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Abstract. In this paper, we study the Lévy-Milman concentration

phenomenon of 1-Lipschitz maps from mm-spaces to R-trees. Our main theorems

assert that the concentration to R-trees is equivalent to the concentration to the

real line.

1. Introduction.

This paper is devoted to investigating the Lévy-Milman concentration

phenomenon of 1-Lipschitz maps from mm-spaces (metric measure spaces) to

R-trees. Here, an mm-space is a triple ðX; dX; �XÞ of a set X, a complete separable

distance function dX on X, and a finite Borel measure �X on ðX; dXÞ. Let

fðXn; dXn
; �Xn

Þg1n¼1 be a sequence of mm-spaces and fðYn; dYnÞg
1
n¼1 a sequence of

metric spaces. Given a sequence ffn : Xn ! Yng1n¼1 of 1-Lipschitz maps, we

consider the following three properties:

(i) (Concentration property) There exist points mfn 2 Yn, n 2 N , such that

�Xn
ðfxn 2 Xn j dYnðfnðxnÞ;mfnÞ � "gÞ ! 0 as n ! 1

for any " > 0.

(ii) (Central concentration property) The maps fn, n 2 N , concentrate to the

center of mass of the push-forward measure ðfnÞ�ð�Xn
Þ. In other words, the

concentration property (i) holds in the case where mfn is the center of mass.

(iii) (Lp-concentration property) For a number p > 0, we have
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Z Z
Xn�Xn

dYn
ðfnðxnÞ; fnðynÞÞpd�Xn

ðxnÞd�Xn
ðynÞ ! 0 as n ! 1:

Each target metric space Yn, n 2 N , is called a screen. Chebyshev’s inequality

proves that the Lp-concentration (iii) implies the concentration property (i) for

any p > 0. If each screen Yn, n 2 N , is an Euclidean space Rk, then the

Lp-concentration (iii) for p � 1 yields the central concentration property (ii) (see

Corollary 2.19). The central concentration (ii) is stronger than the concentration

property (i). There is an example of maps fn, n 2 N , with the concentration

property (i), but not having the central concentration property (ii) (see Remark

2.17). In some special cases, the concentration (i) implies the central and

Lp-concentration properties (ii) and (iii) (see [3, Subsection 2.4] and [7, Section

3(1/2).31]).

Vitali D. Milman first introduced the concentration and the central

concentration properties (i) and (ii) for 1-Lipschitz functions (i.e., Yn ¼ R for

all n 2 N) and emphasized their importance in his investigation of asymptotic

geometric analysis (see [11]). Nowadays those properties are widely studied in

large literature and blend with various areas of mathematics (see [7], [9], [12],

[13], [14], [16], [17] and the references therein for further information). M.

Gromov first considered the case of general screens in [5], [6], and [7, Chapter

3(1/2)]. See [3], [4], and [10] for other works of general screens. In [7], Gromov

considered the concentration and central concentration properties (i) and (ii) for

1-Lipschitz maps by introducing observable diameter ObsDiamY ðX;��Þ and

observable central radius ObsCRadY ðX;��Þ for an mm-spaceX, a metric space Y ,

and � > 0 (see Section 2 for the precise definitions). The L2-concentration

property (iii) first appeared in Gromov’s paper [5]. Motivated by [5], the author

introduced in [3] the observable Lp-variation ObsLp-VarY ðXÞ to study the

property (iii) (see Section 2 for the definition). Note that given a sequence

fXng1n¼1 of mm-spaces and fYng1n¼1 of metric spaces, ObsDiamYnðXn;��Þ (resp.,
ObsCRadYn

ðXn;��Þ, ObsLp-VarYn
ðXnÞ) converges to zero as n ! 1 for any � >

0 if and only if any sequence ffn : Xn ! Yng1n¼1 of 1-Lipschitz maps (resp., central,

Lp-)concentrates.

In this paper, we treat the case of R-tree screens.

THEOREM 1.1. Let fXng1n¼1 be a sequence of mm-spaces. Then, the

following (1.1) and (1.2) are equivalent to each other.

ObsDiamRðXn;��Þ ! 0 as n ! 1 for any � > 0: ð1:1Þ
supfObsDiamT ðXn;��Þ j T is an R-treeg ! 0 as n ! 1 for any � > 0:ð1:2Þ
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Theorem 1.1 is a complete solution to Gromov’s exercise in [7, Section

3(1/2).32]. In [3, Section 5], the author proved it only for simplicial tree screens.

The implication (1.2) ) (1.1) is obvious. For the proof of the converse, we define

the notion of a median for a finite Borel measure on an R-tree in Section 3 and

prove that any 1-Lipschitz maps fn from Xn into R-trees concentrate to medians

of the push-forward measures ðfnÞ�ð�Xn
Þ.

To study the central and Lp-concentration (ii) and (iii) into R-trees, we

estimate the distance between the center of mass and the median of a finite Borel

measure on an R-tree from above in Section 5. For this estimate, we partially

extend K-T. Sturm’s characterization of the center of mass on a simplicial tree to

the case of an R-tree (see Proposition 2.12 and Section 4). From the estimate, we

bound ObsCRadT ðX;��Þ (resp., ObsLp-VarT ðXÞ) from above in terms of

ObsCRadRðX;��Þ (resp., ObsLp-VarRðXÞ) (see Propositions 5.6 and 5.8). As a

result, we obtain

THEOREM 1.2. Let fXng1n¼1 be a sequence of mm-spaces. Then, the

following (1.3) and (1.4) are equivalent to each other.

ObsCRadRðXn;��Þ ! 0 as n ! 1 for any � > 0: ð1:3Þ
supfObsCRadT ðXn;��Þ j T is an R-treeg ! 0 as n ! 1 for any � > 0: ð1:4Þ

THEOREM 1.3. Let fXng1n¼1 be a sequence of mm-spaces and p � 1. Then,

the following (1.5) and (1.6) are equivalent to each other.

ObsLp-VarRðXnÞ ! 0 as n ! 1: ð1:5Þ
supfObsLp-VarT ðXnÞ j T is an R-treeg ! 0 as n ! 1: ð1:6Þ

The condition (1.3) is stronger than (1.1) (see Lemma 2.16 and Remark 2.17),

and (1.5) implies (1.3) (see Corollary 2.19). It seems that the conditions (1.3) and

(1.5) are not equivalent, but we have no counterexample.

In our previous work, the author investigated the above properties (i), (ii),

and (iii) for 1-Lipschitz maps into Hadamard manifolds (see [3, Theorems 1.3, 1.4,

and Lemma 4.4]). The L2-concentration property (iii) in that case is also studied

by Gromov (see [5, Section 13]). Our theorems are thought of as a 1-dimensional

analogue to these works.
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2. Preliminaries.

2.1. Basics of the concentration and the Lp-concentration.

2.1.1 Observable diameter and separation distance.

Let Y be a metric space and � a Borel measure on Y such that m :¼
�ðY Þ < þ1. We define for any � > 0

diamð�;m� �Þ :¼ inffdiamY0 j Y0 � Y is a Borel subset such that �ðY0Þ � m� �g

and call it the partial diameter of �.

DEFINITION 2.1 (Observable diameter). Let ðX; dX; �XÞ be an mm-space

with m :¼ �XðXÞ < þ1 and Y a metric space. For any � > 0 we define the

observable diameter of X by

ObsDiamY ðX;��Þ :¼ supfdiamðf�ð�XÞ;m� �Þ j f : X ! Y is a 1-Lipschitz mapg:

The target metric space Y is called the screen.

The idea of the observable diameter comes from quantum and statistical

mechanics, that is, we think of �X as a state on a configuration space X and f is

interpreted as an observable.

Let ðX; dX; �XÞ be an mm-space. For any �1; �2 � 0, we define the separation

distance SepðX;�1; �2Þ ¼ Sepð�X;�1; �2Þ of X as the supremum of the distance

dXðA;BÞ, where A and B are Borel subsets of X satisfying that �XðAÞ � �1 and

�XðBÞ � �2.

The proof of the following lemmas are easy and we omit it.

LEMMA 2.2 (cf. [7, Section 3(1/2).33]). Let ðX; dX; �XÞ and ðY ; dY ; �Y Þ be

two mm-spaces. Assume that a 1-Lipschitz map f : X ! R satisfies f�ð�XÞ ¼ �Y .

Then we have

SepðY ;�1; �2Þ � SepðX;�1; �2Þ:

LEMMA 2.3. For any � > m=2, we have SepðX;�; �Þ ¼ 0.

The relationships between the observable diameter and the separation

distance are the following:

PROPOSITION 2.4 (cf. [7, Section 3(1/2).33]). Let ðX; dX; �XÞ be an mm-

space and 0 < �0 < �. Then we have

SepðX;�; �Þ � ObsDiamRðX;��0Þ:
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PROPOSITION 2.5 (cf. [7, Section 3(1/2).33]). For any � > 0, we have

ObsDiamRðX;�2�Þ � SepðX;�; �Þ:

See [4, Subsection 2.2] for details of the proofs of the above propositions.

COROLLARY 2.6 (cf. [7, Section 3(1/2).33]). A sequence fXng1n¼1 of mm-

spaces satisfies that

ObsDiamRðXn;��Þ ! 0 as n ! 1

for any � > 0 if and only if SepðXn;�; �Þ ! 0 as n ! 1 for any � > 0.

2.1.2 Observable Lp-variation.

Let ðX; dX; �XÞ be an mm-space and ðY ; dY Þ a metric space. Given a Borel

measure � on Y and p 2 ð0;þ1Þ, we put

Vpð�Þ :¼
Z Z

Y�Y

dY ðx; yÞpd�ðxÞd�ðyÞ
� �1=p

:

For a Borel measurable map f : X ! Y , we also put VpðfÞ :¼ Vpðf�ð�XÞÞ.
Let fXng1n¼1 be a sequence of mm-spaces and fYng1n¼1 a sequence of metric

spaces. For any p 2 ð0;þ1Þ, we say that a sequence ffn : Xn ! Yng1n¼1 of Borel

measurable maps Lp-concentrates if VpðfnÞ ! 0 as n ! 1.

Given an mm-space X and a metric space Y we define

ObsLp-VarY ðXÞ :¼ supfVpðfÞ j f : X ! Y is a 1-Lipschitz mapg;

and call it the observable Lp-variation of X.

LEMMA 2.7. For any closed subset A � X, we have

ObsLp-VarRðAÞ � ObsLp-VarRðXÞ:

PROOF. Let f : A ! R be an arbitrary 1-Lipschitz function. By [1,

Theorem 3.1.2], there exists a 1-Lipschitz extension of f , say ef : X ! R. Hence,

we get

VpðfÞ � VpðefÞ � ObsLp-VarRðXÞ:

This completes the proof. �

See [3, Subsection 2.4] for the relationships between the observable diameter
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and the observable Lp-variation.

2.2. Basics of R-trees.

Before reviewing the definition of R-trees, we recall some standard

terminologies in metric geometry. Let ðX; dXÞ be a metric space. A rectifiable

curve � : ½0; 1� ! X is called a geodesic if its arclength coincides with the distance

dXð�ð0Þ; �ð1ÞÞ and it has a constant speed, i.e., parametrized proportionally to the

arc length. We say that ðX; dXÞ is a geodesic space if any two points in X are

joined by a geodesic between them. Let X be a geodesic space. A geodesic triangle

in X is the union of the image of three geodesics joining a triple of points in X

pairwise. A subset A � X is called convex if every geodesic joining two points in A

is contained in A.

A complete metric space ðT; dT Þ is called an R-tree if it satisfies the following

properties:

(1) For all z; w 2 T there exists a unique unit speed geodesic �z;w from z to w.

(2) The image of every simple path in T is the image of a geodesic.

Denote by ½z; w�T the image of the geodesic �z;w. We also put ðz; w�T :¼ ½z; w�T n
fzg and ðz; wÞT :¼ ½z; w�T n fz; wg. A complete geodesic space T is an R-tree if and

only if it is 0-hyperbolic, that is to say, every edge in any geodesic triangle in T is

included in the union of the other two edges. See [2] for another characterizations

of R-trees. Given z 2 T , we indicate by C T ðzÞ the set of all connected components

of T n fzg. We also denote by C 0
T ðzÞ the set of all fzg [ T 0 for T 0 2 C T ðzÞ.

Although the following lemma is somewhat standard, we prove it for complete-

ness.

LEMMA 2.8. Each T 0 2 C T ðzÞ is convex.

PROOF. By the property (2) of R-trees, it is sufficient to prove that T 0 is

arcwise connected. Taking a point v 2 T 0, we put

A :¼ fw 2 T 0 j v and w are connected by a path in T 0g:

It is easy to see that the set A is closed in T 0. Since every metric ball in T is arcwise

connected, the set A is also open. Since T 0 is connected, we get T 0 ¼ A. This

completes the proof. �

A subset in an R-tree is called a subtree if it is a closed convex subset. Note

that a subtree itself is an R-tree.

PROPOSITION 2.9. Every connected subset in an R-tree is convex.
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PROOF. Let T be an R-tree. Suppose that there exists a connected subset

T 0 � T which is not convex. Then, there are points z; w 2 T 0 and ez 2 ðz; wÞT such

that ez =2 T 0. Since T 0 ¼
S
fT 0 \ C j C 2 C T ðezÞg and each C 2 C T ðezÞ is open, by the

connectivity of T 0, there is C0 2 C T ðezÞ such that T 0 � C0. Since C0 is convex by

Lemma 2.8, we get ez 2 ½z; w�T � C0. This is a contradiction since ez =2 C0. This

completes the proof. �

2.3. Center of mass of a measure on a CAT(0)-space and observ-

able central radius.

2.3.1 Basics of the center of mass of a measure on a CAT(0)-space.

In this subsection, we review Sturm’s works about measures on a CAT(0)-

space. We refer to [8] and [15] for details. A geodesic metric space X is called a

CAT(0)-space if we have

dXðx; �ð1=2ÞÞ2 �
1

2
dXðx; yÞ2 þ

1

2
dXðx; zÞ2 �

1

4
dXðy; zÞ2

for any x; y; z 2 X and any minimizing geodesic � : ½0; 1� ! X from y to z. For

example, Hadamard manifolds, Hilbert spaces, and R-trees are all CAT(0)-

spaces.

Let ðX; dXÞ be a metric space. We denote by BðXÞ the set of all finite Borel

measures � on X with separable supports. We indicate by B1ðXÞ the set of all

Borel measures � 2 BðXÞ such that
R
X dXðx; yÞd�ðyÞ < þ1 for some (hence all)

x 2 X. We also indicate by P1ðXÞ the set of all probability measures in B1ðXÞ.
For any � 2 B1ðXÞ and z 2 X, we consider the function hz;� : X ! R defined by

hz;�ðxÞ :¼
Z
X

fdXðx; yÞ2 � dXðz; yÞ2gd�ðyÞ:

Note thatZ
X

j dXðx; yÞ2 � dXðz; yÞ2jd�ðyÞ � dXðx; zÞ
Z
X

fdXðx; yÞ þ dXðz; yÞgd�ðyÞ < þ1:

A point z0 2 X is called the center of mass of the measure � 2 B1ðXÞ if for any

z 2 X, z0 is a unique minimizing point of the function hz;�. We denote the point z0
by cð�Þ. A metric space X is said to be centric if every � 2 B1ðXÞ has the center of
mass.

PROPOSITION 2.10 (cf. [15, Proposition 4.3]). Any complete CAT(0)-space
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is centric.

A simple variational argument yields the following lemma.

LEMMA 2.11 (cf. [15, Proposition 5.4]). Let H be a Hilbert space. Then for

each � 2 B1ðHÞ with m ¼ �ðXÞ, we have

cð�Þ ¼ 1

m

Z
H

yd�ðyÞ:

Let ðT; dT Þ be an R-tree and � 2 B1ðT Þ. For z 2 T and T 0 2 C 0
T ðzÞ, we put

cz;T 0 ð�Þ :¼
Z
T 0
dT ðz; wÞd�ðwÞ �

Z
TnT 0

dT ðz; wÞd�ðwÞ:

Let us consider a (possibly infinite) simplicial tree Ts. Here, the length of each

edge of Ts is not necessarily equal to 1. We assume that every vertex of Ts is an

isolated point in the vertex set of Ts.

PROPOSITION 2.12 (cf. [15, Proposition 5.9]). Let � 2 B1ðTsÞ and z 2 Ts.

Then, z ¼ cð�Þ if and only if cz;T 0 ð�Þ � 0 for any T 0 2 C 0
Ts
ðzÞ.

PROPOSITION 2.13 (cf. [15, Proposition 6.1]). Let X be a complete

CAT(0)-space and � 2 B1ðXÞ. Assume that the support of � is contained in a

closed convex subset K of X. Then, we have cð�Þ 2 K.

Let X be a metric space. For �; � 2 P1ðXÞ, we define the L1-Wasserstein

distance dW
1 ð�; �Þ between � and � as the infimum of

R
X�X dXðx; yÞd�ðx; yÞ, where

� 2 P1ðX �XÞ runs over all couplings of � and �, that is, measures � with the

property that �ðA�XÞ ¼ �ðAÞ and �ðX � AÞ ¼ �ðAÞ for any Borel subset A � X.

LEMMA 2.14 (cf. [18, Theorem 7.12]). A sequence f�ng1n¼1 � P1ðXÞ con-

verges to � 2 P1ðXÞ with respect to the distance function dW
1 if and only if the

sequence f�ng1n¼1 converges weakly to the measure � and

lim
n!1

Z
X

dXðx; yÞd�nðyÞ ¼
Z
X

dXðx; yÞd�ðyÞ

for some (and then any) x 2 X.

THEOREM 2.15 (cf. [15, Theorem 6.3]). Let X be a CAT(0)-space. Given
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�; � 2 P1ðXÞ, we have dXðcð�Þ; cð�ÞÞ � dW
1 ð�; �Þ.

2.3.2 Observable central radius.

Let Y be a metric space and assume that � 2 B1ðY Þ has the center of mass.

We denote by BY ðy; rÞ the closed ball in Y centered at y 2 Y and with radius

r > 0. For any � > 0, putting m :¼ �ðY Þ, we define the central radius

CRadð�;m� �Þ of � as the infimum of � > 0 such that �ðBY ðcð�Þ; �ÞÞ � m� �.

Let ðX; dX; �XÞ be an mm-space with �X 2 B1ðXÞ and Y a centric metric

space. For any � > 0, we define

ObsCRadY ðX;��Þ :¼ supfCRadðf�ð�XÞ;m� �Þ j f : X ! Y is a 1-Lipschitz mapg;

and call it the observable central radius of X.

LEMMA 2.16 (cf. [7, Section 3(1/2).31]). For any � > 0, we have

diamð�;m� �Þ � 2CRadð�;m� �Þ:

In particular, we get

ObsDiamY ðX;��Þ � 2ObsCRadY ðX;��Þ:

REMARK 2.17. From the above lemma, we see that the central concen-

tration implies the concentration. The converse is not true in general. For

example, let us consider the mm-spaces Xn :¼ fxn; yng with the distance function

dXn
given by dXn

ðxn; ynÞ :¼ n and with the Borel probability measure �Xn
given by

�Xn
ðfxngÞ :¼ 1� 1=n and �Xn

ðfyngÞ :¼ 1=n. Then, 1-Lipschitz maps fn : Xn ! R

defined by fnðxÞ :¼ dXn
ðx; xnÞ satisfy that cððfnÞ�ð�Xn

ÞÞ ¼ 1 for all n 2 N , whereas

the maps fn concentrate to 0 and ObsDiamRðXn;��Þ ! 0 as n ! 1 for any

� > 0.

LEMMA 2.18. Let � 2 B1ðRnÞ with m :¼ �ðRnÞ. Then, for any p � 1 and

� > 0, we have

CRadð�;m� �Þ �
Vpð�Þ

ðm�Þ1=p
: ð2:1Þ

In the case of p ¼ 2, we also have the better estimate

CRadð�;m� �Þ �
V2ð�Þffiffiffiffiffiffiffiffiffiffi
2m�

p : ð2:2Þ
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PROOF. We shall prove that �ðRn nBRnðcð�Þ; �0ÞÞ � � for �0 :¼ Vpð�Þ=
ðm�Þ1=p. Suppose that �ðRn nBRnðcð�Þ; �0ÞÞ > �. From Lemma 2.11, we getZ

Rn
jcð�Þ � xjpd�ðxÞ �

Vpð�Þp

m
:

Hence, by Chebyshev’s inequality, we see that

Vpð�Þp

m
¼ �p0� <

Z
Rn

jcð�Þ � xjpd�ðxÞ �
Vpð�Þp

m
;

which is a contradiction. Therefore, we obtain �ðBRnðcð�Þ; �0ÞÞ � m� � and so

(2.1).

Since Z
Rn

jcð�Þ � xj2d�ðxÞ ¼
V2ð�Þ2

2m
;

the same argument yields (2.2). This completes the proof. �

COROLLARY 2.19. Let X be an mm-space with �X 2 B1ðXÞ. Then, for any

p � 1, we have

ObsCRadRnðX;��Þ �
1

ðm�Þ1=p
ObsLp-VarRnðXÞ: ð2:3Þ

In the case of p ¼ 2, we also have the better estimate

ObsCRadRnðX;��Þ �
1ffiffiffiffiffiffiffiffiffiffi
2m�

p ObsL2-VarRnðXÞ: ð2:4Þ

COROLLARY 2.20. Let X be an mm-space. Then, for any p � 1 and � > 0,

we have

SepðX;�; �Þ � 2

ðm�Þ1=p
ObsLp-VarRðXÞ: ð2:5Þ

In the case of p ¼ 2, we also have

SepðX;�; �Þ �
ffiffiffiffiffiffiffiffi
2

m�

r
ObsL2-VarRðXÞ: ð2:6Þ
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PROOF. Assume first that there is a 1-Lipschitz function f : X ! R such

that f�ð�XÞ =2 B1ðRÞ. From Hölder’s inequality, we have
R
R jx� yjpdf�ð�XÞðyÞ ¼

þ1 for any x 2 X. This implies VpðfÞ ¼ þ1 and so ObsLp-VarRðXÞ ¼ þ1.

We consider the other case that f�ð�XÞ 2 B1ðRÞ for any 1-Lipschitz function

f : X ! R. Combining Proposition 2.4 with Lemma 2.16 and (2.3), we have

SepðX;�; �Þ � 2

ðm�0Þ1=p
ObsLp-VarRðXÞ

for any � > �0 > 0. Letting �0 ! �, we have (2.5). Replacing (2.3) with (2.4) in the

above argument, we also obtain (2.6). �

3. Existence of a median in an R-tree.

Let T be an R-tree and � a finite Borel measure on T with m :¼ �ðT Þ < þ1.

A median of � is a point z 2 T such that there exist two subtrees T 0, T 00 � T such

that T ¼ T 0 [ T 00, T 0 \ T 00 ¼ fzg, �ðT 0Þ � m=3, and �ðT 00Þ � m=3.

EXAMPLE 3.1. For i ¼ 1; 2; 3, let Ti :¼ fði; rÞ j r 2 ½0;þ1Þg be three copies

of ½0;þ1Þ equipped with the usual Euclidean distance function. The tripod T is

the metric space obtained by gluing together all these spaces Ti, i ¼ 1; 2; 3, at their

origins with the intrinsic distance function. We consider the Borel probability

measure � defined by �ðfði; 1ÞgÞ :¼ 1=3 for all i ¼ 1; 2; 3. We easily see that the

origin of T is a median of the measure �. We note that there is no point in T

separating T into two subtrees with measures greater than 1/3.

The existence of a median of a finite Borel measure on a simplicial tree is

proved in [3, Proposition 5.2]. The purpose of this section is to prove the existence

of a median of a finite Borel measure on an R-tree, which is needed for the proofs

of our main theorems. Although the proof of the existence is similar to the proof

for the case of a simplicial tree, we give it for completeness:

PROPOSITION 3.2. Every finite Borel measure on an R-tree has a median.

PROOF. Let � be a finite Borel measure on an R-tree with m :¼ �ðT Þ.
Assume that a point z 2 T satisfies that �ðT 0Þ < m=3 for any T 0 2 C0

T ðzÞ, then it is

easy to check that z is a median of �. So, we assume that for any z 2 T there exists

T ðzÞ 2 C 0
T ðzÞ such that �ðT ðzÞÞ � m=3. If for some z 2 T , there exists

T 0 2 C 0
T ðzÞ n fT ðzÞg such that �ðT 0Þ � m=3, then this z is a median of �. Thereby,

we also assume that �ðT 0Þ < m=3 for any z 2 T and T 0 2 C 0
T ðzÞ n fT ðzÞg.

Fixing a point z0 2 T , we assume that there exists z 2 T ðz0Þ n fz0g such that
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z0 2 T ðzÞ. Put

t0 :¼ infft 2 ð0; dT ðz0; zÞ� j z0 2 T ð�z0;zðtÞÞg:

CLAIM 3.3. �z0;zðt0Þ is a median of �.

PROOF. Assume first that t0 ¼ 0. Then, taking a monotone decreasing

sequence ftng1n¼1 � ð0; dT ðz0; zÞ� such that tn ! 0 as n ! 1 and z0 2 T ð�z0;zðtnÞÞ
for any n 2 N , we shall show that

T1
n¼1 T ð�z0;zðtnÞÞ � ðT n T ðz0ÞÞ [ fz0g. If it is,

we conclude that the point z0 ¼ �z0;zð0Þ is a median of � as follows: From the

uniqueness of T ð�z0;zðtnÞÞ, we have T ð�z0;zðtnþ1ÞÞ � T ð�z0;zðtnÞÞ for each n 2 N .

Thus, we get �ð
T1

n¼1 T ð�z0;zðtnÞÞÞ ¼ limn!1 �ðT ð�z0;zðtnÞÞÞ � m=3.

Suppose that there exists w 2 ðT ðz0Þ n fz0gÞ \
T1

n¼1 T ð�z0;zðtnÞÞ. Note that

ðz0; z�T \ ðz0; w�T 6¼ ;. Actually, if ðz0; z�T \ ðz0; w�T ¼ ;, then it follows from the

property (2) of R-trees that ½z; w�T ¼ ½z0; z�T [ ½z0; w�T . Especially, we have

z0 2 ½z; w�T . Since T ðz0Þ n fz0g is convex by virtue of Lemma 2.8, ½z; w�T does not

contain the point z0. This is a contradiction. Thus, there exists t 2 ð0; dT ðz0; zÞ�
such that �z0;zðtÞ 2 ðz0; z�T \ ðz0; w�T . We pick n0 2 N with tn0

< t. Since

w 2 ðT ðz0Þ n fz0gÞ \
T1

n¼1 T ð�z0;zðtnÞÞ � T ð�z0;zðtn0
ÞÞ n fz0g, we get �z0;zðtÞ 2 ðz0;

w�T � T ð�z0;zðtn0
ÞÞ n fz0g. Thereby, we get �z0;zðtÞ 2 T ð�z0;zðtn0

ÞÞ n f�z0;zðtn0
Þg.

Therefore, since z0 2 T ð�z0;zðtn0
ÞÞ n f�z0;zðtn0

Þg and T ð�z0;zðtn0
ÞÞ n f�z0;zðtn0

Þg is

convex, we obtain

�z0;zðtn0
Þ 2 ½z0; �z0;zðtÞ�T � T ð�z0;zðtn0

ÞÞ n f�z0;zðtn0
Þg:

This is a contradiction. Therefore, we have
T1

n¼1 T ð�z0;zðtnÞÞ � ðT n T ðz0ÞÞ [ fz0g.
We consider the other case that t0 > 0. Take a monotone increasing sequence

ftng1n¼1 � ð0;þ1Þ such that tn ! t0 as n ! 1 and z0 =2 T ð�z0;zðtnÞÞ for each

n 2 N . Then, the same proof in the case of t0 ¼ 0 implies that

�ð
T1

n¼1 T ð�z0;zðtnÞÞÞ � m=3 and
T1

n¼1 T ð�z0;zðtnÞÞ � ðT n T ð�z0;zðt0ÞÞÞ [ f�z0;zðt0Þg.
Therefore, �z0;zðt0Þ is a median of �. This completes the proof of the claim. �

We next assume that z0 =2 T ðzÞ for any z 2 T ðz0Þ. We denote by � the set of

all unit speed geodesics � : ½0; Lð�Þ� ! T ðz0Þ such that �ð0Þ ¼ z0 and �ð½t; Lð�Þ�Þ �
T ð�ðtÞÞ for any t 2 ½0; Lð�Þ�. Because of the assumption, we easily see

CLAIM 3.4. For any z 2 T ðz0Þ, we have �z0;z 2 �.

CLAIM 3.5. For any �; �0 2 � with Lð�Þ � Lð�0Þ, we have

½�ð0Þ; �ðLð�ÞÞ�T � ½�0ð0Þ; �0ðLð�0ÞÞ�T :
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PROOF. Suppose that

t0 :¼ supft 2 ½0; Lð�Þ� j ½�ð0Þ; �ðtÞ�T � ½�0ð0Þ; �0ðLð�0ÞÞ�Tg < Lð�Þ:

Then, we have �ðtÞ =2 ½�0ð0Þ; �0ðLð�0ÞÞ�T for any t > t0. Actually, if �ðtÞ 2
½�0ð0Þ; �0ðLð�0ÞÞ�T , then we have �ðtÞ ¼ �0ðtÞ. Thus, ½�ðt0Þ; �ðtÞ�T ¼ ½�0ðt0Þ; �0ðtÞ�T
by the property ð2Þ of R-trees. Thereby, we get ½�ð0Þ; �ðtÞ�T � ½�0ð0Þ; �0ðLð�0ÞÞ�T .
Since t > t0, this contradicts the definition of t0. Therefore, from the property (2)

of R-trees, we have

½�ðLð�ÞÞ; �0ðLð�0ÞÞ�T ¼ ½�ðt0Þ; �ðLð�ÞÞ�T [ ½�0ðt0Þ; �0ðLð�0ÞÞ�T : ð3:1Þ

Since �; �0 2 �, we have �ðLð�ÞÞ; �0ðLð�0ÞÞ 2 T ð�ðt0ÞÞ n f�ðt0Þg. So, from the

convexity of T ð�ðt0ÞÞ n f�ðt0Þg, we get ½�ðLð�ÞÞ; �0ðLð�0ÞÞ�T � T ð�ðt0ÞÞ n f�ðt0Þg.
This is a contradiction, because �ðt0Þ 2 ½�ðLð�ÞÞ; �0ðLð�0ÞÞ�T by (3.1). This

completes the proof of the claim. �

Putting 	 :¼ supfLð�Þ j � 2 �g, we shall show that 	 < þ1. If 	 < þ1, we

finish the proof of the proposition as follows: By the completeness of R-trees and

Claim 3.5, there exists unique � 2 � with Lð�Þ ¼ 	. We also note that 	 > 0 by

Claim 3.4. Thus, there exists a monotone increasing sequence ftng1n¼1 of positive

numbers such that tn ! 	 as n ! 1. We easily see that T ð�ðtnþ1ÞÞ � T ð�ðtnÞÞ for
any n 2 N and

T1
n¼1 T ð�ðtnÞÞ ¼ f�ðLð�ÞÞg. Since �ðT ð�ðtnÞÞÞ � m=3, the point

�ðLð�ÞÞ is a median of �.

Suppose that 	 ¼ þ1. Then, taking a sequence f�ng1n¼1 � � such that

Lð�nÞ < Lð�nþ1Þ for any n 2 N and Lð�nÞ ! þ1 as n ! 1, we obtainT1
n¼1 T ð�nðLð�nÞÞÞ ¼ ;. Since T ð�nþ1ðLð�nþ1ÞÞÞ � T ð�nðLð�nÞÞÞ for any n 2 N ,

we have

0 ¼ �
\1
n¼1

T ð�nðLð�nÞÞÞ
 !

¼ lim
n!1

�ðT ð�nðLð�nÞÞÞÞ �
m

3
;

which is a contradiction. This completes the proof of the proposition. �

4. The necessity in Proposition 2.12 for R-trees.

In order to prove the main theorems, we extend the necessity in Proposition

2.12 to R-trees:

PROPOSITION 4.1. Let T be an R-tree and � 2 B1ðT Þ. Then, we have
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ccð�Þ;T 0 ð�Þ � 0 for any T 0 2 C 0
T ðcð�ÞÞ.

PROOF. For simplicity, we assume that �ðT Þ ¼ 1. We shall approximate

the measure � by a measure whose support lies on a simplicial tree in T . Given

n 2 N , there exists a compact subset Kn � T such that �ðT nKnÞ < 1=n andR
TnKn

dT ðcð�Þ; wÞd�ðwÞ < 1=n. Take a ð1=nÞ-net fzni g
ln
i¼1 of Kn with mutually

different elements such that dT ðcð�Þ; zn1 Þ < 1=n. We then take a sequence fAn
i g

ln
i¼1

of mutually disjoint Borel subset of Kn such that zni 2 An
i , A

n
i � BT ðzni ; 1=nÞ, and

Kn ¼
Sln

i¼1 A
n
i . Define the Borel probability measure �n on fzni g

ln
i¼1 by

�nðfzn1gÞ :¼ �ðAn
1 Þ þ �ðT nKnÞ and �nðfzni gÞ :¼ �ðAn

i Þ for i � 2.

CLAIM 4.2. dW
1 ð�n; �Þ ! 0 as n ! 1.

PROOF. We shall show that

lim
n!1

Z
T

dT ðcð�Þ; wÞd�nðwÞ ¼
Z
T

dT ðcð�Þ; wÞd�ðwÞ: ð4:1Þ

Since

Z
T

dT ðcð�Þ; wÞd�nðwÞ ¼
Xln
i¼1

dT ðcð�Þ; zni Þ�ðAn
i Þ þ dT ðcð�Þ; zn1 Þ�ðT nKnÞ;

we have

Z
T

dT ðcð�Þ; wÞd�nðwÞ �
Xln
i¼1

dT ðcð�Þ; zni Þ�ðAn
i Þ

�����
����� < 1

n2
: ð4:2Þ

By An
i � BT ðzni ; 1=nÞ, we get

Xln
i¼1

dT ðcð�Þ; zni Þ�ðAn
i Þ �

Z
Kn

dT ðcð�Þ; wÞd�ðwÞ
�����

����� ð4:3Þ

¼
Xln
i¼1

Z
An

i

fdT ðcð�Þ; wÞ � dT ðcð�Þ; zni Þgd�ðwÞ
�����

����� �Xln
i¼1

Z
An

i

dT ðw; zni Þd�ðwÞ �
1

n
:

Hence, combining (4.2) with (4.3) andZ
Kn

dT ðcð�Þ; wÞd�ðwÞ �
Z
T

dT ðcð�Þ; wÞd�ðwÞ
���� ���� � Z

TnKn

dT ðcð�Þ; wÞd�ðwÞ <
1

n
;
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we obtain (4.1). The same way as the above proof shows that the sequence f�ng1n¼1

converges weakly to the measure �. Therefore, by using Lemma 2.14, this

completes the proof of the claim. �

Applying Claim 4.2 to Theorem 2.15, we get cð�nÞ ! cð�Þ as n ! 1. Since

the convex hull in T of the set fzni g
ln
i¼1 is a simplicial tree with finite vertex set and

cð�nÞ is contained in the convex hull by Proposition 2.13, it follows from

Proposition 2.12 that ceT;cð�nÞð�nÞ � 0 for any eT 2 C 0
T ðcð�nÞÞ. Let T 0 2 C 0

T ðcð�ÞÞ.
Assume first that cð�nÞ 2 T n T 0 for infinitely many n 2 N . Then, taking Tn 2

C 0
T ðcð�nÞÞ with T 0 � Tn, we have

cT 0;cð�Þð�nÞ � cTn;cð�nÞð�nÞ þ dT ðcð�nÞ; cð�ÞÞ � dT ðcð�nÞ; cð�ÞÞ:

Therefore, we obtain cT 0;cð�Þð�Þ ¼ limn!1 cT 0;cð�Þð�nÞ � 0.

We consider the other case that cð�nÞ 2 T 0 for any n 2 N . Let

zn 2 ½cð�Þ; cð�1Þ�T be the unique point such that

dT ðzn; cð�nÞÞ ¼ inffdT ðz; cð�nÞÞ j z 2 ½cð�Þ; cð�1Þ�Tg:

Since cð�nÞ 2 T 0 for all n 2 N and cð�nÞ ! cð�Þ as n ! 1, by taking a subse-

quence, we may assume that dT ðcð�Þ; znþ1Þ � dT ðcð�Þ; znÞ for any n 2 N . For each

n � 2, we take Tn 2 C 0
T ðznÞ and eTn 2 C 0

T ðcð�nÞÞ such that cð�1Þ 2 Tn and cð�1Þ 2eTn. Observe that Tn � Tnþ1. Since Tn � eTn, we have

cTn;znð�nÞ � ceT;cð�nÞð�nÞ þ dT ðcð�nÞ; znÞ � dT ðcð�nÞ; znÞ: ð4:4Þ

We also easily see

CLAIM 4.3. T 0 n fcð�Þg ¼
S1

n¼2 Tn.

The same proof as Claim 4.2 implies that

sup

Z
A

dT ðzn; wÞd�nðwÞ�
Z
A

dT ðzn; wÞd�ðwÞ
���� ����jA�T is a Borel subset

� �
!0 as n!1:

Combining this with (4.4) and Claim 4.3, we obtain

cT 0;cð�Þð�Þ ¼ lim
n!1

cTn;znð�Þ ¼ lim
n!1

cTn;znð�nÞ � lim
n!1

dT ðcð�nÞ; znÞ ¼ 0:

This completes the proof of the proposition. �
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The author does not know whether the converse of Proposition 4.1 holds or

not.

5. Proof of the main theorems.

Combining Proposition 3.2 with the same proof as [3, Lemma 5.3] implies the

following proposition:

PROPOSITION 5.1. Let T be an R-tree and � a finite Borel measure. Then,

for any � > 0, we have

� BT m�; Sep �;
m

3
;
�

2

� �� �� �
� m� �; ð5:1Þ

where m� is a median of the measure �. In particular, letting X be an mm-space,

we have

ObsDiamT ðX;��Þ � 2 Sep X;
m

3
;
�

2

� �
: ð5:2Þ

Proposition 5.1 together with Corollary 2.6 yields Theorem 1.1. The

following way to prove Theorem 1.1 is much easier and more straightforward

than the above way, that is, to prove the existence of a median of a measure on an

R-tree.

PROOF OF THEOREM 1.1. Our goal is to prove the following inequality:

ObsDiamT ðX;��Þ � 3 Sep X;
�

3
;
�

3

� �
þ 4ObsDiamRðX;��Þ ð5:3Þ

for any � > 0 with � � m=2. Let f : X ! T be an arbitrary 1-Lipschitz map. Fixing

a point z0 2 T , we shall consider the function g : T ! R defined by

gðzÞ :¼ dT ðz; z0Þ. Since g 	 f : X ! R is a 1-Lipschitz function, by the definition

of the observable diameter, there is an interval A ¼ ½s; t� � ½0;þ1Þ such that

diamA � ObsDiamRðX;��Þ and ðg 	 fÞ�ð�XÞðAÞ � m� �. Observe that the set

g�1ðAÞ is the annulus fz 2 T j s � dT ðz; z0Þ � tg. We denote by C the set of all

connected components of the set g�1ðAÞ n fz0g.

CLAIM 5.2. For any T 0 2 C , we have diam T 0 � 2 diamA.

PROOF. Given any z1; z2 2 T 0, we shall show that �z0;z1ðsÞ ¼ �z0;z2ðsÞ.
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Suppose that �z0;z1ðsÞ 6¼ �z0;z2ðsÞ. Then, putting s0 :¼ supft 2 ½0;þ1Þ j �z0;z1ðtÞ ¼
�z0;z2ðtÞg, we have 0 < s0 < s. By the definition of s0 and the property (2) of

R-trees, we have ð�z0;z1ðs0Þ; z1�T \ ð�z0;z2ðs0Þ; z2�T ¼ ;. Therefore, by the property

(2) of R-trees, we get

½z1; z2�T ¼ ½�z0;z1ðs0Þ; z1�T [ ½�z0;z2ðs0Þ; z2�T :

Hence, since T 0 is convex by virtue of Proposition 2.9, the points z1 and z2 must be

included in different components in C T ð�z0;z1ðs0ÞÞ. This is a contradiction, since

T 0 ¼
S
fC \ T 0 j C 2 C T ð�z0;z1ðs0ÞÞg and T 0 is connected. Thus, we have

�z0;z1ðsÞ ¼ �z0;z2ðsÞ. Consequently, we obtain

dT ðz1; z2Þ � dT ðz1; �z0;z1ðsÞÞ þ dT ð�z0;z2ðsÞ; z2Þ � 2ðt� sÞ � 2ObsDiamRðX;��Þ:

This completes the proof of the claim. �

We shall consider the relation 
 on C defined by T 0 
 T 00 if and only if

dT ðT 0; T 00Þ � SepðX;�=3; �=3Þ.

CLAIM 5.3. The relation 
 is an equivalence relation on C .

PROOF. We only prove ‘‘T1 
 T2, T2 
 T3 ) T1 
 T3’’ for different Ti 2 C ,

i ¼ 1; 2; 3. Taking points zi 2 Ti for i ¼ 1; 2; 3, we put s12 :¼ maxft 2 ½0;þ1Þ j
�z0;z1ðtÞ ¼ �z0;z2ðtÞg and s23 :¼ maxft 2 ½0;þ1Þ j �z0;z2ðtÞ ¼ �z0;z3ðtÞg. Since Ti are

different to each other, we easily see that s12 � s, s23 � s,

dT ðT1; T2Þ ¼ dT ð�z0;z1ðsÞ; �z0;z1ðs12ÞÞ þ dT ð�z0;z1ðs12Þ; �z0;z2ðsÞÞ
¼ 2ðs� s12Þ
� SepðX;�=3; �=3Þ;

and similarly dT ðT2; T3Þ ¼ 2ðs� s23Þ � SepðX;�=3; �=3Þ. If s12 � s23, we then

obtain

dT ðT1; T3Þ � dT ð�z0;z1ðsÞ; �z0;z3ðsÞÞ
� dT ð�z0;z1ðsÞ; �z0;z1ðs12ÞÞ þ dT ð�z0;z2ðs12Þ; �z0;z2ðs23ÞÞ
þ dT ð�z0;z3ðs23Þ; �z0;z3ðsÞÞ

¼ ðs� s12Þ þ ðs23 � s12Þ þ ðs� s23Þ
¼ 2ðs� s12Þ
� SepðX;�=3; �=3Þ:
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In the case of s23 � s12, the same conclusion also follows from the same argument

as the above. This completes the proof of the claim. �

Let C 0 denote the set of equivalence classes of C = 
. Suppose that

f�ð�XÞð
S

T 02S T
0Þ < �=3 for any S 2 C 0. Since f�ð�XÞðg�1ðAÞÞ � m� � � �, we

have C 0 � C 0 such that

�

3
� f�ð�XÞ

[
S02C 0

[
T 02S0

T 0

 !
<

2�

3
:

Hence, by putting C 00 :¼ C 0 n C 0, we get

Sep X;
�

3
;
�

3

� �
< dT

[
S02C 0

[
T 02S0

T 0;
[

S002C 00

[
T 002S00

T 00

 !

� Sep f�ð�XÞ;
�

3
;
�

3

� �
� Sep X;

�

3
;
�

3

� �
;

which is a contradiction. Thereby, there exists S 2 C 0 such that f�ð�XÞð
S

T 02S
T 0Þ � �=3. For a subset A � T and r > 0, we put Ar :¼ fz 2 T j dT ðz; AÞ � rg.

CLAIM 5.4. f�ð�XÞðð
S

T 02S T
0ÞSepðX;�=3;�=3ÞÞ � m� 2�=3.

PROOF. Suppose that f�ð�XÞðð
S

T 02S T
0ÞSepðX;�=3;�=3ÞÞ < m� 2�=3. Then, we

have a contradiction since

Sep X;
�

3
;
�

3

� �
< dT

[
T 02S

T 0; T n
[
T 02S

T 0

 !
SepðX;�=3;�=3Þþ"

0@ 1A
� Sep f�ð�XÞ;

�

3
;
�

3

� �
� Sep X;

�

3
;
�

3

� �

for any sufficiently small " > 0. �

Combining Claims 5.2 and 5.4, we obtain
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diamðf�ð�XÞ;m� �Þ � diam
[
T 02S

T 0

 !
SepðX;�=3;�=3Þ

0@ 1A
� 3 Sep X;

�

3
;
�

3

� �
þ 4ObsDiamRðX;��Þ

and so (5.3). This completes the proof of the theorem. �

Note that the inequality (5.3) yields a slightly worse estimate for the

observable diameter ObsDiamT ðX;��Þ than (5.2).

Let T be an R-tree and � 2 B1ðT Þ with m :¼ �ðXÞ. Taking a median m� 2 T

of the measure �, we let T� an element in C 0
T ðcð�ÞÞ with m� 2 T�. We then define

the function ’� : T ! R by ’�ðwÞ :¼ dT ðcð�Þ; wÞ if w 2 T� and ’�ðwÞ :¼ � dT ðcð�Þ;
wÞ otherwise. The function ’� is clearly the 1-Lipschitz function.

LEMMA 5.5. Let T be an R-tree and � 2 B1ðT Þ. Then, the function ’� :

T ! R satisfies that cðð’�Þ�ð�ÞÞ � 0,

jcðð’�Þ�ð�ÞÞj � CRadðð’�Þ�ð�Þ;m� �Þ þ Sep ð’�Þ�ð�Þ;
m

3
;
�

2

� �
ð5:4Þ

þ Sepðð’�Þ�ð�Þ;m� �;m� �Þ;

and

CRadð�;m� �Þ � CRadðð’�Þ�ð�Þ;m� �Þ þ Sep �;
m

3
;
�

2

� �
ð5:5Þ

þ Sep ð’�Þ�ð�Þ;
m

3
;
�

2

� �
þ Sepðð’�Þ�ð�Þ;m� �;m� �Þ

for any � > 0.

PROOF. Combining Lemma 2.11 with Proposition 4.1, we have

�ðT Þcðð’�Þ�ð�ÞÞ ¼
Z
T

’�ðzÞ d�ðzÞ ¼
Z
T�

dT ðcð�Þ; zÞd�ðzÞ �
Z
TnT�

dT ðcð�Þ; zÞd�ðzÞ

¼ cT�;cð�Þð�Þ � 0:

Put r1 :¼ CRadðð’�Þ�ð�Þ;m� �Þ and r2 :¼ Sepðð’�Þ�ð�Þ;m=3; �=2Þ. From (5.1),

we observe that ð’�Þ�ð�ÞðBRð’�ðm�Þ; r2ÞÞ � �ðBT ðm�; r2ÞÞ � m� �. Thus, we get

dRðBRðcðð’�Þ�ð�ÞÞ; r1Þ; BRð’�ðm�Þ; r2ÞÞ � Sepðð’�Þ�ð�Þ;m� �;m� �Þ ð5:6Þ
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and so (5.4). The above inequality (5.6) together with cðð’�Þ�ð�ÞÞ � 0 yields that

dT ðcð�Þ;m�Þ ¼ ’�ðm�Þ � jcðð’�Þ�ð�ÞÞ � ’�ðm�Þj
� r1 þ r2 þ Sepðð’�Þ�ð�Þ;m� �;m� �Þ ¼: r3:

Therefore, putting r4 :¼ Sepð�;m=3; �=2Þ, we obtain

�ðBT ðcð�Þ; r3 þ r4ÞÞ � �ðBT ðm�; r4ÞÞ � m� �

and so (5.5). This completes the proof. �

PROPOSITION 5.6. Let T be an R-tree and X an mm-space with �X 2
B1ðXÞ. Then, for any � > 0 we have

ObsCRadT ðX;��Þ � ObsCRadRðX;��Þ þ 2 Sep X;
m

3
;
�

2

� �
þ SepðX;m� �;m� �Þ:

PROOF. This follows from Lemmas 2.2 and 5.5. �

PROOF OF THEOREM 1.2. Proposition 5.6 together with Corollary 2.6 and

Lemma 2.16 directly implies the theorem. �

LEMMA 5.7. Let T be an R-tree and � 2 B1ðT Þ. Then, for any p � 1 and

� > 0, we have

Vpð�Þ � 2m2=p

�
CRadðð’�Þ�ð�Þ;m� �Þ þ Sep ð’�Þ�ð�Þ;

m

3
;
�

2

� �
ð5:7Þ

þ Sepðð’�Þ�ð�Þ;m� �;m� �Þ
�
þ 2Vpð’�Þ:

In the case of p ¼ 2, we also have the better estimate

V2ð�Þ2 � 4m2

�
CRadðð’�Þ�ð�Þ;m� �Þ þ Sep ð’�Þ�ð�Þ;

m

3
;
�

2

� �
ð5:8Þ

þ Sepðð’�Þ�ð�Þ;m� �;m� �Þ
�2

þ 2V2ð’�Þ2:

PROOF. From the triangle inequality, we have

Vpð�Þ � 2

Z Z
T�T

dT ðcð�Þ; zÞpd�ðzÞd�ðwÞ
� �1=p

¼ 2 m

Z
T

dT ðcð�Þ; zÞpd�ðzÞ
� �1=p

:ð5:9Þ

502 K. FUNANO



Putting c� :¼ cðð’�Þ�ð�ÞÞ, we also get

Z
T

dT ðcð�Þ; zÞpd�ðzÞ
� �1=p

¼
Z
T

j’�ðzÞjpd�ðzÞ
� �1=p

ð5:10Þ

� m1=pjc� j þ
Z
R

jc� � rjpdð’�Þ�ð�ÞðrÞ
� �1=p

� m1=pjc� j þ
Vpð’�Þ
m1=p

;

where in the last inequality we used Lemma 2.11. Combining (5.9) with (5.10), we

obtain (5.7).

In the case of p ¼ 2, we haveZ
T

dT ðcð�Þ; zÞ2d�ðzÞ ¼
Z
R

jrj2dð’�Þ�ð�ÞðrÞ ð5:11Þ

¼ mjc�j2 þ
Z
R

jr� c�j2dð’�Þ�ð�ÞðrÞ

¼ mjc�j2 þ
V2ð’�Þ2

2m
;

where in the second and the last equalities we used Lemma 2.11. Substituting

(5.11) to (5.9), we obtain (5.8). This completes the proof. �

PROPOSITION 5.8. Let T be an R-tree and X an mm-space. Then, for any

p � 1, we have

ObsLp-VarT ðXÞ � 2f21=pð1þ 2 � 21=pÞ þ 1gObsLp-VarRðXÞ: ð5:12Þ

In the case of p ¼ 2, we also have the better estimate

ObsL2-VarT ðXÞ2 � ð38þ 16
ffiffiffi
2

p
ÞObsL2-VarRðXÞ2: ð5:13Þ

PROOF. Assume first that f�ð�XÞ 2 B1ðT Þ for any 1-Lipschitz map

f : X ! T . Then, Lemma 2.2 together with Lemma 2.3 and (5.7) implies that
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ObsLp-VarT ðXÞ � 2m2=p ObsCRadRðX;��Þ þ Sep X;
m

3
;
�

2

� �� �
þ 2ObsLp-VarRðXÞ

� 2m2=p ObsCRadRðX;��Þ þ Sep X;
�

2
;
�

2

� �� �
þ 2ObsLp-VarRðXÞ

for any 0 < � < m=2. Hence, applying the inequalities (2.3) and (2.5) to this

inequality, we get

ObsLp-VarT ðXÞ � 2fm1=p��1=pð1þ 2 � 21=pÞ þ 1gObsLp-VarRðXÞ

for any 0 < � < m=2. Letting � ! m=2, we get (5.12). In the case of p ¼ 2, from

(5.8), we have

ObsL2-VarT ðXÞ2 � 4m2 ObsCRadRðX;��Þ þ Sep X;
�

2
;
�

2

� �� �2

þ 2ObsL2-VarRðXÞ2

for any 0 < � < m=2. Therefore, substituting the inequalities (2.4) and (2.6) to

this inequality, we get

ObsL2-VarT ðXÞ2 � 2fm��1ð2
ffiffiffi
2

p
þ 1Þ2 þ 1gObsL2-VarRðXÞ2

for any 0 < � < m=2. Letting � ! m=2, we obtain (5.13).

We consider the other case that there exists a 1-Lipschitz map f : X ! T

with f�ð�XÞ =2 B1ðT Þ. By using Hölder’s inequality and Fubini’s theorem, we have

VpðfÞ ¼ þ1. Taking x0 2 X, we put fn :¼ f jBXðx0;nÞ for each n 2 N . From Lemma

2.7 and the above proof, we have

VpðfnÞ � ObsLp-VarT ðBXðx0; nÞÞ � 2f21=pð1þ 2 � 21=pÞþ 1gObsLp-VarRðBXðx0; nÞÞ
� 2f21=pð1þ 2 � 21=pÞþ 1gObsLp-VarRðXÞ:

Since V2ðfnÞ ! V2ðfÞ ¼ þ1 as n ! 1, this implies ObsLp-VarRðXÞ ¼ þ1. This

completes the proof. �

PROOF OF THEOREM 1.3. Proposition 5.8 directly implies the theorem. �
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