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Abstract. On the harmonic Bergman space of the half space in R", we
show that if the product of two or more Toeplitz operators with harmonic symbols
that have certain boundary smoothness has finite rank, then one of the symbols
must be identically 0. Our methods require the number of factors in the product
to depend on the dimension n.

1. Introduction.

For a fixed positive integer n > 1, let H = R"! x R, be the upper half-space
where R, denotes the set of all positive real numbers. We will sometimes write
point z € H as z= (¢,z,) where 2 € R"™" and z, >0. Let V be the volume
measure on H. Throughout the paper we write dw = dV(w) for simplicity. For
1<p<oo, welet LF = LP(H,V).

The harmonic Bergman space b? is the space of all complex-valued harmonic
functions f on H satisfying

1/2
111l ::{ / |f|2dV} < co.

The space b? is a closed subspace of L? and thus is a Hilbert space. Basic
structures of harmonic Bergman spaces b? are studied in [9]. For more general
Banach space of harmonic functions on the half-space, see [10], [11] and
references therein.

It is easily seen that each point evaluation is a bounded linear functional on
b?. Thus, to each z € H, there corresponds a unique function R, = R(z,-) in b?
which has the reproducing property:
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flz) = / fR.dV, z€H (1.1)
H

for all f € b*. The kernel R(z,w) is called the harmonic Bergman kernel and its
explicit formula is well known:

4 i 712_ __2
Rizyuw) = e twd) — =l oy (1.2)

noy, |Z_@|n+2

where o, is the volume measure of the unit ball of R" and w = (w', —w,,). Note
that R(z, w) is real and thus the complex conjugation in (1.1) can be removed. See
[1] for details and related facts.

Let R be the Hilbert space orthogonal projection from L? onto b%. Then the
reproducing property (1.1) leads us to the integral realization of the projection R
as follows:

Riy(z) = /Hw(w)R(z, w)dw, z€H (1.3)

for functions ¢ € L?. For a function u € L™, the Toeplitz operator T, with symbol
u is defined by

for f € b%. Note that T, is clearly bounded on b%.

Recently, the first two authors [3] investigated the problem of characterizing
zero products of several Toeplitz operators on the holomorphic Bergman space of
the ball in C". With harmonic symbols having some boundary regularity, their
results assert that a product of Toeplitz operators can be the zero operator only in
the trivial case, namely, only when one of the factor is the zero operator.
Analogous polydisk versions are also proved in [4]. Quite recently, those zero
product results have been generalized to finite rank product results in [5]. For
some time, this “zero product problem”, or more generally the “finite rank
product problem”, has been studied in various situations. See [3], [4] and
references therein for the history of the zero product problem.

Working on higher dimensional balls or polydisks, the authors of [3], [4]
devised a new scheme completely different from the earlier ones that were
restricted to the one dimensional case. To be short, that new scheme is to
decompose Toeplitz operators into a sum of the “major” and “error” parts, and
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utilize suitable test functions. Obviously, such a new scheme has another
advantage that it may work on more general settings. In this paper we extend that
scheme in two directions; the harmonic Bergman space on the unbounded domain
H. With major adjustments to fit to those new settings, we investigate the finite
rank product problem and obtain similar results.

In what follows we let h*™ be the class of all bounded harmonic functions on
H. Also, we let H = HUOH where 0H = R"™' x {0} denotes the boundary of H,
not including oo. The following is one of our main results.

THEOREM 1.1.  Let uj,ug € h° NC(HUW) for some nonempty relatively
open set W C 0H. If T\, T,, has finite rank, then either u; = 0 or ug = 0.

In the case where symbols have Lipschitz continuous extensions to the
boundary, our method applies to multiple products. Recall that the Lipschitz
class on a domain X C R" of order € € (0, 1], denoted by A.(X), is the class of all
complex functions f on X such that |f(z) — f(w)| = O(]z — w|) for z,w € X. Note
that Lipschitz functions on X necessarily extend to Lipschitz functions on X of
the same order. In what follows we let A, = A.(H). Also, given € € (0,1] and
(e OH, we say feA(C¢) if f is a Lipschitz function of order € in some
neighborhood of (.

For Lipschitz symbols, our result is as follows.

THEOREM 1.2.  Let ui,...,Upt1 € AcNA>® for some e. If T, ---T, has

Un+1
finite rank, then u; =0 for some j.
We also have the following local version, but with a loss of a factor.

THEOREM 1.3.  Let uy,...,u, € A((Q)NA® for some ¢ and (€ OH. If
Ty, -+ Ty, has finite rank, then u; =0 for some j.

REMARK.

(1) The number of factors in our results comes from the methods we use and
may not be critical.

(2) Note that the identity operator is also a Toeplitz operator (with constant
symbol 1). Thus, if a zero (or finite rank) product theorem holds for a certain
number of factors, it also holds for any smaller number of factors.

(3) The unboundedness of H indeed causes a trouble with our method.
Theorems 1.2 and 1.3 are harmonic analogues of results in [5]. Analogous zero
product theorems, with one more factor, are also proved in [5]. However, for
harmonic analogues of those zero product theorems, our method does not work.
The difficulty is caused by the fact the estimate in Lemma 2.2 below always
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diverges for ¢ = 0. This is in contrast to the case of bounded domains where the
corresponding growth rate is usually logarithmic.

(4) Dealing with Toeplitz products with harmonic symbols in the present
paper, we do not mean that a single Toeplitz operator with harmonic symbol has
been well studied. In fact even the characterization for a compact Toeplitz
operator with harmonic symbol does not seem to appear yet in the literature. In
the last section we included a proof that if a Toeplitz operator with harmonic
symbol is compact, then it is trivial.

In Section 2, we collect technical estimates to be used later. In Section 3, we
prove preliminary results concerning the mapping properties of R on Lipschitz
spaces, certain boundary behavior of Berezin transform and some basic properties
of test functions. In Section 4, we prove our main theorems. Finally, in Section 5,
we remark that the zero operator is the only compact Toeplitz operator with
harmonic symbol.

CONSTANTS. In the rest of the paper we use the same letter C, often
depending on the allowed parameters, to denote various positive constants which
may change at each occurrence. For nonnegative quantities X and Y, we often
write X <Y or Y 2 X if X is dominated by Y times some inessential positive
constant. Also, we write X = Y if X SY < X.

2. Auxiliary estimates.

As is mentioned in the Introduction, the main idea of our proofs is to follow
the schemes of [3], [4]. That is, we decompose each factor into major and error
parts and employ suitable test functions. Thanks to the fact that H is a product
domain, major parts are quite simple to deal with; see Lemmas 3.4 and 3.5.
However, caused by the fact that H is an unbounded domain, error parts require
substantially complicated and technical estimates. All those estimates are
collected in this section.

It is clear from (1.2) that there is a constant C'= C(n) such that

C

|R(zw)| <

for z,w € H. We will frequently and tacitly use this basic inequality for the rest of
the paper. Suggested by this inequality, we need to estimate integrals introduced
below.

Given c and s real, let
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1+ log z,|” + [log w,|” + [log|z — w||*

P s(z, w) n+c

|2 — |

for z,w € H and define corresponding integrals I, ;(z,w) by

@CS b
L(zw) = / s(GW) e

g 1¢—2"

Estimates of these integrals will take care of error terms in repeated Toeplitz
integrals which arise in the course of our proofs.

We introduce some auxiliary integrals depending on parameters s > 0 and ¢
real. First, let

llog w,|* + [loglw — 2
= n-+c d

Jes(2)

I lw—Z|
for z € H. Given a > 0, we decompose the integral J, 4(z) into two pieces
Jes(2) = Ues(2,a) + Les(z a)

where U, 4(z,a) and L.4(z,a) are integrals defined by

log w,|® + |loglw — Z||®
Uc,s(z, CL) = / | 77| ‘_ nJ‘ﬁ( H dw
H\B.(%) |w - Z\
logw,|* + |loglw — Z||*
Les(2,a) = / | " |— nJLc H dw.
HNB,() lw —Z|

Here, B,(z) denotes the Euclidean ball in R" with center at Z and radius a > 0.
Note that HN B,(z) =0 if a < z,. So, U.s(z,a) = J.s(2) and L.s(z,a) =0 for
a < z,. We will often use the notation

L*(t) = [logt]®, t>0

for simplicity. We begin with the following lemma.

LEMMA 2.1.  Let ¢ >0 and s > 0. Then the following estimates hold for 0 <
€<1/2 and a > 0:
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! [log r|” - 5
/E e dr =~ ¢ “|logel’; (2.1)
“ [log r|” S
T dr =~ €“[logel’; (2.2)
o T
> |logr[* e s
T dr=a""(1+[logal’). (2.3)
“ r +c

The constants suppressed above are independent of € and a.

PROOF. For a proof of (2.1) and (2.2), see [3, Lemma 3.4]. To see (2.3), we
consider three cases a < 1/2,1/2 < a < 2 and a > 2 separately. First, we have by
(2.2)

< |logr|®
[ dr 0ol ~ (1 + gl

for a > 2. Next, we have

© |logr|*®
/ | rng:»,' dr~1=~a°~a°(1+ [logal’).

for 1/2 < a < 2. Finally, we have by (2.1)

50 1 s 1 1 S . >
/ log " dm1+/ losr! dr =1+ a ‘|logal” = a™“[L + [logal’]
a

rltc rltc

for a < 1/2. The proof is complete. O
For the integrals J.(z), we have the following estimate.

LEMMA 2.2. Let s >0 and c be real. Then the following estimates hold for
z€ H:

z (1 + |log z,|") for ¢ >0

o)~ {

00 for ¢ <0.

The constant suppressed above is independent of z.

PROOF. Let z € H. We may assume z = (0, 2,,). Note
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lw—72| < 2, + w, + || < 2|w—7Z| (2.4)

for all z,w € H. Thus we have

wn w")
— duw' dw,,.
/ |w rL+c / /R"l wn+2n+ |w,‘)n+c n

Thus, integration in polar coordinates yields

le{/om@%%)mdt}{/j#dr}. (2.5)

Note that the first integral of the above diverges for ¢ < 0. Thus we have
Jes(2) 2 J1 = oo for ¢ < 0.

Assume ¢ > 0 for the rest of the proof. Since the second integral of (2.5) is
finite, we have by (2.3)

n L A0
0 (t + Zn) ’ Z (t + Zn) ’

n

Zn ‘ o] La(t)
~ ~—l—c s
~ 7 /O L (t)dt+/ e
Zn
~ 2, [1 + L*(z,)].

Note that this implies the lower estimate of J.4(2). Also, since

) Lo(l=l) [ L(r)
JQ = T _ntec dw S ntc dr =~ i d'r,
H jw—7| R\B,,(0) |7] o T

we have by (2.3)

Jo S 2, °[1 + LP(z,)].

Now, combining the estimates of J; and J2, we have the upper estimate of J. s(z).
The proof is complete. i

Next, we have the following estimate for the integrals U, (z, a).

LEMMA 2.3. Let s >0 and c be real. Then the following estimates hold for
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z€ H and a > 0:

1+ [log (2, + a)|’
Uc,s (Z7 (1) ~ (G + Zn)(:
00 if ¢ <0.

ife>0

The constants suppressed above are independent of z and a.

PROOF. Letzé€ H anda > 0. In case a < z, the lemma goes back to Lemma,
2.2, because U, 4(z,a) = J.s(2). So, assume a > z, for the rest of the proof. Also,
we may assume z = (0, z,). We first prove the lower estimate. Since the set
H \ B,(z) contains all points w with w,, > a and |w/| > a, we have by (2.4)

wy,) /
(z,a) dw dw
cs / ‘/|u’>a, wn+z77+|w,|)n+c n
"2 drdt
/ / (t+ 2, + T) "“
o0

t n—2
_ / L:(t) C/ o e drdt.
a (t + Zn) af(t+z,) (1 + T')

Since a/(t + z,) < 1 for t > a, the inner integral of the above is bigger than some
positive constant. Thus we have

L (t)
¢ + Z")l—O—C

Ue,s(2, a)z/aoc(

For ¢ <0, this integral diverges and thus U,s(z,a) = co. For ¢ > 0, we have by
(2.3)

< LA(t < LA(t
/ 7( >1+C dt ~ / 155) dt =~ a °[1 + L*°(a)]
a (t + Zn) a t

and thus
U.s(z,a) Z a “[1+ L*(a)],

which is equivalent to the desired lower estimate; recall z, < a.
We now assume ¢ > 0 and prove the upper estimate. We will show
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Ues(z,a) S a “[1+ L¥(a)], (2.6)

which is again equivalent to the desired upper estimate. By (2.4) we have

s s /
Us.s(z,a) < // L*(wy,) + L* (w, + Zn”i'c|w ) dw' dw,
’ wy+ | |>a—z, (’LU,L + 2y + |U),|)

§// L)+ Lttztr) o
t+r>a—z,

(t+ zn + 7")2+C

a—z, a—z,—t

::U1+U2.

We first consider the integral U;. By (2.3) we have

14 Lo(t) + LA(t n
b [T O,

—2zn (t + Zn)HC
= 1w

~a “[14 L*(a)] +/ e

—dt.
a—2zp (t + Zn,)

Since t + z, ~ t for t > a and t + 2, = a for a — 2z, <t < a, we have by (2.3)

< A0 ©
/ e dt :/ T+c dt+/ e dt
a—zy, (t + Zn) ’ (t + Zn) a—zy, (t + Zn) i

—l—(: ¢ s
/ tw /O Lo(t) dt

14 L*(a)]

and thus conclude that U; is dominated by a™¢[1 + L*(a)]. For the integral Uy, it is
easily seen that

a o0 LS
Uy < a1¢ / L*(t)dt +a / Q(T) dr
0 o r —+c

This, together with (2.3), implies that Us is also dominated by a=¢[1 4+ L*(a)].
Thus we obtain (2.6), as required. The proof is complete. O

We now turn to the estimate of integrals L. (z,a). For ¢ > 0, the trivial
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inequality L.s(z,a) < J.s(z) will be enough for our purpose. For ¢ < 0, we need
the following estimate.

LEMMA 2.4. Givenc <0 ands > 0, there is a constant C = C(c, s) such that

1+ [log z, |t + [logal*™  ife=0

L.s(z,a) <C x
' a (1 + [log z,|” + |logal®) if c<0

forz€ H and a > z,.

PROOF. Let ¢<0 and s>0. Let z€ H and a > z,. We may assume
z=(0',2,). Writing

L (w L(|lw—=2
LC,S(Za a) - / (771)4—0 dw +/ (‘—n—o—P dw
HNB.G) |w — Z| anB.Gz) |w—Z]
i =Ly + Lo,
we will show that both integrals L and L. satisfy the desired estimates.

The estimate for the second integral Lo is simpler. Since H N B,(z) C
B.(2) \ B.,(z), we have by integration in polar coordinates and (2.1)

Ly < / L)y, (2.7)

prl+c

n

S ;’/a/z,, Ls( )+L'S(Zn) 0 (2.8)

rltc

g(a/z,)[L*(a)z,) + L*(2,)] ifc=0

{ (L7 (a/zn) + L°(2n)] ife<0
{Ls+1 LSH(zn ife=0

)
L¥(z,)] if ¢<0. (29)

Next, we estimate L;. Since z, +w, < |w — Z| and |v/| < |w — Z|, we have by (2.4)
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L < / / ) e dw' dw,
[w'|<a (wn + 2n + d)

a—z, )
" drdt
/U / t+ Zn + 7' TH—(

a/znfl Lé(tz, a/zn(14t) n—2
=2 / Lrltz) / L drat.
0 (1+41) (147)

Thus, for ¢ < —1, we see from (2.3) that

a/z,,,—l a/z,,,(l-&-t)
L1 <z° / Lo (tz,) (1 + )¢ / 2 dr dt
0 0

a/z,
Szna*l*c/ LA(t) + L () dt
0

~a “[1+ L (a/z,) + L*(2,)]
S afc[l + Ls(zn) + Lg(a)]

Note that we have

afz,—1 L5(t . a/zy(1+t) d
Llszr/ L), 1+/ o
0 14+ 1 rte

for =1 <¢<0. If ¢ =0, then from (2.11) and (2.9) that

a/z, L LS .
L <1 +/ L) + L(zn) dt <14+ L5 (z,) + L (a).
1

t

Similarly, if —1 < ¢ < 0, then we obtain

/o L3(t) 4 L¥ (2
L < z*/ BO+LC) < gl 4 15(2) + L°(a)].
0

Hi+c

If ¢ = —1, we see from (2.11) and (2.3) that

895

(2.10)

(2.11)
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a/z,
L < z,,/ L (tz,)[1 + log(a/z,) + log(1 + t)] dt
0

alz,
Sall+loga/z)] [ L0 + D) de
0

Sal[l + L (z,) + L (a)],

which completes the proof. ([

REMARK. Recall L.s(z,a) =0 for a < z,. Thus the estimate in Lemma 2.4
is far from being sharp as a/z, — 1. However, as long as the behavior L.4(z, a) as
a/z, — 1 is concerned, one may get a better upper bound as follows:

Les(z,0) < 2%a) 20 — )" TV2[1 4 L¥(a — 2,) + L*(20)]. (2.12)

In order to see this, assume 2z, < a < 2z,. Then, since |w — Z| = 2, for |w —Z| < a
and a+t+ 2z, =~ z, for 0 <t <a-— z, we have

L1 ~ anfc/ " Ls(t)[QQ _ (t+ Zﬂ)?](nfl)/Q dt

n
0

n

~ Z’;nfcz(nfl)/Z/ Lq(t)(a 4 Z")(n—l)/Q dt
0

1
= z;c(a/zn — 1)(71,+1)/2/ L*(t(a — 2,))(1 — t)(n,—l)/Q dt
0

< 2 a)z — D)1 4 L (a — 2,)).
Similarly, we have
Ly < 2%(a) 20 — 1) ™21 4 L8(2)).

Now, combining these estimates, we obtain (2.12). Note that the above argument
works even for ¢ > 0. Thus (2.12) is also valid for ¢ > 0.

We are now ready to prove the following estimate.

PROPOSITION 2.5.  Given ¢> —n and s > 0, there exists a constant C =
C(c, s) such that
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w, Py sr1(z,w) ife>0

Ic,s(z7 ’LU) <Cx .
Ooir(zw) e

for zyw e H.

PROOF. Letc> —n, s> 0and fix z,w € H. Decompose H into three pieces
FE,, E5 and E3 given by

Ey={¢e H:2[z-w| <|¢—w[}
Ey={CeH: |z—w|/2<|(—w| <2]z—w|}
By ={¢e H:[(—w| <|z—wl|/2}

and consider corresponding integrals

o [ LHE GG

Z —nt
, ¢ —2"|¢ — @[

for j=1,2,3.
We now estimate the integrals introduced above. First, using the inequalities

(=2 =[C-w[-[z-w = |(-w| - |z —w| > |( —w|/2

valid for ¢ € E;, we have

s dC Ls CTI + Ls C_ w
B | —w| E ¢ — |
= 7L+(:,s(w7 al) + [1 + Ls(er>]UrL+c,O(w7 al)
where a; = 2|z — w|. Since n + ¢ > 0, we conclude
L SO 4(zw) S DPesi1(z,w) (2.13)

by Lemma 2.3. Next, using the inequalities
(=2 <[C-w[+[z-w < |C—w|+ |z —w| <3|z -

and |z — w| =~ |¢ — w| valid for ¢ € E», we obtain
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L+ L*(w,) + L*(|z — w]) d¢
I S —ntc —_n
|z — | B, () |¢ — 7
1 L*(¢n)
+ ﬁ/ —m d¢
|z =" Juns, @ 1€ — 7
< L L(wa) + L2(|2 — @])]Loo (2, a2) + Los(2 az)
— |Z— m|n+c
where ag = 3|z — w| and thus conclude
L <SP s1(zw) (2.14)

by Lemma 2.4. Finally, using the inequalities
=22 [C—2 2|z -] - [( -] > |2 - w|/2

valid for ¢ € E3, we obtain

I < 1 —&-L"’(wn)/ d¢
HNB

Ee @ ¢ — "
1 L2(Gn) + L*(|¢ — )
|2 =@[" Junp,, @) ¢ —w[""*
[+ L¥(wy)] Leo(w, az) + Le s(w, az)

|z —wl|"

a3

dg

where ag = |z — w|/2. Accordingly, for ¢ > 0, we have by Lemma 2.2

w, °[1+ L*(w,)]

|Z _ m|n

I <

~

S w, “@p ey1(2, w). (2.15)

~

Meanwhile, for ¢ = 0, we have by Lemma 2.4

1 + Ls+l(wn) + LS+1(|Z _ m‘)

|z —wl|"

I3 < < Dg 11 (2, w). (2.16)

Also, for —n < ¢ < 0, we have by Lemma 2.4

|2 — w1 + L*(wn) + L* (|2 — w])]

|z —w|"

I 5 S (bcﬁs-%l (Z; w)~ (217)
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Now, since @, o+1(2, w) < w, “®g 511(z, w) for ¢ > 0, we conclude the proposition by
(2.13)—(2.17). The proof is complete. O

3. Some preliminary results.

In this section we prove some preliminary results: (i) the mapping properties
of R on (local) Lipschitz spaces, (ii) the boundary continuous extension property
of Berezin transform and (iii) some basic properties of test functions. Some of
these results may be of independent interest.

3.1. Lipschitz spaces.

In the holomorphic case it is well known on bounded strictly pseudoconvex
domains that Lipschitz spaces (of non-integer order) are invariant under Bergman
projections. This is a consequence of a theorem due to Ahern and Schneider [2].
The harmonic analogue is noticed by Kang and Koo [8] on bounded smooth
domains. We need to establish the analogous result, as well as its local version, on
our unbounded domain H.

Let D; be the differentiation with respect to the j-th component, i.e.,
Djf(w) = 0f/0w;(w). If both variables z and w are present, we will let D, or D,
etc, in place of D, to specify the variable of differentiation. For the derivatives of
R(z,w) we have the following size estimate for a given multi-index o

D R(zw)| < —C

z— |

(3.1)

n+|al

for some constant C' = C'(«a); see [9].
The proof of the following lemma is parallel to the well known argument and
thus omitted; see [12, Lemma 6.4.8].

LEMMA 3.1.  If a function f € C'(H) satisfies
ViR <27, zeH

for some € € (0,1), then f € A..

Let b” be the subspace consisting of all harmonic functions in L”. The case
p = 2 of the following theorem will be used later. The general case 1 < p < o0 is
included, because it may be of some independent interest.

THEOREM 3.2. Let0<e<1l,1<p<ooand( € 0H. Then
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RIIPNA]C V¥ NA, (3.2)
and
RIIPNA(Q)] Cc¥PN[A+ Q)] (3.3)

where (() denotes the class of all functions harmonic on some open set
containing H U {C}.

The proof of (3.2) below is also parallel for most part to the well known
argument. The only difference is that we need the b'-cancelation property ([9,
Theorem 2.2]): If f € b, then

flx,t)de =0 (3.4)
R717]

for every t > 0.

PROOF. We first show (3.2). Let feLPNA. It is well known that
R: LP — b is a bounded projection; see [9, Theorem 3.2]. Thus we only need to
prove Rf € A.. Put F'= Rf and let z € H. Differentiating under the integral sign,
we have

DjF(z):/Hf(w)DZ]R(z,w)dw

for each j. Note that each function D, R(z,-) is integrable on H by (3.1). Hence
the bl-cancelation property (3.4) yields

D.F(z) = / F(w0)D., R(z, w) duw = / (Fw) — £(2)) D Rz w) dw
i1 H
for each j. Since f € A, this, together with (3.1), implies
d
VEEIS [ e~
H|z—w|

the last equivalence comes from Lemma 2.2. So, we conclude (3.2) by Lemma 3.1.
We now show (3.3). Let f € L? N A.(¢). Then f € A (U) for some bounded
neighborhood U of ¢. Choose a neighborhood U, of ¢ such that U; C U. Pick a
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smooth cut-off function ¢ on R" with 0 < 1 < 1 such that ) =1 on U; and ¢ = 0
on R"\ U. We certainly have fi» € A (H \ U). Also, we have fi € A (U), because
1 is smooth. Let z € HNU and w € H \ U. Pick a point a € U that stays closest
to z. Since ¥(a) = 0 and ¥ € A (U), we have

[¥(2)] = [¥(2) — Y(a)| < Cilz —al < Ci]z — wf

for some constant C; > 0 independent of z and w. Since |f| is bounded on U, say
by C,, we obatin

[F(2)9(2) = f(w)g(w)] = [f(2)9(2)] < C1Colz — wl*,

Thus fi € A and R[f¢] € A. by (3.2). Meanwhile, since

R[f = fyl(2) = f(w)(1 = ¢(w)) R(z, w) dw,

H\U,

we see that R[f — fi] extends to a harmonic function across Uy N 9H. So, we have
(3.3). The proof is complete. O

REMARK. It is known that the kernel R(z, w) also reproduces b'-functions.
So, the proof of (3.2) shows the following (even with p=1): For €€ (0,1),
1 <p<ooand f €, wehave f € A, if and only if [Vf(z)| = €(2"). The same
characterization extends to p = oo, namely, for functions f € h*. This latter
assertion can be verified by means of the modified reproducing formula ([9,
Lemma 5.6]) for harmonic Bloch functions.

3.2. Berezin transform.
Recall that the Berezin transform T of a bounded linear operator T on b is
defined by

Tv(z) =(Tr,r,), z€H

where 7, = R.||R.|;" is the normalized kernel. Clearly, these Berezin transforms
are continuous on H. Moreover, Berezin transforms of Toeplitz products has the
continuous extension property up to the boundary, when the inducing symbols
are continuous at a boundary point as in the next theorem.

THEOREM 3.3.  Suppose that functions uq,...,uy € L™ are continuous at
C€dH. Let T=1T, - Ty,. Then T continuously extends to HU{¢} and
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T(¢) = (w1 ---un)(C)-

This theorem is the harmonic analogue of [3, Proposition 2.1] (for the
holomorphic Bergman spaces of the ball in C") whose proof utilizes auto-
morphisms. One may also use the maps ¢, introduced in the proof of Lemma 3.4
to modify the proof of [3, Proposition 2.1]. Here, we provide below a different
proof that may work on more general settings. Also, since r, — 0 uniformly on
compact sets as z — oo, the theorem remains true for ( =oco by an easy
modification.

PROOF. We first prove

ling |Tur:ll, =0 (3.5)

for any function u € L*™ that continuously extends to ¢ with u({) = 0. Let z € H.
Note || Ty7.|ly = [|R(ur.)|ly < ||ur.|ly. Thus, for € > 0 small, we have

T2 < /H (o) s () o

= u(w 27"2 w)|? dw
Lo 36)

2 2 2
< sup fu(w)? + uld / () do.
[w—¢|>€

|w—(|<e
Note |R(z,w)| < |z —w| " by (1.2). Meanwhile, since

we have by Lemma 2.2

d
/ Ir. (W) dw < Rz, 2) (e — |2 — )" / _
lw—(|>e o |z — |

~z ez = ()"
for z sufficiently close (. Note that the last expression above converges to 0 as
z — (. Hence, taking the limit z — ¢ with € fixed and then taking the limit ¢ — 0
in (3.6), we conclude (3.5), as desired.

Now, put ¢; = u;(¢). Then an inductive argument yields
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N
T="T, T, + ZT“I Ty \Tye, T,

it ..

J=1

Note T, = cI for constants ¢ where I is the identity operator on b%. Also, note
(T —cy---exI)r, — 0in b? and thus T'(2) — ¢; -+ - cy as z — (. This completes the
proof. Il

7, — 0in b* as z — ¢ by (3.5) for each j. Thus we see from the above that

3.3. Test functions.
We introduce our test functions and prove some basic properties. We fix the
reference point

e=(0,1)eH

for the rest of the paper. Also, we use the notation ¥ = D,, to emphasize the
normal differentiation. Our test functions will be the functions A\F defined by

A = Z"Rie

for integers k > 0 and ¢ > 0.

In the next two lemmas we observe information on how test functions grow
along the diagonal and on how major part of a given Toeplitz operator acts on test
functions. It is clear from (3.1) that there is a constant C' = C(n, k) such that

c

|Z— w|n+/€

| 7" R.(w)] < (3.7)

for z,w € H. Moreover, the upper bound on the right side turns out to be precise
along the diagonal, as in the next lemma.

LEMMA 3.4.  Given an integer k > 1, there is a constant ¢ = cx(n) > 0 such
that

D R.(2) = (-1 ez, "

for z€ H.

PROOF. Let k> 1 be an integer and z € H. A straightforward calculation
yields
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R.(w) = z," Re(¢(w)) (3.8)

for w € H where ¢.(w) = z,;'(w/ — 2/, w,). Applying 2* to both sides of the above,
we obtain

D" R.(w) = 2," * D" Re(¢.(w))

for w € H. Thus, evaluating at w = z, we have 2"R.(z) = z,‘l”’_k@kRe(e). In order
to compute .@kRe(e), note that we have

4
Re(w) = no g(|w/|a L+ wy)

n

by (1.2) where

(n—1)t? — &

g(s,t) = (82 +t2)(n+2)/2 '

Thus, using ¢(0,t) = (n — 1)t and real-analyticity, we have

d 4 (n+k-1)
P Re(e) = —g(0,t)| = (-1)" :
(€) noy, {dtk g )} o (1) ne, 2"tk (n —2)!
as required. The proof is complete. [l

LEMMA 3.5.  The identity
k 1 k—1
Tw,2°R. = — 3 9" R,

holds for integers k> 1 and z € H.

PROOF. We first recall a reproducing formula. Among many other
reproducing formulas obtained in [9], we recall that the kernel R(z,w) has the
following generalized reproducing property ([9, Lemma 4.6]):

(=2)"

m/!

u(z) =

/ wp' D" u(w)R(z, w) dw
H
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for integers m > 0 and functions u € b%.

Let k£ > 1 be an integer and fix z € H. Note that 2" 'R, € b? by (3.7). Thus
the lemma follows from the above generalized reproducing property (with m =1
and u = 2" 'R.). O

4. Proofs of main Theorems.

In this section, we prove our main results. We introduce some notation. First,
in conjunction with Proposition 2.5, we let Log®, s > 0, denote the class of all
harmonic functions f on H such that

[f (w)]

¢ 1= Sup s <00,
1£1lz0 := sup D (w, e)

Note T, Log® C Log**! for each s > 0 and v € L® by Proposition 2.5. Also, given
1 <p<ooand s >0, the estimate

/H |Dg s (w, e)] dw = Iy— 5p(e€, €)

yields Log® C L? by Proposition 2.5. Next, we let & be the class of all harmonic
functions on H such that

sup Ju(w)|(1 + |w|") < oco.
weH

Note R. € Z for each z€ H. Also, note Log’ = 2. Finally, given nontrivial
functions f, g € b?, we let f ® g denote the rank-one operator on b defined by

(fegh= (hgf

for h € b%.
The following is the key lemma for our results.

LEMMA 4.1.  Let wy,...,uy, € L™®. Let {fj}évzl and {gj}j-\f:1 be linearly
independent collections of functions in b%. Assume

N
TU«ITUZ o .Tum = Z f./ ® g]
J=1
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on b?. Then f;,g; € Log™ for all j. If, in addition, uy,...,u, € A(C) for some
€€ (0,1) and ¢ € OH, then fj,g; € A(C) for all j.

PrOOF. We first show f; € Log™ for all j. Put T =T, T,,---T,,. Given
z€ H,we have T, R. €T, 2 =T, Log’ C Log" by the remarks above. Repeat-
ing similar arguments, we have TR, € Log™. Note TR, = Zjvzl gi(2)f; by (1.1).

Thus, for arbitrary points 2!, ..., 2" in H, we have
TR. gi(zh) ... gn(Zh) fi
TR~ a(zN) ... gy(ZN) In

By [5, Lemma 2.4] we can pick some points z',..., 2" € H such that the N x N
matrix in the above displayed equation is invertible. Now, since functions TR,; all
belong to Log™, we conclude that f; € Log™ for all j, as desired.

Let € € (0,1) and ¢ € OH. Then, given u € L*® N A.(¢), we have by Theorem
3.2

T[0* N A(Q)] € RILZ N ALQ)] € 0 N[A+ ()] € b N AL(C),

because #(() C A(¢) and functions in A, are easily seen to have extensions in
A(R"). Thus, if ug,...,uy, € L® N A((), then

TI* N A(Q)] € b NA(Q)

and, in particular, TR, € A(¢) for each j. Thus we conclude f; € A.(¢) for all j.
Since T = Ty and (f ® g)" = g ® f in general where the superscript * denotes
the Hilbert space adjoint operator, we have

N
T =Ty, - To, =Y 9;® f;

=1

Now, what we’ve proved above implies the assertions on functions g;. The proof is
complete. O

Using Lemma 4.1, we obtain the following growth estimates for finite rank
operators, when applied to test functions.
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LEMMA 4.2.  Letwuy,...,um € L® and put T =T, T,,---T,,. Let1 <p < o0
and k> 1 be an integer. If T has finite rank, then there exists a constant C' =
C(p,k,T) such that

1+ |logt|™

k
|T)\t (t€>| <C tk+n(1-1/p)

for all 0 < t < 1. If, in addition, uy,...,u, € A(0) for some e € (0,1), then there
exists a constant C = C(k,T) such that

c
TN (te)| < pran (4.1)

forO<t<1.

PROOF. Assume T has finite rank, say N. Then there exists linearly
mdcpondont collections {f]}71 and {g]} of functions in b* such that
T= Z; 1 fj ® gj and thus

j=1

2

T)\]C te) :Z t,g] ) fi(te)

J=1

for ¢t > 0. Note that functions fj, g; all belong to Log™ by Lemma 4.1. Let g be the
conjugate exponent of p. Recall Log™ C L7 and note

dw
k ~ +n—p(n+k)
/ |>‘ / |t€ _|p(n+k) ~ T

for t >0 by (3.7) and Lemma 2.2. Hence, applying Holder’s inequality and
denoting the Lf-norm by || ||,, we obtain

Dy (te, €)
TN (te)| < tkﬂfl 75 legjll 151l Logn

1 + |10gt|m N
5 tk‘-&-n(l—l/p) § ng”qujHLogm
=1

for 0 < ¢t < 1. This completes the proof of the first part of the lemma.
Now, assume further uy,...,u, € A.(0) for some € € (0,1) and show (4.1).
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Note that functions f;, g; all belong to A.(0) by Lemma 4.1. Thus
N
TN (te)] < MY (A, 95)]
=1
where M = supy;; ; | fj(te)| < oc. So, in order to complete the proof of (4.1), it is

sufficient to show that, given a function g € L? N A.(0), there is a constant C =
C(k, g) such that

c
9 < o (43)

for 0 < t < 1. Assume g € A (U) where U is some neighborhood of 0. Let 0 < ¢ < 1.
Note A¥ € b! by (3.7). Thus we have

<>‘fvg> = <)‘z]t€ag - g(0)>

by the b'-cancelation property (3.4). Meanwhile, we have

/\k, — g(0))] < dw
(9= 9(0)] |te "+k HnU H\U |te "”“

Using the Lipschitz condition at 0, we have by Lemma 2.2

lg(w) — ()| _ du 1
—n+k dw ~ —n+k—e ~ k—e *
H —wl" H|te—w|"™" e

nU o |te

Also, we have by Hélder’s inequality

1/2
no |te—w|"" ~ ) e lte — w|*"h

dw
+ 19(0)] e

H\U |[te — W

Note that the integrals on the right side of the above are bounded uniformly in ¢
by Lemma 2.3. Now, combining these estimates, we have (4.3) and thus conclude
(4.1). The proof is complete. O
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We also need a uniqueness result for harmonic functions as in the next
lemma. This lemma is proved on the ball in [3, Proposition 4.1] and we omit the
proof which is much simpler on the half-space. Note that Zu always exists by the
reflection principle (see [1, Theorem 4.12]) in the hypothesis of the next lemma.

LEMMA 4.3.  Suppose that u is a function harmonic on H and continuous on
HUW for some nonempty relatively open set W C OH. If both u and Pu vanish on
W, thenu =0 on H.

We are now ready to prove our main results. Our proof of Theorem 1.1 will
depend on Theorem 1.3, which in turn depends on the proof Theorem 1.2. So, we
first prove Theorem 1.2.

Proor or THEOREM 1.2. Put T'=1T,, ---T, and assume T has finite

Un+1
rank. Since T has finite rank (and thus is compact) and 7, — 0 weakly in b% as
z— OH (see [6, Lemma 5.2]), we have T(z) — 0 as z— OH. It follows from
Theorem 3.3 that uy -+ -u,+1 =0 on 0H.

If uy = 0 on H, there is nothing to do. So, assume that u; is not identically 0.
Since a bounded harmonic function is recovered by the Poisson integral of its
boundary values, u; vanish nowhere (by continuity) on some nonempty relatively
open subset of 0H, say Wi. If us is not identically 0 on W7, we can find a smaller
relatively nonempty open set W, C W) on which wuy also vanishes nowhere.
Continuing this process, we see that there exists a nonempty relatively open set
W C 0H such that

either u;(¢() #0, ¢eW

or uj=0 onW

holds for each j. Note u; vanishes nowhere on W. Also, note uj, = 0 on W for some
Jo, because u; ---u,11 = 0 on JH. If, in addition, Pu,, =0 on (some nonempty
relatively open subset of) W, we have u;, = 0 by Lemma 4.3. So, given j, assume
that u; and Zu; do not simultaneously vanish on any nonempty relatively open
subset of W. Thus there exists some nonempty relatively open subset of W, still
denoted by W, such that

either u;(¢{) #0, ¢(eW

(4.4)
or ui(¢) =0, Zu(() £0, CEW

for each j=1,...,n4+ 1. We may assume 0 € W without loss of generality. This
will lead us to a contradiction.
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We introduce more notation. In the rest of the proof we let ¢ € (0,1) be
arbitrary and z € H represent an arbitrary point, unless otherwise specified.
Recall that Pu;(0) # 0 by (4.4), in case u;(0) =0. Let d; =1 if «;(0) =0, and
d; = 0 otherwise. Note d; = 0. Now, define the major part m; of u; by

"IN 2000z it dyj =1

and put e; = u; — m; for each j. Note that we have
ei(z) = 0(1"") (4.5)

for each j. To see this we only need to consider z near 0, because u; is bounded.

Thus (4.5) is a consequence of the Lipschitz hypothesis if d; = 0. In case d; = 1,

since u; = 0 on W, w; is harmonic and thus smooth across W by the reflection
71,1

principle. Also, note Fie (0)=0fori=1,...,n— 1. Thus Taylor’s theorem yields
ej(z) = 0(|2*), which implies (4.5). Similarly, we have

w(z) = 6(|21") (46)

for each j.
We introduce further notation. Put M =1T,, ---T,, ., and R=T, -

Ty,., — M. Then one may verify by an inductive argument

n+1

R=>"R,

=1

where
Rj = 7—’7!1 T Eﬁj—lTeijjJrl o 'Tmn+1

for each j. Note M =T — R. Fix k > n 4+ 2. We will estimate the same expression
MM = TAF — RAF along the vertical ray emanating from the origin in two
different ways and reach a contradiction.

Put

d:d1+"'+er+1



Finite rank product theorems 911
and
pj:d1+"'+d]' Qj:dj+"'+dn+1

for each j. Note d > 1, because (us ... u,4+1)(0) = 0. Also, recall d; = 0.
We first estimate MAF(te). Let

T Quy(0) if u(0) = 0.

Then we have M = chn where ¢ = ¢1 - - - ¢pq1 # 0. It follows from Lemma 3.5 that
T,ff,n)\f = (71/2)d/\f’d and thus we have

M (te)] ~ £ (@.7)

by Lemma 3.4.
Next, we estimate RA¥(te). So, fix j and consider R;. Since Ty T

Mpi1 —
i1 cn T, we have

& 1 j+1 k—q
_ o= Q1
Tnl_j*l T Tmn+l >‘1‘, = Cjt1 " Cntl ( 2) >‘t

by Lemma 3.5. Thus we have by (4.5) and Proposition 2.5

W)\ (w))|
|z — "

< dw (4.8)

~ " |t€ B wln-}—k—qﬁl—dj—e‘z _ w|n

S ti(kiq-’ie) (1)071 (te, Z) .

dw

.

“J

(Tm“l o Tmnﬂ))\f(zﬂ S / |61(
H

Now, a similar argument using (4.6) and Proposition 2.5 yields

|w|d7’1<I>071(te, w)

|z — w|"

dw

~

T, T, Tn,,, "‘Tmm)‘f(zﬂ < t_(k—Qj—E>/

< ti(,‘,,qrs)@_djil,g(te, z)

for all j > 2. Note that
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pi-1<j—2<n, j=2,...,n+1, (4.9)
because d; = 0; it is this step which requires the restriction on the number of

factors in the product. Hence, by the same argument repeatedly using (4.9) and
Proposition 2.5, we eventually obtain

}RJ)‘{&C(Z” S ti(ki%if)q)*jﬂjfh]'(tev Z)

for each j > 2. This also holds for j = 1 by (4.8) if we set py = 0. So, evaluating at
z = te, we therefore have

1+ |logt|‘7> (1 + |logt|”“)
t’ll*‘rk*d*( ’S t’ll+k*d7( ;

|R;N (te)| S (
this holds for arbitrary j. Consequently, we obtain

1+ |log t|"’+1)

|RN(te)| < ( (4.10)

tn+k7dfe

Finally, we have by Lemma 4.2

1
TN (te)| < pret (4.11)

Now, we have by (4.7), (4.10) and (4.11)

B ITAE(te) — RAF(te)|

| MM (te)l < 4(1 + [log ¢[™1) + g+nd

for 0 <t < 1. The constant suppressed above is independent of ¢t. Recall d < n.
Thus, upon taking the limit ¢ — 0, we reach a contradiction. The proof is
complete. ([l

Next, we prove Theorem 1.3. The proof is almost the same as that of
Theorem 1.2. We only indicate what the difference is.

PROOF OF THEOREM 1.3.  Let u,+; = 1 and follow the proof of Theorem 1.2.
In the course of the proof of Theorem 1.2, we were able to assume d; = 0 under the
global Lipschitz hypothesis, because the location of the boundary set W is of no
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significance. However, we cannot assume d; = 0 in general under the present local
Lipschitz hypothesis. This causes loss of a factor. The rest of the proof is
unchanged. O

Finally, we prove Theorem 1.1.

PROOF OF THEOREM 1.1. Put T =T,,T,, and assume 7" has finite rank. As
in the proof of Theorem 1.2, we have ujus =0 on W. There are two cases to
consider:

(i) Both w; and us vanish everywhere on W;
(ii) Either uy or uy vanish nowhere on W (shrinking W if necessary).

Assume 0 € W without loss of generality. The case (i) is contained in Theorem
1.3, because ug, us € A1(0) by (4.6). So, assume (ii) holds. We may assume that u,
vanishes nowhere on W; otherwise consider the adjoint operator (T,,T,,)" =
15, T;,. We now have uy =0 on W. If Jus =0 on W, we are done by Lemma 4.3.
Thus we may further assume Zus vanishes nowhere on W. This will lead us to a
contradiction.

Let ¢1 = u1(0) # 0 and ¢2 = Pu2(0) # 0. Let e = w3 — ¢; and es = ug — 22,
Then we have

T= Z31+5|T02wn+62 = ClcQTw,, + CZTeJTwn + Tu|Tez
and thus

c1esTy =T — T Ty, — Ty T, (4.12)

Now we apply each side of the above to the same test functions )\f’ with an integer
k > 2 and derive a contradiction, as in the proof of Theorem 1.2. In the rest of the
proof we let ¢ € (0,1) be arbitrary and z € H represent an arbitrary point, unless
otherwise specified.

First, we have by Lemmas 3.5 and 3.4

2T, N (te)| = [ X (te)| ~ t7" L. (4.13)

Next, note that ey(w) = @(|w|?); see (4.5) in the proof of Theorem 1.2. Thus we
have
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T, (2)] S/HIez(w)llx\i"(w)llR(sz)ldw

d
5 / n+l:17}2 n
ulte—@|"" )z —w

S t7k+2 (I)()J (t €, Z)

by Proposition 2.5 and therefore
10 TN (t0)] S lusll ot ™2 s (te, te) S E752(1 + logt)  (4.14)

again by Proposition 2.5.
Next, we estimate T,, T, A\F(te). Given € > 0, let

w(e) = sup |ex(w)]

|w|<e

be the modulus of continuity of u; at 0. Note —27,, T, \F = T,, \¥"1 by Lemma 3.5.
Meanwhile, we have by (3.7)

h1 |ex(w)]
{Tel)‘t (t6)| S// |te |(n+k 1)+n dw
|ex(w
dw
/;1;|<€ /“>F |t6 2n+k 1
L= Il + Ig.
By Lemma 2.2 we have
I ,S tinik+IW(6)

for ¢ > 0. Note that |te —w| > |w| —t > e —t for |w| > e. Thus, for 0 <t < ¢, by
Lemma 2.2 again we have

E<ku/' dw  lwll
Yle—t)" Jujte—w" T (e— )"t

Combining the estimates of I; and Iy together, we have
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i w(e) 1
Telz—‘wn )‘t (t6)| S thrkfl (6 B t)ntk,I (415)
for0<t<e.
Also, we have by Lemma 4.2
r 1+ |logt|”
|TX(te)] S ——— (4.16)

thtn(1-1/p) *

where p is chosen so that 1 < p < n.
Now, setting M =11, and R =TTy, + Ty Te, and 6= min{l,n/
p— 1} > 0, we obtain from (4.13)—(4.16) that

_|TA(te) — RX{(te)|

< (1 + |logt* e—t)"

for 0 < t < e. The constant suppressed above is independent of ¢t and €. So, first
taking the limit ¢ — 0 with € > 0 fixed and then taking the limit ¢ — 0, we have

1< w(e) =0

by continuity of u; at 0. Thus we have a contradiction as desired, completing the
proof. O

5. Remarks.

Although we have studied Toeplitz products in the present paper, not much
is known for Toeplitz operators (with general symbols). For example, even for
bounded symbols, characterization for most basic operator theoretic property
such as compactness is not known. Only positive compact Toeplitz operators are
characterized in [6]. Even for bounded harmonic symbols, it seems not easy to see
that compactness implies the symbol being zero; the analogue for holomorphic
Bergman space on the disk is an easy consequence of the fact that bounded
harmonic functions are fixed by the holomorphic Berezin transform. Motivated by
these observations, we provide here a proof of the fact that the zero operator is the
only compact Toeplitz operator with harmonic symbol on b?.

To begin with, we recall the pseudohyperbolic distance p(z,w) between two
points z and w in H:
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EREAT

plzw) =
|z —wl

This pseudohyperbolic distance is horizontal translation invariant and dilation

invariant. In particular, we have

p(Z, w) = p((ba(z),(ba(w)) (51)

for a,z,w € H where ¢, denotes the mapping introduced in the proof of Lemma
3.4.For z€ H and 0 < 6 < 1, let Es(z) denote the pseudohyperbolic ball centered
at z with radius é. It is known that

1-6 |z—a] 1496

< 5.2
1+6 Jw—a] 1-96 (52)

whenever w € Es(2) and a € H; see [7, Lemma 3.3].

We now recall the notion of nontangential limits. Given a > 1 and ¢ € 0H,
let T (¢) be the nontangential approach region with vertex ¢ consisting of all
points z € H such that

|z = (] < az,.

Give an function v on H, we say that u has a nontangential limit at ( € 0H,
denoted by u*(¢), if

lim  wu(z) =u*
2—C,2€T,(0) (2) (©)

for each a > 1. It then turns out that the following nontangential version of
Theorem 3.3 holds.

THEOREM b5.1.  Suppose that functions uq,...,uy € L™ have nontangential
limits at (€ OH. Let T =1T,, ---T,,. Then T has a nontangential limit at ¢ with

(T)(€) = (u1 -+ un)"(0)-

PROOF. By the proof of Theorem 3.3, it is sufficient to prove

lim © | Tur:lls =0, a>1 (5.3)

z—(,2€l0
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for any function w € L™ that has a nontangential limit 0 at (. We fix a > 1 and

assume z € I', () for the rest of the proof.
Note ||Tyr.|ly, = | R(urs)|ly < |lurs|ly. Thus, given 0 < 6§ < 1, we have

i< o f i
27 e Jne (5.4)
=1+ .[2.

We first consider the first term I;. Let w € Es(z). Note that

4z, w, 4w, 4awy,,

1-6<1—p*(zw) = —
(2 w) z—w* =@ 2=

where we used the assumption that z € T',(() for the last inequality. Also, note

1+06

|w—z|<21 5 Wn

by (5.2). Thus, if w € Es(z), then

o= ¢ < Jw—2+ s — ¢ < 2( 0 4 2

This means that U.cp, ) Es(2) is contained in some fixed nontangential approach
region with vertex ¢, say I's(C), depending on « and ¢. Consequently, we have

L < sup |u(w)].
wel's(¢)

Since u*(¢) = 0, this yields I} — 0 as z — ¢ (within I',(¢)) for each fixed é.

We now consider the second term Ir. Note ¢,Fs(z) = Es(e) by (5.1). Also,
note R(z,2) '2," = ¢, where ¢, =n0,2"2(n—1)"" by (1.2). Thus, using (3.8)
and making a change of variables, we obtain

bz%/ w0 67 (w) 2| Re(w) 2 duw
H\Es(e)

<clull [ (Rew)du
H\E;(e)
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This shows that I is dominated by a quantity which is independent of z and
converges to 0 as 6 — 1 by the dominated convergence theorem. Thus, taking the
limit z — ¢ with ¢ fixed and then taking the limit 6 — 1in (5.4), we conclude (5.3),
as required. This completes the proof. ([l

As a consequence, we obtain the following.
COROLLARY 5.2. Letu € h*®. If T, is compact, then u = 0.

PROOF. Assume T, is compact. By compactness we have ﬁ,(z) — 0 as
z — O0H, as in the proof of Theorem 1.2. On the other hand, being a bounded
harmonic function, u has nontangential limits «*(¢) at almost all points ¢ € OH;
see [1, Theorem 7.28]. Thus we have u* =0 by Theorem 5.1. Now, since u is
recovered by the Poisson integral of u* = 0, we conclude u = 0. O

In case uw > 0 this corollary is already known and is a consequence of the
maximum principle and the Carleson measure characterization (see [6, Theorem
5.3]) in terms of averaging functions.
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