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Abstract. We explicitly describe the (g¢, K)-module structures of the
principal series representations of SU(2,2) associated with a maximal parabolic
subgroup.

Introduction.

The purpose of this paper is to describe explicitly the (g, K)-module structure
of the principal series representations of SU(2,2), parabolically induced with
respect to the minimal parabolic subgroup P,,.

This is motivated by the problem of the determination of the precise formulas
for various spherical models of the standard representations. Among others we are
interested in the Whittaker models (Bayarmagnai [1], Hayata [3], Ishii [5],
Miyazaki-Oda [10]). Our basic concern is in arithmetic of automorphic forms.
However, in our case, we should also recall that the group SU(2,2), which is
locally isomorphic to the conformal group SO(4,2), plays a very important role in
physics. Our method of proof is similar to that of a recent paper of Oda [12],
which describes the (g, K)-module structure of standard representations of
Sp(2, R). Namely we utilize the concept of simple K-modules with marking, to
overcome the problem of multiplicities in K-types.

Our main results are Theorem 3.5 and Theorem 3.6 which are shortly
explained below. The template of the formulas is the following;:

Clet:t) stm = S(m/>r[i,i;i]~

Here 8™ is the matrix consisting of elementary functions in the representation
identified with a closed subspace of L*(K), € |+,+:4] is a matrix with entries either
in p* or in p~, and [+ 4,47 is a constant matrix whose entries consists of linear
forms in the parameters of the representation. The last is called a matrix of
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intertwining constants.
Let us recall the Casimir equation for the Casimir operator %

Cv=v(€)v,

where v is the infinitesimal character and v is a differential vector. Our formula is
a “covariant” analogue of this. The details of each symbol is explained in the text.

This paper is arranged as follows. In the Section 1, we establish our notation
and define the class of the principal series representations of SU(2,2) correspond-
ing to the minimal parabolic subgroup P,,;,. The marked basis for each K-isotypic
component in the principal series representation is introduced in terms of the
elementary functions in the Section 2. We begin Section 3 by computing the
Clebsch-Gordan coeflicients of finite dimensional representations of K (Proposi-
tions3.1 and 3.2). Then we shall determine our main result concerning the
gco-module (Theorems 3.5 and 3.6), and finally give some examples.

We want to refer to the former results on (g, K')-module structures: Klimyk-
Gruber [6], [7], Molchanov [11], Thieleker [13], Howe [4], and Lee-Loke [8]. Their
interests are mainly to study the composition series of (g, K)-modules for
degenerate principal series representations which are K-multiplicity free, except
for [4] and [8].

The method of [4] for GL(3, R) is to find nice elements in the enveloping
algebra U(g) to generate the K-types in a principal series representation, hence it
is different from our results. The paper [8] is most similar to ours, but this also
considers the composition series of degenerate principal series.

The result of the papers of Yamashita [15], [16] also gives some structure of
the composition series of the principal series representations of SU(2,2) by direct
determination of intertwining operators.

Acknowledgments: The author would like to express his thanks to his
supervisor Professor Takayuki Oda for presenting this subject and valuable
advice. The author also thanks the referee for his careful reading of the paper and
his useful comments.

1. Preliminaries.

1.1. The group SU(2,2).
In this paper, the group SU(2,2) is the special unitary group of signature
(42, —2) associated to the Hermitian form (, ) defined on C* by

<Z, ’LU> = Elwl + 2211)2 — Zgwg — 24104
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for z = (21,29, 23,21) and w = (wy, wa, w3, wy). In terms of matrices, the group
consists of all matrices g € SLy(C) that satisfy the following identity:

'glog = Ip»,
where Iy = diag(1,1,—1,—1). It is a standard fact that G = SU(2,2) is a quasi-

split real semisimple group of real rank two.
Let 6 be a Cartan involution given by

0(g)="g", g€ G.

Then the fixed point set K = GY is the standard maximal compact subgroup
S(U(2) xU(2)) of G. The group K = S(U(2) x U(2)) can be represented by

matrices
k
( ! > €q,
koo

where ki, ko € U(2) and det(k1kq) = 1.

The Lie algebra g of G is the set of matrices X € My(C) such that 'X I, +
I)»X =0 and tr(X) =0. We let £ and p be the +1 and —1 eigen-spaces of the
differential of 6, respectively. Then we have

X1 .
t= X EE[4(C).X1,X3€U.(2) s

Xo
p={<tX2 ) EM4(C):XQ€M2(C)}.

For x € My(C) we set

_Ox d _00
pe@) =, o Jmdp@={_ )

Let H; = pi(eii) + p—(ei) (i = 1,2), where e;; the matrix unit of My(R) with 1 in

and
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the (4, j)-entry and zero elsewhere. Then the space a spanned by Hy, Hy over Ris a

maximally abelian subalgebra of p. Let {A1, A2} be a basis of the dual space a* such

that A;(H;) = 6;;. Then the restricted root system for ®(g, a) is of type C5, namely
q’(g, CL) = {j:>\1 + )\27 :|:2A1, :|:2>\2}

Choose A1 — Ay and 2\, as simple roots of ®(g, a). Denote by E;; the matrix units
in My(C) for 0 <i,j < 4. Then the corresponding root spaces of dimension two
and one are given by

g/\]*/\z = REl EBREQ and 92)\2 = R'E()a

where Ey = I€_1E24/€, Ey = H_l(En - E43);‘€ and Fy = /i_l(iEm + ’L.E43)I€. Here

1 0 10
110 1 01
o

V2l =i 0 i 0

with i = v—1.

We put A =exp(a), M = Z4(K), and choose a minimal parabolic subgroup
P, with Langlands decomposition Py,;, = MAN.

Here N is the maximal unipotent subgroup of G and an element n =
n(ng,n1,n9,n3) € N takes the form:

1 un 1 ny n2
1 1 1 T_LQ ns
K K
1 1
—iy 1 1

for ny, n3 € R, ng, no € C.

1.2. The K-modules.

Let (7,V;) be an irreducible representation of K. The fact is that the
dimension of V; is finite and 7 is unitary. To clarify K-action on V; it is enough to
consider the £¢-action on that vector space.

Note that the group K = SU(2) x SU(2) x CY is a twofold covering of K
with a projection given by



The (g, K)-module structures of principal series of SU(2,2) 665
pr(gi, go; w) = diag(ugi, u " gs),
where g1, g2 € SU(2) and u € C". The kernel of this homomorphism is
Ker(pr) = {£(12,12; 1) }.

Let (sym™, V,,) be the m-th symmetric tensor representation of the group SU(2).
Then the unitary dual of K can be parameterized by the set

K= {Tmema; 1> Vims) | mi,me € NUO, 1€ Z, my +my +1€2Z}.

Here Vi, m, is the outer tensor product of the spaces V,,,, and V,,,, and if g;, g2 €
SU(2) and u € CV, then the action is

Timy,ma; 1] (917 923 u) = Symml (91) X symmz (92) ® ul~

We fix now a basis for £¢ = Lie(K) :

. (koo , [0 0 L 0
h == 3 h - ) 12.2: 9
0 0 0 h ' 0 -1
ex 0 0 0
eb={ " ] = :
0 0 0 es

1 0 0 1 0 0
where h = (O _1), ey = (O 0) and e_—<1 O)' Then we have the

following proposition:

LEMMA 1.1, Let { fito<i<,,, be a basis of Vi, as SU(2)-module for j=0,1.
For a given K-module (Tjp, m,:)> Vinym,) the set

{fg}q:ﬁ>q:f;{>®fqa OSPSml,OSQsz}

forms a basis of Viym, as K-module and the infinitesimal action corresponding to
K on Viym, is expressed by

hl(qu) = (2p — m1) frgs hQ(qu) (2 — m2) fyq
ei(qu) = (m1 —p)fp+100 ei(qu) (m2 — q) fpg+1
elf(qu) =DPfp-10 e%(qu) = 4qfpq-1

IQ,?qu = lfp‘]'
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For a simple K-module 7, we can normalize the one dimensional space of
K-homomorphisms of 7 onto itself by the following definition.

DEFINITION 1.1. A simple K-module 7 equipped with a canonical basis is
called a marked simple K-module or a simple K-module with marking.

1.3. Iwasawa decomposition.
The set {E; ji2, Eita | i,j = 1,2} forms a basis of the 8-dimensional vector
space p and one has

Eijio =pi(e;) and Eioj=p_(e;),

where 7,7 =1, 2.

LEMMA 1.2.  Put

-1 1 -1 1 -1
EQ)\l =K Elgl'i, E/\Hr)\z =K E'14/i7 EA17A2 =K E43!€,

-1 2 -1 2 -1
EQ)\2 =K E24I<67 E)\]+)\2 =K E’lei7 EA]7A2 =K Elgli.

Then we have

1 1
px(ei) = 5 (F2V 1B, + Hi £ 5 (h2 = e(i)(h' — %)),
j .
1 . . i . 66( ) Zf (+)
peley) = 5 (=B, _,, FV-1E, ) =€) 7 ]
2 i
e—e(i)’ Zf (_)
where €(i) := sign(—1)" (i # j, i,j € {1,2}).
PROOF. We can show this by direct computation. (I

1.4. The adjoint representation.

Now we consider the adjoint representation Ad of K on the complexification
po of p. It splits into two K-irreducible components, namely, the holomorphic
part p, generated by the set of matrix units {E;; |i=1,2,j=3,4} and the
antiholomorphic part p_ generated by the set {E;; |i=3,4,7=1,2} over C.
Moreover, we have:

LEMMA 1.3 (cf. [3, 3.10]).  The linear maps from p, and p_ to Vi1 given by

(Eas, Erg, Eay, Evg) — (foo, fro, —for, —fi1)
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and

(B, B31, Ega, E32) — (foo, for, = fi0, —f11),

respectively, induce the K-isomorphisms

(Ada p+) = (T[1,1;2]7‘/11) and (Ad7p7) = (7[1,1;72]7‘/11)

1.5. Principal series representations.

In this paper we will be dealing with principal series representations which
are parabolically induced with respect to the minimal parabolic subgroup. We
take a moment here to review basic definition to that of SU(2,2).

Let P, be a minimal parabolic subgroup of G with Langlands decomposition
Pin = MAN with M = Zg(A). In particularly, any element of M can be
represented by a matrix

[exp(i0)]y’ for some § € R and j =0, 1,
where v = diag(1,—1,1,—1) € G and
[exp(i0)] = diag(exp(if), exp(—ib), exp(if), exp(—if)).

Let x be a character of the group {£1}. For an integer s, we define a unitary
character of M by

JX,S([eXp(ie)]’Y‘j) = X(—l)j exp(ish).

Given a complex valued real linear form g = Ay + Aopi2 on a, define a character
e of A by

e!(a) = exp(mar + p2az),

for a = exp(a1Hy + asHy) € A. We extend it to a character of AN so that the
restriction to N is trivial. Define an admissible character of P,;, by tensoring
these characters. Then one has the induced representation

T™T= IndIG?

min

(Ux,s ® e ® 1n)

and call it the principal series representation of G. Here p denotes the half sum of
the positive roots of ®(g,a). Now look at the compact realization of 7. Then
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representation space H, of 7w can be realized on the Hilbert space

L (K)={feL*K)|
f(mk) = o, s(m)f(k) forme M, ke K, a.e.}

with G-action defined by

(m(g)f)(z) = "’ (a(xg)) f(k(zg)), = € K,g € G,

where zg = n(zg)a(xg)m(zg)k(xg) is the Iwasawa decomposition of the element
xg.

2. The structure of K-types of the principal series representation.

In this section we express the K-isotypic components of H; in terms of the
elementary functions obtained from the tautological representation of SU(2).
Combining it with Lemma1.1, the K-module structures on HX is described
explicitly.

2.1. Elementary functions in L?(K).

We begin this subsection with the parametrization of the unitary dual of
SU(2). Let S(z) (z € SU(2)) be a square matrix function associated to SU(2)
given by

S(z) = ( #1(@) SQ(w;), with det(S(z)) = 1.

752(1‘) 51 X

Then we have S(zy) = S(x)S(y) and s;(—z) = —s;(z) for i = 1, 2. Consider S(z) as
a linear transformation from (X,Y) to (X',Y”), i.e.,

— si(z)  s(2)
(X’Y)_(X’Y)<—52(x) Sl(x)>,

where X, Y are independent variables. For each positive integer n > 2, there is a
linear transformation

sil(@) - s (@)
Sym™(S@) = .| = {87 @ oeisen

s(@) s (@)
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between the homogeneous forms of (X,Y) and (X', Y") of degree n via
(X" (X)L () = (X XY, Y - Sym™ (S ().

First recall the following well-known observation without proof.

LEMMA 2.1.  Then+ 1 entries of each i-th row vector of Sym™ (S(z)) make
a canonical basis of the irreducible right SU(2)-representation of dimension n + 1
in L*(SU(2)). In particular, we have

1. Sym™(S(zy)) = Sym™ (S(z))Sym™ (S(y)), z,y € SU(2),
2. Sym™ (S(z)) = diagy;<, (¥ 2)) if 2 = diag(e¥ 1, e~V 1)
witht € R.

2.2. Elementary functions in L?(K).

Fix positive integers mi, my and an integer I. Put m = [my, my;l]. For each
quadruple (i,7,p,q) € Zi such that i,p < m; and j,q < mgy, we define a C-valued
function on K by

Siipa(g1, 92.w) = 50" (g1)s0™ (go)ud,

where g1, 92 € SU(2) and u € CY. For a fixed pair (,7), a space VVI(]m) generated
by

{Sijpa | 0 < p <m0 < g < mo}
is a K-module with the action 7, defined by
T (91, 923 1) Sijipg (T, 43 ) = Sijipg (g1, yg2; vu1)

for g1, g2, z,y € SU(2) and u, v € C". Note that for each pair (i, ), we have that
(Tm,Wégl)) = (Tm,m(;n)) and the 7,,-isotypic component in the right K-module
L*(K) is just the sum of all spaces V[/i(;"), where 0 < i <my,0 < j < ms.
2.3. K-isotypic components of the principal series representa-
tions.

For x € SU(2), Lemma 2.1 implies that

Sym™(S(~2)) = (~1)"Sym" (S(x)),
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hence Sjjpq(k) = Sijpg(—(12,12;1)k) for k € K when my +mg + 1 € 2Z. Therefore
in this case the functions S;;,,(k) are well defined on K i.e., we may say that

K= {(r,,L,Wéom)) | m = [my,ma;l],mi +mo+1€2Z}.

Note also that Lemma 2.1 shows Sjj pq(k) = 6ijpq at the point k = 1. This property
will be used several times later.

Set o = 0y 5. Since L2(K) C L*(K), as a right unitary representation of K, it
has an irreducible decomposition of K x K-bimodules

LK) = &, (7" o™ @ 7}

by the Peter-Weyl theorem. Here (7% | M)[o!] is the o~ -isotypic component in
7" |pm. Hence one can explicitly describe the K-isotypic components of the
principal series representation .

LEMMA 2.2 (cf. [3, 3.6]). Assume mj—+mg >|s| and 1=2ma+s+1—
x(—1) (mod4). Then the 7,-isotypic component H.(7,) in the principal series
representation w is isomorphic to

GBA,Wﬁsm) with v = (¢, (M1 +ma +5)/2 — 1)),
where t runs over integers satisfying,

{ 0<t<(mi+ma+s)/2, ifs<min(m;—mg,ms—my)
(

my—mo+5)/2<t<mi, ifs>max(mg—mi,m —ms)
and when min(m; — mg,ms —my) < s < max(m; — ms, mg — M)

0<t<my, if mp < mg
(my—me+38)/2<t<(my+mg+35)/2, if mi >ms.

Extending the notion given in Definition 1.1 slightly, we can define a set of
markings for each isotypic component of L*(K).

DEFINITION 2.1.  Let (7, Vi,) be an irreducible representation of K with
parametrization m = [my, mg;l]. For each possible pair (i, j), the marking on the
simple K-module (7, m(ym)) specified by the basis
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2
{Sijpq(k) € LL(K) [0 <p<my,0 < g <my}

is called the marking by elementary functions.

CONVENTIONS. Fix 7 and a marked simple K-module 7, in 7 |x with
parametrization m = [my,me;l]. Denote by I(m, 7,) the set of all v such that
v=(t,(m1+me+s)/2—1t)) as in Lemma 2.2 and W§m> occurs in 7 |g. Then the
multiplicity m(m,7,,) of 7, in 7 |k is the cardinality of the finite set I(m, 7).

When ~ € I(m,7,), there is a K-isomorphism from V}, onto Wém) by sending
the set of marked basis onto the set of marked elementary functions and hence

denote this K-isomorphism by [v].

3. (g, K)-module structures.

In this section we investigate the action g = Lie(G) (or go = g ® C) on the
subspace H, i of the K-finite vectors in the representation space H,. Because of
the Cartan decomposition g = £ @ p, it suffices to investigate the action of p or p.

3.1. Clebsch-Gordan coefficients.

We recall that the adjoint representation of K on p, splits into two
irreducible components, namely the holomorphic part p_, and the antiholomorphic
part p_. Let (7, Vi) be an irreducible representation of K with parametrization
(m = [mq, ma;l]).

p,-side. By the well known Clebsch-Gordan theorem and Lemmal.3, the

irreducible components in the K-module p, ®¢ 7,,, are precisely the K-represen-
tations

{ Tmy+er,ma+tea;l+2] | €1,€62 € {:I:l}}7

and we will denote these by 714 +,1) or 7, c,.4] respectively. '
For a fixed pair (e1,e2), e; € {1} with j = 1,2, we define ¢ by

. t
Cz:ijrl (0 <t <mj+ey).

When 7, (,:4] is non zero, we now express the canonical basis vectors of 7, (,.;] in
terms of the basis vectors of p, ®¢ 7, induced from those of p and 7. In this case,
denote by Ij1 1.1 a generator of the vector space HomK(T[e],e%H, P, ®c¢ Tm), which
is unique up to constant multiple. More precisely, we have
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PROPOSITION 3.1.  The image of the (p,q)-th canonical basis vector f, of
Tleyen4+] Under the K-homomorphism I, ,.,) is given by

i. If (e1,e2) = (—1,—1) then
Es3 ® forigr1 — E13 @ fpgr1 + Eou @ fpig — E14 @ [,
ii. If (e1,e2) = (+1,—1) then
(1- C;)(E% ® fogr1 + B2 @ fog) + C;,(Em ® fp—igr1 + B ® fi—1q)s
iii. If (e1,e9) = (—1,41) then
(1- CZ)(EB ® fog — Eos @ fpi1q) + CE(EM ® fpt1g-1 — B14 @ fpg—1),
iv. If (e1,e2) = (+1,+1) then

(1= Cg)((l - C;)E23 ® fpq + C;Ew ® fp-1q)
+ 0(21((1 - C;)EM ® fpg—1 + C;Em ® fp-1g-1)

where 0 < p <my +e; and 0 < q < mgy + e, Tespectively.

PROOF. Denote by u,, the element in p, ®¢ 7, defined in our Proposition.
To prove I, c,:1](f},) = Upg, it is enough to show that the correspondence
fpq = Upq is @ K-module homomorphism by utilizing the infinitesimal representa-
tion of K. Hence we only consider the first case as an example. We now claim that
the weight of the vector u,,—1m,—1 given by

E23 & f’mlmz - E13 X fml—lmg + E24 ® fm1m2—1 - E14 ® fml—lmg—l

is the same as that of f,,,_1m,—1 in T-,—+]- Note that the algebra generated by
h',h* and I, form a Cartan subalgebra. Moreover, it is clear that
Lo - Umy—1my—1 = (I + 2)Upy—1m,—1. By Lemma 1.1 and Lemma 1.3, it follows that

h' B ® fotm—1 = (1+2(m1 — 1) = m1) By ® fon—tmy—1,
h' By ® foy—tm, = (L4 2(my — 1) = m)Ei3 @ finy—1my»
h' Bt @ frme—1 = (—1+2m1 — m1)Ess @ frm—1,

h' - Eys @ frmy = (M1 + 1= 2)E3 @ frnm,-
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Hence the eigenvalue of 1 m,—1 under h! is just m; — 1. Similarly, one can
check that the eigenvalue via h? is equal to ms — 1. The next claim is

1
€ " Upg

Up—1,q9 =
p—La
p

for all possible values of (p,q). By using Lemmal.1 and Lemmal.3 again, we
obtain that

e'  Fo3 @ frirger = (p+ 1) Eay @ fogin,
e' E13® fogr1 = B3 @ fogr1 + PE13 ® fr1g41,
€£ By ® fp+1q = (p + 1)E24 oy qua
el Elu® fog=Eu® fru+p Bia® fyo1y

Hence the claim follows from the above. Similarly, for all possible indices (p, q), we
can show that uy,—1 = €2 - u,,/q. Therefore the natural correspondence f,, — u,
gives a non zero K-isomorphism. O

p_-side. Since (Ad,p_) = 75,9, the tensor product p_®c¢ 7, has four
irreducible K-components:

{T[m1+61.,m2+62:172] | e, € {il}}
and we will denote these by 7, .,.) respectively. Let I, .,..] be a generator of the

vector space Homg (7j, ¢)i—], 9 ®¢ Tin) When 7, ..} is non zero. Similar to the
previous Proposition, we have the following:

PROPOSITION 3.2.  The image of the (p,q)-th canonical basis vector f, of
Tle,ep—] Under the K-homomorphism I, .,._) is given by

i. If (e1,e2) = (—1,—1) then
Eyn ® fprigr + B2 @ fpgr1 — E31 @ fpi1g — E32 @ fq,
ii. If (e1,e9) = (+1,—1) then

(1= ¢))(Es1 ® fog — En @ fpn1) + ¢p(Baz @ fy1g41 — B2 @ f1g),
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i, If (e1,e2) = (=1, 1) then
(1- 03)(E42 ® fog+ En ® fpi1q) + CE(E?)I ® fpr1g-1 + E32 @ fpg-1),
iv. If (e1,e2) = (+1,+1) then

- —C —C 41 pg — CpLu42 p—1q
(1= D)1= ) Bu ® fog = ¢, B @ fy1g)
- CZ((l - C;,)Em ® fpg—1 — C;,E;n ® fp-1g-1),

where 0 < p <mj+e; and 0 < g < mg + ey, respectively.
PROOF. The proof is quite similar to that of Proposition 3.1. (Il

3.2. Matrix form of the Clebsch-Gordan decompositions.

For the further convenience, it is useful to describe the K-isomorphisms
Ij¢, ¢y;4) described in Propositions 3.1 and 3.2 in terms of the canonical basis of V,,,.

To the set of all canonical basis { f,y | 0 < p < my,0 < ¢ < my} of the simple
K-module V,,, we associate a row vector of size (my + 1)(mg + 1) with entries f,,
given by

FT = (f()()afﬂh .. 7f0m27f107f117 .. -7fm1,mzflafm1mz)-

p-side. Define a matrix ¢ _,) = {Cj;} of size (mimy) x (my + 1)(ma +1)
with entries consisting of elements in p, by

Crmaptart1(mo+Dp+g+1 = —FE,
Crnapta+1,(ma+Dp+q+2 = — [y,
anzp+q+1,(7r1,g+1)(1>+1)+q+1 = Foy,
Cvrz2p+q+1,(m2+1)(p+1)+q+2 = E23,

for each 0 < p <mj; —1and 0 < g < my — 1, but all other entries are 0.
Define a matrix €' ..} = {Cy;} of size (m1 + 2)my x (my + 1)(mg + 1) with
entries consisting of elements in p, by

_ 1
Cvn2p+q+1,(m2+1)p+q+l = (1 - Cp)E247
_ 1
szp+q+1,(m2+1)p+q+2 = (1 - Cp)E237
_ 1
Cm2p+q+1,(m2+1)(P*1)+q+1 - CpE147

_ 1
Crnapra1,(mo+1)(p—1)+q+2 _CpE13’
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for0<p<m;+1and0<g<my—1, but all other entries are 0.
Define a matrix €' y..) = {Cj;} of size my(ma +2) x (my + 1)(mg + 1) with
entries consisting of elements in p, by

Clma+2)p++1,(ma+1)p+g+1 =(1- Ci)Eli’n
Climy+2)p+g+1,(ma+1)ptg = _CgEM’
Clmpr2pratt(mit)pi)yrgr1 = —(1 = ¢2) Eng,
Clmt gt (matDptyba = CaEnt,

for 0 <p<mp+1and0<g<my—1, but all other entries are 0.
Define a matrix €'y ;. = {Cj;} of size (my +2)(mg +2) x (my +1)(ma + 1)
with entries consisting of elements in p by

C('rrzz+2)p+q+17(m2+1)p+q+1 = _(1 - 011))(1 - Cz)Egg,
Clmy+2)p+a+1,(ma+1)p+q =(1- Cfl))cgE%
Clmpt2prat1,(mot)(p-D+a+l = _C}J(l - Cz)EB’
Clmat2)pta+1,(ma+1)(p-1)+q = C;CSEM’

for each 0 <p<my;+1 and 0 < qg<mg+1, but all other entries are 0. Then
Proposition 3.1 reads as the following proposition.

PROPOSITION 3.3.  Let €, c,.4], Fr be as above. Then for each pair ey, ez the
simple K-module Vi, .,.4) is generated by the entries of the matriz €, o4 Fr.
Moreover, these entries make a set of canonical basis.

PROOF.  Note that for the (i, j)-th entry of €, .,.1], the index 7 indicates the
i-th coordinate in F ., and the index j indicates the j-th coordinate in F';. The
i-th coordinate in Fi, .., is uniquely expressed as

i=(me+1l+e)p+qg+1

for some pair (p,q) so that 0 <p <mj +e; and 0 < ¢ < mgy + e5. Hence it is just
the (p, ¢)-th canonical basis vector in 7y, .,.4] by definition of €, ,.,). Similarly,
the j-th coordinate in F, corresponds to the (p,q)-th basis vector in 7. Thus the
proposition follows from Proposition 3.1. O

p_-side. Define a matrix ¢ _,_j = {Cj;} of size mimy x (my 4 1)(ma +1)
with entries consisting of elements in p_ by
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Cm2p+q+1,(m2+1)p+q+1 = —Es,
Crnapta+1,(ma+Dp+q+2 = Ey,
Om2p+q+1,(m2+1)(p+1)+q+1 = —Fj,
Cn12p+q+1,(m2+1)(p+1)+q+2 = Ey,

for0<i<my;—1and 0<q<my—1, but all other entries are 0.
Define a matrix ¢, _._) = {Cj;} of size (my + 2)my x (my + 1)(m2 + 1) with
entries consisting of elements in p_ by

Gmgp+q+1,(m2+1)p+q+l = (1 - C}))E31,
Grrz,gp+q+1,(m2+1)p+(1+2 = _(1 - C;))E‘ﬂ’
me-&-q-«—l,(nn-«—l)(p—1)+q+1 = _Cgl)E327
Cm2p+q+1,(7rl,2+l)([)—1)+(]+2 = C;)E427

for0<p<m;+1and0<qg<my—1, but all other entries are 0.
Define a matrix €' .} = {Cj;} of size my(my +2) x (my + 1)(mg + 1) with
entries consisting of elements in p_ by

C(m+2>p+q+1.,(mz+1)p+q+1 =(1- Ci)E@v
Clmp+2p a1 (ma+pra = ¢, B3,
Clmy+Dp+a+Lm+D)p)rgr1 = (1= ¢)Eun,
ClmDprari(matpy b = CoBa1,

for0<p<m;—1and 0<qg<my+ 1, but all other entries are 0.
Define a matrix €, 1, = {Cj;} of size (my + 2)(ma +2) x (my + 1)(ma + 1)
with entries consisting of elements in p_ by

Clmy2)pra+1,(mat Lprgr1 = —(1—¢)(1 = ¢)Eu,
Clmy+2)p+a+1,(ma+1)p+g =—-(1- C;)CSE:”’
O(mz+2)p+q+17(m2+1)(P*1)+q+1 = 0117(1 - C§)E4z,

Clma +2)pta+1.mat 1) (p-1)+¢ = ¢, B,

for each 0 <p<my;+1 and 0 < qg<mg+1, but all other entries are 0. Then
Proposition 3.2 reads as the following proposition.

PROPOSITION 3.4.  Let €, ,.-), F'r be as above. Then for each pair e1, ey the
simple K-module Vi, .,._] is generated by the entries of the matriz %[61,62;_]tFT.
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Moreover, these entries make a set of canonical basis.
PROOF. The proof is similar to that of Proposition 3.3. (I

3.3. The Dirac-Schmid operators.

In this subsection we discuss the main result of this paper, that is, to compute
the matrix forms of intertwining constants explicitly.

p,-side. Note that the homomorphisms [y] with v € I(m, 7,,) defined in the
Section 2 form a basis of the vector space Homg (7,,,, H(7:n)) and hence we fix this
basis for each 7, in m. Take an element i € Homg (7, Hy(7)), then the
(g, K)-module property of HX gives us the canonical surjective K-homomorphism

p+ Q¢ Tm — P+ Im(Tm)-

For the K-module 7, .4, by composing this K-homomorphism with the
injection 7, ;1) C P4 @ ¢ T, We obtain a C-linear map ¢

¢ : Homp (7, Hr (7)) — Hompg (T, eyi47, Ha(Tley e:41))

which is determining the action of p, on HE.
Our goal is to determine the matrix representation I, .,.4) of ¢ i.e., to find a
matrix ', .4 such that

¢ Z M| = Z ] X Lley a4

Yel(m,mm) Vel T)

where m’ = [e1, e9; +]. Therefore we have to compute the image (under @) of the
K-isomorphism [y] : 7, — VVW(m> for each v € I(m, 7,), that is, to express the
K-homomorphism ¢, in the commutative diagram

Tler,e2s+] —— P+ ®C T

¢: S, l[w]

p-i—W’gm) — Hx (7[61762;""])

Diagram 1.

in terms of the fixed basis [/] with v € I(, Tje, e,i4])-
Set v=(my+ma+s)/2. For each 7,, we regard the vector space
Hompg (7, Hr(7n)) as a subspace of the v+ 1-dimensional vector space



678 G. BAYARMAGNAI

Homg (7, @A,Wﬁm)) with v running over all nonnegative integer pairs (¢,;) such
that ¢+t =v and hence define TV, .4} as a matrix of size (v+1+
(61 + 62)/2) X (1/ + 1).

REMARK 3.1.  For fixed e, ey, we remark that ', .,..) is a matrix of size
(7, Tie, y:4]) X I(m,7) but is represented here as an embedded one inside of a
matrix of size(v+ 1+ (e; +e2)/2) X (v + 1). Note that the explicit formula of
M(T, Tle, ep;+]) S€€MS to be involved.

Fix a K-module 7, with m =[mj,mg;l]. Set r=(s+1)/2 and m'
[m1 + e1,ma + e2;1+ 2]. In the following list, we use the coefficients cll, and ¢
defined in Subsection 3.1.

ESHLV]

L. Define a matrix ' ..} = {aij}g<;<,—10<j<, Of size v x (v + 1) so that its all non
zero entries are given by

a1y =ap if (t,v—t) € I(m, 1), (t —Lv—1t) € I(m, T),
ap =b if (t,v—1t)el(m ), (t,v—t—1)€I(m 1),

where

(e +14+mqg +1—2t),

DN | =

ar =

1
bt:—i(m—lfngrr—Zt)

for v = (t, v —t) € I(m,T).

2. Define a matrix I'y 111 = {@ij}o<icp110<j<, Of size (v +2) x (v + 1) so that its
all non zero entries are given by

Ay = ay if (t,v—1t)el(m ), t,v—t+1)e€l(mTy),
gy =b if (t,v—t) € I(m, 1), t+Lv—1t) € I(m ),

where

ar==(u2+14+my +r—2t)(1— ctl)ClQFHl’

DO | =

1
be = =5 (p + 3+ 2my +my + 7~ 2t)ep (1= )
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for v = (t,v —t) € I(m, 7).

3. Define a square matrix I'_ 1) = {aj}o<;<,0<j<, Of size (v + 1) X (v + 1) so that
its all non zero entries are given by

a_1g=ap if (Lv—t)el(mmy), t—1v—t+1)€ l(m )
az; = by if (t,v—1t)€ I(m ), (t,v—1t) € I(m, 1),

where

ar==(e+1+m +r—2t)c_, 1,

N = N =

by=— (1 +1+mg+7r—2t)(1—c )

for v = (t,v —t) € I(m, 7).

4. Define a square matrix 'y 1 = {a;}o<;<) 0<j<, OF size (v + 1) x (v + 1) so that
its all non zero entries are given by

arp = Qy if (t,v—1t)elI(n,1m), (t,v—1t)€ I(n,1m),
CLtJrLt = bt lf (t,V — t) € I(T(', Tm), (t —+ ].,I/ —t— 1) € I(’]T, Tm/)7

where

a; = (u2+1+m1+r—2t)(1—c%),

N = N =

b = (u1+1+2m1—m2—|—r—2t)c%+1
for v = (t,v —t) € I(m, 7).

Our main result is these constructions of I';, ,.,). In the following, we show that
these matrices are the desired ones.

THEOREM 3.5.  Let (e1,eq) be a pair so that e1,es € {£1}. Then the matriz
[, e04) defined above is the C-linear homomorphism between the vector spaces
HomK(Tm, Hw(Tm)) and HomK(T[el,ez;H’ HW(T[el,ez;H)) .

PROOF. We only consider the case (e, es) = (=1, —1), because the remain-
ing cases are proved similarly. Set m' = [m; — 1,my — 151+ 2] and fix a basis
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vector [v]. From the K-equivariant property of ¢, induced from [y] in the

m') .

Diagram 1, the image of a fixed basis element qu in V,,y can be expressed as

¢7(f1(721,)): Z CV'SV pq()

yel(mm)

Note that we omit the index (m) of basis vectors for only 7,, i.e., write f,, instead
of qu Consider the above expression at x = 14, by using S, pq(14) = 0y pg, We then
get

&y (F)(14) = ey, if v/ = (p,q).

On the other hand, the commutativity of the Diagram 1 and Proposition 3.1
imply that ¢ ( fé;") ) is equal to

E235w+1q+1(k) - E13S%pq+1(k) + E24S%p+1q(k) - E14S“/-,1>q(k)'

Note that XS,,,(k) [z=1,=0 for any X €n. By considering the Iwasawa
decomposition of E;; (i = 1,2, j = 3,4) given in Lemma 1.2, one can calculate that

1
(Er39yp0) (1a) = <Hl +-(Lao+h' - 2)) Sypa(k) le=1,

1
=1 2w +6+14 (2p —m1) — (29 — m2)) Sy pe(14),

(E2145yp9)(14) = ; ((H2 +5 (Lo —h'+ h2)> S (k) liet,

1
=1 Cua+2+1—(2p—m1) + (29 — m2))S, pe(14),
<E14S%pq)(14) = —eiSqu(k:) ‘k:h: (q— m2)S’7PQ+1(14)7
(E23S’Y~,P(1)(14) = elS%pq( ) lk=1,= DSy p- 1q(14)

Combining these observations, we obtain that ¢7(f1<)2n/))(14) is equal to

1

2(,&2+q—p+

mip — mso + l
2) S%p+1q(14) + Sv,pq+l(14)
—m1 + l

5 )+p+1—(q—m2)>-

1 m
<\ =3 pi+2+p—q+
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Using S, pq(14) = 6,,, again, one has
v is equal to v — (1,0) or v — (0,1)

and hence the corresponding coefficients ¢, are just

1 s+1
C,Y/:E M2+1+m1+T—2t

or

1 I+s
&y =-3 m—l—mg—&—T—Qt ,

respectively when v = (t,v —t) € I(m, 7). It shows the coincidence of I'_ _..j with
¢. 0

p_-side. By the same computation as the case p,-side we obtain similar
results for the matrix form of the C-linear map

F[el,eggf] : HOHlK(Tm, H?T(T’UL)) - HomK(T[el,eg;f]v H?T(T[el,ez;f]))

L. Define a matrix ' . ) = {aj}g<;<,—10<j<, Of size v x (v + 1) so that its all non
zero entries are given by

ary = ay if (t,v—1t)€el(m 1), t,v—t—1)€Il(m 1),
-1t = by if (t,v—1t)el(m ), t—1,v—1t)€ I(r ),

where
1
at:§(,u2—|—1—m1—r—|—2t),
1
bt:—i(,ul—l—2m1—m2—r+2t)

for vy = (t,v —t) € I(m, 7).

2. Define a matrix I'y 1) = {aij}o<ic,110<j<, Of size (v +2) x (v + 1) so that its
all non zero entries are given by
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apre =a¢ if (v —1) € I(m, 1), (t+1,v —t) € I(m, T),
At = bt if (t,l/ - t) € I(Tr, T’m)v (t,l/ —t+ 1) € I(ﬂ-7 T"L/)’
where
1 2
5 (po +1—mq —r+2t) Cf+1(1 i)y
1
by=——(m+3+me—r+2t)(1—¢)c? 4

2

for v = (t, v —t) € I(m,T).
3. Define a square matrix I' . = {aij;}g<;<, 0<j<, Of size (v + 1) x (v + 1) so that
its all non zero entries are glven by

ag = if (t,v—1t)€l(m 1), (t,v—1t)€ I(n,1m),

a1y =0b if (t,v—t)el(m, 1), t—Lv—t+1)el(n 1y),
where
1
5(,u2+1—m1—7"+2t)(1_c i)
by = %(M1+1_2m1+m2_r+2t)ut+l

for v = (t, v —t) € I(m,71).
4. Define a square matrix I', . = {aj;}g<;<, 0<j<, Of size (v + 1) x (v + 1) so that
its all non zero entries are given by

appy =ap if (t,v—t) € I(m, 7)), G+ 1, v —t—1) € I(m, ),
ag; =b if (t,v—1t)€I(m 1), (t,v—1t) € I(m, To),

where
(o +1—my —r+2t)c,

b (M1+17m277’+2t)(176t)

l\DM—‘l\DIH

for v = (t, v —t) € I(m,71).
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Thus we have the following results similar to that of p_ -side.

THEOREM 3.6.  Let (e1,eq) be a pair so that e1,es € {£1}. Then the matrix
[, e0—) defined above is the C-linear homomorphism between the vector spaces
Hom (T, Hr (7)) and Hompg (i, ey Hr(Tie, e0i-))-

PROOF. Set m' = [my + e1,ma + e2;1 — 2] and fix a basis vector [y]. From
the K-equivariant property of ¢, induced from [7] in the Diagram 1, the image of
a fixed basis element qu ") in Vi can be expressed as

¢7<f1():1n/)) = Z CV'SV pq( z).

yel(mm)

On the other hand, the commutativity of the Diagram 1 and Proposition 3.2
imply that ¢-( fl(,;n)) is equal to

E415%p+1q+1(k) + E42S%pq+1(k) - E315%p+1«1(k) - E32S‘rﬁpq(k)~

Combining the fact XS, ,4(k) [4=1,= 0 for any X € n and the Iwasawa decom-
position of Ej; (¢ =1,2,j = 3,4) given in Lemma 1.2, one can also calculate that

1 1
R A )

1
= 1 (21 +6 =1~ (2p—m1) + (2¢ - m2))57-pq(14)7

1 1
(E1255pg) (1) = 5 <H2 5 (Io — B' + hZ)) Sy pq(K) k=1,

1
= Z (2/1'2 +2-1+ (2]9 - ml) - (2(] - m2))S')/.pq(]~4)7

(E325y pg) (14) = e}rsv,pq(k) li=1,= (p — m1)Sy pr14(14),
(En Squ>(14) Sv pa(k) [k=1,= (g + a2) S, pg-1(14).

It follows that ¢.( £ (14) is equal to

1 mg—m1+l
<_§ (/1'1 +q—p— f) +q+m _p>S“/,p+lq(14)

mi — meo +{

9 )S"r,pq+1(14)~

1
—§(M2+P—q—

As seen in the previous theorem
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~ is equal to v — (0,1) or v — (1,0)

and hence the corresponding coefficients c, are just

1
Cy/:§[u2+1fm17’r‘+2t]

or

1
Cy = —5[u1 —1—2my —mg — 71+ 21,
respectively when v = (¢,v —t) € I(m, 7). It shows the coincidence of T, ,._] with

o. O

3.4. Matrix representations.

We now describe the relations between the matrices €, .,.+) and I',, ,.+] in
terms of the marked elementary basis functions in the K-isotypic component of 7.
Fix 7, with m = [my,my;1]. For a pair (¢, j) such that i + j=v and i,j € Z, we
define a row matrix FE:;) of size 1 x (my + 1)(m2 + 1) with entries in the set of all
marked elementary functions of Wig-'”) introduced in Definition 2.1 as follows

m) __
FE, ) - (S"/,007 S’y,Ola ceey SA,A,Omg; S"/,IO; S’y,lla RN S’y,ml(mzfl); S"{,77L177L2)

with v = (i, 7). To the K-isotypic component of 7, in 7 we associate a matrix S
of size (my1 + 1)(ms2 + 1) X (v + 1) such that the non zero columns are those th’")
with entries in the K-isotypic component H.(7,,), that is,

m) __ [t (m) t (m)
S =[G TEG

where the symbol ! is the transpose and FE/'"’) =0 when v ¢ I(m, 7).
Now we are in a position to state the main result which includes all results in
this paper.

THEOREM 3.7.  Let Tj, c,.4] be a simple K-submodule of the K-module
Py ®c T for a given simple K-module 7, and the K-module (Ad,p,). Then we
have that

Cloperus) S™ = Sleresthyy

where the product of the entries of matrices of the left hand side is the differential
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operation.

3.5. Examples of contiguous relations and their composites.

Here are some examples of contiguous relations along some certain K-types
in a fixed principal series . We refer the reader to [12] for further reference and
contiguous relations.

Let 7 = Ty, m,y) be a K-submodule of 7= nd$ (o, ® " @ 1y). Then
Lemma?2.2 implies that [7|x:7]=1 if |[s|]=m1+my and [=2ma+s+1—
X(—1) (mod 4). Hence, in this case, we may assume that the size of the matrices
Iy iy, T4y are just 1 X 1 d.e., they are constants and Iy .4 is of size 2 x 1,
because the other entries are zero. Although there is no I'_ _), since 7_ _.4) does
not occur in 7.

Note that Hy(r) & W' if 5> 0 and Hy(r) = W) if 5 <0. Pu

l+m; —mse I+ ms —
1/1:# and vy = 5

FORMULA 3.8. Assume s > 0. Then we have

%H.f:ﬂtF (i +1+ Vl)tF( )

(Tml ma) T

(g[aﬂﬂtF(Tml,mz) (,u2 +1+ VQ)tF([ ++

Cg[-«—ﬁ—;—]tFZanz — (/LQ +1—- VQ)tF(Hf,

%[7:+;7] F

l\DIb—‘l\DIHL\DI)—lwlb—l

(1 +1— ) F

-
(mi,ma) —

Here the symbols (£, %) mean (my £ 1,my £ 1), respectively.

FORMULA 3.9.  Assume s < 0 and set n = (0,0). Then we have

Clomin) Fr = % (12 + 1+ 1) Fy
Croe) ' F, = % (1 +1— w)' F
(5[,,+;,}th ; (o +1— yl)tFn
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