(©2009 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 61, No. 1 (2009) pp. 263—289

doi: 10.2969/jmsj/06110263

The Lévy-I1to decomposition of sample paths of Lévy
processes with values in the space of probability measures

By Kouji YAMAMURO

(Received Nov. 19, 2007)
(Revised Feb. 6, 2008)

Abstract. A definition of Lévy processes with values in the space of probability
measures was introduced by Shiga and Tanaka (Electronic J. Prob. 11 (2006)). It is
shown that the Lévy process with values in the space of probability measures in law
has a modification satisfying a certain condition. The modification is a Lévy process
in the sense of Shiga and Tanaka. The Lévy-It6 decomposition of sample paths of
the Lévy process satisfying the condition is derived.

1. Introduction.

Let Z(R) be the set of all probability distributions on R. We denote by fi(z)
the characteristic function of a probability measure p € Z(R). We define the
metric on Z(R) by

dip,pz) = 327 sup |fin(2) — fia(2)]

m=1 [z|<m
for pup and po € Z(R). Then (Z(R),d) is a complete separable metric space.
Shiga and Tanaka [9] introduced a Lévy process on &Z(R) in law as follows:

DEFINITION. Let {Z; : ¢ > 0} be a £ (R)-valued stochastic process on a
probability space (§2,.%, P). {Z; : t > 0} is called a Lévy process on Z(R) in law,
if
(D.1) Zo = 6o,

(D.2) {E; : t > 0} is stochastically continuous,
(D.3) there exists a family of &7(R)-valued random variables {= ; }o<s<; satisfy-
ing the following conditions.
(D.3.1) Forany n >2and 0 =ty < t; < -+ < tp,
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—_

St = StoLt * St Lt koo Stp—1,tn a.S.

(D.3.2) Forany n >2and 0 =tg <t1 < --- < tn, {E, ;1 }1<i<n are indepen-
dent.
(D.3.3) For0< s <t
- (@ =

Sst — St—s)
(4) e e
where = means equality in distribution.

Shiga and Tanaka [9] called {Z; : t > 0} a Lévy process on Z(R), if it is a
Lévy process on Z(R) in law and t € [0,00) — Z; € Z(R) is right continuous
in t > 0 with left limits in ¢ > 0 a.s., that is, {Z: : t > 0} is cadlag. Now
we call a stochastic process {Z;} a modification of a stochastic process {Z,}, if
PE; = Et) =1 for t € [0,00). Shiga and Tanaka did not prove the existence
of a cadlag modification, nevertheless they make such claim and do not give the
argument. They concretely construct a Lévy process (see Theorem 6.6 in [9]).

First of all, we show that any Lévy process on &(R) in law has a modification
satisfying a certain condition. The proof is similar to that in Sato [8] and is
omitted. The proof in Sato [8] is used a result of Dynkin [2] and Kinney [5].

THEOREM 1.1. A Léuvy process on P(R) in law {E;} has a modification
satisfying the following:

(D.4) There exists a family of & (R)-valued random variables {Z¢,}o<s<t satis-
fying the following conditions. There is Qo € F with P(Qg) =1 such that,
for every w € Qo,

(D.4.1) =%, is right continuous int witht > s and has left limits in t witht > s,

(D.4.2) =%, is right continuous in s with t > s > 0 and has left limits in s with
t>s>0,

(D.4.3) fort>s>0,

—_
—

W oW Sw
t — s —s,t

(D.44) Foranyn>2and 0 =1ty <t1 <--- <ty, {E¢,_, ., f1<i<n are indepen-
dent.
(D.4.5) For0<s<t
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REMARK.

(i) If a Lévy process on Z(R) in law {=Z;} satisfies (D.4), then it is cadlag:
Indeed, since (D.1) and (D.4.3) are satisfied, we have B, = Z¢, a.s. It
follows from (D.4.1) that {Z;} is cadlag.

(i) If a Z(R)-valued stochastic process {Z;} satisfies (D.1), (D.2) and (D.4),
it is a Lévy process on Z(R). Indeed, using (D.4.3) repeatedly, we get
(D.3.1).

One of the basic results for classical Lévy processes on R is that a Lévy
process has the Lévy-It6 decomposition of sample paths. The decomposition was
conceived by Lévy (see [6], [7]). It consists of two independent parts. One part is
continuous and another part is a compensated sum of independent jumps. And it
was formulated and proved by It6 [4]. The proof is found also in the books of Itd
[4] and Sato [8].

Now, for the sample path =;, the jump size p should be defined by

Under the definition of Lévy processes in the sense of Shiga and Tanaka [9], ex-
istence of such p does not follow automatically and we cannot show the Lévy-Itd
decomposition of sample paths. Indeed, we have ét(z) = ét,(z)ﬁ(z) Then, if
gt(zo) = ét,(zo) = 0 for some zg, we cannot decide fi(z). Hence the jump size
1 is not exactly caught. But, for a Lévy process satisfying (D.4), the jump size is
exactly caught as =;_ ;.

We show that a Lévy process satisfying (D.4) has the Lévy-Itd decomposition
of sample paths. Let Z be a random probability distribution (shortly, RPD) with
the distribution Q € Z(Z(R)). And let RN = R x R x --- and let u®» =
wRpu®--- for p € Z(R), where N is the set of positive integers. Denote by
lo(IN) the totality of z = {z;} € RN with z; = 0 except for finitely many j € N.
Then the characteristic function of a RPD = with distribution @ is defined by

b=(z)= [ LG

(R) JEN

for z € £y(IN).
Here we prepare some notations:

(z,x) = Z 25T

JEN
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for x € RN and z € {4(N), and

k) = [ @, NG = [N G

for u € Z(R) and bounded measurable functions F' and G.
Let {Z;} be a Lévy process on Z(R). The distribution of =, at each time ¢
is infinitely divisible and the characteristic function of =, is represented as

("% — 1 — izjalyy <) (x))P(dx))

=¢e p[ (—2_10422-—1—1"72- +
X JEZIV J J ‘/12
p
(2

JEN

\{0}

2
2.(R) =
(1.1)

for z € £o(IN) (see [9]). Here @« > 0, 8 > 0 and v € R, p is a o-finite measure
satisfying fR\{O}(az2 A 1)p(dx) < oo, and m is a o-finite measure on L, (R) =
P (R)\{dp} satisfying

/ {, 2% A 1)m(dp) < oo.
2.(R)

We call m the Lévy measure of Z;. The characteristic function ®z, characterizes
the law of {Z;}.
Furthermore, we define a shift operator 6, (b € R) on &(R) by

by 1(4) = p(A+b) (A€ B(R)).
And we define

/u*ﬂ(du):m*uz*~~
for Il =3}.6,,. For e >0 let

A©) = (e Z.(R): (n,2° A1) > €}
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and
ac = / (1, 21} g <17)m(dp).
A

Now we show the Lévy-1td6 decomposition for Lévy processes on Z(R) satisfying
the condition (D.4).

THEOREM 1.2.  Let {E;} be a Lévy process on P (R) satisfying the condition
(D.4). Denote by §A be the number of elements of a set A. Lete > 0. For B € A©)
we define

N(B;0,w) =0,

N(B;t,w) = {ﬂ{T €(0,t]: =¥_ . € B} forw € Qo,
forw & Qg
fort>0. Set
m(U) = E[N(U;1,w)]

for U € B(A). Then the following holds:

(1) If U € B(A), N(U;t,w) is a Poisson process with parameter m(U). If
Ui, Us,...,U, € B(A©)) and they are pairwise disjoint, then N(Ui;t,w),
ooy N(Up; t,w) are independent. N(U;t,w) is a finite measure in U € A,
and

/ (2% A 1)m(dp) < oo.
Z.+(R)
(i) Set
51 = Ora, - / € N(d€; t,w).
Ale)
There exists a Lévy process {S:} on Z(R) such that

lim sup d(St(e),St) =0 (VI'>0) a.s. (1.2)
GHOOSISST

The characteristic function of Sy is represented as
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®s,(z) = exp [t/ <M®N, =™ — 1 — Z( > ijjf[|mj|<11> >m(du)]
Z.(R)

JEN
(1.3)

for z € {o(N).
(ili) There is Q1 € F with P(Qq) =1 such that, for w € 4, there exists a Lévy
process {Vi} on Z(R) satisfying

EY = 5 % V¥ (1.4)

for allt > 0 and V¥ is continuous in t. And V; has the following charac-
teristic function:

Py, (2)
= exp [t(%jv (— %az? + vz + /R \{0}(e“~'ﬂ — 1 —iz;xlje < (x))p(dx))
A5

for z € Lo(IN).
(iv) The processes {St} and {V;} are independent.
2. Construction of Lévy processes on Z(R).

Any finite dimensional distribution of Lévy process on Z(R) is uniquely
determined by the characteristic function at time 1. The representation of the
characteristic function is given by Shiga and Tanaka [9]. In this section we con-
struct a Lévy process corresponding to the given characteristic function. We need
the construction to prove Theorem 1.2. In [9] we can find a similar result.

Let m be a o-finite measure on Z,(R) = Z(R)\{do} satisfying that

/ (, 2% A 1)m(dp) < oo.
2.(R)

For € > 0 let

A© = (e 2, (R): (2> A1) > €}

There exists, on a probability space (ﬁ, % 15), a Poisson random measure Il
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on (0,00) X Z.(R) with intensity measure A x m. It satifies the following:
For any ¢ > 0 and ¢t > 0, HAXm|(07t]XA(E) is supported on a finite number of
points. Here A stands for the Lebesgue measure on [0,00) and xswm|(xac
is the restriction of TTyx,, to (0,f] x A(9). Then we have m(A©)) < oco. In-
deed, m(A9) < e ! [, (n,2® A 1)m(dp) < oo. Furthermore, we have a, =
Saco (s Iy <y)m(dp) < m(A©) < co. Hence we can define

5262 =04, (t—s) / p* Iy (dsd i)
(s,8]x A(©)

fort > s> 0. If t = s, we define Egi = §p. And we define EEE) = ngz We remark
that Shiga and Tanaka [9] takes A = {u € Z.(R) : (u,|z| A1) > €} in place of
our A,

First of all, we mention two theorems. The proofs are given in the latter half.

THEOREM 2.1.  There exists a Lévy process {=;} on P(R) with the condition
(D.4) such that

lim sup d(E\Y,Z)=0 (VT >0) a.s.
e—=00p<¢<T

Furthermore, the characteristic function of Zq is represented as

Oz, (z) = exp |:/ <U®N7 =T 1 _ Z( Z ijjl[|:1:j|<1]> >m(du)} (2.1)
2. (R) =
for z € £Lo(N).
REMARK 2.2.

(i) The limit Z; in Theorem 2.1 is denoted by

= / pox TR0, (dsdps).
(0,]x P, (R)

(ii) Let m # 0 and let T > 0. The probability that Z; has a discontinuous
point on [0, T] is positive. The reason is as follows: Since lim . supy<;<r
d(E§€)7Et) = 0 a.s. from Theorem 2.1, we have lim._,o d(EEiEt,) =0

a.s. Hence we have d(Z;,Z;_) = lim._g d(EEE),E,(f_)) a.s. If m # 0, the

[1]
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probability that EEE) has a discontinuous point is positive for sufficiently
small €. Let 0 < € < eo. If 2%’ is not continuous at to, then Z{ is not
continuous at ty and Z; is not continuous at ty. Hence the probability that

= has a discontinuous point is positive.

Furthermore, let {B;} be a standard Brownian motion defined on (2, Z,P),
where {B;} and I, y«,, are independent. For ¢ > 0 we set

== xdpran | p e I ) ). (22)
) (0,t]x 2. (R)

Here v; is an infinitely divisible distribution on R with characteristic function

() = exp [t{ — 27 az? +izy + /R ("7 — 1 —izaljy <y (J:))p(da:)H .

\{0}

Shiga and Tanaka proved that, for their {Z;}, the characteristic function at time
1 is represented as (1.1) and a similar result holds in our case.

THEOREM 2.3.  Let {E,} be defined by (2.2). Then {E;} is a Lévy process
on P(R) with the condition (D.4) such that the characteristic function of =y
coincides with (1.1).

We prepare some lemmas for the proofs of Theorems 2.1 and 2.3. Let Cy(R) be
the totality of bounded real functions on R and let C}'(R) be the set of f € Cy(R)
such that f is n times differentiable and the derivatives with order < n belong to
Co(R). Let U = {U¢, }o<s<t and V = {V¢, }o<s<¢ be two families of Z(R)-valued
random variables satisfying (D.4.1) and (D.4.2). Then we set

dr(U, V)= sup d(Usy, V). (2.3)
0<s<t<T

Furthermore, for ¢y > € > 0 let
Al =L e P(R):e< (u2® A1) < e}

for T > 0. Then we have m(A(4€)) < oo and we can set

=D 20, - / 1% Ty (dudps),
(s, x Alerc0)
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where
Qe =/ (ks wIjzy<ap)m(dp).
Alee0)
: =(e,e0) __ =(ese0)
In particular, we set Z; =Ep; -

Under the above definition, assertions similar to Lemmas 6.2, 6.3, 6.4 and
6.5 in [9] remain true. The proofs are the same as those in [9], where, in order
to prove Lemma 6.4(ii), we need to use the following in place of the maximal
inequality for martingales: Let ﬁ,\xm = Ilxxm — A X m. For any nonnegative
bounded measurable function H, we have

E( [ M)ﬁAXm(dUdM)>2 < [ Heupduman).

Furthermore, we prepare to prove Theorems 2.1 and 2.3.

LEMMA 2.4. Let 29,25, ..., 2" be independent P (R)-valued random vari-
ables. If limy, .o d(Z},Z;) =0 a.s. for each j, then {Z;}1<j<m are independent.

PRrROOF. Let {v; :j € N} be a dense subset of Z(R). And we take
Ue(vj) ={p e Z(R):dvj,n) <€}, j€ N, >0,
as a neighborhood system. We denote by & the m-system generated by this neigh-

borhood system. We denote by A the closure of a set A. From the independence
of {Z% }1<j<m, we obtain that

P(E €Ay,....En€A,)>P(E, € Ay)---P(E,, € A,)
>P(EL1€A) - PELEAR)
for Ai,..., Ay, € 0. Since € of Uc(v;) is free to be taken, we have

PE €A,...,E€A,)>PEL€A) - P(E, € An)

for Ay,..., A, € 0. The converse inequality is obtained in the same way as above.
Hence

P(E1€Ay,...,Em € Ap) = P(E1 € A)) -+ P(E € Ayp) (2.4)
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Here we use mathematical induction in m. By using the -\ theorem in [1, p. 42
(2.4) holds for Aj,..., A, € o(€). Since Z(R) is separable, we have o(0)
B(Z(R)). We have completed the proof.

)

au

LEMMA 2.5.  The characteristic function of Eié) is represented as

P_((2) = exp {/( : <M®N,ei<z7m> —-1- z< Z zjij[|wj|§1])>m(du)}. (2.5)
1 Ale

JEN

Proor. Now II((0,1] x B) has a Poisson distribution with mean m(B).
Recall that m(A(©) < co. Hence, Lemma 3.1 in [9] is applied to E = fgw(R) L *
Iy (dp) and we obtain (2.5). Here we denote by m| 4 the restriction of m to
Al O

Now we prove Theorems 2.1 and 2.3.

PROOF OF THEOREMS 2.1 AND 2.3. Let 26 = {E§f2}0§s<t. As men-
tioned before, assertions similar to Lemmas 6.3 and 6.5 in [9] remain true. Thus
it follows that for every n > 0,

lim P( sup dp(B®,=(0)) > 377) = 0.
€0—0 0<e<ep

Hence we have

P( lim  sup dr(E@,E€) > 677) —0,

€0—0 0<e,e’<eg
that is,

lim  sup dT(E(E),E(E/))zo a.s.
60_)00<67€/<60

Then there is Q¢ € % with probability 1 such that the above limit holds. There-
fore, there exists = such that lim._,o d(Eg, Est) = 0 on Q, and Z,; satisfies
the conditions (D.4.1) and (D.4.2). In particular, if s = 0, then there exists Z;
such that lim o supy<;<r d(E'9,2,) = 0 (VT > 0) a.s. Then, since Z) = 5y, we
have Z¢ = dp. Furthermore, {Ege)} satisfies the condition (D.2), and so does {Z,}.
Since {Eg} satisfies the condition (D.4.5), we have @E(ez (2) = P_00 (2).
Letting € — 0, we obtain that =, ; satisfies the condition (D45) o

E(f)

We have, almost surely, d(Z;,Zg s * Zs¢) = lim. 0 d(E;”, 5o s * Z5¢) and
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Hence, letting ¢ — 0, we have the condition (D.4.3).

For any n > 2 and 0 = tg < t1 < --+ < ty, Egg?tl,ng?tZ,...,E,gz)il)tn are
independent. From Lemma 2.4, the condition (D.4.4) is satisfied.

Finally, we get (2.1) as ¢ — 0 in (2.4). We have completed the proof of

Theorem 2.1. Theorem 2.3 is obtained from Theorem 2.1. O

3. Proof of Theorem 1.2.

We denote by % the collection of QoM A, A € %. In the proofs from Lemma
3.1 to Lemma 3.13, we take a probability space (Qq, %o, P) in place of (Q, %, P).
So a Lévy process {Z;} with the condition (D.4) is defined on (g, %y, P) in their
lemmas. Then we denote by %, ; the o-algebra generated by {E‘;’MT2 s < <
T2 S t}.

LEMMA 3.1.  Let T > 0. The number of jumping times t € [0,T] satisfying
Hi—t € A s finite.

PROOF. Suppose that N(A();T w) = co. Then the jumping times has a
limit point ¢ satisfying ¢; T to or t; | to, where {t;} are jumping times satisfying
By, € AL,

First of all, we suppose that ¢; T tg. Let 1 > ¢ > 0. Thereis n with 0 <n <1
such that, for sufficiently large j, |étj7t0(z)| > ¢ for any z with |z| < 7. Set
pj =Z¢,— ;. For any z with |z| <n and for sufficiently large j,

A(Et,— 10 Etyote) = 27H1 = 15(2)||Z0, 00 (2)| = 2786]1 — f35(2)]- (3.1)

Here we have, for any z with |z| < n,

271 - py(2)] =271 /(1 — cos zz) pj(dx)

. 2,1 2
> 27222/ <SH21_1$Z> 2% p;(dz) > 0122/ 2% p;(d),
|z|<1 Tz |z|<1

where ¢; is some positive constant. Hence we have, for any z with |z| <,
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d(Ety‘ﬂtht]"tO) B 01622<:“j7x2‘r[|r|§1]>' (3.2)
And we have
1 1
/ 271 = f1(2)|dz > 2_1/ /(1 — cos zx) 1 (dx)dz
-1

-/ <1 - S“;m)uj(dx) > copy(fo] > 1),

where ¢y is some positive constant. Integrating both sides in (3.1), we have
d(Etjf,tantj,to) Z 2_1025/1,]'“.%‘ > ].) (33)
From (3.2) and (3.3) we have, for any z with 0 < |z| <7 and sufficiently large 7,

d(Et].,,tO,Etj’to) > 2*101622<uj,x21[‘x|§1]> + 2*2025uj(|x| >1)
> min{2 " e122,27 22} g, 72 A 1)
> min{2 e1nz?, 27 % ¢y He.
Then the left-hand side goes to zero as j — oo and this is a contradict.
In the case where t; | o, there is  with 0 < 7 < 1 such that, for sufficiently

large 7, |§t]. (2)| > 0 for any z with |z| < 5. And, for any z with 0 < |z| < 7 and
for sufficiently large 7,

d(Ze,-,Z4,) > 271 15(2)] |20, - (2)] = 27 1= 5(2)||Z, (2)] > 2726]1 — i (2)]-

Hence, in the same way as above, this is a contradiction as j7 — oo. O

LEMMA 3.2. Lett > s> 0. For U € B(A9), N(U;t,w) — N(U;s,w) is
Fsp-measurable. In particular, N(U;t,w) is %o -measurable.

PROOF. Let {v;:j € N} be a dense set of A(9). We take
Uevj) ={p e ZR) :dv;,pn) <€}, j€N, e>0,
as a neighborhood system in A(9). We denote by & the m-system generated by

this neighborhood system. First of all, we deal with the case of U = U, (v1) N
-+ N U, (V). Here ¢j > 0 for any j and {7;} is a subset of {v;}. Set NY, =



The Lévy-Ité decomposition of sample paths 275

N(U;t,w) = N(U;s,w). Then NZ; takes values in {0,1,2,...}. Thus it suffices to
prove that {NY, > k} is .7, ;-measurable for k € N. Now we have

{we:Nw=1}=) | {ve:E cln}ecF (34

n=1 s<r<r'<t
r—r<n™!

rr’'€QU{t}

where U, = Ugyp—1 (1) N NUe, 1n-1(Dm). I {w € Qo : N(w) > k} is
Fs -measurable,

{we: Ngt(w) >k+1}

= |J {we: N (w) > k}n{weQ: N(w) > 1} € Zus

s<r<t
reQ

Hence Nslft is #, ;-measurable.

Set o = {U C A : NP, is Z, -measurable}. Then we have &/ D €. Let
0 < € < €. Denote by A the closure of A€). In the same way as above, we
can show that N;?;‘/) is %, -measurable. Letting €’ | ¢, we obtain that N;}t(‘) is
Fs -measurable. We notice this fact and we see that .7 is a A-system. Since o7 is
a A-system and € is a w-system, we have o(€) C «. (For example, see Theorem
3.2 in [1].) Therefore NY, is 7, ;-measurable for any U € B(A). In particular,
since N(U;0,w) = 0, N(U; t,w) is % -measurable. We have completed the proof.

O
Let t,; =s+ (t—s)jn~',j =0,1,...,n. For each w € Qo, we set Nﬁi(w) =
N(U;tni,w) — N(U;tyi-1),w) and Zp ;= Efn(i—l)atni. Furthermore we set, for

each w € ),

B, if Ngi(w) >1, 0o if Ngi(w) >1,
Stn,(iﬂ)ytm = 5o if fo,z(uJ) 0, ‘/tn(iflﬁtni =

Set Spi = St 1ytn; and Vg = Vi o+, for short. The number of discon-
tinuous points in (s,t] of N(U;u,w) is finite. Thus there exist limits

Se4(U) = lim ¥ S,; and Vi (U)= Lim % V.

n—oo i=1 n—oo i=1

In particular, we set Sy(U) = So(U) and Vi (U) = Vp,(U) for short. Then we
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have

(1]

= 5:(U) * Vi(U)
for each w € Q4. Let ¢g > ¢ > 0. We remark that Vs7t(A(50 ) = Ssyt(A(“O)) *
(A1), where A0 = {1 € P(R):e < (u,z2 A1) < e}

LEMMA 3.3.  For U € B(A), S, (U) and Vs ,(U) are F, -measurable.

Sni and V,,; are F ;-measurable. Hence the lemma holds O

ProoOF.
If 21 and =5 are random

LEMMA 3.4.  Suppose that {vp}r>1 C Z(R).
* l’

probability distributions, then, for 6 > 0 and € >0, k=1,2

‘ ( é d(Er,v) < 6k}> (Ambl{d(Eg,uk) < 6k}>’

[P(AN{|d(E1, vk) — Ok| < ex}) + P(AN{[d(Er, vk) — d(E2,vi)| > ex})].

MN

<

k=1

Proor. If d(E1,v) < 0 and d(E2,vy) > Ok, then we have

d(El,Vk) — d(5271/k) < —€, or 0> d(El,Vk) — 0 > —€g.

And, if d(E2,vk) < 0 and d(Z1, ) > g, then we have

d(Z1,vk) —d(Eo,vg) > € or 0<d(E1,vr) — 0 < €.

Hence
1

a0y <) (a0 oz <o)

l
<Y [PAN{d(Er, vi) > O, d(E2, i) < 0k})

1

=
Il

P(AN{d(E1,vk) < Ok, d(Za,vi) > 61})]

[P(AN{|d(E1, k) — 0| < ex}) + P(AN{|d(E1, vk) — d(Zs, vi)| > ex})].

MN

<

=
Il
—
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We have completed the proof. O

LEMMA 3.5. For U € B(A©)), N(U;t,w) — N(U;s,w) and Vs (U) are
independent.

PROOF. Let {r;} be a dense set in U. Set N = Y | NY,. It suffices to
prove that, for any §; > 0, 1 <j <[, and for any k € IN,

P(N =k, d(v;,Vs.(U)) <d; (1<5<1)

= P(N =k)P(d(v;, Vs (U)) <65 (1 <j <)), (3.5)

where {7, }1<;<; is a subset of {r;}. As this probability is left continuous in each

05, we only deal with the case where each d; is a continuous point of the distribution
of d(v;, Vs (U)).

Let k > 1. First of all, we prove that
P(N =k, d(Vs4(U),v;) <d; (1 <j<1))
P(N =0, d(‘/s,t(U),gJ) < (Sj (1<j< l))

=PN=k 3.6
(V="F) PN = 0) (3:6)
If N =k, then we have
Ny =ma, Njoy =ma, o Nyly) = my, (3.7)
U _nU U _ '
Noi) = Nnj@) == Nojnp) =0,

where 1 <p <kand my,...,mp >0, m1+---+my, =k, 1 <i(l) <i(2)<--- <
i(p) <mn, {j(1),...,5(n —p)} do not intersect {i(1),...,i(p)}, and j(1) < 5(2) <
- <j(n—p).

Since NV. and E En,; are %y

i M,;_l),tm -measurable and .%;,

no,t n1’ - 'g.tn(n_m,tnn
are independent, we obtain that {N ni(l)""’ m(p} and {N) = ... =
NU —-p

nj(n—p) = 0; %012, j(o)} are independent. Hence we have

P(N =k, d( } Vii3y) <8 (15 <))
U _ U _ _ U _
—ZP( Nyiy =M, Ny = M, N sy = o = Ny =0,

d(ilvmaﬁj) <6 (1<j< 1))
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= ZP(N’QJ’"(” = m1,...,Ng’i(p) = mp)

Py = = Ny = P Wiy = - = Nilap) =0)
PNy == Nagpy = O PN 0y = - = Ny = 0)
xP(NnJ(l)f =N =0, d( . H,U((,),yj) <4 (1§j§1))
=Y P(Niy = maseo o Ny i) = . Ny = o = N = 0)
XP(N:O,d( 11’5?()]).)<5j(1gjg1))’ (3.8)

where the summation runs through the condition (3.7). From Lemma 3.4, we
obtain that

‘P( —0, d( * Hnj(,,),y]) <4 (1§j§l))

n—p

+ P(N =0, |V (©),7) —d( " 0 i1, 7 )1 2 )]

< Zl: [P(ld(Vs,t(U)ﬁj) =0l <€)+ P<N =0, d(Vs,t(U%:iTEnJ(a)) > 6;‘)]
(3.9)

Let ¢ > 0. Taking a sufficiently small ¢;, we have
P(ld(Vei(U), 7j) = 651 < ¢j) <e.

It is because §; is a continuous point of the distribution of d(V;.(U),7;). And, if
N =0, then V;,(U) = Z; ;. Hence we have

P(N =0, d(Via0), "< Z050)) = €5)
< P(d(E ’t,Z£TEn7j(U)> > 6j> < P(d((so, £ =n z(w)) > Gj)

p
<Y Ed(50,Enigm) = €5 P X Ed(80, E(t—an-1)-
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As n — o0, the last probability converges uniformly to 0 under the condition (3.7)
and so does (3.9). From Lemma 3.4, we obtain that

‘P(N — k, d(iglvm»,aj) <6, (1<j< l))

PN =k, dVa,(U), 7)) <8, 1< j< 1))‘

MN

<3 [PV (). 7) = 8))] < )

<.
I
—

(£ V) - a5 )

<

-

[PUAVea (), 5) = 67)] < ) + Pd( ¥ Vo, Vea0)) 2 )] (3:10)

<
Il
—_

Let € > 0. Taking a sufficiently small €;, we have P(|d(V,(U),7;) —d;| <€) <e.
And we have lim,_,oc P(d(*]—1 Vai, V5,.(U)) > €;) = 0. Hence (3.10) goes to 0 as
n — oo.

Consequently, we obtain (3.6) as n — oo in (3.8). It is obvious that (3.6)
holds for k£ = 0. Hence, from (3.6), we have

P(d(Vs(U),v;) <d; (1 <7 <1))

R L P(N=0, d(V,,(U),7;) <0; (1<j<1))
_kZ:OP(N—k) PV =)

P(N =0, d(Vs,t(U)le;j) < 6] (1 <Jj< l))
P(N =0) '

We substitute the above equation into (3.6) and (3.5) is obtained. We have com-
pleted the proof. O

Let {E}} be a Z(R)-valued stochastic process. In this section, the process
{E}} is called an additive process on Z(R), if it satisfies (D.1), (D.2), (D.4.1),
(D.4.2), (D.4.3), and (D.4.4), except (D.4.5).

LEMMA 3.6.  For U € B(A9), {Vi(U)} is an additive process on Z(R).

PRrROOF. As {E.} is stochastically continuous, we have

PV (U) #Vi(U)) = P(Vi—1(U) # do) < P(Er—t # do) = 0.
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Hence V;(U) is stochastically continous.
Let 0 = tg < t; < -+ < t,. From Lemma 3.3, V;,_ ¢+ (U) is F,_, .-
measurable for j with 1 < j <n. Hence, {V;,_, +,(U)}1<j<n are independent.
The conditions (D.4.1), (D.4.2), and (D.4.3) are satisfied from the way of
making V; ,(U). O

LEMMA 3.7. Let U € B(A©)). {N(U;t,w):t >0} and {V,,(U):0< s <
t} are independent.

Proor. Let0<s3 <sp3<---<spand0<oy <og <--- <oy It suffices
toprove Z = (N; = NU;sj,w):i=1,2,....om)and ¥ = (V; =V, 5,,,(U) 1 i =
1,2,...,u— 1) are independent.

We put s1,...,8m,01,...,0, in order as follows:

Oit+1

0<ty<t1 <ta<- -+ <tp, M<m+pu—1).

Set N/ = N(U;t;,w)—N(U;t;—1,w) and V/ =V, | 4, (U). Furthermore, it suffices
to prove that Z' = (N} : i = 1,2,...,n) and ¢’ = (V/ : i = 1,2,...,n) are
independent. From Lemmas 3.2 and 3.3, N/ and V; are .%;, , ;,-measurable. Since
Fe; 1 t;,0=1,2,...,n, are independent, (N/,V/),i=1,2,...,n, are independent.
And N} and V; are independent from Lemma 3.5. Hence Ny,V{,..., N, V. are
independent and %’ and ¢’ are independent. We have completed the proof of the
lemma. U

LEMMA 3.8. Let E; = {Eg} be a Lévy process on Z(R) for j =1,2,...,m.
If2; and {Eg41, ..., ZEm} are independent fork =1,2,... ,m—1, thenZy,...,Z,,
are independent.

PrOOF. Let Wy, = {Ek,...,E,}. It suffices to prove that 51,22, ..., Z_1,
W), are independent for k = 2,3,...,m. It is obvious if k¥ = 2. Suppose that
E1,E9,...,Ek_1, Wy, are independent. Here Wy, = {E;, Wi41}, and E and Wi
are independent. Hence Z1,Zs,...,Eg, Wi41 are independent. By mathematical
induction, it holds in the case where k = m. O

Define ¢y (2;) = Vi(U) and ¢y (E;) = N(U;t,w) for any additive process
{Ei} on Z(R). If AN B = ¢, then

{wB(wA) =asB, (311)

YB(pa) =VB.

LEMMA 3.9. IfU;, i = 1,2,...,n, are pairwise disjoint, then the follow-
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ing n + 1 stochastic processes are independent: %; = {N(U;t,w) : t > 0},
i=1,2,...,n, and ¥V ={V,(3°_, U,) : t > 0}.

PrOOF. We remark that we can define N(B;t,w) in the case of additive
processes on Z(R). And all of Lemmas 3.1, 3.2, 3.3, 3.5, 3.6, and 3.7 hold for
additive processes on Z(R). By using these facts, we can prove the lemma as
follows.

Put x ={=::¢t >0} and ¥ = {Vt(Zizl Uy):t>0},i=1,2,...,n. Then
we have %1 = ¢y, (x) and Y1 = ¢y, (x). By virtue of Lemma 3.6, ¥, = {V;(U1)}
is an additive process. Denote by #y, the o-algebra generated by {V;, ., (U1) :
0 <7 <7 <t}. From (3.11), we have

Ky = ¢Uk(X) = wUk(QOUl(X)) = wUk(ni/l% k=2...,n

and
V=V = v+ a0, (X) = Uy, (00, (X)) = YU a0, (1)

Recall that 77 is an additive process. Here Lemmas 3.2 and 3.3 are applied to
the additive process ¥;. Then it follows that %%,k = 2,3,...,n, and ¥ are
Fu,-measurable. Therefore, from Lemma 3.7, %1 and {#s, ..., %y, V'} are inde-
pendent.

Furthermore, from (3.11), we have %2 = ¥y, (x) = Yu, (¢u, (X)) = Yu, (71)
and 75 = v, 4+, (X) = v, (v, (X)) = ¢, (71). And we have

Ry, = Yy, (X) =Yu, (‘pUlJrUz (X)) = Yu, (7/2)7 k=3,4,....,n

and
V =V = QU U+ +U, (X) = PUs++U, (P01 40, (X)) = QU5+ 10, (F2)-

Here 75 is an additive process from Lemma 3.6. Hence Lemmas 3.2 and 3.3 are
applied to the additive process ¥3. Then %5 and {%s, ..., %y, V' } are independent
from Lemma 3.7. Repeating the same way as above, we can obtain that %) and
{Rr+1,...,%n, ¥V} are independent for k = 3,...,n — 1, and that %,, and ¥ are
independent. Therefore, by virtue of Lemma 3.8, #1, ..., %,,? are independent.

O

LEMMA 3.10.  For U € B(A), {S;(U)} and {V,(U)} are independent.
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PRrROOF. Let {v;} be a dense set in U. Then, for any 6 > 0, we have
U= UJ 1 Bj, where B; = {u € Z(R) : (1/], )<5}0U. HerewesetB]C-:U\Bj
for j = 1,2,.... Then we have U = (J;Z = .52, Cj, where C1 = By and
Cj=BiNnBsN---NBS_1NBjfor j > 2 We remark that d(vj, n) < 6 for any

N(@3stw) — ynx if p = N(Cj;t,w). Here vi* is
the n-hold convolution of v;. When n = 0, I/j is understood to be .

Let n = N(U;t,w). For each w, S¢(U) is represented as

p € Cj. Furthermore, we define v
n*

H1,1 K b2 K e R g (1) K R g R R g (1)

where j; j belongs to some C,(; for all 1 < j < m(i). Herem(1) > 0,...,m(l) > 0,
m()+m(2)+---+m(l) = n, and m(1) = N(Cy1); t,w),...,m(l) = N(Coqy; t,w).
Then N(Cy;t,w) =01if i & {o(1),0(2),...,0(])}. Hence we have

(500 3) o500, 25

l
ZZ (K> Vo(i)) < On.

Therefore %32, I/N(C“t “) — S (U) as 6 — 0 as.
Let 0 <ty <te <--- <t,. Then we have

lim d( % uj“C“’fj’“’),Stj(U)) ~0
5—0 =1

for j = 1,2,...,n a.s. From Lemma 3.9, {x%_ 1VZV(C itiw) 7 =12,...,n} and

{Vt(Zf 1 C;) : t > 0} are independent. In the same way as in the proof of Lemma
2.4, we can show that {*$2, VN(C“tJ’w) j=1,2,...,n} and {V,(U) : t > 0} are
independent and, furthermore, that S, (U),...,S:, (U) and {V4(U) : t > 0} are
independent. We have completed the proof. O

LEMMA 3.11.  For U € B(A9), {N(U;t,w) : t > 0} is a Poisson process.

ProOF. LetT > 0. From Lemma 3.1 the number of discontinuous points of
N(U;t,w) is finite in [0, 7] almost surely. Furthermore, N (U;¢,w) is an increasing
right continuous step function with jumps of height 1 almost surely.

Set NV, = N(U; t,w) — N(U;s,w). Let 0 < tg < t; < - < t, < T.
From Lemma 3.2, N it E=1,2,...,n, are Fi;_, t;-measurable, i =1,2,...,n,
respectively. And, from the deﬁnition of Lévy processes on Z(R), it follows that
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F, 1 t;, © = 1,2,...,n, are independent. Hence, Nt[il,ti’ i =1,2,...,n, are
independent.
And we have

P(N(U;t—,w) # N(U;t,w)) < P(EY. # Ef) =0,

so that N(U;t,w) is stochastically continuous.

In order to show N(U;t,w) — N(U;s,w) @ N(U;t— s,w), it suffices to prove

P(N(U;t,w) — N(U;s,w) > k)=P(N(U;t —s,w) > k) (3.12)

for Kk = 1,2,.... Take & in the proof of Lemma 3.2. The finite dimensional
distributions of {Z;} are identical with those of {Z; 4, : ¢ > 0}. As mentioned
in the proof of Lemma 3.2, we take U = U, (v1) N--- N U, (V) and U, =
Uegyan—1 () N---NU, +n-1(Um). Then, from (3.4), we have

P(Ngt(w)zl) :P<ﬁ U {WGQO:E‘KW EUn}>

n=1 s<r<r/<t
v —r<n !
rr' €QU{t}

= P( N U f{ee:z € Un}) =P(NJ,_, > 1).

n=1 0<r<r’'<t—s
r—r<n™?t

rr' €QU{t—s} (313)
If (3.12) holds for k£ — 1, then we have

P(N(w) 2 k) = > P(NJ, > k=1)P(Nf, > 1)

s<r<t
reqQ

= S PV 2 k) P(NY 2 1) = PV 2 ).

o<r<t—s
reQ

Set & = {U C A : NI, @ NP .}. In the same way as in the proof of
Lemma 3.2, we can show that A(©) € o7, And, let Uy,Us,--- € & and U,,,NU,, = ¢
for m # n. Then, from Lemma 3.9, E exp[iz Z(;il NgUg] =12, F exp[ithU_js} =
Eexpliz} 5, N7], so we have Uj2,U; € &. Furthermore, let U € «/. By

) o
virtue of Lemma 3.9, N7, and N;}t W are independent, and N _ and NtAﬂ U



284 K. YAMAMURO

are independent. Hence we have

Eexp [izN;‘}t(E)] _ Eexp [ith“l(:]
Eexp [izNgJ ~ Eexp [ithLis]

A(E)\U

AON\U = Eexp [ithfs ]7

FEexp [izNS7t ] =

so that we have A\U € 7. There & is M-system. By using the 7-)\ theorem in
[1, p.42], (3.12) holds for U € B(A). O

LEMMA 3.12.  The additive process {V;(A\9))} satisfies the condition (D.4.5).
Hence {Vi(A)} is a Lévy process on P(R) with the condition (D.4).

PrROOF. Let 0 < e < €. As Vo, i = 1,2,...,n, are Py | 1.~
measurable from Lemma 3.2, they are independent. Hence q)VS,t(A(f/))(z) =
limy, oo 117 @y (2). Here A is the closure of A). Let U € #(Z(R)) with
00 € U. Put uy; = tn; — s. In the same way as (3.13) in the proof of Lemma 3.11,
we have

= P(20; € UNE" =0) = P(Eni €U) - P(Z,, € UNL 21)

:P(En,i € U)

oo

— P< m U {W € QO : Etn(i—l),tm c (]7 EL:’T, c A(elkl)})

k=ko t, ;1) <r<r’<tn;
r—r<k™!
' €QU{tn;}

= P(Zu,_1yum: €U)

oo

_ P( m U {w € Q0 Eupiyum USSR € A(E’_kl)}>

k=ko Unp (i—1) <r<r’ <tUn;

r—r<k~?!
' €QU{un;}
= P(Vun(ifl)ﬂlm € U)' (3'14)

Here we took ko with € —ky' > 0. If U € B(2(R)) with dy € U, then P(V,, €
U)=P(V, € U) in the same way as above. Hence

Un(i—1):Uni

n n
@Vsyt(A(E/))(Z) = lim H q)Vm (Z) = lim H (I)V

n—00 j—1 n—00 j—1 “n(i—1)Yni

(2) =Py, (4w (2).
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We have @y, ,(40)(2) = @y, (a)(2) as € | ¢, so that the condition (D.4.5) is

satisfied. By virtue of Lemma 3.6, {V;(A(9))} is a Lévy process with the condition
(D.4). O

LEMMA 3.13.  The process {S;(A)} is a Lévy process on P(R) with the
condition (D.4). The characteristic function of {Si(A©)} is represented as

B a3 = o ¢ [N, i (3.15)
A €

for z € £H(N).

PROOF. As {Z;} is stochastically continuous, we have
P(8;-(A©) # S,(A)) = P(S;— 1(A)) # 80) < P(E4— # E4) = 0.

Hence S;(A(9) is stochastically continuous.

The conditions (D.4.1), (D.4.2), and (D.4.3) are satisfied from the way of
making S&t(A(e)). Let 0 =tg <t <--- < t,. From Lemma 3.3, S;, | (AL))
is #,_, «,-measurable for j with 1 < j < n. Hence {S,_,+,(49)}1<j<, are
independent. In the same way as in the proof of Lemma 3.12, the condition
(D.4.5) is satisfied. Hence {S;(A(9))} is a Lévy process with the condition (D.4).

The process S;(A(¢)) is represented as S;(A(9)) = fA(‘»> &+ N(d¢;t,w). Hence,
in the same way as in the proof of Lemma 2.5, Lemma 3.1 in [9] is applied to
S;(A©) and we have (3.15). O

LEMMA 3.14.  Let {V;} be a Lévy process on Z(R) with the condition (D.4).
If sample functions of {V;} are continuous a.s., then the Lévy measure of V; is zero.

PROOF. Suppose that the characteristic function of V; is represented as
Dy, (2)

= exp [t( Z ( — 2_1azj2- +iyz; + / (€% — 1 — izjzljy <) (x))p(d:v))
jEN R\{0}
3 2
-5 Z zj
JEN
+/ <ﬂ®N,ei(z,m) -1- 7’( Z ijjl[wjﬁl]) >m(d,u')):|, (3.16)
2.(R)

JEN
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where the Lévy measure m is not zero. Let {V;} be defined on a probability
space (2, .#, P), and let the conditions (D.4.1), (D.4.2) and (D.4.3) be satisfied
on ) € F with P(Q) = 1. And, from Theorem 2.3, there also exists a Lévy
process {W; } on a probability space (£, Z, , P) such that the characteristic function
is represented as (3.16). Then, let the conditions (D.4.1), (D.4.2) and (D.4.3) be
satisfied on Q € .Z with P(Q) = 1. Let T > 0. From Remark 2.2, the probability
that W, has a discontinuous point on [0, 7] is positive.

Now let D be the totality of & (R)-valued cadlag paths on [0,7]. Then we
define mappings ¢ : 2 — D and ¢ : Q—D by

Ve for w e Qo We  for w € Qo
09 for w ¢ Qq, 0p  for w & Q.

By the equality in law of {V;} and {W,}, we have P(¢~1(G)) = P(¢~1(@Q)) if G

is a cylinder set in D. Let C be the totality of (R)-valued continuous paths

on [0,T]. From right continuity, we have C = (>_; U2, Nrseq uiri{Z: € D :
|r—s|<t™?t

d(Z/,Z.) < m~t}. Here Q, is the collection of nonnegative rational numbers.

Sy g

Hence C € #(D) and

1=P@y~(C) =Py~ '(C)).

This implies that W; is continuous on [0,7] a.s. It is a contradiction. Hence
m = 0. 0

LEMMA 3.15.  Let m(U) = E[N(U;1,w)] for U € B(A)). Then

/ {p, 2% A 1)ym(dp) < oo
P (%)

PrOOF. Let m be a Lévy measure of Z;. The characteristic function of &
is represented as

Oz, (2) = exp [— 27N a+ B)23 +ivz +/ (€™ — 1 —iz1zl |y <1y (2)) 1 (dz)
R\{0}

for z = (21,0,0,...), where Il(dz) = p(dx) + [, gy m(dz)m(dp).
Now we have Z;, = Sy (A©))xV;(A©). The processes {S;(A)} and {V;(A))}
are Lévy processes, so that S (A(e)) and V; (A(E)) are inifinitely divisible. Let m;
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and my be Lévy measures of Sy (A(©)) and V; (A(9)), respectively. From Lemma 3.13
it follows that m; = m| 4. From the uniqueness of Lévy-Khintchin representation

for infinitely divisible distributions on R, the measure II uniquely exists. Hence
we have

oo>/ (z% A 1)TI(dx)
R\{0}
> [ et avmid+ [ A ma(d)
2.(R) 2.(R)
> [ e A m(dw).
Ale)

As e — 0, we have [, (R) {p, 22 A1)m(dp) < oo. We have completed the proof. [J
Now we prove Theorem 1.2.

PROOF OF THEOREM 1.2.

(i) By virtue of Lemma 3.11, N(U;t,w) has a Poisson distribution with mean
tm(U). From Lemma 3.9, if Uy,Us,...,U, are pairwise disjoint, then
N(Uy;t,w),..., N(Uy;t,w) are independent. It is obvious that N(U;t,w) is
a finite measure in U € A®) for every € > 0. From Lemma 3.15, we have

/ {, 2* A 1Ym(dp) < oo.
Z+(R)

(ii) Let t > s > 0. The process Sy ;(A()) is represented as Jao Ex(N(dé;t,w)—
N(d§; s,w)). Here we define

SE) = a1+ Sst(A9D) =0, (1) - /A | (N(g 1 w) = N(dg 5,w).
In particular, we define 5\ = S((ft). And we define
ngf") =ba, . (t—s) - /A( ) Ex (N(d&;t,w) — N(dE; s,w)).
cré0

In particular, we define S\ = Oac eyt * Jaceenr & * N(d&;t,w).
We have already defined a. = fA<e><M,$l[\z|gl]>m(du) and ace, =
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(iii)
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Sacercor (1 @Iz <11)m(dp) in Section 2. In the same way as in the proof of
Theorem 2.1, there exists a Lévy process {S¢} on &(R) such that, almost
surely,

lim sup d(S\9,8)=0 (VT >0). (3.17)
e—=00<t<T

By virtue of Lemma 3.13, the characteristic function of S; is represented as
(1.3).
Furthermore, we define

Vs(,? = 0_ue(t_s) ’ VS,t(A(E))

for t > s > 0. In particular, we define Vt(e) = V}J(ft). If ¢ > € > 0, we have
Voi(Al0)) = S, (Ale<0)) x V, (A()). Then it follows that

A0, Vi(ACD),0_ 0, - Vi(AD)) < d(Ba, ..o - S(AD), 6p).

Qe eq
Here we use dr of (2.3). For Vt(€)7 Lemma 6.3 in [9] becomes as follows:

P( sup dp (V9 V() > 377) <3 sup P(dT(S(“O),(SO) >n).

0<e<eg 0<e<eq

Furthermore, Lemma 6.5 in [9] holds for ngfo). As {V,9} is a Lévy process
on Z(R) with the condition (D.4) from Lemma 3.12, in the same way as
in the proof of Theorem 2.1, we can show that there exists a Lévy process
{V;} on Z(R) with the condition (D.4) such that, almost surely,

lim sup d(V.9,V,) =0 (VT >0). (3.18)
e—=00<t<T

Then there is Q) € . with P(Q() = 1 such that (3.17) and (3.18) hold for
every w € . Set Oy = Qo N Q. If Z; has a jump with jump size pg, we
can take e > 0 satisfying (ug, 2% A 1) > e. For the € and any w € Q, S,fe)
and Z; have the same jump with jump size pg simultaneously. Hence, as
€ — 0, it follows that Sy’ and = have the same jumps at the same times for
any w € ;. Consequently, V¥ is continuous in ¢ for w € ;. By virtue of
Lemma 3.14, the characteristic function of V; is represented as (1.5). And,
since Z; = S'9 % V', we obtain that ¥ = ¢ % V& for w € Q.
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(iv) From Lemma 3.10, {St(ﬁ)} and {V;(e)} are independent. Hence, in the same

way as in the proof of Lemma 2.4, we can show that {S;} and {V;} are
independent. O
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