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with trivial canonical bundle
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Abstract. We obtain a new construction of compact complex surfaces

with trivial canonical bundle. In our construction we glue together two compact

complex surfaces with an anticanonical divisor under suitable conditions. Then

we show that the resulting compact manifold admits a complex structure with

trivial canonical bundle by solving an elliptic partial differential equation. We

generalize this result to cases where we have other than two components to glue

together. With this generalization, we construct examples of complex tori,

Kodaira surfaces and K3 surfaces. Lastly we deal with the smoothing problem of a

normal crossing complex surface X with at most double curves. We prove that we

still have a family of smoothings of X in a weak sense even when X is not

Kählerian or H1ðX;OXÞ 6¼ 0, in which cases the smoothability result of Friedman

[Fr] is not applicable.

1. Introduction.

Let X be a manifold of dimension n and suppose X contains a compact

submanifold X0 of dimension n with boundary S ¼ @X0, such that X nX0 is

diffeomorphic to a cylinder S �Rþ ¼ fðp; tÞ j p 2 S, 0 < t <1g. Then we call X a

cylindrical manifold, and t a cylindrical parameter of X. The gluing of cylindrical

manifolds is a useful method for constructing compact Riemannian manifolds

with a special metric in differential geometry. It was first successful in

constructing compact 4-dimensional Riemannian manifolds with an anti-self-

dual metric by Floer [Fl] and Taubes [T], which constructions were later

improved by Kovalev and Singer [KS]. The method is also used in constructing

compact 7-dimensional Riemannian manifolds with holonomy G2 [J], [K]. The

purpose of this paper is to obtain a new construction of compact complex surfaces

with trivial canonical bundle using the gluing method, and the main result is

described as follows.
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THEOREM 1.1. Let X be a compact complex surface with a smooth

irreducible anticanonical divisor D, and X0 another compact complex surface

with a smooth irreducible anticanonical divisor D0. Suppose there exists an

isomorphism f from D to D0 and the holomorphic normal bundles ND=X and ND0=X0

are dual to each other via f, i.e., ND=X � f�ND0=X0 ¼� OD. Then there exist tubular

neighborhoods W1, W2 of D in X with W1 � W2, tubular neighborhoods W
0
1, W

0
2 of

D0 in X0 with W 0
1 �W 0

2, and a diffeomorphism h from W2 nW1 to W 0
2 nW 0

1 such

that the following is true. Via the identification of W2 nW1 with W
0
2 nW 0

1 by h, we

can glue X nW1 and X0 nW 0
1 together to obtain a compact manifold M. Then the

manifold M admits a complex structure with trivial canonical bundle.

Thus if we are given two compact complex surfaces X and X0 as in Theorem

1.1, then we obtain a compact complex surface with trivial canonical bundle from

X nD and X0 nD0. In Theorem 1.1 we don’t assume X and X0 to be Kählerian.

Nor do we assume ND=X and ND0=X0 to be trivial, and we need a weaker assumption

that the two bundles are dual to each other. We also note that the resulting

manifold M is a complex manifold and not a manifold with a special Riemannian

metric, which is different from other gluing constructions. In our construction, the

complex structures on the regions of X nD and X0 nD0 to glue together are only

close to each other, but not exactly the same. Thus it is not obvious whether the

manifold M obtained from X nD and X0 nD0 is again a complex manifold.

It is also interesting to see that if D ¼ D0 then Theorem 1.1 is regarded as

giving a kind of smoothing of a surface X0 ¼ X [X0 with a normal crossing at D.

Indeed, we shall construct a family of smoothings of X0 in a weak sense in

Section 5.3. This result can be compared with the result of Friedman [Fr] (see

also [KN]) that a d-semistable K3 surface has a smoothing. In our case

‘d-semistability’ means the duality between the normal bundles ND=X and ND=X0 .

Although Friedman’s result is powerful and extensive, it needs the assumptions

that X0 is Kählerian and H1ðX0;OX0
Þ vanishes, so that it does not cover the

smoothability of degenerations of normal crossing complex tori and Kodaira

surfaces obtained from our result.

A real 2m-dimensional manifold admits a complex structure with trivial

canonical bundle if and only if it admits a special differential form called an

SLðm;CÞ-structure  with d ¼ 0. Other examples of manifolds whose geometric

structures are characterized by special d-closed differential forms include

Riemannian manifolds with special holonomy [J], symplectic manifolds, holo-

morphic symplectic manifolds, and so on.

Our method is based on the gluing of cylindrical manifolds with an

asymptotically SLð2;CÞ-structure and analysis as used in constructing compact

8-dimensional Riemannian manifolds with holonomy Spin(7) [J].
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This paper is organized as follows. In Section 2 we shall introduce the notion

of SLð2;CÞ- and SUð2Þ-structures on real manifolds of dimension 4. These

structures are special cases of SLðm;CÞ- and SUðmÞ-structures (torsion-free

SUðmÞ-structures are often referred to as Calabi-Yau structures) defined on

oriented real manifolds of dimension 2m. (See [G] for reference.)

In Section 3 we shall explain the gluing procedure of constructing M in

Theorem 1.1. We see that if X, X0, D and D0 are as in Theorem 1.1, then X nD
(resp. X0 nD0) is a cylindrical manifold with a cylindrical end S � f0 < t <1g
(resp. S0 � f0 < t0 <1g). Since ND=X and ND0=X0 are dual to each other, S is

diffeomorphic to S0. We set XT ¼ ðX nDÞ n ðS � ft � T þ 1gÞ and X0
T ¼

ðX0 nD0Þ n ðS0 � ft0 � T þ 1gÞ, and define a compact manifold MT by gluing XT

and X0
T together along the regions S � fT � 1 < t < T þ 1g and S0 � fT � 1 <

t0 < T þ 1g. To prove that M admits a complex structure with trivial canonical

bundle, we first construct onMT an approximating holomorphic volume form  T ,

i.e., an SLð2;CÞ-structure with d T sufficiently small for large T . We note that X

has a meromorphic volume form  0 with a single pole along D, which is

asymptotic to a cylindrical d-closed SLð2;CÞ-structure on S � f0 < t <1g.
Similarly X0 has a meromorphic volume form  0

0 with a single pole along D0. Thus

we can glue  0 and  
0
0 together using cut-off functions to obtain an approximating

holomorphic volume form  T on MT . To estimate d T , we introduce a Hermitian

form �T such that ð T ; �T Þ forms an SUð2Þ-structure on MT . Then we show that

d T decays exponentially as T ! 1 with respect to the Riemannian metric

associated with ð T ; �T Þ.
Then in Section 4 we shall find a d-closed SLð2;CÞ-structure near  T for

sufficiently large T to complete the proof of Theorem 1.1. To do this, we use the

analysis developed by Joyce to solve a nonlinear elliptic partial differential

equation with respect to  T , which is analogous to the one in [J], Chapter 12. The

Hermitian form �T plays an auxiliary but crucial rôle in solving the partial

differential equation, which is different from the cases of G2- and Spin(7)-

structures.

In the last section we shall prove a multiple gluing theorem (Theorem 5.2),

which is a generalization of Theorem 1.1 to cases where we have Lð� 1Þ surfaces
with 2‘ divisors to glue together. We construct some examples using Theorem 1.1

and Theorem 5.2. According to the classification theory, compact complex

surfaces with trivial canonical bundle are divided into 2-dimensional complex tori,

Kodaira surfaces and K3 surfaces [BPV]. Among these surfaces, complex tori and

K3 surfaces are Kählerian and Kodaira surfaces are non-Kählerian. Our gluing

examples include all classes of compact complex surfaces with trivial canonical

bundle. As another application, we shall treat the smoothing problem of compact

complex surfaces with normal crossings. We shall construct a family of
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smoothings in a weak sense of simple normal crossing complex surfaces with at

most double curves (Theorem 5.5), and compare the result with that of Friedman

[Fr]. Although we can prove an analogous smoothability result for normal

crossing complex surfaces with triple points, we will deal with and give a proof for

that case in a sequel [D] to this paper because some additional care is needed.

2. SLð2;CÞ- and SUð2Þ-structures.

DEFINITION 2.1. Let V be an oriented vector space of dimension 4. Then

 0 2 ^2V � �C is an SLð2;CÞ-structure on V if  0 satisfies

 0 ^  0 > 0;  0 ^  0 ¼ 0:

An SLð2;CÞ-structure  0 on V gives complex subspaces

V 0;1 ¼ f� 2 V �C j �� 0 ¼ 0g; V 1;0 ¼ V 1;0;

where �� is the interior multiplication by �. Then we have the decomposition

V �C ¼ V 1;0 � V 0;1: ð2:1Þ

The decomposition (2.1) defines a complex structure I 0
on V such that  0 is a

complex differential form of type ð2; 0Þ with respect to I 0
.

Let A SLð2;CÞðV Þ be the set of SLð2;CÞ-structures on V . Then A SLð2;CÞðV Þ is
an orbit space under the action of the orientation-preserving general linear group

GLþðV Þ. Since each  2 A SLð2;CÞðV Þ has isotropy group SLð2;CÞ, the orbit

A SLð2;CÞðV Þ is isomorphic to the homogeneous space GLþðV Þ=SLð2;CÞ.

DEFINITION 2.2. Let M be an oriented manifold of dimension 4. Then

 2 C1ð^2T �M �CÞ is an SLð2;CÞ-structure on M if  satisfies

 ^  > 0;  ^  ¼ 0:

We define A SLð2;CÞðMÞ to be the fibre bundle which has fibre A SLð2;CÞðTxMÞ
over x 2M. Then an SLð2;CÞ-structure can be regarded as a smooth section of

A SLð2;CÞðMÞ.
Since an SLð2;CÞ-structure  on M induces an SLð2;CÞ-structure on each

tangent space,  defines an almost complex structure I on M such that  is a

ð2; 0Þ-form with respect to I .
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LEMMA 2.3 (Grauert, Goto [G]). Let  be an SLð2;CÞ-structure on an

oriented 4-manifold M. If  is d-closed, then I is an integrable complex structure

on M with trivial canonical bundle and  is a holomorphic volume form on M with

respect to I .

PROOF. Let � be any ð1; 0Þ-form on  . Then we have

 ^ � ¼ 0

since  2 C1ð^2;0T �MÞ. Taking the exterior derivative and using d ¼ 0, we

obtain

 ^ d� ¼ 0;

so that we have

dC1ð^1;0T �MÞ � C1ð^2;0T �MÞ � C1ð^1;1T �MÞ:

Hence it follows from Newlander-Nirenberg Theorem that I is an integrable

complex structure on M. �

Conversely, if X is a complex surface with trivial canonical bundle, a

holomorphic volume form  on X defines a d-closed SLð2;CÞ-structure. Hence we

have the following characterization of complex surfaces with trivial canonical

bundle.

PROPOSITION 2.4. Let M be an oriented 4-manifold. Then M admits a

complex structure with trivial canonical bundle if and only if M admits a d-closed

SLð2;CÞ-structure.

Similarly d-closed SLðm;CÞ-structures characterize complex structures with

trivial canonical bundle on an oriented 2m-manifold. A d-closed SLðm;CÞ-struc-
ture will be often referred to as a holomorphic volume form.

DEFINITION 2.5. Let V be an oriented vector space of dimension 4. Then

ð 0; �0Þ 2 ð^2V � �CÞ � ^2V � is an SUð2Þ-structure on V if ð 0; �0Þ satisfies the

following conditions:

(i)  0 is an SLð2;CÞ-structure on V ,

(ii)  0 ^ �0 ¼ 0,

(iii) an inner product gð 0;�0Þ on V defined by gð 0;�0ÞðI 0
	; 	Þ ¼ �0ð	; 	Þ is positive

definite, and
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(iv) 2�20 ¼  0 ^  0.

Conditions (ii) and (iii) imply that �0 is a (1,1)-form associated with the

Hermitian inner product gð 0;�0Þ on V . Let A SUð2ÞðV Þ be the set of SUð2Þ-struc-
tures on the oriented vector space V . Then A SUð2ÞðV Þ is an orbit space under the

action of GLþðV Þ, which is isomorphic to GLþðV Þ=SUð2Þ.
For ð 0; �0Þ 2 A SUð2ÞðV Þ, we have the orthogonal decomposition with respect

to gð 0;�0Þ

^2V � ¼ ^2
þ � ^2

�;

where ^2
þ and ^2

� are the set of self-dual and anti-self-dual 2-forms respectively.

Then ^2
þ is spanned by fRe 0; Im 0; �0g, where Re 0 and Im 0 are the real and

imaginary part of  0, and ^2
� coincides with the set of primitive real (1,1)-forms

with respect to �0.

We also have the orthogonal decomposition

ð^2V � �CÞ � ^2V � ¼� Tð 0;�0Þðð^2V � �CÞ � ^2V �Þ
¼ Tð 0;�0ÞA SUð2ÞðV Þ � T?

ð 0;�0ÞA SUð2ÞðV Þ;

where T?
ð 0;�0ÞA SUð2ÞðV Þ is the orthogonal complement to Tð 0;�0ÞA SUð2ÞðV Þ with

respect to gð 0;�0Þ. The next lemma is crucial in solving the partial differential

equation in the proof of Theorem 1.1.

LEMMA 2.6. The tangent space of A SU ð2Þ at ð 0; �0Þ contains anti-self-dual

subspaces:

ð^2
� �CÞ � ^2

� � Tð 0;�0ÞA SUð2ÞðV Þ:

PROOF. The tangent space Tð 0;�0ÞA SUð2ÞðV Þ is given by

fða 	  0; a 	 �0Þ 2 ð^2V � �CÞ � ^2V � j a 2 glðV Þg;

where glðV Þ acts on ^2V � via the differential representation. We have the

decomposition

glðV Þ ¼ soðV Þ � S0ðV Þ �R idV ;

where S0ðV Þ is the space of symmetric traceless endomorphisms of V with respect

to gð 0;�0Þ. Then one can show easily that S0ðV Þ ¼� Homð^2
þ;^2

�Þ, so that S0ðV Þ
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generates ð^2
� �CÞ � ^2

� because fRe 0; Im 0; �0g spans ^2
þ. �

DEFINITION 2.7. Let V be an oriented vector space of dimension 4. We

define a neighborhood of A SUð2ÞðV Þ in ð^2V � �CÞ � ^2V � by

T SUð2ÞðV Þ ¼ fð 0 þ �; �0 þ �Þ j ð 0; �0Þ 2 A SUð2ÞðV Þ; and
ð�; �Þ 2 T?

ð 0;�0ÞA SUð2ÞðV Þ with jð�; �Þjgð 0 ;�0Þ < �g;

where � is a positive constant and jð�; �Þjgð 0 ;�0Þ ¼ j�jgð 0 ;�0Þ þ j�jgð 0 ;�0Þ .

LEMMA 2.8. There exists a positive constant �� such that if � < �� then any

ð 0; �0Þ 2 T SUð2ÞðV Þ can be uniquely written as ð 0 þ �; �0 þ �Þ, where ð 0; �0Þ 2
A SUð2ÞðV Þ, ð�; �Þ 2 T?

ð 0;�0ÞA SUð2ÞðV Þ.

Lemma 2.8 implies that for � < �� the projection � : T SUð2ÞðV Þ ! A SUð2ÞðV Þ
is well-defined.

DEFINITION 2.9. Let M be an oriented 4-manifold. Then ð ; �Þ 2 C1

ð^2T �M �CÞ � C1ð^2T �MÞ is an SUð2Þ-structure on M if the restriction ð jx;
�jxÞ is an SUð2Þ-structure on TxM for all x 2M.

Define A SUð2ÞðMÞ to be the fibre bundle whose fibre over x 2M is A SUð2Þ
ðTxMÞ. Then an SUð2Þ-structure can be regarded as a smooth section of A SUð2Þ
ðMÞ.

If  and � are both d-closed, then X ¼ ðM; I ; �Þ is a Kähler surface with

trivial canonical bundle. Moreover, the Ricci curvature of the Kähler metric g

vanishes by condition (iv) of Definition 2.5.

DEFINITION 2.10. Let M be an oriented 4-manifold. Choose � < �� so that

the projection � is well-defined. We define T SUð2ÞðMÞ to be the fibre bundle whose
fibre over x 2M is T SUð2ÞðTxMÞ, and denote by � the projection from T SUð2ÞðMÞ
to A SUð2ÞðMÞ.

Let ð ; �Þ be an SUð2Þ-structure on M. If ð�; �Þ 2 C1 ð^2T �M �CÞ �
C1ð^2T �MÞ satisfies kð�; �ÞkC0 < �, then ð þ �; �þ �Þ 2 C1ðT SUð2ÞðMÞÞ and

we have the Taylor expansion

�ð þ �; �þ �Þ ¼ ð ; �Þ þ �ð ;�Þð�; �Þ þ Fð ;�Þð�; �Þ;

where �ð ;�Þ : ^2T �M �C � ^2T �M ! Tð ;�ÞA SUð2ÞðTMÞ is the orthogonal pro-

jection and Fð ;�Þ is the higher order term with respect to ð�; �Þ.
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REMARK 2.11. We can generalize the notion of SLð2;CÞ- and SUð2Þ-struc-
tures to higher dimensions and define the projection � : T SUðmÞðMÞ !
A SUðmÞðMÞ on an oriented 2m-manifold M, where A SUðmÞðMÞ is the set of

SUðmÞ-structures on M and T SUðmÞðMÞ is a neighborhood of A SUðmÞðMÞ.

LEMMA 2.12. Let � be a constant as in Definition 2.7. There exist positive

constants C1 and C2 such that for any SUð2Þ-structure ð ; �Þ and for any

ð�; �Þ; ð�0; �0Þ 2 C1ð^2T �M �CÞ � C1ð^2T �MÞ with kð�; �ÞkC0 ; kð�0; �0ÞkC0 <

�=2, we have the following point-wise estimates on F ¼ Fð ;�Þ with respect to gð ;�Þ:

jF ð�; �Þ � F ð�0; �0Þj 
 C1jð�� �0; � � �0Þjðjð�; �Þj þ jð�0; �0ÞjÞ; ð2:2Þ
jrF ð�; �Þ � rF ð�0; �0Þj


 C2fðjd j þ jd�jÞjð�� �0; � � �0Þjðjð�; �Þj þ jð�0; �0ÞjÞ
þ jðrð�� �0Þ;rð� � �0ÞÞjðjð�; �Þj þ jð�0; �0ÞjÞ
þ jð�� �0; � � �0Þjðjðr�;r�Þj þ jðr�0;r�0ÞjÞg; ð2:3Þ

where r is the Levi-Civita connection of gð ;�Þ.

The proof is essencially the same as in [J], Proposition 10.5.9, so we will omit

it.

3. The construction of a compact 4-manifold MT with an approx-

imating holomorphic volume form  T .

In this section we construct a compact manifold MT from X nD and X0 nD0

under the assumptions of Theorem 1.1. Then we define an SUð2Þ-structure
ð T ; �T Þ on MT and obtain some estimates on ð T ; �T Þ. Since it is possible to

constructMT and ð T ; �T Þ in arbitrary dimension, we leave the dimension m of X

and X0 undetermined for the most part of this section.

3.1. Compact complex manifolds with an anticanonical divisor.

First we suppose that X is a compact complex manifold of dimension m, and

D is a smooth irreducible anticanonical divisor on X.

Let fU�g be an open covering of X and define V� ¼ U� \D, so that fV�g is an

open covering of D. Then there exist collections z� ¼ ðz1�; . . . ; zm�1
� Þ of holomor-

phic functions on U� such that ðz�; w�Þ are local coordinates and V� ¼ fw� ¼ 0g.
The coordinate tranformation of X is given by

z� ¼ 	��ðz�; w�Þ;
w� ¼ f��ðz�; w�Þw�;
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where 	��; f�� are nonvanishing holomorphic functions on U� \ U�.
The canonical bundle KX is given by transition functions

h��ðz�; w�Þ ¼
dw� ^ dz1� ^ 	 	 	 ^ dzm�1

�

dw� ^ dz1� ^ 	 	 	 ^ dzm�1
�

ð3:1Þ

on U� \ U�, and the line bundle [D] is given by transition functions f��ðz�; w�Þ
¼ w�=w� on U� \ U�. Since D is an anticanonical divisor on X, we can choose the

local coordinates ðz�; w�Þ so that

f��ðz�; w�Þh��ðz�; w�Þ ¼ 1: ð3:2Þ

Therefore the local holomorphic volume forms

�� ¼
dw�

w�
^ dz1� ^ 	 	 	 ^ dzm�1

�

together yield a holomorphic volume form � on X nD.

3.2. The holomorphic normal bundle.

Next we consider the holomorphic normal bundle N ¼ ND=X to D in X. Let

� : N ! D be the projection. We identify the zero section of N with D. Let x� be

the restriction of z� to V� ¼ U� \D. Then fðV�; x�Þg is a local coordinate system

on D. The coordinate transformation of the normal bundle N ¼ ½D�jD is given by

x� ¼  ��ðx�Þ;
y� ¼ g��ðx�Þy�;

where we set

 ��ðx�Þ ¼ 	��ðx�; 0Þ;
g��ðx�Þ ¼ f��ðx�; 0Þ;

and ðx�; y�Þ are local coordinates of N on ��1ðV�Þ ’ V� �C . Thus restricting

equation (3.1) to V� \ V�, we have

h��ðx�; 0Þ ¼ g��ðx�Þ�1 dx
1
� ^ 	 	 	 ^ dxm�1

�

dx1� ^ 	 	 	 ^ dxm�1
�

ð3:3Þ

on V� \ V�. Restricting (3.2) to V� and putting (3.3), we have
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dx1� ^ 	 	 	 ^ dxm�1
�

dx1� ^ 	 	 	 ^ dxm�1
�

¼ 1

on V� \ V�. Therefore the local holomorphic volume forms

�D;� ¼ dx1� ^ 	 	 	 ^ dxm�1
�

on V� together yield a holomorphic volume form �D on D, so that the canonical

bundle KD of D is trivial, which also follows from the adjunction formula,

KD ¼ ðKX � ½D�ÞjD ¼� OD.

The holomorphic volume form �D obtained from � regarded as a meromor-

phic volume form on X with a single pole along D is called the Poincaré residue of

�, which is independent of the choice of local coordinates representing � (see

[GH], pp. 147–148). We note that if � and �0 are two meromorphic volume forms

on X with a single pole along D, then they differ by a nonzero multiplicative

constant.

Let k 	 k be a Hermitian metric on the normal bundle N and define a

cylindrical parameter t on N nD by

tðsÞ ¼ �t0 � log ksk2 for s 2 N nD; ð3:4Þ

where t0 is a constant. The following result is immediate from the tubular

neighborhood theorem.

PROPOSITION 3.1. There exists a constant t0 and a diffeomorphism � from a

neighborhood V of the zero section of N containing t�1ðð0;1ÞÞ to a tubular

neighborhood U of D in X such that � can be locally represented as

z� ¼ x� þOðjy�j2Þ ¼ x� þOðe�tÞ;
w� ¼ y� þOðjy�j2Þ ¼ y� þOðe�tÞ

ð3:5Þ

by shrinking fU�g if necessary.

Proposition 3.1 implies that the complex structure on V in ND=X approaches

the complex structure on U in X exponentially as t! 1.

We consider local holomorphic volume forms �0;� on ��1ðV�Þ nD defined by

�0;� ¼
dy�

y�
^ ���D:
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Since on ��1ðV� \ V�Þ nD we have

�0;� � �0;� ¼ d log g�� ^ ���D ¼ @ log g�� ^ ���D ¼ 0;

�0;� together yield a holomorphic volume form �0 on N nD.

Let !D be a Hermitian form on D normalized so that

!m�1
D ¼ cm�1�D ^ �D; ð3:6Þ

where ck are constants defined by ck ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þk

2

2�kk!. We define !0 on N nD by

!0 ¼
ffiffiffiffiffiffiffi
�1

p

2
@t ^ @tþ ��!D: ð3:7Þ

LEMMA 3.2. The pair ð�0; !0Þ of the complex m-form and real 2-form on

N nD satisfies

!m0 ¼ cm�0 ^ �0; ð3:8Þ

and the metric g0 associated with ð�0; !0Þ is cylindrical and positive definite. In

particular, if m ¼ 2, then ð�0; !0Þ is an SUð2Þ-structure on N nD.

PROOF. Equation (3.8) follows easily from (3.6) and (3.7).

Next we will have a local expression for the metric g0 associated with ð�0; !0Þ.
The Hermitian metric k 	 k on N is locally represented as

kðx�; y�Þk2 ¼ e	�ðx�Þjy�j2 for ðx�; y�Þ 2 ��1ðV�Þ;

where 	� are real-valued functions on V�, satisfying 	�ðx�Þ ¼ 	�ðx�Þ � log

jg��ðx�Þj2 on V� \ V�. Then we have

tðx�; y�Þ ¼ �	�ðx�Þ � log jy�j2 for ðx�; y�Þ 2 ��1ðV�Þ:

If we set

r� þ
ffiffiffiffiffiffiffi
�1

p

� ¼ � log y�;

then we can check easily that ðx�; t; 
�Þ are local coordinates of N nD on
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��1ðV�Þ nD. Thus a direct computation shows that g0ð	; 	Þ ¼ !0ð	; I�0
	Þ is ex-

pressed as

g0 ¼ dr� �
1

2
d	�

� �2

þ d
� þ
1

2
dc	�

� �2

þ��gD

¼
1

4
dt2 þ d
� þ

1

2
dc	�

� �2

þ��gD;
ð3:9Þ

where gD is the metric associated with ð�D; !DÞ, and dc ¼
ffiffiffiffiffiffiffi
�1

p
ð@ � @Þ. (In effect,

g0 is given by ð@t� @tþ @t� @tÞ=2þ ��gD.) �

Define an S1-bundle p : S ! D in terms of coordinate transformation by

x� ¼  ��ðx�Þ;

� ¼ 
� � arg g��ðx�Þ;

where each ðx�; 
�Þ, 
� 2 R=2�Z is a local coordinate on p�1ðV�Þ ’ V� � S1. Then

N nD is the Riemannian product ðS; gSÞ � R; 14 dt
2

� �
, where gS ¼ d
� þð

1
2
dc	�Þ2 þ p�gD on p�1ðV�Þ.

LEMMA 3.3. For any integer k � 0, we have

jrk
g0
ðdz� � dx�Þjg0 ¼ Oðe�tÞ;

rk
g0

dw�

w�
�

dy�

y�

� ����� ����
g0

¼ Oðe�t=2Þ:
ð3:10Þ

PROOF. We obtain jdtjg0 ¼ 2, jd
�jg0 ¼ Oð1Þ and jdx�jg0 ¼ Oð1Þ from the

explicit representation (3.9) of g0. Note that the remainders Oðe�tÞ in the Taylor

expansions (3.5) are of the form

Aðx�; x�; y�; y�Þ y2� þ Bðx�; x�; y�; y�Þ y�y� þ Cðx�; x�; y�; y�Þ y2�; ð3:11Þ

where A, B and C are C1 functions. If we rewrite equation (3.11) as

Rðx�; x�; t; 
�Þ e�t, then R is a C1 function for t 6¼ 1 with bounded derivatives,

so that Re�t extends smoothly to t ¼ 1. Thus differentiating (3.5) gives

jdz� � dx�jg0 ¼ je�tðdRþ R dtÞjg0 ¼ Oðe�tÞ:
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On the other hand, it follows from (3.5) and (3.11) that

dw�

w�
�

dy�

y�
¼ d log

w�

y�

¼ d log 1þ Ay� þ By� þ C
y2�
y�

� �
¼ d logð1þ R0ðx�; x�; t; 
�Þ e�t=2Þ;

where R0 is a C1 function for t 6¼ 1 with bounded derivatives, R0e�t=2 extending

smoothly to t ¼ 1. Consequently we have

dw�

w�
�

dy�

y�

���� ����
g0

¼
e�t=2 dR0 � 1

2
R0dt

� �
1þ R0e�t=2

�����
�����
g0

¼ Oðe�t=2Þ:

Thus we establish (3.10) for k ¼ 0.

With respect to the coordinate system fðx�; t; 
�Þg, the components of g0 are

independent of t, and so are the components of rg0 . This proves (3.10) for

k � 1. �

3.3. An approximating holomorphic volume form and a Hermitian

form on X nD.

We extend ð��1Þ�t to a smooth function on X nD which is nonpositive on

X n U . By abuse of notation we denote the function again by t. We also consider

ð�0; !0Þ as an SUðmÞ-structure defined on U nD � X nD via the diffeomorphism

�.

Let � : R ! ½0; 1� denote the cut-off function

�ðxÞ ¼
1 if x 
 0,

0 if x � 1,

�

and define �T : R ! ½0; 1� by

�T ðxÞ ¼ �ðx� T þ 1Þ ¼
1 if x 
 T � 1,

0 if x � T .

�
PROPOSITION 3.4. There exist a complex 1-form � on the region ft > 0g �

X nD and positive constants C0
1;k�1 for k � 0 such that

�� �0 ¼ d�; jrk
g0
�jg0 
 C0

1;k�1e
�t=2:
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For simplicity, if a differential form � satisfies j�jg0 
 Ce�t=2 for a constant C,

we will often write as � ¼ Oðe�t=2Þ,

PROOF. Let fftg be the 1-parameter family of diffeomorphisms generated

by the vector field f@=@tg on ft > 0g. Then for ðp; sÞ 2 ft > 0g ’ S � ð0;1Þ,
ftðp; sÞ ¼ ðp; sþ tÞ. Let � ¼ �� �0. Then � is of order Oðe�t=2Þ with all

derivatives by Lemma 3.3. Thus we obtain

�ðp; tÞ ¼
Z t

1

d

ds
ðf�s�t�Þðp; tÞds

¼
Z t

1
ðf�s�tL @=@s�Þðp; tÞds

¼ d

Z t

1
ðf�s�t�@=@s�Þðp; tÞds;

where the last equality holds because both ðf�s�tL @=@s�Þðp; tÞ and ðf�s�t�@=@s�Þðp; tÞ
are continuous forms of order Oðe�s=2Þ and integrable on S � ð0;1Þ. Letting � be
the integral of the right-hand side, we have �� �0 ¼ d�. Moreover

rk
g0
� ¼ Oðe�t=2Þ for k � 0 since ðf�s�t�@=@s�Þðp; tÞ is of order Oðe�s=2Þ with all

derivatives. �

We define a d-closed complex m-form �T on X nD by

�T ¼
�� dð1� �T�1Þ� on ft 
 T � 1g,
�0 þ d�T�1� on ft � T � 2g.

�

On fT � 2 < t < T � 1g we have

�T � �0 ¼ d�T�1� ¼ Oðe�T=2Þ; ð3:12Þ

so that �T is an approximating holomorphic volume form for large T .

Next we will define a Hermitian form ! on X nD such that the associated

metric g is a Hermitian metric asymptotic to the cylindrical metric g0. Let !1 be a

Hermitian form on ft 
 1g normalized so that

!m1 ¼ cm� ^ �;

and g1 the metric associated with ð�; !1Þ. Let �1;1I� !0 be the ð1; 1Þ-part of !0 with

respect to the complex structure I� defined by �, i.e., the standard complex
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structure on X nD. Then we see that �1;1I� is a smooth operator with

j!0 � �1;1I� !0jg0 ¼ Oðe�t=2Þ. There exists a positive function �0 on ft � 0g such that

ð�0�1;1I� !0Þm ¼ cm� ^ �

and �0 ¼ 1þOðe�t=2Þ. We define a 2-form on ft � 0g by

!2 ¼ �0�
1;1
I�
!0:

Since !2 � !0 ¼ Oðe�t=2Þ, for sufficiently large t0 in (3.4) the metric g2 associated

with ð�; !2Þ becomes positive definite, so that !2 becomes a Hermitian form on

ft � 0g. Then we glue g1 and g2 together along f0 
 t 
 1g to obtain a metric bg on
X nD, which is Hermitian with respect to I�:

bg ¼ �1g1 þ ð1� �1Þg2: ð3:13Þ

The Hermitian form b! associated with ðI�; bgÞ satisfies
ðb� b!Þm ¼ cm� ^ �

for some positive function b�. Note that b� ¼ 1 on ðX nDÞ n f0 < t < 1g by

construction. Then the Hermitian metric g on X nD associated with ! ¼ b� b! is

asymptotic to the cylindrical metric g0.

Finally we glue together ! ¼ b� b! and !0 along fT � 2 
 t 
 T � 1g to define

an approximating Hermitian form !T :

!T ¼ �T�1!þ ð1� �T�1Þ!0: ð3:14Þ

On ft 
 T � 2; T � 1 
 tg !T is a Hermitian form with respect to I�T
, and

!mT ¼ cm�T ^ �T : ð3:15Þ

On the other hand, for T � 2 < t < T � 1,

!T � !0 ¼ �T�1ð!� !0Þ ¼ Oðe�T=2Þ; ð3:16Þ

so that !T is an approximating Hermitian form. Thus by (3.12) and (3.16),

ð�T ; !T Þ is a smooth section of T SUðmÞðX nDÞ for sufficiently large T .
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3.4. The construction of MT and ð T ;�T Þ.
Let X0 be another compact complex manifold of dimension m with a smooth

irreducible anticanonical divisor D0, and N 0 the holomorphic normal bundle

ND0=X0 of D0 in X0. We suppose there exists an isomorphism f : D! D0, and N;N 0

are dual line bundles via f , i.e., N � f�N 0 ¼� OD.

Let V 0
� ¼ fðV�Þ and x0� ¼ ðf�1Þ�x�. Then fV 0

�g is an open covering of D0 and

fðV 0
�; x

0
�Þg is a local coordinate system on D0. We choose a covering fU 0

�g of X0 so

that V 0
� ¼ U 0

� \D0. Since the holomorphic normal bundle N 0 ¼ ½D0�jD0 is isomor-

phic to ðf�1Þ�N�1, one can show that by choosing sufficiently small U 0
�, there exist

local coordinates ðz0�; w0
�Þ of X0 on U 0

� such that w0
� are local defining functions of

D0 on V 0
�, and that ðz0�; w0

�Þ satisfy

z0�jV 0
�
¼ x0�;

w0
�=w

0
�jV 0

�\V 0
�
¼ g0��ðx0�Þ;

ð3:17Þ

where g0�� ¼ ðf�1Þ�g�1
�� .

Since D0 is an anticanonical divisor on X0, there exist holomorphic functions

f 0� on U 0
� such that the local holomorphic volume forms

�0
� ¼ �f 0�ðz0�; w0

�Þ
�1 dw

0
�

w0
�

^ dz0�
1 ^ 	 	 	 ^ dz0�

m�1

on U 0
� nD0 together yield a holomorphic volume form �0 on X0 nD0. The local

holomorphic volume forms

f 0
�1
� dz0�

1 ^ 	 	 	 ^ dz0�
m�1jV 0

�
¼ g0

�1
� dx0�

1 ^ 	 	 	 ^ dx0�
m�1

;

where g0�ðx0�Þ ¼ f 0�ðx0�; 0Þ, together yield a holomorphic volume form on D0, which

must be a constant multiple of �D0 ¼ ðf�1Þ��D ¼ dx0�
1 ^ 	 	 	 ^ dx0�

m�1. We multi-

ply all f 0� by this constant so that g0� ¼ 1. Since f 0�1
� jV 0

�
¼ 1, ðf 0�1

� � 1Þ=w0
� is a

nonvanishing holomorphic function on U 0
�. We may assume that each U 0

� is

convex. If we redefine w0
� to be

w0
� exp

Z w0
�

0

f 0�1
� � 1

w0
�

dw0
�

 !
;

then ðz0�; w0
�Þ still defines a local coordinate on U 0

� satisfying (3.17), and w0
� is a

local defining function of D0. Moreover, �0
� ¼ �0jV 0

�
is expressed as
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�0
� ¼ �

dw0
�

w0
�

^ dz0�
1 ^ 	 	 	 ^ dz0�

m�1
:

We consider the holomorphic normal bundle �0 : N 0 ¼ ND0=X0 ! D0. Let y0� be

fibre coordinates of �0�1ðV 0
�Þ ’ V 0

� �C , satisfying

y0� ¼ g0��ðx0�Þy0�: ð3:18Þ

Let ðx�; y�Þ be local coordinates of ��1ðV�Þ ’ V� �C as in Section 3.2. We define

an isomorphism hT : N nD! N 0 nD0 locally by

��1ðV�Þ ! �0
�1ðV 0

�Þ

2 2

ðx�; y�Þ 7! ðx0�; y0�Þ ¼ ðx�; e�T =y�Þ:
ð3:19Þ

This mapping is well-defined since N � f�N 0 ¼� OD. We introduce a cylindrical

parameter t0 on N 0 nD0 by

t0 ¼ �t � h�1
0 :

Then we can define a pair ð�0
0; !

0
0Þ of a holomorphic volume form and a Hermitian

form on N 0 nD0 by

�0
0 ¼ �

dy0�
y0�

^ �0��D0 ;

!0
0 ¼

ffiffiffiffiffiffiffi
�1

p

2
@t0 ^ @t0 þ �0

�
!D0 ;

which satisfies

!0
0
m ¼ cm�

0
0 ^ �0

0

and induces a cylindrical metric g00, where !D0 ¼ ðf�1Þ�!D: Then again by

Proposition 3.1, there exists a diffeomorphism �0 from a neighborhood V 0 of the

zero section of N 0 containing t0�1ðð0;1ÞÞ to a tubular neighborhood U 0 of D0 in X0

such that

z0� ¼ x0� þOðjy0�j
2Þ ¼ x0� þOðe�t0 Þ;

w0
� ¼ y0� þOðjy0�j

2Þ ¼ y0� þOðe�t0 Þ:
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Parallel to the argument in Section 3.3, via the identification of V 0 with U 0 by �0,

we can also define ð�0
T ; !

0
T Þ such that

�0
T ¼

�0 if t0 
 T � 2,

�0
0 if t0 � T � 1,

(
!0
T ¼ !0

0 if t0 � T � 1;

!0
T
m ¼ cm�

0
T ^ �0

T if t0 
 T � 2 or t0 � T � 1 ð3:20Þ

and

�0
T � �0

0 ¼ Oðe�T=2Þ; !0
T � !0

0 ¼ Oðe�T=2Þ if T � 2 < t0 < T � 1:

We define a subset XT of X nD and a subset X0
T of X0 nD0 by

XT ¼ ft < T þ 1g � X nD; X0
T ¼ ft0 < T þ 1g � X0 nD0:

Then we glue XT and X0
T together along fT � 1 < t < T þ 1g � X nD and fT �

1 < t0 < T þ 1g � X0 nD0 by the mapping hT , and define a compact manifold MT .

Since we have

h�T�
0
0 ¼ �0; h�T!

0
0 ¼ !0;

we can also glue ð�T ; !T Þ and ð�0
T ; !

0
T Þ together and define ðe�T ; e!T Þ on MT , with

de�T ¼ 0. We also define a cylindrical parameter 
 onMT with centre t ¼ t0 ¼ T by


 ¼
t� T on XT ,

T � t0 on X0
T .

�

There exists a constant T� depending on � such that for all T > T� we have

ðe�T ; e!T Þ 2 C1ðT SUðmÞðMT ÞÞ. Hence for T with T > T�, we can define an

SUðmÞ-structure ð T ; �T Þ on MT by

ð T ; �T Þ ¼ �ðe�T ; e!T Þ:
Let 	T ¼ e�T �  T . Then d T þ d	T ¼ 0. It follows from (3.15) and (3.20) that

ð T ; �T Þ ¼ ðe�T ; e!T Þ; d T ¼ 0; 	T ¼ 0 if j
 j 
 1 or j
 j � 2:
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REMARK 3.5. For T 2 ð0;1Þ and 
 2 R=2�Z , we can also use the gluing

map hT;
 locally defined by

��1ðV�Þ ! �0
�1ðV 0

�Þ

2 2

ðx�; y�Þ 7! ðx0�; y0�Þ ¼ ðx�; e�T�
ffiffiffiffiffi
�1

p

=y�Þ:

ð3:21Þ

instead of hT , and construct a compact 4-manifold MT;
 ¼ XT [hT;
 X0
T . Thus we

can parametrize a family fMT;
g of compact 4-manifolds by a complex variable

� ¼ e�T�
ffiffiffiffiffi
�1

p

.

3.5. The main estimates.

Now we will derive the following estimates.

PROPOSITION 3.6. Let � be a constant as in Definition 2.7. Then for all T

with T > T� ¼ T�ð�Þ there exist positive constants C3, C4, and C5 independent of T

such that with respect to the metric gT onMT associated with ð T ; �T Þ, we have the
following estimates:

k	TkLp 
 C3 e
�T=2; ð3:22Þ

kd	TkLp 
 C4 e
�T=2; ð3:23Þ

kd�TkC0 
 C5: ð3:24Þ

PROOF. It is sufficient to obtain the estimation on XT . We will use D1; D2;

etc. as constants.

We expand �ð�0 þ �; !0 þ �Þ for an SUð2Þ-structure ð�0; !0Þ with respect to

ð�; �Þ with kð�; �ÞkC0 < � as

�1ð�0 þ �; !0 þ �Þ ¼ �0 þ p1ð�Þ þ q1ð�Þ þ F1ð�; �Þ; ð3:25Þ
�2ð�0 þ �; !0 þ �Þ ¼ !0 þ p2ð�Þ þ q2ð�Þ þ F2ð�; �Þ; ð3:26Þ

where �i are the projection of � to the i-th component, pið�Þ; qið�Þ the linear

terms, and Fið�; �Þ the higher order terms for i ¼ 1; 2. Set

� ¼ �� �0 ¼ d�; � ¼ !� !0;

and
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�T ¼ �T � �0 ¼ d�T�1� ¼ �T�1�þ d�T�1 ^ �;
�T ¼ !T � !0 ¼ �T�1�:

Then 	T and d	T are expressed as

	T ¼ �T �  T

¼ �0 þ �T ��ð�0 þ �T ; !0 þ �T Þ
¼ ð�T � p1ð�T ÞÞ � q1ð�T Þ � F1ð�T ; �T Þ

and

d	T ¼ �d T ¼ �dp1ð�T Þ � dq1ð�T Þ � dF1ð�T ; �T Þ:

LEMMA 3.7. There exist constants C0
1;k; C

0
2;k; C

0
3;k, and C0

4;k for k � 0 such

that for t � 1, we have

jrk
g0
ð�� �0Þjg0 
 C0

1;k e
�t=2; jrk

g0
�0jg0 
 C0

2;k;

jrk
g0
ð!� !0Þjg0 
 C0

3;k e
�t=2; jrk

g0
!0jg0 
 C0

4;k:

PROOF OF LEMMA 3.7. The first inequality follows immediately from

Proposition 3.4. The estimation for !� !0 is similar. The inequalities for �0

and !0 follow from the t-invariance of rg0 , �0 and !0. �

From the estimation jd�T�1jg0 ¼ Oð1Þ and the t-independence of the

components of rg0 , we also have jrg0d�T�1jg0 ¼ Oð1Þ. Consequently there exist

positive constants D1; D2; D3 and D4 such that

j�T jg0 
 D1 e
�T=2; jrg0�T jg0 
 D2 e

�T=2;

j�T jg0 
 D3 e
�T=2; jrg0�T jg0 
 D4 e

�T=2:

Thus it follows from (2.2) that

j	T jg0 
 j�T jg0 þ j�T jg0 þ C1jð�T ; �T Þj2g0 
 D5 e
�T=2:

Next we consider

jd	T jg0 
 jrg0p1ð�T Þjg0 þ jrg0q1ð�T Þjg0 þ jrg0F1ð�T ; �T Þjg0 :

872 M. DOI



The terms on the right-hand side are estimated as

jrg0p1ð�T Þjg0 
 jrg0�T jg0 þD1j�T jg0ðjd�0jg0 þ jd!0jg0Þ

 jrg0�T jg0 þD1j�T jg0 jrg0!0jg0

 D6 e

�T=2;

jrg0q1ð�T Þjg0 
 jrg0�T jg0 þD7j�T jg0ðjd�0jg0 þ jd!0jg0Þ


 D8 e
�T=2;

jrg0F1ð�T ; �T Þjg0 
 C2fðjd�0jg0 þ jd!0jg0Þjð�T ; �T Þj
2
g0

þ 2jð�T ; �T Þjg0 jrg0ð�T ; �T Þjg0g


 D9 e
�T 
 D9 e

�T=2;

where we used d�0 ¼ 0 and (2.3). Hence we have

jd	T jg0 
 D10e
�T=2:

Now there exists positive constants �1; �2 such that for t � 1,

j 	 jgT 
 ð1þ �1Þj 	 jg0 ;

 T ^  T 
 ð1þ �2Þ�0 ^ �0:

Thus we have

k	TkLpðXT Þ ¼
Z T�1

t¼T�2

j	T jpgT  T ^  T
� �1=p


 D5ð1þ �1Þ ð1þ �2Þ
Z T�1

t¼T�2

�0 ^ �0

� �1=p

e�T=2


 D11e
�T=2;

and similarly

kd	TkLpðXT Þ 
 D12e
�T=2;

so that we obtain (3.22) and (3.23).

Finally, we have
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kd�TkC0ðXT Þ ¼ max sup
t
1

jd!jg; ð1þ �1ÞC0
4;1

� �

 D13;

where g is the metric associated with ð�; !Þ. This completes the proof of

Proposition 3.6. �

4. Proof of Theorem 1.1.

In this section we will see that the SLðm;CÞ-structure  T constructed in the

last section can be deformed into a d-closed SLðm;CÞ-structure for m ¼ 2,

although the deformation is not always possible for m > 2.

THEOREM 1.1. Let X be a compact complex surface with a smooth

irreducible anticanonical divisor D, and X0 another compact complex surface

with a smooth irreducible anticanonical divisor D0. Suppose there exists an

isomorphism f from D to D0 and the holomorphic normal bundles ND=X and ND0=X0

are dual to each other via f, i.e., ND=X � f�ND0=X0 ¼� OD. Then there exist tubular

neighborhoods W1;W2 of D in X with W 1 �W2, tubular neighborhoods W
0
1;W

0
2 of

D0 in X0 with W 0
1 � W 0

2, and a diffeomorphism h from W2 nW 1 to W 0
2 nW 0

1 such

that the following is true. Via the identification of W2 nW 1 with W
0
2 nW 0

1 by h, we

can glue X nW 1 and X
0 nW 0

1 together to obtain a compact manifold M. Then the

manifold M admits a complex structure with trivial canonical bundle.

To prove the above theorem, we will find a smooth 2-form �T on MT with

k�TkC0 < � satisfying the equation

d�1ð T þ �T ; �T Þ ¼ 0 ð4:1Þ

for sufficiently large T . Using the Taylor expansion as in (3.25) and setting

F ð�Þ ¼ �F1ð�; 0Þ, we have from equation (4.1)

dp1ð�T Þ ¼ d	T þ dF ð�T Þ: ð4:2Þ

Let ^2
�T

�MT be the bundle of anti-self-dual 2-forms on MT with respect to the

Riemannian metric gT associated with ð T ; �T Þ. For �T 2 C1ð^2
�T

�MT Þ, equa-
tion (4.2) is equivalent to the equation

d�T ¼ d	T þ dF ð�T Þ ð4:3Þ

by Lemma 2.6. The proof of Theorem 1.1 is based on the following two theorems.
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THEOREM 4.1. Let �; �, and � be positive constants, and suppose ðM; gÞ is a
complete Riemannian 4-manifold, whose injectivity radius �ðgÞ and Riemann

curvature RðgÞ satisfy �ðgÞ � �� and kRðgÞk 
 ���2. Then there exist C6; C7 > 0

depending only on � and �, such that if � 2 L8
1ð^2

�T
�M �CÞ \ L2ð^2

�T
�M �CÞ

then

kr�kL8 
 C6ðkd�kL8 þ ��5=2k�kL2Þ;
k�kC0 
 C7ð�1=2kr�kL8 þ ��2k�kL2Þ:

THEOREM 4.2. Let �, C6, and C7 be positive constants. Then there exist a

positive constant �� such that whenever 0 < � < ��, the following is true.

Let M be a compact 4-manifold, ð ; �Þ an SUð2Þ-structure on M, and g the

metric associated with ð ; �Þ. Suppose that 	 is a smooth complex 2-form on M

with d þ d	 ¼ 0, and

(i) k	kL2 
 � �3; kd	kL8 
 � �, and kd�kL8 
 � ��1=2,

(ii) if � 2 L8
1ð^2

�T
�M �CÞ then kr�kL8 
 C6ðkd�kL8 þ ��5=2k�kL2Þ,

(iii) if � 2 L8
1ð^2

�T
�M �CÞ then k�kC0 
 C7ð�1=2kr�kL8 þ ��2k�kL2Þ.

Let � be as in Definition 2.7. Then there exists � 2 C1ð^2
�T

�M �CÞ with k�kC0 <

� such that d�1ð þ �; �Þ ¼ 0.

Theorem 4.1 is a geometric result similar to TheoremsG1 and S1 in [J], and

the proof is almost the same, so we will omit it. Theorem 4.2 will be proved later.

PROOF OF THEOREM 1.1. We define W1;W2 � X to be W1 ¼ fT þ 1 <

tg [D, W2 ¼ fT � 1 < tg [D and W 0
1;W

0
2 to be W 0

1 ¼ fT þ 1 < t0g [D0, W 0
2 ¼

fT � 1 < t0g [D0 respectively. We also define h : W2 nW 1 !W 0
2 nW 0

1 to be the

hT defined in (3.19), Section 3.4. Then M ¼MT .

Since MT is cylindrical, the injectivity radius and the Riemann curvature of

MT are uniformly bounded with respect to T . Thus Theorem 4.1 holds and

conditions (ii) and (iii) of Theorem 4.2 follow automatically from Theorem 4.1.

Now we see that condition (i) is also satisfied for M ¼MT; ð ; �Þ ¼ ð T ; �T Þ, and
	 ¼ 	T for sufficiently large T . We choose � so that 0 < � < 1=6, and set � ¼ e��T .

Then by Proposition 3.6, we have for T > T�ð�Þ

k	kL2 
 C3 e
�T=2 
 C3 e

�3�T ¼ C3 �
3;

kd	kL8 
 C4 e
�T=2 
 C4 e

��T ¼ C4 �:

To estimate kd�kL8 , we note that there exists a positive constant C8 such that
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VolgT ðMT Þ 
 C8T ;

where VolgT ðMT Þ is the volume of MT with respect to the metric gT . Thus we

obtain

kd�kL8 
 kd�kC0VolgT ðMT Þ1=8


 C5ðC8T Þ1=8 ¼ C5ð�C8�
�1 log �Þ1=8


 C5ðC8�
�1Þ1=8��1=2:

Let � ¼ maxfC3; C4; C5ðC8�
�1Þ1=8g. Then we see that condition (i) is satisfied.

Therefore by Theorem 4.2, for all T > maxfT�ð�Þ;���1 log ��g there exists a

smooth 2-form �T on MT with k�TkC0 < � such that d�1ð T þ �T ; �T Þ ¼ 0. Hence

�1ð T þ �T ; �T Þ is a d-closed SLð2;CÞ-structure on MT , which induces on MT a

complex structure with trivial canonical bundle. This completes the proof of

Theorem 1.1. �

The rest of this section is devoted to the proof of Theorem 4.2.

PROOF OF THEOREM 4.2. We begin with the following result.

PROPOSITION 4.3. There exists positive constants ��; C9 and K depending

only on �, C6, C7 such that if 0 < � < �� then there exists a sequence f�jg in

C1ð^2
�T

�M �CÞ with �0 ¼ 0 satisfying for each j > 0 the equation

d�j ¼ d	þ dF ð�j�1Þ ð4:4Þ

and the inequalities

(a) k�jkL2 
 4� �3; (d) k�j � �j�1kL2 
 4�2�j�3;

(b) kr�jkL8 
 C9 �
1=2; (e) krð�j � �j�1ÞkL8 
 C92

�j�1=2;

(c) k�jkC0 
 K� < �=2; (f) k�j � �j�1kC0 
 K2�j�:

PROOF. The proof is by induction on j, and will follow from the following

two lemmas.

LEMMA 4.4. Suppose by induction that �0; . . . ; �k exist and satisfy (4.4) and

parts (a), (c) and (d) of Proposition 4.3 for j 
 k. Then there exists a unique

�kþ1 2 C1ð^2
�T

�M �CÞ satisfying (4.4) and parts (a), (d) for j ¼ kþ 1, and such

that �kþ1 � 	� F ð�kÞ is L2-orthogonal to H 2
�.
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PROOF. According to Hodge theory, there exists a unique �kþ1 2 C1

ð^2
�T

�MÞ satisfying equation (4.4) such that �kþ1 � 	� F ð�kÞ is L2-orthogonal to

H 2
�. We shall prove that �kþ1 satisfies (d) for k ¼ 0 and k > 0 separately. Part (a)

follows immediately from (d).

First suppose k ¼ 0. Then �1 � 	 is a d-closed 2-form L2-orthogonal to H 2
�,

so that it defines a cohomology class in H2
þðM;CÞ. Thus

k	þk2L2 � k�1 � 	�k2L2 ¼
Z
M

ðj	þj2 � j�1 � 	�j2Þvol ¼ ½�1 � 	� [ ½�1 � 	� � 0;

which implies

k�1kL2 
 k	þkL2 þ k	�kL2 
 2k	kL2 
 2� �3; ð4:5Þ

where we write 	 ¼ 	þ þ 	�, 	
 2 C1ð^2

T

�MÞ.
Next suppose k > 0. Then �kþ1 � �k � F ð�kÞ þ F ð�k�1Þ is a d-closed 2-form

L2-orthogonal to H 2
�, so that it defines a cohomology class in H2

þðM;CÞ. Thus
writing F ð�kÞ ¼ F ð�kÞþ þ F ð�kÞ�, F ð�kÞ
 2 C1ð^2


T
�MÞ, we have similarly as

above

kF ð�kÞþ � F ð�k�1Þþk
2
L2 � k�kþ1 � �k � F ð�kÞ� þ F ð�k�1Þ�k

2
L2 � 0;

which implies

k�kþ1 � �kkL2 
 2kF ð�kÞ � F ð�k�1ÞkL2 :

Now by equation (2.2) and part (c) for j ¼ k� 1; k; we have

2kF ð�kÞ � F ð�k�1ÞkL2 
 2C1ðk�kkC0 þ k�k�1kC0Þk�k � �k�1kL2


 4C1K �k�k � �k�1kL2 :

Thus by choosing �� so that 4C1K �� 
 1=2, part (d) holds for j ¼ kþ 1. This

completes the proof. �

Now we set C9 ¼ 6�C6 and K ¼ C7ðC9 þ 4�Þ.

LEMMA 4.5. Parts (b), (c), (e) and (f) of Proposition 4.3 hold for j ¼ 1.

Suppose by induction that (4.4) and parts (a){(f) hold for j 
 k, and part (d) and

(4.4) hold for j ¼ kþ 1. Then parts (b), (c), (e) and (f) hold for j ¼ kþ 1.
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PROOF. Again we shall deal with the cases k ¼ 0 and k > 0 separately.

First suppose k ¼ 0. Then applying d�1 ¼ d	, conditions (i) and (ii) of

Theorem 4.2, and equation (4.5), we have

kr�1kL8 
 C6ðkd�1kL8 þ ��5=2k�1kL2Þ

 C6ð� �þ 2� �1=2Þ


 3�C6 �
1=2 ¼

1

2
C9 �

1=2:

Thus parts (b) and (e) hold for k ¼ 0. By the above inequality, equation (4.5) and

condition (iii) of Theorem 4.2, we have

k�1kC0 
 C7
1

2
C9 �þ 2� �

� �
¼

1

2
K �:

Thus by choosing �� so that K �� 
 �, parts (c) and (f) hold for k ¼ 0.

Next suppose k > 0. It follows from (2.3) of Lemma 2.12, condition (i) of

Theorem 4.2, and parts (b), (c), (e), and (f) for j ¼ k� 1; k that

kdð�kþ1 � �kÞkL8 ¼ kdðF ð�kÞ � F ð�k�1ÞÞkL8 
 krðF ð�kÞ � F ð�k�1ÞÞkL8


 C2fðkd	kL8 þ kd�kL8Þk�k � �k�1kC0ðk�kkC0 þ k�k�1kC0Þ
þ krð�k � �k�1ÞkL8ðk�kkC0 þ k�k�1kC0Þ
þ k�k � �k�1kC0ðkr�kkL8 þ kr�k�1kL8Þg


 C2fð� �þ � ��1=2Þ 	K2�k� 	 2K �

þ C92
�k�1=2 	 2K �þK2�k� 	 2C9�

1=2g

 2C2Kð2�K þ 4C9Þ2�k�1�3=2:

Now we choose �� so that C2Kð2�K þ 4C9Þ�� 
 �. Then for 0 < � < ��, we have

kdð�kþ1 � �kÞkL8 
 2�2�k�1�1=2: ð4:6Þ

Using condition (ii) of Theorem 4.2, equation (4.6), and part (d) for j ¼ kþ 1, we

have

krð�kþ1 � �kÞkL8 
 C6ðkdð�kþ1 � �kÞkL8 þ ��5=2k�kþ1 � �kkL2Þ

 C6ð2�2�k�1�1=2 þ 4�2�k�1�1=2Þ ¼ C92

�k�1�1=2:
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Thus part (e) holds for j ¼ kþ 1. Using condition (iii) of Theorem 4.2 we find

k�kþ1 � �kkC0 
 C7ðC92
�k�1�þ 4�2�k�1�Þ ¼ K2k�1�:

Thus part (f) holds for j ¼ kþ 1. Parts (b) and (c) follow immediately from parts

(e) and (f). �

By the induction steps established in the above two lemmas, we have a

sequence f�jg in C1ð^2
�T

�MÞ with �0 ¼ 0 satisfying (a)–(f). This completes the

proof of Proposition 4.3. �

The sequence f�kg converges to some � in L8
1ð^2

�T
�MÞ. Now it remains to

show that this � is smooth. We follow the argument in [J, p. 365]. Taking the

Hodge star of equation (4.3) and using �d� ¼ d�� since � is anti-self-dual and

d� ¼ � � d �, we have

ðdþ d�Þ� ¼ d	þ �d	þ dF ð�Þ þ �dF ð�Þ: ð4:7Þ

We may write as

dF ð�Þ þ �dF ð�Þ ¼ Gð�;r�Þ þHð�Þ;

where Gðx; yÞ is linear in y. Then Gðx; yÞ and HðxÞ are smooth functions of x and

y, and Gð0; yÞ ¼ 0. Thus if we consider a first-order partial differential operator

P ð�Þ : L8
1ðV Þ ! L8ðV Þ with V ¼

L4
i¼0 ^iT �M defined by

P ð�Þ� ¼ ðdþ d�Þ� �Gð�;r�Þ;

then P ð0Þ ¼ dþ d� is an elliptic operator on L8
1ðV Þ. Since ellipticity is an open

condition, we see that P ð�Þ is elliptic for k�kC0 < 2�K with � < �� by taking ��
smaller if necessary. Now we rewrite equation (4.7) as

P ð�Þ� ¼ d	þ �d	þHð�Þ: ð4:8Þ

By the Sobolev embedding L8
1 ,! C0;1=2 in 4 dimensions, we have � 2 C0;1=2

ð^2
�T

�MÞ � C0;1=2ðV Þ. Since � 2 C0;1=2ðV Þ is a solution of equation (4.8) and the

coefficients of P belong to C0;1=2, we have � 2 C1;1=2ðV Þ by the elliptic regularity.

Similarly if � 2 Ck;1=2ðV Þ, then we have � 2 Ckþ1;1=2ðV Þ. Hence � is smooth by

induction. This completes the proof of Theorem 4.2. �
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5. Applications.

5.1. A basic example.

EXAMPLE 5.1. For d 2 f0; 1; 2; 3g, let C;C1; C2 be smooth curves of degree

3; 3� d; 3þ d in CP 2 respectively. Let Xd be the blow-up of CP 2 at 3ð3� dÞ
points C \ C1, X

0
d the blow-up of CP 2 at 3ð3þ dÞ points C \ C2, and D;D0 the

proper transforms of C in Xd;X
0
d respectively. Then D;D0 are isomorphic to C,

and we can compute as

ND=Xd ¼� OCðdÞ; ND0=X0
d
¼� OCð�dÞ:

Then by Theorem 1.1, we glue Xd nD and X0
d nD0 together to obtain a compact

complex surface with trivial canonical bundle. We can see easily that the resulting

surface is simply connected. Thus it is by definition, a K3 surface.

5.2. Multiple gluing theorem.

The following theorem is a generalization of Theorem 1.1.

THEOREM 5.2. Let X1; . . . ; XL be compact complex surfaces, and D1; . . . ;

D2‘ be irreducible smooth divisors on the disjoint union X ¼
‘L

a¼1Xa such that

Di \Dj ¼ ; for i 6¼ j. Define index sets Ia ¼ fi j Di � Xag for a ¼ 1; . . . ; L. LetP
i2Ia Di be an anticanonical divisor on Xa, �a a meromorphic volume form on Xa

with a single pole along
P

i2Ia Di and holomorphic elsewhere for a ¼ 1; . . . ; L, and

�Di
the Poincaré residue of �a on Di for i ¼ 1; . . . ; 2‘. Suppose there exist

isomorphisms fi : D2i�1 ! D2i such that the normal bundle of D2i�1 and D2i are

dual to each other via fi and f
�
i �D2i

¼ ��D2i�1
for i ¼ 1; . . . ; ‘. Then we obtain a

compact complex surface with trivial canonical bundle by gluing together

Xan
S
i2Ia Di for a ¼ 1; . . . ; L.

The proof of Theorem 5.2 is essentially the same as Theorem 1.1, so we will

omit it.

EXAMPLE 5.3. Let C be a cubic curve in CP 2, and Yd ¼ PðOCP 2 �
OCP 2ðdÞÞjC . Let D0 and D1 be the zero section and the infinity section of Yd
respectively. Then D0 and D1 are naturally isomorphic to C, and D0 þD1 is an

anticanonical divisor on Yd. The normal bundles of D0 and D1 are computed as

ND0=Yd ¼� OCðdÞ; ND1=Yd ¼� OCð�dÞ:

Thus we can glue Yd nD0 [D1 with itself along both ends to obtain a compact
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complex surface Md with trivial canonical bundle. One can show that Md is

topologically Sd � S1, where Sd is the Uð1Þ-bundle associated with the complex

line bundle OCðdÞ, and that the Betti numbers of Sd are given by

b1ðS0Þ ¼ b2ðS0Þ ¼ 3, b1ðSdÞ ¼ b2ðSdÞ ¼ 2 for d 6¼ 0. Thus by the classification of

compact complex surfaces with trivial canonical bundle [BPV], we see thatM0 is

a complex torus and Md for d 6¼ 0 is a Kodaira surface.

EXAMPLE 5.4. Let C be a cubic curve in CP 2, and Xd;X
0
d, and Yd as in

Example 5.1 and 5.3. Then for d 2 f0; 1; 2; 3g, we obtain a K3 surface from Xd;X
0
d

and any number of copies of Yd.

5.3. Smoothings of normal crossing complex surfaces with at most

double curves.

In this section we shall approach the smoothing problem of normal crossing

complex surfaces in a differential-geometric way.

Let X be a compact complex analytic surface with irreducible components

X1; . . . ; XN . Then we say that X is a simple normal crossing complex surface if X

is locally embedded in C3 as fð�1; �2; �3Þ 2 C3 j �1 	 	 	 �‘ ¼ 0g for some ‘ 2 f1; 2; 3g
and each Xi is smooth (see also [KN] for a definition).

We consider a simple normal crossing complex surface X [X0 with a

connected double curve D ¼ X \X0. We suppose D is an anticanonical divisor on

both X and X0, and the holomorphic normal bundles ND=X and ND=X0 are dual to

each other. We adopt almost the same notation as in Section 3. Let

fðU�; ðz�; w�ÞÞg be a local coordinate system on X and fðU 0
�; ðz0�; w0

�ÞÞg a local

coordinate system on X0 as implemented in Section 3, such that fðV�; x�Þg defines

a local coordinate system on D, where V� ¼ U� \D ¼ U 0
� \D and x� ¼ z�jV� ¼

z0�jV� . Let ðx�; y�Þ be local coordinates on N ¼ ND=X and ðx�; y0�Þ local coordinates
on N 0 ¼ ND=X0 such that y�y

0
� ¼ y�y

0
�. We also let t be a cylindrical parameter on

N nD, � : t�1ðð0;1ÞÞ ! X nD a diffeomorphism onto image as in Proposition

3.1, and similarly for t0;�0.

Let � ¼ f� ¼ e�T�
ffiffiffiffiffi
�1

p

 2 C j j�j ¼ e�T < �g be a domain in C for some � > 0.

A family of local smoothings of N [N 0 parametrized by � is given by

V � ¼ fðx�; y�; y0�Þ 2 N �N 0 j t > 0; t0 > 0; and y�y
0
� ¼ � 2 �g:

Then the projection $ : V � ! � is given by $ðx�; y�; y0�Þ ¼ y�y
0
�, such that V� ¼

$�1ð�Þ; � 2 �� ¼ � n f0g is a smoothing of V0 ¼ $�1ð0Þ � N [N 0. We have a

diffeomorphism onto image defined by
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e� : V � nN 0 ! ðX nDÞ ��

2 2

ðx�; y�; y0�Þ 7! ð�ðx�; y�Þ; y�y0�Þ;

and similarly a diffeomorphism onto image e�0 : V � nN ! ðX0 nDÞ ��. Then we

can glue V �, ðX nDÞ �� and ðX0 nDÞ �� together by the gluing maps e� and e�0

to obtain a fibration X � of X [X0 and the projection map X � ! �, which we

also denote by $. We can see easily that ðX nDÞ � f�g is glued to ðX0 nDÞ � f�g
by hT;
 in equation (3.21), so that M� ¼ $�1ð�Þ; � 2 �� ¼ � n f0g is MT;
 ¼
XT [hT;
 X0

T . Thus each fibreM� of $ over � 2 �� is smooth, while the central fibre

is M0 ¼ $�1ð0Þ ¼ X [X0. Note that at this point we don’t know whether each

smooth fibre admits a complex structure.

Let I0 be the complex structure on X [X0 and �;�0 holomorphic volume

forms defining I0 on X nD;X0 nD respectively. Under a diffeomorphism

X nM0 ’M ���, we have a family fð �; ��Þ j � 2 ��g of SUð2Þ-structures on

M, where  � and �� are smooth with respect to �. Taking � sufficiently small, the

resulting family f�� j � 2 ��g of solutions of equation (4.1) is continuous with

respect to �. Let �� be the SLð2;CÞ-structure �1ð � þ ��; ��Þ on M� . Then we

have

k�� ��kC0ðXT ;gÞ ! 0; k�0 � ��kC0ðX0
T
;g0Þ ! 0 as � ! 0; ð5:1Þ

where g is the asymptotically cylindrical metric on X nD defined in Section 3.4,

and similarly for the metric g0 on X0 nD. In this sense we have a family fX� ¼
ðM�; I�Þ j � 2 �g of compact complex surfaces, continuous with respect to �

outside D �M0, where I�; � 2 �� is the complex structure with trivial canonical

bundle induced by the SLð2;CÞ-structure �� , while the central fibreM0 ¼ X [X0

is endowed with the original complex structure I0. Using Theorem 5.2, we

generalize this result as follows.

THEOREM 5.5. Let X ¼
SN
i¼1Xi be a simple normal crossing complex

surface with at most double curves. Suppose that

(i) the holomorphic normal bundles NDij=Xi
and NDij=Xj

are dual to each other

for each double curve Dij ¼ Xi \Xj,

(ii) Di ¼
P

‘ð6¼iÞDi‘ is an anticanonical divisor on each Xi, and

(iii) there exist meromorphic volume forms �i on Xi with a pole along Di such

that the Poincaré residue of �i on Dij is minus the Poincaré residue of �j

on Dij.
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Then there exist � > 0 and a surjective mapping $ : X ! � ¼ f� 2 C j j�j < �g
such that

(a) X is a smooth 6-dimensional manifold and $ is a smooth mapping,

(b) X0 ¼ $�1ð0Þ ¼ X,

(c) for each � 2 ��, X� ¼ $�1ð�Þ is a smooth compact complex surface with

trivial canonical bundle, and

(d) the complex structures on X� depend continuously on � outside the singular

locus D ¼
S
i6¼j Dij of X0 (in the sense of (5.1)), or more precisely, for any

point p 2 X nD there exist a neighborhood U of p and a diffeomophism

U ’ V �D with D � �, such that the induced complex structures on V

depend continuously on � 2 D.

Lastly we compare this result with that of Friedman in [Fr]. Let X ¼
SN
i¼1Xi

be a simple normal crossing complex surface. Then X is d-semistable if for each

Dij ¼ Xi \Xj with i 6¼ j we have

Nij �Nji � ½Tij� ¼� ODij
; ð5:2Þ

where Nij denotes the holomorphic normal bundle NDij=Xi
, and Tij ¼

P
k 6¼i;j Dij \

Xk a divisor on Dij defined by the triple points (this condition is equivalent to

Friedman’s original one
NN

i¼1 IXi
=IXi

ID ¼� OD for the singular locus D on X).

We say that X is a d-semistable K3 surface if X is a d-semistable normal crossing

Kähler surface with trivial canonical bundle and H1ðX;OXÞ ¼ 0. As is well-

known, d-semistable K3 surfaces are classified into Types I–III, which comes from

the classification of degenerations of K3 surfaces (see Theorems 5.1, 5.2 and

Definition 5.5 in [Fr]). Friedman proved that a d-semistable K3 surface has a

family of smoothings $ : X ! � � C of X with the canonical bundle of X

trivial, where X is a 3-dimensional complex manifold and $ is a holomorphic

mapping. If X is a d-semistable K3 surface at most double curves, it is of Type I—

a smooth K3 surface, or of Type II—a chain X1 [ 	 	 	 [XN of surfaces withX1; XN

rational, and Xi for 2 
 i 
 N � 1 elliptic ruled with the double curves two

disjoint sections of the ruling. We note that in either case X satisfies the

hypotheses of Theorem 5.5. Thus Theorem 5.5 implies that even when X is not

Kählerian or H1ðX;OXÞ 6¼ 0, there still exists a family of smoothings $ : X ! �

of X in a weak sense, whose general fibre is a smooth compact complex surface

with trivial canonical bundle. This result strongly suggests that X as in Theorem

5.5 admits a family of smoothings in the standard holomorphic sense. We can

further generalize Theorem 5.5 to include cases where X is a normal crossing

complex surface with triple points (in particular the Type III case), which will be

treated in [D].
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