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Abstract. We obtain a new construction of compact complex surfaces
with trivial canonical bundle. In our construction we glue together two compact
complex surfaces with an anticanonical divisor under suitable conditions. Then
we show that the resulting compact manifold admits a complex structure with
trivial canonical bundle by solving an elliptic partial differential equation. We
generalize this result to cases where we have other than two components to glue
together. With this generalization, we construct examples of complex tori,
Kodaira surfaces and K3 surfaces. Lastly we deal with the smoothing problem of a
normal crossing complex surface X with at most double curves. We prove that we
still have a family of smoothings of X in a weak sense even when X is not
Kéhlerian or H'(X, Ox) # 0, in which cases the smoothability result of Friedman
[Fr] is not applicable.

1. Introduction.

Let X be a manifold of dimension n and suppose X contains a compact
submanifold X of dimension n with boundary S = 0X,, such that X\ Xj is
diffeomorphic to a cylinder S x Ry = {(p,t) |p € S,0 <t < oo}. Then we call X a
cylindrical manifold, and t a cylindrical parameter of X. The gluing of cylindrical
manifolds is a useful method for constructing compact Riemannian manifolds
with a special metric in differential geometry. It was first successful in
constructing compact 4-dimensional Riemannian manifolds with an anti-self-
dual metric by Floer [Fl] and Taubes [T], which constructions were later
improved by Kovalev and Singer [KS]. The method is also used in constructing
compact 7-dimensional Riemannian manifolds with holonomy Gs [J], [K]. The
purpose of this paper is to obtain a new construction of compact complex surfaces
with trivial canonical bundle using the gluing method, and the main result is
described as follows.
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THEOREM 1.1. Let X be a compact complex surface with a smooth
irreducible anticanonical divisor D, and X' another compact complex surface
with a smooth irreducible anticanonical divisor D'. Suppose there exists an
isomorphism f from D to D" and the holomorphic normal bundles Np;x and Npx:
are dual to each other via f, i.e., Np/x @ f*Np x = Op. Then there exist tubular
neighborhoods Wi, Wy of D in X with Wy C Wy, tubular neighborhoods Wi, Wy of
D' in X' with Wi C W, and a diffeomorphism h from Wy \ Wy to Wi\ W4 such
that the following is true. Via the identification of Wy \ Wy with Wi\ W} by h, we
can glue X \ Wi and X'\ W/ together to obtain a compact manifold M. Then the
manifold M admits a complex structure with trivial canonical bundle.

Thus if we are given two compact complex surfaces X and X’ as in Theorem
1.1, then we obtain a compact complex surface with trivial canonical bundle from
X\ D and X'\ D'. In Theorem 1.1 we don’t assume X and X’ to be Kéhlerian.
Nor do we assume Np,x and Np/x to be trivial, and we need a weaker assumption
that the two bundles are dual to each other. We also note that the resulting
manifold M is a complex manifold and not a manifold with a special Riemannian
metric, which is different from other gluing constructions. In our construction, the
complex structures on the regions of X \ D and X'\ D' to glue together are only
close to each other, but not exactly the same. Thus it is not obvious whether the
manifold M obtained from X \ D and X'\ D' is again a complex manifold.

It is also interesting to see that if D = D’ then Theorem 1.1 is regarded as
giving a kind of smoothing of a surface Xy = X U X’ with a normal crossing at D.
Indeed, we shall construct a family of smoothings of X, in a weak sense in
Section 5.3. This result can be compared with the result of Friedman [Fr| (see
also [KN]) that a d-semistable K3 surface has a smoothing. In our case
‘d-semistability’” means the duality between the normal bundles Np,x and Np,x.
Although Friedman’s result is powerful and extensive, it needs the assumptions
that X, is Kihlerian and H'(Xy, O,) vanishes, so that it does not cover the
smoothability of degenerations of normal crossing complex tori and Kodaira
surfaces obtained from our result.

A real 2m-dimensional manifold admits a complex structure with trivial
canonical bundle if and only if it admits a special differential form called an
SL(m, C)-structure 1 with d¢) = 0. Other examples of manifolds whose geometric
structures are characterized by special d-closed differential forms include
Riemannian manifolds with special holonomy [J], symplectic manifolds, holo-
morphic symplectic manifolds, and so on.

Our method is based on the gluing of cylindrical manifolds with an
asymptotically SL(2, C)-structure and analysis as used in constructing compact
8-dimensional Riemannian manifolds with holonomy Spin(7) [J].
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This paper is organized as follows. In Section 2 we shall introduce the notion
of SL(2,C)- and SU(2)-structures on real manifolds of dimension 4. These
structures are special cases of SL(m, C)- and SU(m)-structures (torsion-free
SU(m)-structures are often referred to as Calabi-Yau structures) defined on
oriented real manifolds of dimension 2m. (See [G] for reference.)

In Section 3 we shall explain the gluing procedure of constructing M in
Theorem 1.1. We see that if X, X', D and D’ are as in Theorem 1.1, then X \ D
(resp. X'\ D) is a cylindrical manifold with a cylindrical end S x {0 <t < o0}
(resp. " x {0 <t <oo}). Since Np/x and Np,x are dual to each other, S is
diffeomorphic to S. We set Xp=(X\D)\(Sx{t>T+1}) and X} =
(X'\ D)\ (8 x { > T +1}), and define a compact manifold My by gluing Xr
and X/ together along the regions SXx {T'—1<¢t<T+1} and ' x{T'—-1<
t' < T+ 1}. To prove that M admits a complex structure with trivial canonical
bundle, we first construct on Mt an approximating holomorphic volume form 7,
i.e., an SL(2, C)-structure with diyp sufficiently small for large 7. We note that X
has a meromorphic volume form 1 with a single pole along D, which is
asymptotic to a cylindrical d-closed SL(2, C)-structure on S x {0 <t < oo}.
Similarly X’ has a meromorphic volume form ¢, with a single pole along D'. Thus
we can glue 1y and 9, together using cut-off functions to obtain an approximating
holomorphic volume form ¥ on My. To estimate dyr, we introduce a Hermitian
form k7 such that (¢¥r, k) forms an SU(2)-structure on Mp. Then we show that
dyr decays exponentially as T — oo with respect to the Riemannian metric
associated with (Y7, k7).

Then in Section 4 we shall find a d-closed SL(2, C)-structure near t¢r for
sufficiently large T' to complete the proof of Theorem 1.1. To do this, we use the
analysis developed by Joyce to solve a nonlinear elliptic partial differential
equation with respect to ¢, which is analogous to the one in [J], Chapter 12. The
Hermitian form xr plays an auxiliary but crucial réle in solving the partial
differential equation, which is different from the cases of Go- and Spin(7)-
structures.

In the last section we shall prove a multiple gluing theorem (Theorem 5.2),
which is a generalization of Theorem 1.1 to cases where we have L(> 1) surfaces
with 2¢ divisors to glue together. We construct some examples using Theorem 1.1
and Theorem 5.2. According to the classification theory, compact complex
surfaces with trivial canonical bundle are divided into 2-dimensional complex tori,
Kodaira surfaces and K3 surfaces [BPV]. Among these surfaces, complex tori and
K3 surfaces are Kéhlerian and Kodaira surfaces are non-Ké&hlerian. Our gluing
examples include all classes of compact complex surfaces with trivial canonical
bundle. As another application, we shall treat the smoothing problem of compact
complex surfaces with normal crossings. We shall construct a family of
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smoothings in a weak sense of simple normal crossing complex surfaces with at
most double curves (Theorem 5.5), and compare the result with that of Friedman
[Fr]. Although we can prove an analogous smoothability result for normal
crossing complex surfaces with triple points, we will deal with and give a proof for
that case in a sequel [D] to this paper because some additional care is needed.

2. SL(2, C)- and SU(2)-structures.

DEFINITION 2.1. Let V be an oriented vector space of dimension 4. Then
o € A2V* ® C is an SL(2, C)-structure on V if 1 satisfies

Yo Athy >0, by Ay = 0.
An SL(2, C)-structure ¢y on V gives complex subspaces
VM ={CeV®C | =0}, V=V
where ¢ is the interior multiplication by ¢. Then we have the decomposition
Ve C=VvPg VvV, (2.1)

The decomposition (2.1) defines a complex structure I, on V such that 1)y is a
complex differential form of type (2,0) with respect to Iy,.

Let o7 g1(2,c)(V) be the set of SL(2, C)-structures on V. Then &7 g5 ¢)(V) is
an orbit space under the action of the orientation-preserving general linear group
GL (V). Since each 1 € @ g5 ¢)(V) has isotropy group SL(2, C), the orbit
4 s12,¢)(V) is isomorphic to the homogeneous space GL,(V)/SL(2, C).

DEFINITION 2.2. Let M be an oriented manifold of dimension 4. Then
P € C®°(N’T*M ® C) is an SL(2, C)-structure on M if ) satisfies

YAY >0, PAY=0.

We define .o/ g5, ¢) (M) to be the fibre bundle which has fibre .7 g5, ¢)(T: M)
over © € M. Then an SL(2, C)-structure can be regarded as a smooth section of
A s12.¢)(M).

Since an SL(2, C)-structure 9 on M induces an SL(2, C)-structure on each
tangent space, 1 defines an almost complex structure I, on M such that % is a
(2,0)-form with respect to Iy.
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LEMMA 2.3 (Grauert, Goto [G]). Let ¢ be an SL(2, C)-structure on an
oriented 4-manifold M. If 1 is d-closed, then I is an integrable complex structure
on M with trivial canonical bundle and v is a holomorphic volume form on M with
respect to I.

PROOF. Let 7 be any (1,0)-form on . Then we have
YAn=0

since 1 € C®°(AXOT*M). Taking the exterior derivative and using di¢ =0, we
obtain

Y Adn =0,
so that we have
dC® (AT M) C C*(AH'T* M) @ C™ (AT M).

Hence it follows from Newlander-Nirenberg Theorem that I, is an integrable
complex structure on M. U

Conversely, if X is a complex surface with trivial canonical bundle, a
holomorphic volume form v on X defines a d-closed SL(2, C)-structure. Hence we

have the following characterization of complex surfaces with trivial canonical
bundle.

PROPOSITION 2.4. Let M be an oriented 4-manifold. Then M admits a
complex structure with trivial canonical bundle if and only if M admits a d-closed
SL(2, C)-structure.

Similarly d-closed SL(m, C)-structures characterize complex structures with
trivial canonical bundle on an oriented 2m-manifold. A d-closed SL(m, C)-struc-
ture will be often referred to as a holomorphic volume form.

DEFINITION 2.5.  Let V be an oriented vector space of dimension 4. Then
(Yo, ko) € (N2V* @ C) @ A’V* is an SU(2)-structure on V if (1, ko) satisfies the
following conditions:

(i) o is an SL(2, C)-structure on V,
(ii) Yo A kg =0,
(iii) an inner product gy, ., on V defined by gy o)Ly, ) = ko(-, ) is positive
definite, and
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(iv) 2K5 =0 A %

Conditions (ii) and (iii) imply that gy is a (1,1)-form associated with the
Hermitian inner product gy, ., on V. Let &gy (V) be the set of SU(2)-struc-
tures on the oriented vector space V. Then &7 gy(9)(V) is an orbit space under the
action of GL.(V), which is isomorphic to GL.(V)/SU(2).

For (1, ko) € < sy(2)(V), we have the orthogonal decomposition with respect

to 9(Wo,k0)

NV = AL @ A%,
where A2 and A% are the set of self-dual and anti-self-dual 2-forms respectively.
Then /\i is spanned by {Re g, Im )y, ko }, where Re )y and Im 1) are the real and
imaginary part of 1, and A2 coincides with the set of primitive real (1,1)-forms

with respect to k.
We also have the orthogonal decomposition

(NV*® C) ® NV 2 Ty ) (NPVF @ C) @ APVY)
= T(T/)OWG)"Q%SU(Q)(V) S5 T(J;‘)“,HO)WSU(Q)(V%

where T(fbo /‘L(])‘Q{SU(Q)(V) is the orthogonal complement to Tiy, .«,) % sv(2)(V) with
respect t0 gy ). The next lemma is crucial in solving the partial differential
equation in the proof of Theorem 1.1.

LEMMA 2.6.  The tangent space of o/ sy2) at (Yo, ko) contains anti-self-dual
subspaces:

(N2 ® C) ® A2 C Ty )@ su2) (V).
PROOF. The tangent space T(%_,{O)MSU@)(V) is given by
{(a 1y, a- k) € (NV*® C)& N V* | a€gl(V)},

where gl(V) acts on A’V* via the differential representation. We have the
decomposition

gl(V) = so(V) @ Sy(V) @ Ridy,

where Sy(V) is the space of symmetric traceless endomorphisms of V' with respect
tO Gum)- Then one can show easily that So(V) = Hom(A%,A?), so that So(V)
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generates (A2 ® C) @ A2 because {Re )y, Im )y, o} spans A2. O

DEFINITION 2.7. Let V be an oriented vector space of dimension 4. We
define a neighborhood of & gy2) (V) in (A*V* @ C) & A*V* by

T sve) (V) ={(%o + a, k0 + B) | (Y0, ko) € Z5p2)(V), and
(O[ ﬂ) € TUO Ko) JZ{SU ( ) with |(Oé 6)|(](L o < p}v

where p is a positive constant and |(a, )], = lal, 40

I(aho.r0) "

LEMMA 2.8.  There exists a positive constant p. such that if p < ps then any
(V' K') € Tsu)(V) can be uniquely written as (Yo + a, ko + (), where (1o, ko) €
A su2)(V), (a ﬂ) € Tjy @ su@ (V).

Lemma 2.8 implies that for p < p. the projection © : 7 gy ) (V) — & gy(2)(V)
is well-defined.

DEFINITION 2.9. Let M be an oriented 4-manifold. Then (¢,x) € C*®
(N’T*M ® C) ® C*(A*T*M) is an SU(2)-structure on M if the restriction (v|,,
k|,) is an SU(2)-structure on T, M for all x € M.

Define 7 gy9)(M) to be the fibre bundle whose fibre over x € M is o7 519
(I;M). Then an SU(2)-structure can be regarded as a smooth section of o7 gy(9)

If ¢ and k are both d-closed, then X = (M, Iy, ) is a K&hler surface with
trivial canonical bundle. Moreover, the Ricci curvature of the Ké&hler metric g
vanishes by condition (iv) of Definition 2.5.

DEFINITION 2.10. Let M be an oriented 4-manifold. Choose p < p. so that
the projection © is well-defined. We define .7 g1 (M) to be the fibre bundle whose
fibre over x € M is 7 gy2) (T M), and denote by © the projection from .7 gy 9) (M)
to . sy(2)(M).

Let (¢,k) be an SU(2)-structure on M. If (a,3) € C* (N*T*M ® C) @
C (T M) satisties [[(@,B)llcs < py then (b-+ i+ ) € C(Tsuz)(M)) and
we have the Taylor expansion

@(¢+O&,I€+ﬂ) (¢7 )+7T1/1h)( 6)+F(w,/{)(aaﬂ)a

where 7y ) : NT*M® C @ NT*M — Ty su)(TM) is the orthogonal pro-
jection and F{y ) is the higher order term with respect to (a, 3).



860 M. Do1

REMARK 2.11.  We can generalize the notion of SL(2, C)- and SU(2)-struc-
tures to higher dimensions and define the projection © : .7 gy( (M) —
% su(m)(M) on an oriented 2m-manifold M, where .o gy, (M) is the set of
SU(m)-structures on M and 7 gy(m) (M) is a neighborhood of .o gy(y) (M).

LEMMA 2.12.  Let p be a constant as in Definition2.7. There exist positive
constants Cy and Cy such that for any SU(2)-structure (1,k) and for any
(@, 8), (o), 8) € CX(NT*M & C) & CX(NT*M)  with ||(a, B)lco, (@', 8)leo <
p/2, we have the following point-wise estimates on F' = Fy ) with respect to g :

|F (e, ) —F( Al < Cil(a =o', 8= ). B) + (<, B0]),  (22)
IVE(e, 8) = ( "Bl
< Cof (|9l + Idffl)l( — o, 3= )(l(e, B)] + (<, B)])
+1(V(a =), V(B =8I, B)] + I(e/, 8)])
+(a—=d,8=B)((Ve, VB)| + [(Va', V)], (2.3)

where V is the Levi-Civita connection of gy -

The proof is essencially the same as in [J], Proposition 10.5.9, so we will omit
it.

3. The construction of a compact 4-manifold My with an approx-
imating holomorphic volume form .

In this section we construct a compact manifold My from X \ D and X'\ D
under the assumptions of Theorem 1.1. Then we define an SU(2)-structure
(Y, kr) on Mp and obtain some estimates on (¢, k7). Since it is possible to
construct My and (¢, k7) in arbitrary dimension, we leave the dimension m of X
and X’ undetermined for the most part of this section.

3.1. Compact complex manifolds with an anticanonical divisor.

First we suppose that X is a compact complex manifold of dimension m, and
D is a smooth irreducible anticanonical divisor on X.

Let {U,} be an open covering of X and define V,, = U, N D, so that {V,} is an
open covering of D. Then there exist collections z, = (2},...,2"1) of holomor-

phic functions on U, such that (z,,w,) are local coordinates and V, = {w, = 0}.
The coordinate tranformation of X is given by

Za = Pap(28, wp),
Wo = faﬂ('zﬂvwﬁ)wﬁ’
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where ¢qg, fop are nonvanishing holomorphic functions on U, N Up.
The canonical bundle Kx is given by transition functions

1 -1
dwg Adzg A --- Adzf
dwy Adzl A= Adzrt

haﬁ(zf)’?wﬂ) = (3-1)

on U, NUs, and the line bundle [D] is given by transition functions fu.z(zs, ws)
= wq/wg on U, N Up. Since D is an anticanonical divisor on X, we can choose the
local coordinates (z,,w,) so that

fap(z8, wg)hap(zg, wg) = 1. (3.2)
Therefore the local holomorphic volume forms

_ dw,

Q=

1 -1
o N A A de

together yield a holomorphic volume form Q on X \ D.

3.2. The holomorphic normal bundle.

Next we consider the holomorphic normal bundle N = Np,x to D in X. Let
7 : N — D be the projection. We identify the zero section of N with D. Let x, be
the restriction of z, to V,, = U, N D. Then {(V,,x,)} is a local coordinate system
on D. The coordinate transformation of the normal bundle N = [D]|, is given by

La = wﬂﬂ(mﬂ)’
Yo = gaﬁ(xﬁ)yﬂa

where we set

Yap(75) = Pap(x5,0),
gaﬂ(xﬂ) = fa[i(zﬂ; 0)7

and (7.,y,) are local coordinates of N on 7 (V,) ~V, x C. Thus restricting
equation (3.1) to V,, N V3, we have

_1 dx}; A A dxgl’l
dzl Ao Adar!

has(x5,0) = gap(s) (3.3)

on V, N V3. Restricting (3.2) to V, and putting (3.3), we have
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dm}; A=A dxgl_l _
dzl A+ Adar!

on V, N Vj. Therefore the local holomorphic volume forms
Qpo =dzl A Adam™ !

on V, together yield a holomorphic volume form Qp on D, so that the canonical
bundle Kp of D is trivial, which also follows from the adjunction formula,
Kp = (Kx ®[D])|p = Op.

The holomorphic volume form p obtained from €2 regarded as a meromor-
phic volume form on X with a single pole along D is called the Poincaré residue of
Q, which is independent of the choice of local coordinates representing € (see
[GH], pp. 147-148). We note that if  and Q' are two meromorphic volume forms
on X with a single pole along D, then they differ by a nonzero multiplicative
constant.

Let || -|| be a Hermitian metric on the normal bundle N and define a
cylindrical parameter ¢t on N\ D by

t(s) = —to —log||s|* for se N\ D, (3.4)

where t; is a constant. The following result is immediate from the tubular
neighborhood theorem.

PROPOSITION 3.1.  There exists a constant ty and a diffeomorphism ® from a
neighborhood V of the zero section of N containing t~'((0,00)) to a tubular
neighborhood U of D in X such that ® can be locally represented as

Za = Ta + O(|ya|2) =Ty + O(eit)a

) (3.5)
Wa = Yo + O(|Yal”) = ya + O(e™)

by shrinking {U,} if necessary.

Proposition 3.1 implies that the complex structure on V in Np,x approaches
the complex structure on U in X exponentially as ¢ — co.
We consider local holomorphic volume forms €, on 7 1(V,) \ D defined by

d
Qoo = 22 A 7 Q.

[e%
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Since on 7 1(V, NVj) \ D we have
QOA,a — Qoﬁ = dloggmg AT Qp = 8logga5 AT Qp = 0,

Qo together yield a holomorphic volume form Qy on N \ D.
Let wp be a Hermitian form on D normalized so that

wg‘_l = Cm,1QD A ﬁD, (36)
where ¢, are constants defined by ¢ = (\/—1)k22_kk!. We define wy on N\ D by

v_1 _
wy = T@t/\@t—!—ﬂ*wp. (3.7)

LEMMA 3.2.  The pair (Q,wq) of the complex m-form and real 2-form on
N\ D satisfies

ng = CmQO A ﬁo, (38)

and the metric gy associated with (Q,wy) s cylindrical and positive definite. In
particular, if m = 2, then (Qo,wp) s an SU(2)-structure on N \ D.

PROOF. Equation (3.8) follows easily from (3.6) and (3.7).
Next we will have a local expression for the metric gq associated with (Qq, wp).
The Hermitian metric || - || on N is locally represented as

||(xa>ya>H2 = e%(%) ya‘2 for (xaaya> € W_l(Va)a

where ¢, are real-valued functions on V,, satisfying ¢.(x.) = ¢s(zs) — log
|9ap(z3)|* on V,, N V5. Then we have

HZor Vo) = —ba(Ta) — log|ya|2 for (2a,ya) € T H(Va).
If we set
ro + V=16, = —logy,,

then we can check easily that (z.,t,6,) are local coordinates of N\ D on
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7 1(V,)\ D. Thus a direct computation shows that go(-,-) = wo(:, In,*) is ex-
pressed as

1 2 1 2
90 = (dm ~5 d%) + (dﬁa +3 d”%) +7"gp
1 1 ) (3.9)
— Zdt2 + (d&a + Ed%ﬁa) +7 gD,

where gp is the metric associated with (Qp,wp), and d° = v/—=1(0 — 9). (In effect,
go is given by (0t ® Ot + 0t @ 9t)/2 + 7 gp.) O
Define an S'-bundle p : S — D in terms of coordinate transformation by

Lo = w&ﬂ(xﬁ)v

0, = eﬂ — arg gaﬁ(xﬂ)v

where each (x,,0,), 0, € R/27Z is a local coordinate on p~*(V,) =~ V,, x S*. Then
N\ D is the Riemannian product (S,gs) X (R,%dtQ), where gg = (df, +
1da)” +p*gp on p~(Va).

LEMMA 3.3.  For any integer k > 0, we have

k — Ofet
Vg, (dza — dao)|,, = O(e™),
SR @
O\ we Ya / g,

PROOF.  We obtain |dt|, =2, |df.|, = O(1) and |dz,|, = O(1) from the
explicit representation (3.9) of go. Note that the remainders O(e™") in the Taylor
expansions (3.5) are of the form

A(xa,foxa yaa Z_Ja) yi + B(Za,f()” ya, ya) yﬂya + C(ZL'(I, f(}'a y(h Z_J(y) yi’ (311)

where A, B and C are C* functions. If we rewrite equation (3.11) as
R(x4,Ta,t,0,) 7!, then R is a C* function for ¢ # oo with bounded derivatives,
so that Re ' extends smoothly to ¢t = co. Thus differentiating (3.5) gives

|dze — dzal, = le7' (AR + Rdt)|, = O(e™).

g0
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On the other hand, it follows from (3.5) and (3.11) that

dw, dya Wq

=dlog—

Wy Ya Ya

2
- dlog(l + Ay, + BT, +C%>

«

= dlog(1 + R (24, Ta, t,0,) e %),

where R is a C* function for ¢ # co with bounded derivatives, R'e /% extending
smoothly to t = co. Consequently we have

e ?(dR — 1 R'dt)
1+ Rlet/?

=0(e7?).

90

‘ dw, dy.

W, Ya

90

Thus we establish (3.10) for k = 0.

With respect to the coordinate system {(x,,t,6,)}, the components of g are
independent of ¢, and so are the components of V,. This proves (3.10) for
kE>1. O

3.3. An approximating holomorphic volume form and a Hermitian
form on X \ D.
We extend (®71)"t to a smooth function on X \ D which is nonpositive on
X \ U. By abuse of notation we denote the function again by ¢t. We also consider
(Qo,wp) as an SU(m)-structure defined on U\ D C X \ D via the diffeomorphism
P.
Let p: R — [0, 1] denote the cut-off function

() {1 if z <0,
PP =0 ite>1,

and define pr : R — [0,1] by

1 ifa<T-1,

pT(I)_p(x_T+l)_{0 ite>T.

PROPOSITION 3.4.  There exist a complex 1-form & on the region {t > 0} C
X\ D and positive constants C| ;,_, for k>0 such that

Q- QO = df, |v§o£|go < Ci,k’—leit/Q'
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For simplicity, if a differential form a satisfies |a|, < Ce™"/? for a constant C,
we will often write as o = O(e /?),

PROOF. Let { f;} be the 1-parameter family of diffeomorphisms generated
by the vector field {9/dt} on {t > 0}. Then for (p,s) € {t >0} ~ S x (0,00),
fi(p,s) = (p,s+1). Let a=0Q—Q. Then a is of order O(e™¥?) with all
derivatives by Lemma 3.3. Thus we obtain

apt) = [ () )ds

t
- / ('L josa) (p, D)ds

t
a / (f*staj0s) (p, £)ds,

where the last equality holds because both (f;_,Z9s)(p,t) and (fi_,t9/9s¢)(p, )
are continuous forms of order O(e~*/?) and integrable on S x (0,00). Letting & be
the integral of the right-hand side, we have Q—Qy=d{. Moreover
Vgﬂg =O(e '/?) for k>0 since (f,9/0s0)(p,t) is of order O(e */?) with all
derivatives. O

We define a d-closed complex m-form Qr on X \ D by

0 _{Q—d(l—pTl)f on {t <T—1},
T\ Qo+ dprag on {t > T —2}.

On {T—2<t<T-—1} we have
Qr — Q= dpr_1& = 0(e™1/?), (3.12)
so that Q7 is an approximating holomorphic volume form for large 7'
Next we will define a Hermitian form w on X \ D such that the associated
metric g is a Hermitian metric asymptotic to the cylindrical metric gy. Let w; be a
Hermitian form on {¢ < 1} normalized so that

W' = Q2N Q,

and g; the metric associated with (Q,wy). Let W}g)lwg be the (1,1)-part of wy with

respect to the complex structure I defined by 2, i.e., the standard complex
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structure on X\ D. Then we see that W};)l is a smooth operator with
= O(e "?). There exists a positive function \g on {t > 0} such that

11
|w0 T w0|!]o
()\()T};ZIWO)m = A ﬁ
and \g = 1 + O(e "?). We define a 2-form on {t > 0} by
Wy = )\()7'('};21(4)0‘
Since wy — wy = O(e~*/?), for sufficiently large t in (3.4) the metric g, associated
with (©,ws) becomes positive definite, so that ws becomes a Hermitian form on

{t > 0}. Then we glue g; and g, together along {0 < ¢ < 1} to obtain a metric g on
X\ D, which is Hermitian with respect to Ig:

g=pig1 + (1 —p1)go. (3.13)
The Hermitian form @ associated with (I, g) satisfies
AD)" = cnQAQ
for some positive function . Note that A=1 on (X\D)\{0<t<1} by
construction. Then the Hermitian metric g on X \ D associated with w = A& is
asymptotic to the cylindrical metric go.
Finally we glue together w = A© and wy along {T'—2 <t < T — 1} to define
an approximating Hermitian form wy:
wr = pr-1w + (1 — pT_l)wo. (314)
On {t <T-2,T—1<t}wris a Hermitian form with respect to Ig,, and
W= ¢ Qr A Q. (3.15)
On the other hand, for T —2 <t < T —1,

wr —wo = pro1(w — wy) = O(e™1/?), (3.16)

so that wr is an approximating Hermitian form. Thus by (3.12) and (3.16),
(Qr,wr) is a smooth section of .7 gy (X \ D) for sufficiently large T'.
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3.4. The construction of Myt and (Y1, KkT).

Let X’ be another compact complex manifold of dimension m with a smooth
irreducible anticanonical divisor D', and N’ the holomorphic normal bundle
Np,x of D'in X'. We suppose there exists an isomorphism f: D — D', and N, N’
are dual line bundles via f, i.e., N® f*N' = Op.

Let V! = f(V,) and 2/, = (f~!)"z,. Then {V/} is an open covering of D’ and
{(V!, )} is a local coordinate system on D'. We choose a covering {U/ } of X’ so
that V! = U/ N D'. Since the holomorphic normal bundle N’ = [D']|, is isomor-
phic to (f!)"N~!, one can show that by choosing sufficiently small U,

local coordinates (2, w!) of X" on U, such that w/, are local defining functions of
D' on V!, and that (2], w/) satisfy

there exist

2y =x
A (3.17)
wa/wﬂl‘/{mw = Yop(23),

where gixﬁ = (f—l)*g;é.
Since D’ is an anticanonical divisor on X', there exist holomorphic functions
fr on U/, such that the local holomorphic volume forms

dw! _
Ad2 A A"

«

U, = L1 (pu,)

) [e%

on U/ \ D' together yield a holomorphic volume form €' on X'\ D'. The local
holomorphic volume forms

; m—1
[e% Y

f’;ldzgl A A dz’am71|v(; = gzldxgl A---ANdx
where ¢, (z)) = f,(z,,0), together yield a holomorphic volume form on D', which
must be a constant multiple of Qp = (f~1)"Qp = da,' A--- Ada,™ . We multi-
ply all f/ by this constant so that g/, = 1. Since f’;1|v, =1, (f’;1 —1)/uwl, is a
nonvanishing holomorphic function on U. We may assume that each U /s
convex. If we redefine w/, to be

w, pr—1
W o =1
« Xp 0 [ B

/
w(l’

then (2,,w!,) still defines a local coordinate on U, satisfying (3.17), and w/, is a
local defining function of D'. Moreover, 2 = |, is expressed as
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;m—1
«

dw!
QO =——2AdZ' A Ad2

« !
«

We consider the holomorphic normal bundle 7' : N = N x» — D'. Let g, be
fibre coordinates of 7'~ (V/) ~ V! x C, satisfying

Yoo = Gop(25)5- (3.18)

Let (Za,Ya) be local coordinates of 7= 1(V,) =~ V,, x C as in Section 3.2. We define
an isomorphism hr : N\ D — N\ D’ locally by
w (Vo) = 7 (V)
w w (3.19)
(T Ya) = (T Y) = (Tar €™ /1)

This mapping is well-defined since N ® f*N' = &'p. We introduce a cylindrical
parameter ¢ on N’ \ D/ by

-1
t'=—tohy.

Then we can define a pair (£, «wj) of a holomorphic volume form and a Hermitian
form on N’\ D' by

dy, .
96 :—é/\ﬂ'l QD/7
Y

«

Vi

Wy = 5 ot Aot + 1w,

which satisfies
wp" = ey A Y

and induces a cylindrical metric g, where wp = (f~')*wp. Then again by
Proposition 3.1, there exists a diffeomorphism @’ from a neighborhood V' of the
zero section of N containing ¢'~1((0, 00)) to a tubular neighborhood U’ of D' in X’
such that

4=l +O(ly,]°) =, + O(e™"),
wl, =1, +O(|y,1*) =y, + O(e™").
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Parallel to the argument in Section 3.3, via the identification of V' with U’ by &',
we can also define (€2, w}.) such that

, Q ift<T-2,
R WA
o ¥ >T—1,

Wp=uwpy ift>T-1,

S =y U ANV Y <T—20rt >T -1 (3.20)
and
Q- =0e1?), Jp—wy=0eT? fT-2<t<T-1
We define a subset X7 of X\ D and a subset X/ of X'\ D' by
Xr={t<T+1}CcX\D, X,={'<T+1}cCc X' \D.
Then we glue Xy and X7 together along {T—1<t<T+1} C X\ D and {T —
1<t <T+1} C X'\ D by the mapping hr, and define a compact manifold Mr.
Since we have

* Oy ® 1
hTQo = Qy, hTw() = Wo,

we can also glue (Qr,wr) and (7, W) together and define (Qr,&r) on My, with
dQr = 0. We also define a cylindrical parameter 7 on My with centre t =t' = T by

t—T on Xr,
{T—t' on X/.

T~here exists a constant T, depending on p such that for all T > T, we have
(Qr,wr) € C°(T sym)(Mr)). Hence for T with T >T., we can define an
SU(m)-structure (¢r, k) on Mr by

(Yr, k1) = O(Qr,Tr).
Let ¢ = EZT — t¢p. Then d¢p 4+ depr = 0. It follows from (3.15) and (3.20) that

(Yr, k1) = (QT,QT), dyr =0, ¢r=0 if|7|<1lor|r|>2.
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REMARK 3.5. For T € (0,00) and § € R/2wZ, we can also use the gluing
map hyg locally defined by

w w (3.21)
e—T—\/:Tf)/ya)

(maaya) = (xiyayiy) = (‘TLH .
instead of hy, and construct a compact 4-manifold M7y = Xrp Unzy X7 Thus we

can parametrize a family {Mry} of compact 4-manifolds by a complex variable
C — e—T—\/——le.

3.5. The main estimates.
Now we will derive the following estimates.

PROPOSITION 3.6. Let p be a constant as in Definition2.7. Then for all T
with T > T, = T.(p) there exist positive constants Cs, Cy, and C5 independent of T
such that with respect to the metric gr on My associated with (Yr, kr), we have the
following estimates:

ol < Cse ™72, (3.22)
ezl < Cye ™, (3.23)
[drrllco < Cs. (3.24)

PROOF. It is sufficient to obtain the estimation on X7. We will use Dy, Do,
etc. as constants.

We expand O(Qy + «, wy + 8) for an SU(2)-structure (Qp,wq) with respect to
(a, B) with [[(e, B)[lco < p as

©1(Q0 + o, wy + B) = Qo + pi(@) + @ (B) + Fi(a, B), (3.25)
©2(Q0 + o, wy + B) = wo + p2() + @(B) + Fa(a, B), (3.26)

where ©; are the projection of © to the i-th component, p;(«),¢;(5) the linear
terms, and Fj(«, ) the higher order terms for i = 1,2. Set

a:Q—Q():df, ﬂ:w_w()a

and
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o =Qp — Qg =dpr_1& = projo+dpr_1 AE,

Br = wr —wy = pr-153-
Then ¢r and d¢r are expressed as

or = Qr —Yr
=Qo+ar — @(Qo + ar,wy + ﬁT)
= (ar —pi(ar)) — qi(Br) — Fi(ar, Br)

and
dor = —dyr = —dpi(ar) — dgi (o) — dFi(ar, Br).

LEMMA 3.7.  There exzist constants C},;,Cy,,Cy,, and Cy; for k>0 such
that fort > 1, we have

V5 (@ = Qo)l,, < O e [V Qo < Oy,

90 90 —
VE (w—wo)l, < Chre ™ [VEwl, <Cy

90

PROOF OF LEMMA 3.7. The first inequality follows immediately from
Proposition 3.4. The estimation for w — wy is similar. The inequalities for
and wy follow from the t-invariance of V,, €y and wy. ([

From the estimation [dpr-1|,, =O(1) and the t-independence of the
components of V, , we also have |V, dpr_1|, = O(1). Consequently there exist
positive constants Dy, Dy, D3 and D4 such that

lar|, < D1 e 12 IVgarl, < Ds e 12

Brl,, < Dse” ™2, |Vy,Brl, < Dye .
Thus it follows from (2.2) that
2 —
|67, < lorl,, +18rl, + Cil(ar, Br)l2, < Dse™ /2.
Next we consider

|dor|,, < [Vapi(ar)l, +[Vealar)l, + Ve Fi(ar,Br)l,-
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The terms on the right-hand side are estimated as

IVapi(ar)l, < IVgarl|, + Dilar|, (|dQ|, + |dw,)
< |v90aT|gn + D1|aT|gnlngw0‘g0
< Dge T2,
Va1 (Br)ly, < Vg Brlg + DrlBrly, (1d€20] 4 + [dwoly,)
< Dge T2,
Vo Fi(ar, Br)l,, < Co{(|dl,, + [dwol,, )l (er, Br)7,
+ 2[(ar, Br)l g, |V gy (e, Br)|,, }
<Dye " < Dye "2,

where we used d€y = 0 and (2.3). Hence we have
|dor],, < Dyge "2,
Now there exists positive constants €1, € such that for ¢t > 1,

|y < (A +e)l 1,
Yr ANp < (14 €)Q A Q.

Thus we have

6z

T-1 U
Lo(Xp) = {/ B o7}, r A ¢T}

-1

1/p
<D5(1+e1){(1+62)/ Qo/\ﬁo} e T2
¢

—T—2
< Dje 12

and similarly
[zl oix,) < Dyye 12,

so that we obtain (3.22) and (3.23).
Finally, we have
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el ) = ma sup iy, 1+ @)C%, | < D,

where ¢ is the metric associated with (2,w). This completes the proof of
Proposition 3.6. O

4. Proof of Theorem 1.1.

In this section we will see that the SL(m, C)-structure ¢r constructed in the
last section can be deformed into a d-closed SL(m, C)-structure for m =2,
although the deformation is not always possible for m > 2.

THEOREM 1.1. Let X be a compact complex surface with a smooth
wrreducible anticanonical divisor D, and X' another compact complex surface
with a smooth irreducible anticanonical divisor D’'. Suppose there exists an
isomorphism f from D to D" and the holomorphic normal bundles Np,x and Npx
are dual to each other via f, i.e., Np/x ® f*Np x» = Op. Then there exist tubular
neighborhoods Wi, W of D in X with W1 C Ws, tubular neighborhoods Wi, W}, of
D in X' with W', C W}, and a diffeomorphism h from Ws \ W, to w; \ W’} such
that the following is true. Via the identification of Wy \ W1 with Wi \ W1 by h, we
can glue X \ Wy and X'\ W', together to obtain a compact manifold M. Then the
manifold M admits a complex structure with trivial canonical bundle.

To prove the above theorem, we will find a smooth 2-form nr on My with
[Inrllce < p satisfying the equation

d@l(iﬁT + nr, /{T) =0 (41)

for sufficiently large 7. Using the Taylor expansion as in (3.25) and setting
F(a) = —Fi(«,0), we have from equation (4.1)

dpi(nr) = dor + dF(nr). (4.2)
Let A2T* My be the bundle of anti-self-dual 2-forms on My with respect to the

Riemannian metric gr associated with (¢r, k7). For nr € C*(A2T*Mr), equa-
tion (4.2) is equivalent to the equation

dnr = dor + dF (nr) (4.3)

by Lemma 2.6. The proof of Theorem 1.1 is based on the following two theorems.
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THEOREM 4.1.  Let p, v, and € be positive constants, and suppose (M, g) is a
complete Riemannian 4-manifold, whose injectivity radius 6(g) and Riemann
curvature R(g) satisfy 6(g) > pe and ||R(g)|| < ve 2. Then there exist Cg,C7 > 0
depending only on p and v, such that if x € LY(A2T*M @ C) N L*(A2T*M ® C)
then

190l s < Colldx s + €2l ),
Ixlleo < Cr(e 219l s + € Il ).

THEOREM 4.2. Let A\, Cg, and C; be positive constants. Then there exist a
positive constant €, such that whenever 0 < € < €., the following is true.

Let M be a compact 4-manifold, (¢, k) an SU(2)-structure on M, and g the
metric associated with (1, k). Suppose that ¢ is a smooth complex 2-form on M
with dy 4+ d¢ =0, and

() lgll2 < A€, [ldells < e, and ||| s < Xe'/2,
(ii) if x € LY(A2T"M @ C) then | Vxllps < Co(lldxllps + € [Ixll 1),
(iii) if x € LY(A2T*M @ C) then ||x|lco < Cr(e?[Vxllps + €2l 2)-

Let p be as in Definition2.7. Then there exists n € C*(A\2T*M ® C) with ||n||c <
p such that dO; (¢ +n, k) = 0.

Theorem 4.1 is a geometric result similar to Theorems G1 and S1 in [J], and
the proof is almost the same, so we will omit it. Theorem 4.2 will be proved later.

PROOF OF THEOREM 1.1. We define W, Wr C X to be Wi ={T+1<
t}UD, Wo={T—-1<t}UD and W], W} to be W] ={T+1<t'}UD, W,=
{T —1 < ¥} U D respectively. We also define h: Wy \ Wy — Wi\ W’; to be the
hr defined in (3.19), Section 3.4. Then M = Mry.

Since My is cylindrical, the injectivity radius and the Riemann curvature of
My are uniformly bounded with respect to 7. Thus Theorem 4.1 holds and
conditions (ii) and (iii) of Theorem 4.2 follow automatically from Theorem 4.1.
Now we see that condition (i) is also satisfied for M = Mr, (¢, k) = (Y1, k1), and
¢ = ¢r for sufficiently large T. We choose y so that 0 < v < 1/6, and set ¢ = e 7.
Then by Proposition 3.6, we have for T > T.(p)

[6]l2 < Cse /2 < Oy =Cyé,
[doll;s < Cy e <0pe” =Cye

To estimate ||dk|| s, we note that there exists a positive constant Cg such that



876 M. Do1
VOL“.(MT) S CST,

where Vol,, (Mr) is the volume of My with respect to the metric gr. Thus we
obtain

[l s < [ldal| o Voly, (Mz)'®
< C5(CsT)® = C5(~Cyy M log )/
< C5(Cgy H B2,

Let A = max{C}, C4, C5(Cgfy’1)l/8}. Then we see that condition (i) is satisfied.
Therefore by Theorem 4.2, for all T > max{T.(p), —y ' loge.} there exists a
smooth 2-form nr on My with ||n7]|0 < p such that d©:(¢¥r + nr, k) = 0. Hence
O1(¢Yr + nr, k1) is a d-closed SL(2, C)-structure on My, which induces on My a
complex structure with trivial canonical bundle. This completes the proof of
Theorem 1.1. (]

The rest of this section is devoted to the proof of Theorem 4.2.
PROOF OF THEOREM 4.2.  We begin with the following result.

PROPOSITION 4.3.  There exists positive constants €., Cy and K depending
only on X, Cs, C7 such that if 0 < e < e, then there exists a sequence {n;} in
C®(AN2T*M @ C) with ng = 0 satisfying for each j > 0 the equation

dn; = d¢ + dF(n;—1) (4.4)
and the inequalities

(a) lInjll 2 < 4X€’, (d) [Inj — nj-1ll 2 < 4X277€%,
(B) IVnjlls < Coe'2 () IV(m; — mjm)ll s < C92_’€1/27
() Injlleo < Ke<p/2, (£) [Inj —nj-1lloe < K27

PROOF. The proof is by induction on j, and will follow from the following
two lemmas.

LEMMA 4.4.  Suppose by induction that ng, ..., n exist and satisfy (4.4) and
parts (a), (¢) and (d) of Proposition 4.3 for j < k. Then there exists a unique
N1 € CF(N2T*M @ C) satisfying (4.4) and parts (a), (d) for j = k+ 1, and such
that gy — ¢ — F(ng) is L*-orthogonal to 7% .
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PROOF. According to Hodge theory, there exists a unique 7.1 € C™
(A2 T*M) satisfying equation (4.4) such that n;1 — ¢ — F(n;) is L?-orthogonal to
A% . We shall prove that ., satisfies (d) for k = 0 and k > 0 separately. Part (a)
follows immediately from (d).

First suppose k = 0. Then 7, — ¢ is a d-closed 2-form L2-orthogonal to ¢,
so that it defines a cohomology class in Hi(M, C). Thus

¢4 172 = llm — o117 = /M(|¢+|2 — | — ¢ [*)vol = [ — ¢] U [m — ¢] > 0,
which implies

millze < Il + oIl < 206l < 2A€% (4.5)

where we write ¢ = ¢, + ¢_, ¢ € C(ALT*M).

Next suppose k > 0. Then 71 — n — F(ng) + F(nr—1) is a d-closed 2-form
L2-orthogonal to #, so that it defines a cohomology class in H2 (M, C). Thus
writing F(n) = F(n), + F(m)_, F(m), € C*(ALT*M), we have similarly as
above

IF () = F(m1) 172 = llmeer = me = k) + Flpr)_[|7: > 0,
which implies
1 = mell 2 < 201 F (k) — F (i)l -
Now by equation (2.2) and part (c) for j =k — 1,k, we have

2([F(ne) — F(m—)ll 22 < 2C1 (Il oo + = llco) I — 11 [ 12
< 4CIK€||771<: - 77kleL2'

Thus by choosing €. so that 4C1K e, < 1/2, part (d) holds for j=k+ 1. This

completes the proof. ([l
Now we set Cg = 6ACs and K = C7(Cy + 4).

LEMMA 4.5.  Parts (b), (c), (e) and (f) of Proposition 4.3 hold for j=1.
Suppose by induction that (4.4) and parts (a)—(f) hold for j < k, and part (d) and
(4.4) hold for j = k+ 1. Then parts (b), (c), (e) and (f) hold for j =k + 1.
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PROOF. Again we shall deal with the cases k = 0 and k > 0 separately.
First suppose k=0. Then applying dn; = d¢, conditions (i) and (ii) of
Theorem 4.2, and equation (4.5), we have

IVl < Collldm s + €2 (lml )
< Cs(he+2Xe/?)

< 3NCse'/? = %cg /2,

Thus parts (b) and (e) hold for k£ = 0. By the above inequality, equation (4.5) and
condition (iii) of Theorem 4.2, we have

1 1
Inillen < Cr (2096+2Ae) ~ 1Ke

Thus by choosing €, so that K e, < p, parts (¢) and (f) hold for k= 0.
Next suppose k> 0. It follows from (2.3) of Lemma 2.12, condition (i) of
Theorem 4.2, and parts (b), (¢), (e), and (f) for j =k — 1,k that

A1 — )l s = (1A(E ) — F(me—)) | s < NVE () — Fie—1)) || 5
< Co{(1do[ s + 1dsll )l — =1 llco Ulmrll o + 11l o)
IV = =) | s (el o + i1l o)
+ e = M1 lleo IVl s + [V [l 1) }
< Co{(Ae+AeM?) K27% . 2K €
+ Co27Fe 2 2K € + K27 - 2Cy€'/?}
< 20, K (20K + 4Cy)27 1632,

Now we choose €, so that Co K (2AK + 4Cy)e, < A. Then for 0 < € < €,, we have

A —nw)ll s < 2x27 kel 2, (4.6)
Using condition (ii) of Theorem 4.2, equation (4.6), and part (d) for j =k + 1, we
have

IV (ki1 — )l s < Co(ldmer — o)l s + € 2l|mmrr — mell )
< Ce(2X27F 12 4 ad27F 1l 2) = g2 F 1€l /2,
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Thus part (e) holds for j = k4 1. Using condition (iii) of Theorem 4.2 we find
mis1 = melleo < Co(Co27F e+ 4X27H 1) = K25 e

Thus part (f) holds for j = k + 1. Parts (b) and (c) follow immediately from parts
(e) and (f). O

By the induction steps established in the above two lemmas, we have a
sequence {n;} in C*(A2T*M) with ny = 0 satisfying (a)-(f). This completes the
proof of Proposition 4.3. O

The sequence {n;} converges to some 7 in L{(A?>T*M). Now it remains to
show that this 7 is smooth. We follow the argument in [J, p.365]. Taking the
Hodge star of equation (4.3) and using xdn = d*n since 7 is anti-self-dual and
d* = — xd %, we have

(d+d*)n =de¢ + *de + dF(n) + =dF(n). (4.7)
We may write as
dF(n) + *dF(n) = G(n, V) + H(n),

where G(z,y) is linear in y. Then G(z,y) and H(x) are smooth functions of z and
y, and G(0,y) = 0. Thus if we consider a first-order partial differential operator
P(n) : L¥(V) — L3(V) with V = @, N'T*M defined by

P(n)¢ = (d+d")¢ - G(n, V),

then P(0) =d +d* is an elliptic operator on L§(V). Since ellipticity is an open
condition, we see that P(n) is elliptic for ||n||s < 2¢K with € < e, by taking e,
smaller if necessary. Now we rewrite equation (4.7) as

P(n)n =d¢ + xd¢ + H(n). (4.8)

By the Sobolev embedding L{ — C%'/? in 4 dimensions, we have n € C%1/2
(A2T*M) C COV2(V). Since n € C%Y2(V) is a solution of equation (4.8) and the
coefficients of P belong to C%'/2, we have n € CY/2(V) by the elliptic regularity.
Similarly if 7 € C*Y/2(V), then we have n € C**11/2(V). Hence 7 is smooth by
induction. This completes the proof of Theorem 4.2. O
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5. Applications.

5.1. A basic example.

EXAMPLE 5.1. For d € {0,1,2,3}, let C,C;,C5 be smooth curves of degree
3,3 —d,3+d in CP? respectively. Let X; be the blow-up of CP? at 3(3 — d)
points C'N C, X} the blow-up of CP? at 3(3 + d) points C' N Cy, and D, D' the
proper transforms of C' in X, X/, respectively. Then D, D’ are isomorphic to C,
and we can compute as

ND/Xd = ﬁc(d), ND//X/d = ﬁc(—d)

Then by Theorem 1.1, we glue X; \ D and X/, \ D’ together to obtain a compact
complex surface with trivial canonical bundle. We can see easily that the resulting
surface is simply connected. Thus it is by definition, a K3 surface.

5.2. Multiple gluing theorem.
The following theorem is a generalization of Theorem 1.1.

THEOREM 5.2. Let Xy,...,X be compact complex surfaces, and Dy,...,
Dy be irreducible smooth divisors on the disjoint union X = ]_[5:1 X, such that
D;ND; =0 fori+#j. Define index sets I, ={i | D; C X,} fora=1,...,L. Let
Zieln D; be an anticanonical divisor on X,, ), a meromorphic volume form on X,

with a single pole along Y ._; D; and holomorphic elsewhere fora=1,...,L, and

icl,
Qp, the Poincaré residue of Q, on D; for i=1,...,20. Suppose there exist
isomorphisms f; : Doj_1 — Ds; such that the normal bundle of Do;_1 and Ds; are
dual to each other via f; and f;Qp, = —Qp,,, fori=1,...,L. Then we obtain a
compact complexr surface with trivial canonical bundle by gluing together

X\ Ujer, Di fora=1,...,L.

The proof of Theorem 5.2 is essentially the same as Theorem 1.1, so we will
omit it.

EXAMPLE 5.3. Let C be a cubic curve in CP?, and Y;= P(O¢cp ®
Ocp2(d))|eo. Let Dy and Dy be the zero section and the infinity section of Yy
respectively. Then Dy and D, are naturally isomorphic to C, and Dy + D is an
anticanonical divisor on Y. The normal bundles of Dy and D, are computed as

Npyyyv, =2 Oc(d), Np,jy, = Oc(—d).

Thus we can glue Yy \ Dy U Dy, with itself along both ends to obtain a compact
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complex surface My with trivial canonical bundle. One can show that M, is
topologically Sy x S!, where Sy is the U(1)-bundle associated with the complex
line bundle &@¢(d), and that the Betti numbers of S; are given by
b1(So) = ba(So) = 3, b1(Sa) = b2(Sq) =2 for d #0. Thus by the classification of
compact complex surfaces with trivial canonical bundle [BPV], we see that M) is
a complex torus and My for d # 0 is a Kodaira surface.

EXAMPLE 5.4. Let C be a cubic curve in CP?, and X,, X)), and Y, as in
Example 5.1 and 5.3. Then for d € {0, 1, 2,3}, we obtain a K3 surface from Xy, X/,
and any number of copies of Yj.

5.3. Smoothings of normal crossing complex surfaces with at most

double curves.

In this section we shall approach the smoothing problem of normal crossing
complex surfaces in a differential-geometric way.

Let X be a compact complex analytic surface with irreducible components
X4,...,Xn. Then we say that X is a simple normal crossing complex surface if X
is locally embedded in C? as {(¢1, (2, ¢3) € C* | ¢y ---¢ = 0} for some £ € {1,2,3}
and each X; is smooth (see also [KN] for a definition).

We consider a simple normal crossing complex surface XU X’ with a
connected double curve D = X N X'. We suppose D is an anticanonical divisor on
both X and X', and the holomorphic normal bundles Np x and Np,x: are dual to
each other. We adopt almost the same notation as in Section 3. Let
{(Ua, (za,wq))} be a local coordinate system on X and {(U.,(z,,w))} a local
coordinate system on X’ as implemented in Section 3, such that {(V,,z,)} defines
a local coordinate system on D, where V, =U, N D =U, ND and z, = 2, v, =
Zyly, - Let (24, ya) be local coordinates on N = Np,x and (x4,¥;,) local coordinates

on N' = Np,x such that y.y,, = ysy;. We also let t be a cylindrical parameter on
N\ D, ®:t71((0,00)) — X \ D a diffefomorphism onto image as in Proposition
3.1, and similarly for ¢/, ®'.

Lt A={¢=e TV Ye ||| =eT < e} beadomain in C for some € > 0.
A family of local smoothings of N U N’ parametrized by A is given by

VA ={(Ta,Ya,¥,) ENBN' |t >0, >0, and y,1, = € A}
Then the projection @ : ¥'A — A is given by @w(za, Yo, ¥,,) = Ya¥,, such that V; =

w1(¢), ¢ € A" = A\ {0} is a smoothing of Vj=w 1(0) C NUN'. We have a
diffeomorphism onto image defined by
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d:¥A\N — (X\D)x A
\ W

(T Yar Yo) = (P(Tay Yo )5 Yol

and similarly a diffeomorphism onto image ® : ¥s \ N — (X' \ D) x A. Then we
can glue ¥ A, (X \ D) x A and (X’ \ D) x A together by the gluing maps ® and &'
to obtain a fibration 2°A of X U X’ and the projection map 2°A — A, which we
also denote by w. We can see easily that (X \ D) x {¢} is glued to (X' \ D) x {¢}
by hry in equation (3.21), so that M;=w 1((),( € A* = A\ {0} is Mpy=
X7 Up,, X7 Thus each fibre M of w over ¢ € A is smooth, while the central fibre
is My =@ 1(0) = XU X'. Note that at this point we don’t know whether each
smooth fibre admits a complex structure.

Let Iy be the complex structure on X U X’ and ©,Q holomorphic volume
forms defining Iy on X\ D,X' \ D respectively. Under a diffeomorphism
2\ My~ M x A", we have a family {(¢¢, k) | ¢ € A"} of SU(2)-structures on
M, where )¢ and k¢ are smooth with respect to ¢. Taking e sufficiently small, the
resulting family {n¢ | ¢ € A"} of solutions of equation (4.1) is continuous with
respect to (. Let Q¢ be the SL(2, C)-structure ©; ()¢ + n¢, k¢) on M¢. Then we
have

12 = Qlleoix, = 0 19 = Qllengxy gy =0 a8 ¢ —0, (5.1)

where ¢ is the asymptotically cylindrical metric on X \ D defined in Section 3.4,
and similarly for the metric ¢ on X'\ D. In this sense we have a family {X,; =
(M, Ic) | ¢ € A} of compact complex surfaces, continuous with respect to ¢
outside D C My, where I, € A" is the complex structure with trivial canonical
bundle induced by the SL(2, C)-structure ¢, while the central fibre My = X U X’
is endowed with the original complex structure Iy. Using Theorem 5.2, we
generalize this result as follows.

THEOREM 5.5. Let X = Uf\il X, be a simple normal crossing complex
surface with at most double curves. Suppose that

(i) the holomorphic normal bundles Np,/x, and Np,x, are dual to each other
for each double curve D;; = X; N X,
(ii) D; = Zf(#i) D;; is an anticanonical divisor on each X;, and
(iii) there exist meromorphic volume forms ; on X; with a pole along D; such
that the Poincaré residue of §; on Dyj is minus the Poincaré residue of €
on Dyjj.
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Then there exist € >0 and a surjective mapping w: 2 — A={( e C||{| < €}
such that

(a) & is a smooth 6-dimensional manifold and w is a smooth mapping,

(b) Xo=w 0) = X,

(c) for each ¢ € A*, X¢ =w 1 (() is a smooth compact complex surface with
trivial canonical bundle, and

(d) the complex structures on X depend continuously on ¢ outside the singular
locus D =J,; Dij of Xo (in the sense of (5.1)), or more precisely, for any
point p € X'\ D there exist a neighborhood U of p and a diffeomophism
U~V xD with DCA, such that the induced complex structures on V
depend continuously on ( € D.

Lastly we compare this result with that of Friedman in [Fr]. Let X = Ufil X;
be a simple normal crossing complex surface. Then X is d-semistable if for each
Dij = XL ij with ¢ 7& ] we have

N ® N;; ® [Ty;] = Op (5.2)

i)

where N;; denotes the holomorphic normal bundle Np, /x,, and T}; = Zk#,j D;;nN
X a divisor on D;; defined by the triple points (this condition is equivalent to
Friedman’s original one ®f\;1 I x| I x, I p =2 Op for the singular locus D on X).
We say that X is a d-semistable K3 surface if X is a d-semistable normal crossing
Kihler surface with trivial canonical bundle and H(X,O0x) =0. As is well-
known, d-semistable K3 surfaces are classified into Types I-III, which comes from
the classification of degenerations of K3 surfaces (see Theoremsb.1, 5.2 and
Definition 5.5 in [Fr|). Friedman proved that a d-semistable K3 surface has a
family of smoothings w: 2" — A C C of X with the canonical bundle of 2
trivial, where 2 is a 3-dimensional complex manifold and w is a holomorphic
mapping. If X is a d-semistable K3 surface at most double curves, it is of Type I—
a smooth K3 surface, or of Type II—a chain X; U - - - U Xy of surfaces with X1, X
rational, and X; for 2 <¢ < N —1 elliptic ruled with the double curves two
disjoint sections of the ruling. We note that in either case X satisfies the
hypotheses of Theorem 5.5. Thus Theorem 5.5 implies that even when X is not
Kihlerian or H'(X, Ox) # 0, there still exists a family of smoothings @ : 2" — A
of X in a weak sense, whose general fibre is a smooth compact complex surface
with trivial canonical bundle. This result strongly suggests that X as in Theorem
5.5 admits a family of smoothings in the standard holomorphic sense. We can
further generalize Theorem 5.5 to include cases where X is a normal crossing
complex surface with triple points (in particular the Type III case), which will be
treated in [D].
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