatively open set

W � @H such that

either ujð�Þ 6¼ 0; � 2W

or uj ¼ 0 on W

holds for each j. Note u1 vanishes nowhere onW . Also, note uj0 ¼ 0 onW for some

j0, because u1 � � �unþ1 ¼ 0 on @H. If, in addition, Duj0 ¼ 0 on (some nonempty

relatively open subset of) W , we have uj0 ¼ 0 by Lemma 4.3. So, given j, assume

that uj and Duj do not simultaneously vanish on any nonempty relatively open

subset of W . Thus there exists some nonempty relatively open subset of W , still

denoted by W , such that

either ujð�Þ 6¼ 0; � 2W

or ujð�Þ ¼ 0; Dujð�Þ 6¼ 0; � 2W
ð4:4Þ

for each j ¼ 1; . . . ; nþ 1. We may assume 0 2 W without loss of generality. This

will lead us to a contradiction.
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We introduce more notation. In the rest of the proof we let t 2 ð0; 1Þ be

arbitrary and z 2 H represent an arbitrary point, unless otherwise specified.

Recall that Dujð0Þ 6¼ 0 by (4.4), in case ujð0Þ ¼ 0. Let dj ¼ 1 if ujð0Þ ¼ 0, and

dj ¼ 0 otherwise. Note d1 ¼ 0. Now, define the major part mj of uj by

mjðzÞ ¼
ujð0Þ if dj ¼ 0

Dujð0Þzn if dj ¼ 1

(

and put ej ¼ uj �mj for each j. Note that we have

ejðzÞ ¼ O jzj�þdj
� �

ð4:5Þ

for each j. To see this we only need to consider z near 0, because uj is bounded.

Thus (4.5) is a consequence of the Lipschitz hypothesis if dj ¼ 0. In case dj ¼ 1,

since uj ¼ 0 on W , uj is harmonic and thus smooth across W by the reflection

principle. Also, note
@uj
@zi

ð0Þ ¼ 0 for i ¼ 1; . . . ; n� 1. Thus Taylor’s theorem yields

ejðzÞ ¼ Oðjzj2Þ, which implies (4.5). Similarly, we have

ujðzÞ ¼ O jzjdj
� �

ð4:6Þ

for each j.

We introduce further notation. Put M ¼ Tm1
� � �Tmnþ1

and R ¼ Tu1 � � �
Tunþ1

�M. Then one may verify by an inductive argument

R ¼
Xnþ1

j¼1

Rj

where

Rj ¼ Tu1 � � �Tuj�1
TejTmjþ1

� � �Tmnþ1

for each j. Note M ¼ T � R. Fix k > nþ 2. We will estimate the same expression

M�kt ¼ T�kt � R�kt along the vertical ray emanating from the origin in two

different ways and reach a contradiction.

Put

d ¼ d1 þ � � � þ dnþ1
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and

pj ¼ d1 þ � � � þ dj; qj ¼ dj þ � � � þ dnþ1

for each j. Note d � 1, because ðu1 . . .unþ1Þð0Þ ¼ 0. Also, recall d1 ¼ 0.

We first estimate M�kt ðteÞ. Let

cj ¼
ujð0Þ if ujð0Þ 6¼ 0

Dujð0Þ if ujð0Þ ¼ 0.

(

Then we have M ¼ cTdwn where c ¼ c1 � � � cnþ1 6¼ 0. It follows from Lemma 3.5 that

Tdwn�
k
t ¼ ð�1=2Þd�k�dt and thus we have

jM�kt ðteÞj � t�n�kþd ð4:7Þ

by Lemma 3.4.

Next, we estimate R�kt ðteÞ. So, fix j and consider Rj. Since Tmjþ1
� � �Tmnþ1

¼
cjþ1 � � � cnþ1T

qjþ1
wn , we have

Tmjþ1
� � �Tmnþ1

�kt ¼ cjþ1 � � � cnþ1 �
1

2

� �qjþ1

�
k�qjþ1

t

by Lemma 3.5. Thus we have by (4.5) and Proposition 2.5

Tej Tmjþ1
� � �Tmnþ1

	 

�kt ðzÞ

�� �� . Z
H

jejðwÞjj�k�qjþ1

t ðwÞj
jz� wjn

dw

.

Z
H

dw

jte� wjnþk�qjþ1�dj��jz� wjn

. t�ðk�qj��Þ�0;1ðte; zÞ:

ð4:8Þ

Now, a similar argument using (4.6) and Proposition 2.5 yields

Tuj�1
TejTmjþ1

� � �Tmnþ1
�kt ðzÞ

�� �� . t�ðk�qj��Þ
Z
H

jwjdj�1�0;1ðte; wÞ
jz� wjn

dw

. t�ðk�qj��Þ��dj�1;2ðte; zÞ

for all j � 2. Note that
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pj�1 � j� 2 < n; j ¼ 2; . . . ; nþ 1; ð4:9Þ

because d1 ¼ 0; it is this step which requires the restriction on the number of

factors in the product. Hence, by the same argument repeatedly using (4.9) and

Proposition 2.5, we eventually obtain

Rj�
k
t ðzÞ

�� �� . t�ðk�qj��Þ��pj�1;jðte; zÞ

for each j � 2. This also holds for j ¼ 1 by (4.8) if we set p0 ¼ 0. So, evaluating at

z ¼ te, we therefore have

Rj�
k
t ðteÞ

�� �� . 1þ jlog tjj
� �
tnþk�d��

.

1þ jlog tjnþ1
� �

tnþk�d��
;

this holds for arbitrary j. Consequently, we obtain

R�kt ðteÞ
�� �� . 1þ jlog tjnþ1

� �
tnþk�d��

: ð4:10Þ

Finally, we have by Lemma 4.2

jT�kt ðteÞj .
1

tk��
: ð4:11Þ

Now, we have by (4.7), (4.10) and (4.11)

1 ¼ jT�kt ðteÞ � R�kt ðteÞj
jM�kt ðteÞj

. t�ð1þ jlog tjnþ1Þ þ t�þn�d

for 0 < t < 1. The constant suppressed above is independent of t. Recall d � n.

Thus, upon taking the limit t! 0, we reach a contradiction. The proof is

complete. �

Next, we prove Theorem 1.3. The proof is almost the same as that of

Theorem 1.2. We only indicate what the difference is.

PROOF OF THEOREM 1.3. Let unþ1 ¼ 1 and follow the proof of Theorem 1.2.

In the course of the proof of Theorem 1.2, we were able to assume d1 ¼ 0 under the

global Lipschitz hypothesis, because the location of the boundary set W is of no
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significance. However, we cannot assume d1 ¼ 0 in general under the present local

Lipschitz hypothesis. This causes loss of a factor. The rest of the proof is

unchanged. �

Finally, we prove Theorem 1.1.

PROOF OF THEOREM 1.1. Put T ¼ Tu1Tu2 and assume T has finite rank. As

in the proof of Theorem 1.2, we have u1u2 ¼ 0 on W . There are two cases to

consider:

(i) Both u1 and u2 vanish everywhere on W ;

(ii) Either u1 or u2 vanish nowhere on W (shrinking W if necessary).

Assume 0 2W without loss of generality. The case (i) is contained in Theorem

1.3, because u1; u2 2 �1ð0Þ by (4.6). So, assume (ii) holds. We may assume that u1
vanishes nowhere on W ; otherwise consider the adjoint operator ðTu1Tu2Þ


 ¼
Tu2Tu1 . We now have u2 ¼ 0 on W . If Du2 ¼ 0 on W; we are done by Lemma 4.3.

Thus we may further assume Du2 vanishes nowhere on W . This will lead us to a

contradiction.

Let c1 ¼ u1ð0Þ 6¼ 0 and c2 ¼ Du2ð0Þ 6¼ 0. Let e1 ¼ u1 � c1 and e2 ¼ u2 � c2zn.

Then we have

T ¼ Tc1þe1Tc2wnþe2 ¼ c1c2Twn þ c2Te1Twn þ Tu1Te2

and thus

c1c2Twn ¼ T � c2Te1Twn � Tu1Te2 : ð4:12Þ

Now we apply each side of the above to the same test functions �kt with an integer

k > 2 and derive a contradiction, as in the proof of Theorem 1.2. In the rest of the

proof we let t 2 ð0; 1Þ be arbitrary and z 2 H represent an arbitrary point, unless

otherwise specified.

First, we have by Lemmas 3.5 and 3.4

2jTwn�kt ðteÞj ¼ j�k�1
t ðteÞj � t�n�kþ1: ð4:13Þ

Next, note that e2ðwÞ ¼ Oðjwj2Þ; see (4.5) in the proof of Theorem 1.2. Thus we

have
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jTe2�kt ðzÞj �
Z
H

je2ðwÞjj�kt ðwÞjjRðz; wÞj dw

.

Z
H

dw

jte� wjnþk�2jz� wjn

. t�kþ2�0;1ðte; zÞ

by Proposition 2.5 and therefore

Tu1Te2�
k
t ðteÞ

�� �� . ku1k1t�kþ2I0;1ðte; teÞ . t�n�kþ2ð1þ jlog tj2Þ ð4:14Þ

again by Proposition 2.5.

Next, we estimate Te1Twn�
k
t ðteÞ. Given � > 0, let

!ð�Þ ¼ sup
jwj<�

je1ðwÞj

be the modulus of continuity of u1 at 0. Note �2Te1Twn�
k
t ¼ Te1�

k�1
t by Lemma 3.5.

Meanwhile, we have by (3.7)

Te1�
k�1
t ðteÞ

�� �� . Z
H

je1ðwÞj
jte� wjðnþk�1Þþn dw

¼
Z
jwj<�

þ
Z
jwj��

je1ðwÞj
jte� wj2nþk�1

dw

: ¼ I1 þ I2:

By Lemma 2.2 we have

I1 . t�n�kþ1!ð�Þ

for t > 0. Note that jte� wj � jwj � t � �� t for jwj � �. Thus, for 0 < t < �, by

Lemma 2.2 again we have

I2 .
ku1k1
ð�� tÞn

Z
H

dw

jte� wjnþk�1
�

ku1k1
ð�� tÞntk�1

:

Combining the estimates of I1 and I2 together, we have
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Te1Twn�
k
t ðteÞ

�� �� . !ð�Þ
tnþk�1

þ
1

ð�� tÞntk�1
ð4:15Þ

for 0 < t < �.

Also, we have by Lemma 4.2

jT�kt ðteÞj .
1þ jlog tj2

tkþnð1�1=pÞ : ð4:16Þ

where p is chosen so that 1 < p < n.

Now, setting M ¼ c1c2Twn and R ¼ c2Te1Twn þ Tu1Te2 and �¼ minf1; n=
p� 1g > 0, we obtain from (4.13)–(4.16) that

1 ¼ jT�kt ðteÞ � R�kt ðteÞj
jM�kt ðteÞj

. t�ð1þ jlog tj2Þ þ !ð�Þ þ tnð�� tÞ�n

for 0 < t < �. The constant suppressed above is independent of t and �. So, first

taking the limit t! 0 with � > 0 fixed and then taking the limit �! 0, we have

1 . !ð�Þ ! 0

by continuity of u1 at 0. Thus we have a contradiction as desired, completing the

proof. �

5. Remarks.

Although we have studied Toeplitz products in the present paper, not much

is known for Toeplitz operators (with general symbols). For example, even for

bounded symbols, characterization for most basic operator theoretic property

such as compactness is not known. Only positive compact Toeplitz operators are

characterized in [6]. Even for bounded harmonic symbols, it seems not easy to see

that compactness implies the symbol being zero; the analogue for holomorphic

Bergman space on the disk is an easy consequence of the fact that bounded

harmonic functions are fixed by the holomorphic Berezin transform. Motivated by

these observations, we provide here a proof of the fact that the zero operator is the

only compact Toeplitz operator with harmonic symbol on b2.

To begin with, we recall the pseudohyperbolic distance �ðz; wÞ between two

points z and w in H:
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�ðz; wÞ ¼
jz� wj
jz� wj

:

This pseudohyperbolic distance is horizontal translation invariant and dilation

invariant. In particular, we have

�ðz; wÞ ¼ �ð�aðzÞ; �aðwÞÞ ð5:1Þ

for a; z; w 2 H where �a denotes the mapping introduced in the proof of Lemma

3.4. For z 2 H and 0 < � < 1, let E�ðzÞ denote the pseudohyperbolic ball centered
at z with radius �. It is known that

1� �

1þ �
<

jz� aj
jw� aj <

1þ �

1� �
ð5:2Þ

whenever w 2 E�ðzÞ and a 2 H; see [7, Lemma 3.3].

We now recall the notion of nontangential limits. Given � > 1 and � 2 @H,

let ��ð�Þ be the nontangential approach region with vertex � consisting of all

points z 2 H such that

jz� �j < �zn:

Give an function u on H, we say that u has a nontangential limit at � 2 @H,

denoted by u
ð�Þ, if

lim
z!�;z2��ð�Þ

uðzÞ ¼ u
ð�Þ

for each � > 1. It then turns out that the following nontangential version of

Theorem 3.3 holds.

THEOREM 5.1. Suppose that functions u1; . . . ; uN 2 L1 have nontangential

limits at � 2 @H. Let T ¼ Tu1 � � �TuN . Then eT has a nontangential limit at � with

ð eT Þ
ð�Þ ¼ ðu1 � � �uNÞ
ð�Þ.

PROOF. By the proof of Theorem 3.3, it is sufficient to prove

lim
z!�;z2��ð�Þ

kTurzk2 ¼ 0; � > 1 ð5:3Þ
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for any function u 2 L1 that has a nontangential limit 0 at �. We fix � > 1 and

assume z 2 ��ð�Þ for the rest of the proof.

Note kTurzk2 ¼ kRðurzÞk2 � kurzk2. Thus, given 0 < � < 1, we have

kTurzk22 �
Z
E�ðzÞ

þ
Z
HnE�ðzÞ

juðwÞj2jrzðwÞj2 dw

: ¼ I1 þ I2:

ð5:4Þ

We first consider the first term I1. Let w 2 E�ðzÞ. Note that

1� �2 < 1� �2ðz; wÞ ¼
4znwn

jz� wj2
<

4wn

zn
<

4�wn

jz� �j

where we used the assumption that z 2 ��ð�Þ for the last inequality. Also, note

jw� zj < 2
1þ �

1� �
wn

by (5.2). Thus, if w 2 E�ðzÞ, then

jw� �j < jw� zj þ jz� �j < 2
1þ �

1� �
þ

2�

1� �2

� �
wn:

This means that [z2��ð�ÞE�ðzÞ is contained in some fixed nontangential approach

region with vertex �, say �	ð�Þ, depending on � and �. Consequently, we have

I1 � sup
w2�	ð�Þ

juðwÞj2:

Since u
ð�Þ ¼ 0, this yields I1 ! 0 as z! � (within ��ð�Þ) for each fixed �.

We now consider the second term I2. Note �zE�ðzÞ ¼ E�ðeÞ by (5.1). Also,

note Rðz; zÞ�1z�nn ¼ cn where cn ¼ n�n2
n�2ðn� 1Þ�1 by (1.2). Thus, using (3.8)

and making a change of variables, we obtain

I2 ¼ cn

Z
HnE�ðeÞ

ju � ��1
z ðwÞj2jReðwÞj2 dw

� cnkuk21
Z
HnE�ðeÞ

jReðwÞj2 dw:
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This shows that I2 is dominated by a quantity which is independent of z and

converges to 0 as � ! 1 by the dominated convergence theorem. Thus, taking the

limit z! � with � fixed and then taking the limit � ! 1 in (5.4), we conclude (5.3),

as required. This completes the proof. �

As a consequence, we obtain the following.

COROLLARY 5.2. Let u 2 h1. If Tu is compact, then u ¼ 0.

PROOF. Assume Tu is compact. By compactness we have eTuðzÞ ! 0 as

z! @H, as in the proof of Theorem 1.2. On the other hand, being a bounded

harmonic function, u has nontangential limits u
ð�Þ at almost all points � 2 @H;

see [1, Theorem 7.28]. Thus we have u
 ¼ 0 by Theorem 5.1. Now, since u is

recovered by the Poisson integral of u
 ¼ 0, we conclude u ¼ 0. �

In case u � 0 this corollary is already known and is a consequence of the

maximum principle and the Carleson measure characterization (see [6, Theorem

5.3]) in terms of averaging functions.
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