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Abstract. A definition of Lévy processes with values in the space of probability
measures was introduced by Shiga and Tanaka (Electronic J. Prob. 11 (2006)). It is
shown that the Lévy process with values in the space of probability measures in law
has a modification satisfying a certain condition. The modification is a Lévy process
in the sense of Shiga and Tanaka. The Lévy-Itô decomposition of sample paths of
the Lévy process satisfying the condition is derived.

1. Introduction.

Let P(R) be the set of all probability distributions on R. We denote by µ̂(z)
the characteristic function of a probability measure µ ∈ P(R). We define the
metric on P(R) by

d(µ1, µ2) =
∞∑

m=1

2−m sup
|z|≤m

|µ̂1(z)− µ̂2(z)|

for µ1 and µ2 ∈ P(R). Then (P(R), d) is a complete separable metric space.
Shiga and Tanaka [9] introduced a Lévy process on P(R) in law as follows:

Definition. Let {Ξt : t ≥ 0} be a P(R)-valued stochastic process on a
probability space (Ω, F , P ). {Ξt : t ≥ 0} is called a Lévy process on P(R) in law,
if

(D.1) Ξ0 = δ0,
(D.2) {Ξt : t ≥ 0} is stochastically continuous,
(D.3) there exists a family of P(R)-valued random variables {Ξs,t}0≤s<t satisfy-

ing the following conditions.
(D.3.1) For any n ≥ 2 and 0 = t0 < t1 < · · · < tn,
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Ξtn
= Ξt0,t1 ∗ Ξt1,t2 ∗ · · · ∗ Ξtn−1,tn

a.s.

(D.3.2) For any n ≥ 2 and 0 = t0 < t1 < · · · < tn, {Ξti−1,ti}1≤i≤n are indepen-
dent.

(D.3.3) For 0 < s < t

Ξs,t
(d)
= Ξt−s,

where
(d)
= means equality in distribution.

Shiga and Tanaka [9] called {Ξt : t ≥ 0} a Lévy process on P(R), if it is a
Lévy process on P(R) in law and t ∈ [0,∞) → Ξt ∈ P(R) is right continuous
in t ≥ 0 with left limits in t > 0 a.s., that is, {Ξt : t ≥ 0} is càdlàg. Now
we call a stochastic process {Ξ̃t} a modification of a stochastic process {Ξt}, if
P (Ξt = Ξ̃t) = 1 for t ∈ [0,∞). Shiga and Tanaka did not prove the existence
of a càdlàg modification, nevertheless they make such claim and do not give the
argument. They concretely construct a Lévy process (see Theorem 6.6 in [9]).

First of all, we show that any Lévy process on P(R) in law has a modification
satisfying a certain condition. The proof is similar to that in Sato [8] and is
omitted. The proof in Sato [8] is used a result of Dynkin [2] and Kinney [5].

Theorem 1.1. A Lévy process on P(R) in law {Ξt} has a modification
satisfying the following :

(D.4) There exists a family of P(R)-valued random variables {Ξω
s,t}0≤s<t satis-

fying the following conditions. There is Ω0 ∈ F with P (Ω0) = 1 such that,
for every ω ∈ Ω0,

(D.4.1) Ξω
s,t is right continuous in t with t ≥ s and has left limits in t with t > s,

(D.4.2) Ξω
s,t is right continuous in s with t > s ≥ 0 and has left limits in s with

t ≥ s > 0,
(D.4.3) for t > s ≥ 0,

Ξω
t = Ξω

s ∗ Ξω
s,t.

(D.4.4) For any n ≥ 2 and 0 = t0 < t1 < · · · < tn, {Ξti−1,ti}1≤i≤n are indepen-
dent.

(D.4.5) For 0 < s < t

Ξs,t
(d)
= Ξt−s.
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Remark.

(i) If a Lévy process on P(R) in law {Ξt} satisfies (D.4), then it is càdlàg:
Indeed, since (D.1) and (D.4.3) are satisfied, we have Ξt = Ξ0,t a.s. It
follows from (D.4.1) that {Ξt} is càdlàg.

(ii) If a P(R)-valued stochastic process {Ξt} satisfies (D.1), (D.2) and (D.4),
it is a Lévy process on P(R). Indeed, using (D.4.3) repeatedly, we get
(D.3.1).

One of the basic results for classical Lévy processes on R is that a Lévy
process has the Lévy-Itô decomposition of sample paths. The decomposition was
conceived by Lévy (see [6], [7]). It consists of two independent parts. One part is
continuous and another part is a compensated sum of independent jumps. And it
was formulated and proved by Itô [4]. The proof is found also in the books of Itô
[4] and Sato [8].

Now, for the sample path Ξt, the jump size µ should be defined by

Ξt = Ξt− ∗ µ.

Under the definition of Lévy processes in the sense of Shiga and Tanaka [9], ex-
istence of such µ does not follow automatically and we cannot show the Lévy-Itô
decomposition of sample paths. Indeed, we have Ξ̂t(z) = Ξ̂t−(z)µ̂(z). Then, if
Ξ̂t(z0) = Ξ̂t−(z0) = 0 for some z0, we cannot decide µ̂(z0). Hence the jump size
µ is not exactly caught. But, for a Lévy process satisfying (D.4), the jump size is
exactly caught as Ξt−,t.

We show that a Lévy process satisfying (D.4) has the Lévy-Itô decomposition
of sample paths. Let Ξ be a random probability distribution (shortly, RPD) with
the distribution Q ∈ P(P(R)). And let RN = R × R × · · · and let µ⊗N =
µ ⊗ µ ⊗ · · · for µ ∈ P(R), where N is the set of positive integers. Denote by
`0(N) the totality of z = {zj} ∈ RN with zj = 0 except for finitely many j ∈ N .
Then the characteristic function of a RPD Ξ with distribution Q is defined by

ΦΞ(z) =
∫

P(R)

Π
j∈N

µ̂(zj)Q(dµ)

for z ∈ `0(N).
Here we prepare some notations:

〈z, x〉 =
∑

j∈N

zjxj
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for x ∈ RN and z ∈ `0(N), and

〈µ, F 〉 =
∫

R

µ(dx)F (x), 〈µ⊗N , G〉 =
∫

R⊗N

µ⊗N (dx)G(x)

for µ ∈ P(R) and bounded measurable functions F and G.
Let {Ξt} be a Lévy process on P(R). The distribution of Ξt at each time t

is infinitely divisible and the characteristic function of Ξ1 is represented as

ΦΞ1(z)

= exp
[ ∑

j∈N

(
− 2−1αz2

j + iγzj +
∫

R\{0}
(eizjx − 1− izjxI[|x|≤1](x))ρ(dx)

)

− β

2

( ∑

j∈N

zj

)2

+
∫

P∗(R)

〈
µ⊗N , ei〈z,x〉 − 1− i

( ∑

j∈N

zjxjI[|xj |≤1]

)〉
m(dµ)

]

(1.1)

for z ∈ `0(N) (see [9]). Here α ≥ 0, β ≥ 0 and γ ∈ R, ρ is a σ-finite measure
satisfying

∫
R\{0}(x

2 ∧ 1)ρ(dx) < ∞, and m is a σ-finite measure on P∗(R) =
P(R)\{δ0} satisfying

∫

P∗(R)

〈µ, x2 ∧ 1〉m(dµ) < ∞.

We call m the Lévy measure of Ξ1. The characteristic function ΦΞ1 characterizes
the law of {Ξt}.

Furthermore, we define a shift operator θb (b ∈ R) on P(R) by

θb · µ(A) = µ(A + b) (A ∈ B(R)).

And we define

∫
µ ∗Π(dµ) = µ1 ∗ µ2 ∗ · · ·

for Π =
∑

j δµj . For ε > 0 let

A(ε) = {µ ∈ P∗(R) : 〈µ, x2 ∧ 1〉 > ε}
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and

aε =
∫

A(ε)
〈µ, xI[|x|≤1]〉m(dµ).

Now we show the Lévy-Itô decomposition for Lévy processes on P(R) satisfying
the condition (D.4).

Theorem 1.2. Let {Ξt} be a Lévy process on P(R) satisfying the condition
(D.4). Denote by ]A be the number of elements of a set A. Let ε > 0. For B ∈ A(ε)

we define

N(B; 0, ω) = 0,

N(B; t, ω) =

{
]{τ ∈ (0, t] : Ξω

τ−,τ ∈ B} for ω ∈ Ω0,

0 for ω 6∈ Ω0

for t > 0. Set

m(U) = E[N(U ; 1, ω)]

for U ∈ B(A(ε)). Then the following holds:

(i) If U ∈ B(A(ε)), N(U ; t, ω) is a Poisson process with parameter m(U). If
U1, U2, . . . , Un ∈ B(A(ε)) and they are pairwise disjoint, then N(U1; t, ω),
. . . , N(Un; t, ω) are independent. N(U ; t, ω) is a finite measure in U ∈ A(ε),
and

∫

P∗(R)

〈µ, x2 ∧ 1〉m(dµ) < ∞.

(ii) Set

S
(ε)
t = θtaε ·

∫

A(ε)
ξ ∗N(dξ; t, ω).

There exists a Lévy process {St} on P(R) such that

lim
ε→0

sup
0≤t≤T

d(S(ε)
t , St) = 0 (∀T > 0) a.s. (1.2)

The characteristic function of St is represented as
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ΦSt(z) = exp
[
t

∫

P∗(R)

〈
µ⊗N , ei〈z,x〉 − 1− i

( ∑

j∈N

zjxjI[|xj |≤1]

)〉
m(dµ)

]

(1.3)

for z ∈ `0(N).
(iii) There is Ω1 ∈ F with P (Ω1) = 1 such that, for ω ∈ Ω1, there exists a Lévy

process {Vt} on P(R) satisfying

Ξω
t = Sω

t ∗ V ω
t (1.4)

for all t ≥ 0 and V ω
t is continuous in t. And Vt has the following charac-

teristic function:

ΦVt
(z)

= exp
[
t

( ∑

j∈N

(
− 1

2
αz2

j + iγzj +
∫

R\{0}
(eizjx − 1− izjxI[|x|≤1](x))ρ(dx)

)

− β

2

( ∑

j∈N

zj

)2)]
(1.5)

for z ∈ `0(N).
(iv) The processes {St} and {Vt} are independent.

2. Construction of Lévy processes on P(R).

Any finite dimensional distribution of Lévy process on P(R) is uniquely
determined by the characteristic function at time 1. The representation of the
characteristic function is given by Shiga and Tanaka [9]. In this section we con-
struct a Lévy process corresponding to the given characteristic function. We need
the construction to prove Theorem 1.2. In [9] we can find a similar result.

Let m be a σ-finite measure on P∗(R) = P(R)\{δ0} satisfying that

∫

P∗(R)

〈µ, x2 ∧ 1〉m(dµ) < ∞.

For ε > 0 let

A(ε) = {µ ∈ P∗(R) : 〈µ, x2 ∧ 1〉 > ε}.

There exists, on a probability space (Ω̃, F̃ , P̃ ), a Poisson random measure Πλ×m
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on (0,∞) × P∗(R) with intensity measure λ × m. It satifies the following:
For any ε > 0 and t > 0, Πλ×m|(0,t]×A(ε) is supported on a finite number of
points. Here λ stands for the Lebesgue measure on [0,∞) and Πλ×m|(0,t]×A(ε)

is the restriction of Πλ×m to (0, t] × A(ε). Then we have m(A(ε)) < ∞. In-
deed, m(A(ε)) ≤ ε−1

∫
A(ε)〈µ, x2 ∧ 1〉m(dµ) < ∞. Furthermore, we have aε =∫

A(ε)〈µ, xI[|x|≤1]〉m(dµ) ≤ m(A(ε)) < ∞. Hence we can define

Ξ(ε)
s,t = θaε(t−s) ·

∫

(s,t]×A(ε)
µ ∗Πλ×m(dsdµ)

for t > s ≥ 0. If t = s, we define Ξ(ε)
s,s = δ0. And we define Ξ(ε)

t = Ξ(ε)
0,t. We remark

that Shiga and Tanaka [9] takes A(ε) = {µ ∈ P∗(R) : 〈µ, |x| ∧ 1〉 > ε} in place of
our A(ε).

First of all, we mention two theorems. The proofs are given in the latter half.

Theorem 2.1. There exists a Lévy process {Ξt} on P(R) with the condition
(D.4) such that

lim
ε→0

sup
0≤t≤T

d(Ξ(ε)
t ,Ξt) = 0 (∀T > 0) a.s.

Furthermore, the characteristic function of Ξ1 is represented as

ΦΞ1(z) = exp
[ ∫

P∗(R)

〈
µ⊗N , ei〈z,x〉 − 1− i

( ∑

j∈N

zjxjI[|xj |≤1]

)〉
m(dµ)

]
(2.1)

for z ∈ `0(N).

Remark 2.2.

(i) The limit Ξt in Theorem 2.1 is denoted by

Ξt =
∫

(0,t]×P∗(R)

µ ∗Πreno
λ×m(dsdµ).

(ii) Let m 6= 0 and let T > 0. The probability that Ξt has a discontinuous
point on [0, T ] is positive. The reason is as follows: Since limε→0 sup0≤t≤T

d(Ξ(ε)
t , Ξt) = 0 a.s. from Theorem 2.1, we have limε→0 d(Ξ(ε)

t−,Ξt−) = 0
a.s. Hence we have d(Ξt, Ξt−) = limε→0 d(Ξ(ε)

t ,Ξ(ε)
t−) a.s. If m 6= 0, the
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probability that Ξ(ε)
t has a discontinuous point is positive for sufficiently

small ε. Let 0 < ε < ε0. If Ξ(ε0)
t is not continuous at t0, then Ξ(ε)

t is not
continuous at t0 and Ξt is not continuous at t0. Hence the probability that
Ξt has a discontinuous point is positive.

Furthermore, let {Bt} be a standard Brownian motion defined on (Ω̃, F̃ , P̃ ),
where {Bt} and Πλ×m are independent. For t > 0 we set

Ξt = νt ∗ δβ1/2Bt
∗

( ∫

(0,t]×P∗(R)

µ ∗Πreno
λ×m(dsdµ)

)
. (2.2)

Here νt is an infinitely divisible distribution on R with characteristic function

ν̂t(z) = exp
[
t

{
− 2−1αz2 + izγ +

∫

R\{0}
(eizx − 1− izxI[|x|≤1](x))ρ(dx)

}]
.

Shiga and Tanaka proved that, for their {Ξt}, the characteristic function at time
1 is represented as (1.1) and a similar result holds in our case.

Theorem 2.3. Let {Ξt} be defined by (2.2). Then {Ξt} is a Lévy process
on P(R) with the condition (D.4) such that the characteristic function of Ξ1

coincides with (1.1).

We prepare some lemmas for the proofs of Theorems 2.1 and 2.3. Let Cb(R) be
the totality of bounded real functions on R and let Cn

b (R) be the set of f ∈ Cb(R)
such that f is n times differentiable and the derivatives with order ≤ n belong to
Cb(R). Let U = {Uω

s,t}0≤s<t and V = {V ω
s,t}0≤s<t be two families of P(R)-valued

random variables satisfying (D.4.1) and (D.4.2). Then we set

dT (U, V ) = sup
0≤s<t≤T

d(Us,t, Vs,t). (2.3)

Furthermore, for ε0 > ε > 0 let

A(ε,ε0) = {µ ∈ P(R) : ε < 〈µ, x2 ∧ 1〉 ≤ ε0}

for T > 0. Then we have m(A(ε,ε0)) < ∞ and we can set

Ξ(ε,ε0)
s,t = θaε,ε0 (t−s) ·

∫

(s,t]×A(ε,ε0)
µ ∗Πλ×m(dudµ),
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where

aε,ε0 =
∫

A(ε,ε0)
〈µ, xI[|x|≤1]〉m(dµ).

In particular, we set Ξ(ε,ε0)
t = Ξ(ε,ε0)

0,t .
Under the above definition, assertions similar to Lemmas 6.2, 6.3, 6.4 and

6.5 in [9] remain true. The proofs are the same as those in [9], where, in order
to prove Lemma 6.4(ii), we need to use the following in place of the maximal
inequality for martingales: Let Π̃λ×m = Πλ×m − λ × m. For any nonnegative
bounded measurable function H, we have

E

( ∫
H(u, µ)Π̃λ×m(dudµ)

)2

≤
∫

H(u, µ)2dum(dµ).

Furthermore, we prepare to prove Theorems 2.1 and 2.3.

Lemma 2.4. Let Ξn
1 , Ξn

2 , . . . , Ξn
m be independent P(R)-valued random vari-

ables. If limn→∞ d(Ξn
j , Ξj) = 0 a.s. for each j, then {Ξj}1≤j≤m are independent.

Proof. Let {νj : j ∈ N} be a dense subset of P(R). And we take

Uε(νj) = {µ ∈ P(R) : d(νj , µ) < ε}, j ∈ N , ε > 0,

as a neighborhood system. We denote by O the π-system generated by this neigh-
borhood system. We denote by Ā the closure of a set A. From the independence
of {Ξn

j }1≤j≤m, we obtain that

P (Ξ1 ∈ Ā1, . . . , Ξm ∈ Ām) ≥ P (Ξ1 ∈ Ā1) · · ·P (Ξm ∈ Ām)

≥ P (Ξ1 ∈ A1) · · ·P (Ξm ∈ Am)

for A1, . . . , Am ∈ O. Since ε of Uε(νj) is free to be taken, we have

P (Ξ1 ∈ A1, . . . , Ξm ∈ Am) ≥ P (Ξ1 ∈ A1) · · ·P (Ξm ∈ Am)

for A1, . . . , Am ∈ O. The converse inequality is obtained in the same way as above.
Hence

P (Ξ1 ∈ A1, . . . , Ξm ∈ Am) = P (Ξ1 ∈ A1) · · ·P (Ξm ∈ Am) (2.4)
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Here we use mathematical induction in m. By using the π-λ theorem in [1, p. 42],
(2.4) holds for A1, . . . , Am ∈ σ(O). Since P(R) is separable, we have σ(O) ⊃
B(P(R)). We have completed the proof. ¤

Lemma 2.5. The characteristic function of Ξ(ε)
1 is represented as

Φ
Ξ

(ε)
1

(z) = exp
[ ∫

A(ε)

〈
µ⊗N , ei〈z,x〉 − 1− i

( ∑

j∈N

zjxjI[|xj |≤1]

)〉
m(dµ)

]
. (2.5)

Proof. Now Π((0, 1] × B) has a Poisson distribution with mean m(B).
Recall that m(A(ε)) < ∞. Hence, Lemma 3.1 in [9] is applied to Ξ =

∫
P(R)

µ ∗
Πm|

A(ε)
(dµ) and we obtain (2.5). Here we denote by m|A(ε) the restriction of m to

A(ε). ¤

Now we prove Theorems 2.1 and 2.3.

Proof of Theorems 2.1 and 2.3. Let Ξ(ε) = {Ξ(ε)
s,t}0≤s<t. As men-

tioned before, assertions similar to Lemmas 6.3 and 6.5 in [9] remain true. Thus
it follows that for every η > 0,

lim
ε0→0

P
(

sup
0<ε<ε0

dT (Ξ(ε), Ξ(ε0)) ≥ 3η
)

= 0.

Hence we have

P
(

lim
ε0→0

sup
0<ε,ε′<ε0

dT (Ξ(ε),Ξ(ε′)) ≥ 6η
)

= 0,

that is,

lim
ε0→0

sup
0<ε,ε′<ε0

dT (Ξ(ε), Ξ(ε′)) = 0 a.s.

Then there is Ω0 ∈ F with probability 1 such that the above limit holds. There-
fore, there exists Ξs,t such that limε→0 d(Ξ(ε)

s,t , Ξs,t) = 0 on Ω0, and Ξs,t satisfies
the conditions (D.4.1) and (D.4.2). In particular, if s = 0, then there exists Ξt

such that limε→0 sup0≤t≤T d(Ξ(ε)
t , Ξt) = 0 (∀T > 0) a.s. Then, since Ξ(ε)

0 = δ0, we
have Ξ0 = δ0. Furthermore, {Ξ(ε)

t } satisfies the condition (D.2), and so does {Ξt}.
Since {Ξ(ε)

s,t} satisfies the condition (D.4.5), we have Φ
Ξ

(ε)
s,t

(z) = Φ
Ξ

(ε)
t−s

(z).

Letting ε → 0, we obtain that Ξs,t satisfies the condition (D.4.5).
We have, almost surely, d(Ξt, Ξ0,s ∗ Ξs,t) = limε→0 d(Ξ(ε)

t , Ξ0,s ∗ Ξs,t) and
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d
(
Ξ(ε)

t , Ξ0,s ∗ Ξs,t

)
= d

(
Ξ(ε)

0,s ∗ Ξ(ε)
s,t , Ξ0,s ∗ Ξs,t

)

≤ d
(
Ξ(ε)

0,s ∗ Ξ(ε)
s,t , Ξ

(ε)
0,s ∗ Ξs,t

)
+ d

(
Ξ(ε)

0,s ∗ Ξs,t,Ξ0,s ∗ Ξs,t

)

≤ d
(
Ξ(ε)

s,t , Ξs,t

)
+ d

(
Ξ(ε)

0,s, Ξ0,s

)
.

Hence, letting ε → 0, we have the condition (D.4.3).
For any n ≥ 2 and 0 = t0 < t1 < · · · < tn, Ξ(ε)

t0,t1 , Ξ
(ε)
t1,t2 , . . . , Ξ

(ε)
tn−1,tn

are
independent. From Lemma 2.4, the condition (D.4.4) is satisfied.

Finally, we get (2.1) as ε → 0 in (2.4). We have completed the proof of
Theorem 2.1. Theorem 2.3 is obtained from Theorem 2.1. ¤

3. Proof of Theorem 1.2.

We denote by F0 the collection of Ω0∩A, A ∈ F . In the proofs from Lemma
3.1 to Lemma 3.13, we take a probability space (Ω0, F0, P ) in place of (Ω, F , P ).
So a Lévy process {Ξt} with the condition (D.4) is defined on (Ω0, F0, P ) in their
lemmas. Then we denote by Fs,t the σ-algebra generated by {Ξω

τ1,τ2
: s ≤ τ1 <

τ2 ≤ t}.

Lemma 3.1. Let T > 0. The number of jumping times t ∈ [0, T ] satisfying
Ξt−,t ∈ A(ε) is finite.

Proof. Suppose that N(A(ε);T, ω) = ∞. Then the jumping times has a
limit point t0 satisfying tj ↑ t0 or tj ↓ t0, where {tj} are jumping times satisfying
Ξtj−,tj ∈ A(ε).

First of all, we suppose that tj ↑ t0. Let 1 > δ > 0. There is η with 0 < η < 1
such that, for sufficiently large j, |Ξ̂tj ,t0(z)| ≥ δ for any z with |z| ≤ η. Set
µj = Ξtj−,tj . For any z with |z| ≤ η and for sufficiently large j,

d
(
Ξtj−,t0 ,Ξtj ,t0

) ≥ 2−1
∣∣1− µ̂j(z)

∣∣∣∣Ξ̂tj ,t0(z)
∣∣ ≥ 2−1δ

∣∣1− µ̂j(z)
∣∣. (3.1)

Here we have, for any z with |z| ≤ η,

2−1
∣∣1− µ̂j(z)

∣∣ ≥ 2−1

∫
(1− cos zx)µj(dx)

≥ 2−2z2

∫

|x|≤1

(
sin 2−1xz

2−1xz

)2

x2µj(dx) ≥ c1z
2

∫

|x|≤1

x2µj(dx),

where c1 is some positive constant. Hence we have, for any z with |z| ≤ η,
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d
(
Ξtj−,t0 , Ξtj ,t0

) ≥ c1δz
2
〈
µj , x

2I[|x|≤1]

〉
. (3.2)

And we have

∫ 1

−1

2−1
∣∣1− µ̂j(z)

∣∣dz ≥ 2−1

∫ 1

−1

∫
(1− cos zx)µj(dx)dz

=
∫ (

1− sin x

x

)
µj(dx) ≥ c2µj(|x| > 1),

where c2 is some positive constant. Integrating both sides in (3.1), we have

d
(
Ξtj−,t0 ,Ξtj ,t0

) ≥ 2−1c2δµj(|x| > 1). (3.3)

From (3.2) and (3.3) we have, for any z with 0 < |z| ≤ η and sufficiently large j,

d
(
Ξtj−,t0 , Ξtj ,t0

) ≥ 2−1c1δz
2
〈
µj , x

2I[|x|≤1]

〉
+ 2−2c2δµj(|x| > 1)

≥ min{2−1c1z
2, 2−2c2}δ〈µj , |x|2 ∧ 1〉

≥ min{2−1c1ηz2, 2−2c2}δε.

Then the left-hand side goes to zero as j →∞ and this is a contradict.
In the case where tj ↓ t0, there is η with 0 < η < 1 such that, for sufficiently

large j, |Ξ̂tj (z)| ≥ δ for any z with |z| ≤ η. And, for any z with 0 < |z| ≤ η and
for sufficiently large j,

d
(
Ξtj−,Ξtj

) ≥ 2−1
∣∣1− µ̂j(z)

∣∣∣∣Ξ̂tj−(z)
∣∣ ≥ 2−1

∣∣1− µ̂j(z)
∣∣∣∣Ξ̂tj (z)

∣∣ ≥ 2−1δ
∣∣1− µ̂j(z)

∣∣.

Hence, in the same way as above, this is a contradiction as j →∞. ¤

Lemma 3.2. Let t > s ≥ 0. For U ∈ B(A(ε)), N(U ; t, ω) − N(U ; s, ω) is
Fs,t-measurable. In particular, N(U ; t, ω) is F0,t-measurable.

Proof. Let {νj : j ∈ N} be a dense set of A(ε). We take

Uε(νj) = {µ ∈ P(R) : d(νj , µ) ≤ ε}, j ∈ N , ε > 0,

as a neighborhood system in A(ε). We denote by O the π-system generated by
this neighborhood system. First of all, we deal with the case of U = Uε1(ν̃1) ∩
· · · ∩ Uεm(ν̃m). Here εj > 0 for any j and {ν̃j} is a subset of {νj}. Set NU

s,t =
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N(U ; t, ω)−N(U ; s, ω). Then NU
s,t takes values in {0, 1, 2, . . . }. Thus it suffices to

prove that {NU
s,t ≥ k} is Fs,t-measurable for k ∈ N . Now we have

{
ω ∈ Ω0 : NU

s,t(ω) ≥ 1
}

=
∞⋂

n=1

⋃

s<r<r′≤t
r′−r<n−1

r,r′∈Q∪{t}

{
ω ∈ Ω0 : Ξω

r,r′ ∈ Un

} ∈ Fs,t, (3.4)

where Un = Uε1+n−1(ν̃1) ∩ · · · ∩ Uεm+n−1(ν̃m). If {ω ∈ Ω0 : NU
s,t(ω) ≥ k} is

Fs,t-measurable,

{
ω ∈ Ω0 : NU

s,t(ω) ≥ k + 1
}

=
⋃

s<r<t
r∈Q

{
ω ∈ Ω0 : NU

s,r(ω) ≥ k
} ∩ {

ω ∈ Ω0 : NU
r,t(ω) ≥ 1

} ∈ Fs,t.

Hence NU
s,t is Fs,t-measurable.

Set A = {U ⊆ A(ε) : NU
s,t is Fs,t-measurable}. Then we have A ⊃ O. Let

0 < ε < ε′. Denote by Ā(ε′) the closure of A(ε′). In the same way as above, we
can show that N Ā(ε′)

s,t is Fs,t-measurable. Letting ε′ ↓ ε, we obtain that NA(ε)

s,t is
Fs,t-measurable. We notice this fact and we see that A is a λ-system. Since A is
a λ-system and O is a π-system, we have σ(O) ⊂ A . (For example, see Theorem
3.2 in [1].) Therefore NU

s,t is Fs,t-measurable for any U ∈ B(A(ε)). In particular,
since N(U ; 0, ω) = 0, N(U ; t, ω) is F0,t-measurable. We have completed the proof.

¤

Let tnj = s + (t− s)jn−1, j = 0, 1, . . . , n. For each ω ∈ Ω0, we set NU
n,i(ω) =

N(U ; tni, ω) − N(U ; tn(i−1), ω) and Ξω
n,i = Ξω

tn(i−1),tni
. Furthermore we set, for

each ω ∈ Ω0,

Stn(i−1),tni =

{
Ξω

n,i if NU
n,i(ω) ≥ 1,

δ0 if NU
n,i(ω) = 0,

Vtn(i−1),tni =

{
δ0 if NU

n,i(ω) ≥ 1,

Ξω
n,i if NU

n,i(ω) = 0.

Set Sni = Stn(i−1),tni and Vni = Vtn(i−1),tni for short. The number of discon-
tinuous points in (s, t] of N(U ; u, ω) is finite. Thus there exist limits

Ss,t(U) = lim
n→∞

n∗
i=1

Sni and Vs,t(U) = lim
n→∞

n∗
i=1

Vni.

In particular, we set St(U) = S0,t(U) and Vt(U) = V0,t(U) for short. Then we
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have

Ξt = St(U) ∗ Vt(U)

for each ω ∈ Ω0. Let ε0 > ε > 0. We remark that Vs,t(A(ε0)) = Ss,t(A(ε,ε0)) ∗
Vs,t(A(ε)), where A(ε,ε0) = {µ ∈ P(R) : ε < 〈µ, x2 ∧ 1〉 ≤ ε0}.

Lemma 3.3. For U ∈ B(A(ε)), Ss,t(U) and Vs,t(U) are Fs,t-measurable.

Proof. Sni and Vni are Fs,t-measurable. Hence the lemma holds. ¤

Lemma 3.4. Suppose that {νk}k≥1 ⊂ P(R). If Ξ1 and Ξ2 are random
probability distributions, then, for δk > 0 and εk > 0, k = 1, 2, . . . , l,

∣∣∣∣P
(

A ∩
l⋂

k=1

{d(Ξ1, νk) < δk}
)
− P

(
A ∩

l⋂

k=1

{d(Ξ2, νk) < δk}
)∣∣∣∣

≤
l∑

k=1

[
P (A ∩ {|d(Ξ1, νk)− δk| ≤ εk}) + P (A ∩ {|d(Ξ1, νk)− d(Ξ2, νk)| ≥ εk})

]
.

Proof. If d(Ξ1, νk) < δk and d(Ξ2, νk) ≥ δk, then we have

d(Ξ1, νk)− d(Ξ2, νk) ≤ −εk or 0 > d(Ξ1, νk)− δk > −εk.

And, if d(Ξ2, νk) < δk and d(Ξ1, νk) ≥ δk, then we have

d(Ξ1, νk)− d(Ξ2, νk) ≥ εk or 0 ≤ d(Ξ1, νk)− δk < εk.

Hence

∣∣∣∣P
(

A ∩
l⋂

k=1

{d(Ξ1, νk) < δk}
)
− P

(
A ∩

l⋂

k=1

{d(Ξ2, νk) < δk}
)∣∣∣∣

≤
l∑

k=1

[
P (A ∩ {d(Ξ1, νk) ≥ δk, d(Ξ2, νk) < δk})

+ P (A ∩ {d(Ξ1, νk) < δk, d(Ξ2, νk) ≥ δk})
]

≤
l∑

k=1

[
P (A ∩ {|d(Ξ1, νk)− δk| ≤ εk}) + P (A ∩ {|d(Ξ1, νk)− d(Ξ2, νk)| ≥ εk})

]
.
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We have completed the proof. ¤

Lemma 3.5. For U ∈ B(A(ε)), N(U ; t, ω) − N(U ; s, ω) and Vs,t(U) are
independent.

Proof. Let {νj} be a dense set in U . Set N =
∑n

i=1 NU
n,i. It suffices to

prove that, for any δj > 0, 1 ≤ j ≤ l, and for any k ∈ N ,

P (N = k, d(ν̃j , Vs,t(U)) < δj (1 ≤ j ≤ l))

= P (N = k)P (d(ν̃j , Vs,t(U)) < δj (1 ≤ j ≤ l)), (3.5)

where {ν̃j}1≤j≤l is a subset of {νj}. As this probability is left continuous in each
δj , we only deal with the case where each δj is a continuous point of the distribution
of d(ν̃j , Vs,t(U)).

Let k ≥ 1. First of all, we prove that

P (N = k, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))

= P (N = k)
P (N = 0, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))

P (N = 0)
. (3.6)

If N = k, then we have

NU
n,i(1) = m1, NU

n,i(2) = m2, . . . , N
U
n,i(p) = mp,

NU
n,j(1) = NU

n,j(2) = · · · = NU
n,j(n−p) = 0,

(3.7)

where 1 ≤ p ≤ k and m1, . . . , mp > 0, m1 + · · ·+ mp = k, 1 ≤ i(1) < i(2) < · · · <
i(p) ≤ n, {j(1), . . . , j(n − p)} do not intersect {i(1), . . . , i(p)}, and j(1) < j(2) <

· · · < j(n− p).
Since NU

n,i and Ξn,i are Ftn(i−1),tni -measurable and Ftn0,tn1 , . . . , Ftn(n−1),tnn

are independent, we obtain that {NU
ni(1), . . . , N

U
ni(p)} and {NU

nj(1) = · · · =
NU

nj(n−p) = 0, ∗n−p
σ=1 Ξn,j(σ)} are independent. Hence we have

P
(
N = k, d

(
n∗

i=1
Vni, ν̃j

)
< δj (1 ≤ j ≤ l)

)

=
∑

P
(
NU

n,i(1) = m1, . . . , N
U
n,i(p) = mp, N

U
n,j(1) = · · · = NU

n,j(n−p) = 0,

d
(

n∗
i=1

Vni, ν̃j

)
< δj (1 ≤ j ≤ l)

)
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=
∑

P
(
NU

n,i(1) = m1, . . . , N
U
n,i(p) = mp

)

×
P

(
NU

n,j(1) = · · · = NU
n,j(n−p) = 0

)
P

(
NU

n,i(1) = · · · = NU
n,i(p) = 0

)

P
(
NU

n,i(1) = · · · = NU
n,i(p) = 0

)
P

(
NU

n,j(1) = · · · = NU
n,j(n−p) = 0

)

× P
(
NU

n,j(1) = · · · = NU
n,j(n−p) = 0, d

(
n−p∗
σ=1

Ξn,j(σ), ν̃j

)
< δj (1 ≤ j ≤ l)

)

=
∑

P
(
NU

n,i(1) = m1, . . . , N
U
n,i(p) = mp, N

U
n,j(1) = · · · = NU

n,j(n−p) = 0
)

× P
(
N = 0, d

( ∗n−p
σ=1 Ξn,j(σ), ν̃j

)
< δj (1 ≤ j ≤ l)

)

P (N = 0)
, (3.8)

where the summation runs through the condition (3.7). From Lemma 3.4, we
obtain that

∣∣∣P
(
N = 0, d

(
n−p∗
σ=1

Ξn,j(σ), ν̃j

)
< δj (1 ≤ j ≤ l)

)

− P
(
N = 0, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l)

)∣∣∣

≤
l∑

j=1

[
P (|d(Vs,t(U), ν̃j)− δj | ≤ εj)

+ P
(
N = 0, |d(Vs,t(U), ν̃j)− d

(
n−p∗
σ=1

Ξn,j(σ), ν̃j

)
| ≥ εj

)]

≤
l∑

j=1

[
P (|d(Vs,t(U), ν̃j)− δj | ≤ εj) + P

(
N = 0, d

(
Vs,t(U),

n−p∗
σ=1

Ξn,j(σ)

)
≥ εj

)]
.

(3.9)

Let ε > 0. Taking a sufficiently small εj , we have

P (|d(Vs,t(U), ν̃j)− δj | ≤ εj) < ε.

It is because δj is a continuous point of the distribution of d(Vs,t(U), ν̃j). And, if
N = 0, then Vs,t(U) = Ξs,t. Hence we have

P
(
N = 0, d

(
Vs,t(U),

n−p∗
σ=1

Ξn,j(σ)

)
≥ εj

)

≤ P
(
d
(
Ξs,t,

n−p∗
σ=1

Ξn,j(σ)

)
≥ εj

)
≤ P

(
d
(
δ0,

p∗
π=1

Ξn,i(π)

)
≥ εj

)

≤ ε−1
j

p∑
π=1

Ed(δ0,Ξn,i(π)) = ε−1
j p× Ed(δ0, Ξ(t−s)n−1).
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As n →∞, the last probability converges uniformly to 0 under the condition (3.7)
and so does (3.9). From Lemma 3.4, we obtain that

∣∣∣P
(
N = k, d

(
n∗

i=1
Vni, ν̃j

)
< δj (1 ≤ j ≤ l)

)

− P (N = k, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))
∣∣∣

≤
l∑

j=1

[
P (|d(Vs,t(U), ν̃j)− δj)| ≤ εj)

+ P
(∣∣∣d

(
n∗

i=1
Vni, ν̃j

)
− d(Vs,t(U), ν̃j)

∣∣∣ ≥ εj

)]

≤
l∑

j=1

[
P (|d(Vs,t(U), ν̃j)− δj)| ≤ εj) + P

(
d
(

n∗
i=1

Vni, Vs,t(U)
)
≥ εj

)]
. (3.10)

Let ε > 0. Taking a sufficiently small εj , we have P (|d(Vs,t(U), ν̃j)− δj | ≤ εj) < ε.
And we have limn→∞ P (d(∗n

i=1 Vni, Vs,t(U)) ≥ εj) = 0. Hence (3.10) goes to 0 as
n →∞.

Consequently, we obtain (3.6) as n → ∞ in (3.8). It is obvious that (3.6)
holds for k = 0. Hence, from (3.6), we have

P (d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))

=
∞∑

k=0

P (N = k)
P (N = 0, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))

P (N = 0)

=
P (N = 0, d(Vs,t(U), ν̃j) < δj (1 ≤ j ≤ l))

P (N = 0)
.

We substitute the above equation into (3.6) and (3.5) is obtained. We have com-
pleted the proof. ¤

Let {Ξ′t} be a P(R)-valued stochastic process. In this section, the process
{Ξ′t} is called an additive process on P(R), if it satisfies (D.1), (D.2), (D.4.1),
(D.4.2), (D.4.3), and (D.4.4), except (D.4.5).

Lemma 3.6. For U ∈ B(A(ε)), {Vt(U)} is an additive process on P(R).

Proof. As {Ξt} is stochastically continuous, we have

P (Vt−(U) 6= Vt(U)) = P (Vt−,t(U) 6= δ0) ≤ P (Ξt−,t 6= δ0) = 0.
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Hence Vt(U) is stochastically continous.
Let 0 = t0 < t1 < · · · < tn. From Lemma 3.3, Vtj−1,tj (U) is Ftj−1,tj -

measurable for j with 1 ≤ j ≤ n. Hence, {Vtj−1,tj
(U)}1≤j≤n are independent.

The conditions (D.4.1), (D.4.2), and (D.4.3) are satisfied from the way of
making Vs,t(U). ¤

Lemma 3.7. Let U ∈ B(A(ε)). {N(U ; t, ω) : t ≥ 0} and {Vs,t(U) : 0 ≤ s <

t} are independent.

Proof. Let 0 ≤ s1 < s2 < · · · < sm and 0 ≤ σ1 < σ2 < · · · < σµ. It suffices
to prove R = (Ni = N(U ; si, ω) : i = 1, 2, . . . ,m) and G = (Vi = Vσi,σi+1(U) : i =
1, 2, . . . , µ− 1) are independent.

We put s1, . . . , sm, σ1, . . . , σµ in order as follows:

0 ≤ t0 < t1 < t2 < · · · < tn, (n ≤ m + µ− 1).

Set N ′
i = N(U ; ti, ω)−N(U ; ti−1, ω) and V ′

i = Vti−1,ti
(U). Furthermore, it suffices

to prove that R′ = (N ′
i : i = 1, 2, . . . , n) and G ′ = (V ′

i : i = 1, 2, . . . , n) are
independent. From Lemmas 3.2 and 3.3, N ′

i and V ′
i are Fti−1,ti-measurable. Since

Fti−1,ti , i = 1, 2, . . . , n, are independent, (N ′
i , V

′
i ), i = 1, 2, . . . , n, are independent.

And N ′
i and V ′

i are independent from Lemma 3.5. Hence N ′
1, V

′
1 , . . . , N ′

n, V ′
n are

independent and R′ and G ′ are independent. We have completed the proof of the
lemma. ¤

Lemma 3.8. Let Ξj = {Ξj
t} be a Lévy process on P(R) for j = 1, 2, . . . , m.

If Ξk and {Ξk+1, . . . , Ξm} are independent for k = 1, 2, . . . , m−1, then Ξ1, . . . , Ξm

are independent.

Proof. Let Wk = {Ξk, . . . , Ξm}. It suffices to prove that Ξ1, Ξ2, . . . , Ξk−1,

Wk are independent for k = 2, 3, . . . ,m. It is obvious if k = 2. Suppose that
Ξ1, Ξ2, . . . , Ξk−1,Wk are independent. Here Wk = {Ξk,Wk+1}, and Ξk and Wk+1

are independent. Hence Ξ1, Ξ2, . . . , Ξk,Wk+1 are independent. By mathematical
induction, it holds in the case where k = m. ¤

Define ϕU (Ξt) = Vt(U) and ψU (Ξt) = N(U ; t, ω) for any additive process
{Ξt} on P(R). If A ∩B = φ, then

{
ϕB(ϕA) = ϕA+B ,

ψB(ϕA) = ψB .
(3.11)

Lemma 3.9. If Ui, i = 1, 2, . . . , n, are pairwise disjoint, then the follow-
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ing n + 1 stochastic processes are independent : Ri = {N(Ui; t, ω) : t ≥ 0},
i = 1, 2, . . . , n, and V = {Vt(

∑n
ν=1 Uν) : t ≥ 0}.

Proof. We remark that we can define N(B; t, ω) in the case of additive
processes on P(R). And all of Lemmas 3.1, 3.2, 3.3, 3.5, 3.6, and 3.7 hold for
additive processes on P(R). By using these facts, we can prove the lemma as
follows.

Put χ = {Ξt : t ≥ 0} and Vi = {Vt(
∑i

ν=1 Uν) : t ≥ 0}, i = 1, 2, . . . , n. Then
we have R1 = ψU1(χ) and V1 = ϕU1(χ). By virtue of Lemma 3.6, V1 = {Vt(U1)}
is an additive process. Denote by FU1 the σ-algebra generated by {Vτ1,τ2(U1) :
0 ≤ τ1 < τ2 ≤ t}. From (3.11), we have

Rk = ψUk
(χ) = ψUk

(ϕU1(χ)) = ψUk
(V1), k = 2, . . . , n

and

V = Vn = ϕU1+···+Un(χ) = ϕU2+···+Un(ϕU1(χ)) = ϕU2+···+Un(V1).

Recall that V1 is an additive process. Here Lemmas 3.2 and 3.3 are applied to
the additive process V1. Then it follows that Rk, k = 2, 3, . . . , n, and V are
FU1-measurable. Therefore, from Lemma 3.7, R1 and {R2, . . . , Rn, V } are inde-
pendent.

Furthermore, from (3.11), we have R2 = ψU2(χ) = ψU2(ϕU1(χ)) = ψU2(V1)
and V2 = ϕU1+U2(χ) = ϕU2(ϕU1(χ)) = ϕU2(V1). And we have

Rk = ψUk
(χ) = ψUk

(ϕU1+U2(χ)) = ψUk
(V2), k = 3, 4, . . . , n

and

V = Vn = ϕU1+U2+···+Un(χ) = ϕU3+···+Un(ϕU1+U2(χ)) = ϕU3+···+Un(V2).

Here V2 is an additive process from Lemma 3.6. Hence Lemmas 3.2 and 3.3 are
applied to the additive process V2. Then R2 and {R3, . . . , Rn, V } are independent
from Lemma 3.7. Repeating the same way as above, we can obtain that Rk and
{Rk+1, . . . , Rn, V } are independent for k = 3, . . . , n− 1, and that Rn and V are
independent. Therefore, by virtue of Lemma 3.8, R1, . . . , Rn, V are independent.

¤

Lemma 3.10. For U ∈ B(A(ε)), {St(U)} and {Vt(U)} are independent.
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Proof. Let {νj} be a dense set in U . Then, for any δ > 0, we have
U =

⋃∞
j=1 Bj , where Bj = {µ ∈ P(R) : d(νj , µ) < δ}∩U . Here we set Bc

j = U\Bj

for j = 1, 2, . . .. Then we have U =
⋃∞

j=1 Bj =
∑∞

j=1 Cj , where C1 = B1 and
Cj = Bc

1 ∩ Bc
2 ∩ · · · ∩ Bc

j−1 ∩ Bj for j ≥ 2. We remark that d(νj , µ) < δ for any

µ ∈ Cj . Furthermore, we define ν
N(Cj ;t,ω)
j = νn∗

j , if n = N(Cj ; t, ω). Here νn∗
j is

the n-hold convolution of νj . When n = 0, νn∗
j is understood to be δ0.

Let n = N(U ; t, ω). For each ω, St(U) is represented as

µ1,1 ∗ µ1,2 ∗ · · · ∗ µ1,m(1) ∗ · · · ∗ µl,1 ∗ · · · ∗ µl,m(l),

where µi,j belongs to some Cσ(i) for all 1 ≤ j ≤ m(i). Here m(1) > 0, . . . , m(l) > 0,
m(1)+m(2)+ · · ·+m(l) = n, and m(1) = N(Cσ(1); t, ω), . . . , m(l) = N(Cσ(l); t, ω).
Then N(Ci; t, ω) = 0 if i 6∈ {σ(1), σ(2), . . . , σ(l)}. Hence we have

d
(
St(U),

∞∗
i=1

ν
N(Ci;t,ω)
i

)
= d

(
St(U),

l∗
i=1

ν
N(Cσ(i);t,ω)

σ(i)

)

≤
l∑

i=1

m(i)∑

j=1

d(µi,j , νσ(i)) ≤ δn.

Therefore ∗∞i=1 ν
N(Ci;t,ω)
i → St(U) as δ → 0 a.s.

Let 0 ≤ t0 < t2 < · · · < tn. Then we have

lim
δ→0

d
( ∞∗

i=1
ν

N(Ci;tj ,ω)
i , Stj (U)

)
= 0

for j = 1, 2, . . . , n a.s. From Lemma 3.9, {∗k
i=1 ν

N(Ci;tj ,ω)
i : j = 1, 2, . . . , n} and

{Vt(
∑k

i=1 Ci) : t ≥ 0} are independent. In the same way as in the proof of Lemma
2.4, we can show that {∗∞i=1 ν

N(Ci;tj ,ω)
i : j = 1, 2, . . . , n} and {Vt(U) : t ≥ 0} are

independent and, furthermore, that St1(U), . . . , Stn(U) and {Vt(U) : t ≥ 0} are
independent. We have completed the proof. ¤

Lemma 3.11. For U ∈ B(A(ε)), {N(U ; t, ω) : t ≥ 0} is a Poisson process.

Proof. Let T > 0. From Lemma 3.1 the number of discontinuous points of
N(U ; t, ω) is finite in [0, T ] almost surely. Furthermore, N(U ; t, ω) is an increasing
right continuous step function with jumps of height 1 almost surely.

Set NU
s,t = N(U ; t, ω) − N(U ; s, ω). Let 0 ≤ t0 < t1 < · · · < tn ≤ T .

From Lemma 3.2, NU
ti−1,ti

, i = 1, 2, . . . , n, are Fti−1,ti -measurable, i = 1, 2, . . . , n,
respectively. And, from the definition of Lévy processes on P(R), it follows that
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Fti−1,ti
, i = 1, 2, . . . , n, are independent. Hence, NU

ti−1,ti
, i = 1, 2, . . . , n, are

independent.
And we have

P (N(U ; t−, ω) 6= N(U ; t, ω)) ≤ P (Ξω
t− 6= Ξω

t ) = 0,

so that N(U ; t, ω) is stochastically continuous.

In order to show N(U ; t, ω)−N(U ; s, ω)
(d)
= N(U ; t− s, ω), it suffices to prove

P (N(U ; t, ω)−N(U ; s, ω) ≥ k) = P (N(U ; t− s, ω) ≥ k) (3.12)

for k = 1, 2, . . .. Take O in the proof of Lemma 3.2. The finite dimensional
distributions of {Ξt} are identical with those of {Ξs,s+t : t ≥ 0}. As mentioned
in the proof of Lemma 3.2, we take U = Uε1(ν̃1) ∩ · · · ∩ Uεm

(ν̃m) and Un =
Uε1+n−1(ν̃1) ∩ · · · ∩ Uεm+n−1(ν̃m). Then, from (3.4), we have

P
(
NU

s,t(ω) ≥ 1
)

= P

( ∞⋂
n=1

⋃

s<r<r′≤t
r′−r<n−1

r,r′∈Q∪{t}

{
ω ∈ Ω0 : Ξω

r,r′ ∈ Un

})

= P

( ∞⋂
n=1

⋃

0<r<r′≤t−s
r′−r<n−1

r,r′∈Q∪{t−s}

{
ω ∈ Ω0 : Ξω

r,r′ ∈ Un

})
= P (NU

0,t−s ≥ 1).

(3.13)

If (3.12) holds for k − 1, then we have

P
(
NU

s,t(ω) ≥ k
)

=
∑

s<r<t
r∈Q

P
(
NU

s,r ≥ k − 1
)
P

(
NU

r,t ≥ 1
)

=
∑

0<r<t−s
r∈Q

P
(
NU

0,r ≥ k − 1
)
P

(
NU

r,t−s ≥ 1
)

= P
(
NU

0,t−s ≥ k
)
.

Set A = {U ⊆ A(ε) : NU
s,t

(d)
= NU

t−s}. In the same way as in the proof of
Lemma 3.2, we can show that A(ε) ∈ A . And, let U1, U2, · · · ∈ A and Um∩Un = φ

for m 6= n. Then, from Lemma 3.9, E exp[iz
∑∞

j=1 N
Uj

s,t ] = Π∞j=1E exp[izN
Uj

t−s] =

E exp[iz
∑∞

j=1 N
Uj

t−s], so we have
⋃∞

j=1 Uj ∈ A . Furthermore, let U ∈ A . By

virtue of Lemma 3.9, NU
s,t and N

A(ε)\U
s,t are independent, and NU

t−s and N
A(ε)\U
t−s
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are independent. Hence we have

E exp
[
izN

A(ε)\U
s,t

]
=

E exp
[
izNA(ε)

s,t

]

E exp
[
izNU

s,t

] =
E exp

[
izNA(ε)

t−s

]

E exp
[
izNU

t−s

] = E exp
[
izN

A(ε)\U
t−s

]
,

so that we have A(ε)\U ∈ A . There A is λ-system. By using the π-λ theorem in
[1, p. 42], (3.12) holds for U ∈ B(A(ε)). ¤

Lemma 3.12. The additive process {Vt(A(ε))} satisfies the condition (D.4.5).
Hence {Vt(A(ε))} is a Lévy process on P(R) with the condition (D.4).

Proof. Let 0 < ε < ε′. As Vni, i = 1, 2, . . . , n, are Ftn(i−1),tni -
measurable from Lemma 3.2, they are independent. Hence ΦVs,t(Ā(ε′))(z) =
limn→∞Πn

i=1ΦVni(z). Here Ā(ε′) is the closure of A(ε′). Let U ∈ B(P(R)) with
δ0 6∈ U . Put uni = tni − s. In the same way as (3.13) in the proof of Lemma 3.11,
we have

P (Vni ∈ U)

= P
(
Ξn,i ∈ U,N Ā(ε′)

n,i = 0
)

= P (Ξn,i ∈ U)− P
(
Ξn,i ∈ U,N Ā(ε′)

n,i ≥ 1
)

= P (Ξn,i ∈ U)

− P

( ∞⋂

k=k0

⋃

tn(i−1)<r<r′≤tni

r′−r<k−1

r,r′∈Q∪{tni}

{
ω ∈ Ω0 : Ξtn(i−1),tni ∈ U,Ξω

r,r′ ∈ Ā(ε′−k−1)
})

= P
(
Ξun(i−1),uni ∈ U

)

− P

( ∞⋂

k=k0

⋃

un(i−1)<r<r′≤uni

r′−r<k−1

r,r′∈Q∪{uni}

{
ω ∈ Ω0 : Ξun(i−1),uni ∈ U,Ξω

r,r′ ∈ Ā(ε′−k−1)
})

= P (Vun(i−1),uni ∈ U). (3.14)

Here we took k0 with ε′ − k−1
0 > 0. If U ∈ B(P(R)) with δ0 ∈ U , then P (Vni ∈

U) = P (Vun(i−1),uni ∈ U) in the same way as above. Hence

ΦVs,t(Ā(ε′))(z) = lim
n→∞

n

Π
i=1

ΦVni(z) = lim
n→∞

n

Π
i=1

ΦVun(i−1),uni
(z) = ΦVt−s(Ā(ε′))(z).
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We have ΦVs,t(A(ε))(z) = ΦVt−s(A(ε))(z) as ε′ ↓ ε, so that the condition (D.4.5) is
satisfied. By virtue of Lemma 3.6, {Vt(A(ε))} is a Lévy process with the condition
(D.4). ¤

Lemma 3.13. The process {St(A(ε))} is a Lévy process on P(R) with the
condition (D.4). The characteristic function of {St(A(ε))} is represented as

ΦSt(A(ε))(z) = exp
[
t

∫

A(ε)
〈µ⊗N , ei〈z,x〉 − 1〉m(dµ)

]
(3.15)

for z ∈ `0(N).

Proof. As {Ξt} is stochastically continuous, we have

P (St−(A(ε)) 6= St(A(ε))) = P (St−,t(A(ε)) 6= δ0) ≤ P (Ξt− 6= Ξt) = 0.

Hence St(A(ε)) is stochastically continuous.
The conditions (D.4.1), (D.4.2), and (D.4.3) are satisfied from the way of

making Ss,t(A(ε)). Let 0 = t0 < t1 < · · · < tn. From Lemma 3.3, Stj−1,tj (A
(ε))

is Ftj−1,tj -measurable for j with 1 ≤ j ≤ n. Hence {Stj−1,tj (A
(ε))}1≤j≤n are

independent. In the same way as in the proof of Lemma 3.12, the condition
(D.4.5) is satisfied. Hence {St(A(ε))} is a Lévy process with the condition (D.4).

The process St(A(ε)) is represented as St(A(ε)) =
∫

A(ε) ξ ∗N(dξ; t, ω). Hence,
in the same way as in the proof of Lemma 2.5, Lemma 3.1 in [9] is applied to
St(A(ε)) and we have (3.15). ¤

Lemma 3.14. Let {Vt} be a Lévy process on P(R) with the condition (D.4).
If sample functions of {Vt} are continuous a.s., then the Lévy measure of Vt is zero.

Proof. Suppose that the characteristic function of Vt is represented as

ΦVt(z)

= exp
[
t

( ∑

j∈N

(
− 2−1αz2

j + iγzj +
∫

R\{0}
(eizjx − 1− izjxI[|x|≤1](x))ρ(dx)

)

− β

2

( ∑

j∈N

zj

)2

+
∫

P∗(R)

〈
µ⊗N , ei〈z,x〉 − 1− i

( ∑

j∈N

zjxjI[|xj |≤1]

)〉
m(dµ)

)]
, (3.16)
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where the Lévy measure m is not zero. Let {Vt} be defined on a probability
space (Ω, F , P ), and let the conditions (D.4.1), (D.4.2) and (D.4.3) be satisfied
on Ω0 ∈ F with P (Ω0) = 1. And, from Theorem 2.3, there also exists a Lévy
process {Wt} on a probability space (Ω̃, F̃ , P̃ ) such that the characteristic function
is represented as (3.16). Then, let the conditions (D.4.1), (D.4.2) and (D.4.3) be
satisfied on Ω̃0 ∈ F̃ with P̃ (Ω̃0) = 1. Let T > 0. From Remark 2.2, the probability
that Wt has a discontinuous point on [0, T ] is positive.

Now let D be the totality of P(R)-valued càdlàg paths on [0, T ]. Then we
define mappings ψ : Ω → D and ϕ : Ω̃ → D by

ψ(ω)(t) =

{
V ω

t for ω ∈ Ω0,

δ0 for ω 6∈ Ω0,
ϕ(ω)(t) =

{
Wω

t for ω ∈ Ω̃0,

δ0 for ω 6∈ Ω̃0.

By the equality in law of {Vt} and {Wt}, we have P (ψ−1(G)) = P̃ (ϕ−1(G)) if G

is a cylinder set in D. Let C be the totality of P(R)-valued continuous paths
on [0, T ]. From right continuity, we have C =

⋂∞
m=1

⋃∞
l=1

⋂
r,s∈Q+∪{T}
|r−s|<l−1

{Ξ′t ∈ D :

d(Ξ′r, Ξ′s) < m−1}. Here Q+ is the collection of nonnegative rational numbers.
Hence C ∈ B(D) and

1 = P (ψ−1(C)) = P̃ (ϕ−1(C)).

This implies that Wt is continuous on [0, T ] a.s. It is a contradiction. Hence
m = 0. ¤

Lemma 3.15. Let m(U) = E[N(U ; 1, ω)] for U ∈ B(A(ε)). Then

∫

P∗(R)

〈µ, x2 ∧ 1〉m(dµ) < ∞.

Proof. Let m̃ be a Lévy measure of Ξ1. The characteristic function of Ξ1

is represented as

ΦΞ1(z) = exp
[
− 2−1(α + β)z2

1 + iγz1 +
∫

R\{0}

(
eiz1x− 1− iz1xI[|x|≤1](x)

)
Π(dx)

]

for z = (z1, 0, 0, . . .), where Π(dx) = ρ(dx) +
∫

P∗(R)
µ(dx)m̃(dµ).

Now we have Ξt = St(A(ε))∗Vt(A(ε)). The processes {St(A(ε))} and {Vt(A(ε))}
are Lévy processes, so that S1(A(ε)) and V1(A(ε)) are inifinitely divisible. Let m1
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and m2 be Lévy measures of S1(A(ε)) and V1(A(ε)), respectively. From Lemma 3.13
it follows that m1 = m|A(ε) . From the uniqueness of Lévy-Khintchin representation
for infinitely divisible distributions on R, the measure Π uniquely exists. Hence
we have

∞ >

∫

R\{0}
(x2 ∧ 1)Π(dx)

≥
∫

P∗(R)

〈µ, x2 ∧ 1〉m1(dµ) +
∫

P∗(R)

〈µ, x2 ∧ 1〉m2(dµ)

≥
∫

A(ε)
〈µ, x2 ∧ 1〉m(dµ).

As ε → 0, we have
∫

P∗(R)
〈µ, x2 ∧ 1〉m(dµ) < ∞. We have completed the proof. ¤

Now we prove Theorem 1.2.

Proof of Theorem 1.2.

(i) By virtue of Lemma 3.11, N(U ; t, ω) has a Poisson distribution with mean
tm(U). From Lemma 3.9, if U1, U2, . . . , Un are pairwise disjoint, then
N(U1; t, ω), . . . , N(Un; t, ω) are independent. It is obvious that N(U ; t, ω) is
a finite measure in U ∈ A(ε) for every ε > 0. From Lemma 3.15, we have

∫

P∗(R)

〈µ, x2 ∧ 1〉m(dµ) < ∞.

(ii) Let t > s ≥ 0. The process Ss,t(A(ε)) is represented as
∫

A(ε) ξ∗(N(dξ; t, ω)−
N(dξ; s, ω)). Here we define

S
(ε)
s,t = θaε(t−s) · Ss,t(A(ε)) = θaε(t−s) ·

∫

A(ε)
ξ ∗ (N(dξ; t, ω)−N(dξ; s, ω)).

In particular, we define S
(ε)
t = S

(ε)
0,t . And we define

S
(ε,ε0)
s,t = θaε,ε0 (t−s) ·

∫

A(ε,ε0)
ξ ∗ (N(dξ; t, ω)−N(dξ; s, ω)).

In particular, we define S
(ε,ε0)
t = θaε,ε0 t · ∫

A(ε,ε0) ξ ∗ N(dξ; t, ω).
We have already defined aε =

∫
A(ε)〈µ, xI[|x|≤1]〉m(dµ) and aε,ε0 =
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∫
A(ε,ε0)〈µ, xI[|x|≤1]〉m(dµ) in Section 2. In the same way as in the proof of

Theorem 2.1, there exists a Lévy process {St} on P(R) such that, almost
surely,

lim
ε→0

sup
0≤t≤T

d(S(ε)
t , St) = 0 (∀T > 0). (3.17)

By virtue of Lemma 3.13, the characteristic function of St is represented as
(1.3).

(iii) Furthermore, we define

V
(ε)
s,t = θ−aε(t−s) · Vs,t(A(ε))

for t > s ≥ 0. In particular, we define V
(ε)
t = V

(ε)
0,t . If ε0 > ε > 0, we have

Vs,t(A(ε0)) = Ss,t(A(ε,ε0)) ∗ Vs,t(A(ε)). Then it follows that

d
(
θ−aε0 t · Vt(A(ε0)), θ−aεt · Vt(A(ε))

) ≤ d
(
θaε,ε0 t · St(A(ε,ε0)), δ0

)
.

Here we use dT of (2.3). For V
(ε)
t , Lemma 6.3 in [9] becomes as follows:

P
(

sup
0<ε<ε0

dT (V (ε), V (ε0)) ≥ 3η
)
≤ 3 sup

0<ε<ε0

P
(
dT (S(ε,ε0), δ0) ≥ η

)
.

Furthermore, Lemma 6.5 in [9] holds for S
(ε,ε0)
s,t . As {V (ε)

t } is a Lévy process
on P(R) with the condition (D.4) from Lemma 3.12, in the same way as
in the proof of Theorem 2.1, we can show that there exists a Lévy process
{Vt} on P(R) with the condition (D.4) such that, almost surely,

lim
ε→0

sup
0≤t≤T

d
(
V

(ε)
t , Vt

)
= 0 (∀T > 0). (3.18)

Then there is Ω′0 ∈ F with P (Ω′0) = 1 such that (3.17) and (3.18) hold for
every ω ∈ Ω′0. Set Ω1 = Ω0 ∩ Ω′0. If Ξt has a jump with jump size µ0, we
can take ε > 0 satisfying 〈µ0, x

2 ∧ 1〉 > ε. For the ε and any ω ∈ Ω1, S
(ε)
t

and Ξt have the same jump with jump size µ0 simultaneously. Hence, as
ε → 0, it follows that Sω

t and Ξω
t have the same jumps at the same times for

any ω ∈ Ω1. Consequently, V ω
t is continuous in t for ω ∈ Ω1. By virtue of

Lemma 3.14, the characteristic function of Vt is represented as (1.5). And,
since Ξt = S

(ε)
t ∗ V

(ε)
t , we obtain that Ξω

t = Sω
t ∗ V ω

t for ω ∈ Ω1.
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(iv) From Lemma 3.10, {S(ε)
t } and {V (ε)

t } are independent. Hence, in the same
way as in the proof of Lemma 2.4, we can show that {St} and {Vt} are
independent. ¤

References

[ 1 ] P. Billingsley, Probability and Measure, 3rd ed., Wiley, New York, 1995.

[ 2 ] E. B. Dynkin, Criteria of continuity and absence of discontinuity of the second kind for

trajectories of a Markov process, Izv. Akad. Nauk SSSR Ser. Mat., 16 (1952), 563–572.
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[ 4 ] K. Itô, Stochastic processes, Lectures given at Aarhus University, Reprint of the 1969

original, Edited by Ole E. Barndorff-Nielsen and Ken-iti Sato, Springer-Verlag, 2004.

[ 5 ] J. R. Kinney, Continuity properties of sample functions of Markov processes, Trans. Amer.

Math. Soc., 74 (1953), 280–302.
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