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Abstract. Our aim in this paper is to deal with Sobolev embeddings for Riesz
potentials of functions in Morrey spaces of variable exponent.

1. Introduction.

The space introduced by Morrey [14] in 1938 has become a useful tool for
studying the existence and regularity of partial differential equations. In recent
years, the generalized Lebesgue spaces and the corresponding Sobolev spaces of
variable exponent have attracted more and more attention, in connection with the
study of elasticity, fluid mechanics and differential equations with variable growth;
see Růžička [18]. Our aim in this paper is to establish Sobolev’s inequality for
generalized Morrey spaces of variable exponent; the borderline case is concerned
with Trudinger’s inequality.

In the n-dimensional Euclidean space Rn, we consider the Riesz potential of
order α for a locally integrable function f on Rn, which is defined by

Uαf(x) =
∫
|x− y|α−nf(y)dy.

Here 0 < α < n and it is natural to assume that Uα|f | 6≡ ∞, which is equivalent
to

∫

Rn

(1 + |y|)α−n|f(y)|dy < ∞; (1.1)

for this fact, see [12, Theorem 1.1, Chapter 2]. If f is a locally integrable function
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on Rn satisfying (1.1) and the Morrey condition

sup
x∈Rn,r>0

r−ν

∫

B(x,r)

|f(y)|pdy < ∞,

then it is shown (see Adams [1] and Peetre [17]) that Uαf satisfies Sobolev’s
inequality, where 1 < p < ∞ and B(x, r) denotes the open ball centered at x of
radius r. Further, in case ν = n − αp, we know Trudinger’s type inequality for
Uαf due to the paper by Nakai [15, Theorem 2.2].

Following Kováčik and Rákosńık [11], we consider a positive continuous func-
tion p(·) on Rn, which is called a variable exponent. To extend those results
mentioned above, we consider the Lp(·),ν,β norm by

‖f‖p(·),ν,β,Rn = inf
{

λ > 0 : sup
x∈Rn,r>0

r−ν(log(2+r−1))β

∫

B(x,r)

∣∣∣∣
f(y)
λ

∣∣∣∣
p(y)

dy ≤ 1
}

and denote by Lp(·),ν,β(Rn) the space of all measurable functions f on Rn with
‖f‖p(·),ν,β,Rn < ∞. This space Lp(·),ν,β(Rn) is referred to as a Morrey space of
variable exponent. For related results about Lebesgue or Sobolev spaces of variable
exponent, see also Edmunds-Rákosńık [7] and Růžička [18].

In this paper we are concerned with p(·) satisfying the following log-Hölder
condition

|p(x)− p(y)| ≤ a log(log(1/|x− y|))
log(1/|x− y|) +

b

log(1/|x− y|)

whenever |x − y| < 1/4, where a and b are nonnegative constants. A typical
example is given by

p(x) = p0 +
a log(log(1/|x0 − x|))

log(1/|x0 − x|) +
b

log(1/|x0 − x|)

for x ∈ B(x0, r0), 0 < r0 < 1/4. Sobolev’s theorem consists of three different
aspects, that is, Sobolev’s inequality, Trudinger’s inequality and continuity. The
border between Sobolev’s inequality and Trudinger’s inequality is caused by the
first parameter p0, and the border between Trudinger’s inequality and continuity
is caused by the second parameter a. In the present paper, we deal with the case
that a is small; when a is large, the continuity property has been discussed in the
coming paper by the authors [13].

Recently Diening [6] has established embedding results for Riesz potentials
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in the case a = 0. Our first task is then to establish the boundedness of Hardy-
Littlewood maximal functions from Lp(·),ν,β to some Orlicz classes, as an extension
of Chiarenza and Frasca [4, Theorem 1] in the constant case and the authors’ [9,
Theorem 2.4] with ν = β = 0. As an application of the boundedness of maximal
functions, we establish Sobolev’s inequality as well as Trudinger’s inequality for
Riesz potentials of functions in Morrey spaces of variable exponent, as an extension
of Adams [1], Cruz-Uribe, Fiorenza and Neugebauer [3], Chiarenza and Frasca [4],
Futamura and the first author [8], Futamura and the authors [9] and Nakai [15].

2. Preliminary results for constant exponents.

Throughout this paper, let C denote various constants independent of the
variables in question.

For an open set G in Rn, 1 < p < ∞, 0 ≤ ν ≤ n and a real number β,
following Nakai [15], we consider the family Lp,ν,β(G) of all measurable functions
f on G such that

‖f‖p
p,ν,β,G = sup

x∈G,r>0
r−ν(log(2 + r−1))β

∫

G∩B(x,r)

|f(y)|pdy < ∞,

where B(x, r) denotes the open ball centered at x of radius r > 0. In what follows
we assume that f = 0 outside G. Under this assumption, we easily see that if
f ∈ Lp,ν,β(G), then f ∈ Lp,ν,β(Rn) and

‖f‖p,ν,β,Rn ≤ C‖f‖p,ν,β,G.

We sometimes write ‖f‖p,ν,β instead of ‖f‖p,ν,β,G for simplicity.
We recall the notion of maximal functions of locally integrable functions f on

Rn, which are in fact defined by

Mf(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y)|dy,

where |E| denotes the n-dimensional Lebesgue measure of a measurable set E ⊂
Rn.

First we present the boundedness of maximal functions in the Morrey space
Lp,ν,β due to Nakai [15, Theorem 2.1].

Lemma 2.1. If 0 ≤ ν < n, then

‖Mf‖p,ν,β ≤ C‖f‖p,ν,β
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for all f ∈ Lp,ν,β(Rn).

For reader’s convenience we give a proof of Lemma 2.1.

Proof of Lemma 2.1. Let ‖f‖p,ν,β ≤ 1, x ∈ Rn and r > 0. Write A0 =
B(x, 2r) and Aj = B(x, 2j+1r) \B(x, 2jr) for each positive integer j. We set

fj = fχAj
,

where χE denotes the characteristic function of E. Note that

∫

B(x,r)

Mf(z)pdz ≤ 2p−1

( ∫

B(x,r)

Mf0(z)pdz +
∫

B(x,r)

Mg0(z)pdz

)

≡ 2p−1(I1 + I2),

where g0 =
∑∞

j=1 |fj |. We have

I1 ≤
∫

Mf0(z)pdz ≤ C

∫
|f0(z)|pdz = C

∫

B(x,2r)

|f(z)|pdz ≤ Crν(log(2+r−1))−β .

Next we see that for z ∈ B(x, r)

Mfj(z) ≤ C(2jr)−n

∫

B(x,2j+1r)

|f(y)|dy

≤ C

(
(2jr)−n

∫

B(x,2j+1r)

|f(y)|pdy

)1/p

≤ C(2jr)(ν−n)/p(log(2 + (2jr)−1))−β/p,

so that

Mg0(z) ≤
∞∑

j=1

Mfj(z)

≤ C
∞∑

j=1

(2jr)(ν−n)/p(log(2 + (2jr)−1))−β/p

≤ Cr(ν−n)/p(log(2 + r−1))−β/p.
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Hence it follows that

I2 ≤ Crν−n(log(2 + r−1))−β

∫

B(x,r)

dz = Crν(log(2 + r−1))−β .

Thus we obtain

∫

B(x,r)

Mf(z)pdz ≤ Crν(log(2 + r−1))−β ,

which proves the lemma. ¤

Remark 2.2. When ν = n and β ≤ p, Theorem 2.1 by Nakai [15] implies
that

‖Mf‖p,n,β−p ≤ C‖f‖p,n,β .

For 0 < α < n and a locally integrable function f on Rn we define the Riesz
potential Uαf by

Uαf(x) =
∫
|x− y|α−nf(y)dy;

note that Uα|f | 6≡ ∞ if and only if

∫
(1 + |y|)α−n|f(y)|dy < ∞; (2.1)

for this fact, see [12, Theorem 1.1, Chapter 2].

Lemma 2.3. Let 0 ≤ ν < n−αp. If f is a nonnegative measurable function
on Rn such that ‖f‖p,ν,β ≤ 1, then

∫

Rn\B(x,δ)

|x− y|α−nf(y)dy ≤ Cδ−(n−ν)/p]

(log(1/δ))−β/p

for x ∈ Rn and 0 < δ < 1/4, where 1/p] = 1/p− α/(n− ν) > 0.

This lemma will be proved later (in Lemma 4.1) in variable exponent setting;
For constant exponent case, we refer the reader to the book by Adams and Hedberg
[2].
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With Lemmas 2.1 and 2.3 we can apply Hedberg’s trick (see [10]) to ob-
tain Sobolev type inequality for Riesz potentials due to Adams [1, Theorem 3.1],
Chiarenza and Frasca [4, Theorem 2] and Nakai [15, Theorem 2.2].

Theorem 2.4. Let 0 ≤ ν < n − αp. If f is a nonnegative measurable
function on Rn with ‖f‖p,ν,β ≤ 1, then

‖Uαf(log(2 + Uαf))αβ/(n−ν)‖p],ν,β ≤ C.

Proof. Suppose ‖f‖p,ν,β ≤ 1. For x ∈ Rn and 0 < δ < 1/4, write

Uαf(x) =
∫

B(x,δ)

|x− y|α−nf(y)dy +
∫

Rn\B(x,δ)

|x− y|α−nf(y)dy.

We see from Lemma 2.3 that

Uαf(x) ≤ CδαMf(x) + Cδ−(n−ν)/p]

(log(2 + δ−1))−β/p.

Now, taking δ = Mf(x)−p/(n−ν)(log(2 + Mf(x)))−β/(n−ν) when Mf(x) is large
enough, we obtain

Uαf(x)(log(2 + Uαf))αβ/(n−ν) ≤ CMf(x)p/p]

.

Therefore it follows from Lemma 2.1 that

∫

B(z,r)

{
Uαf(x)(log(2 + Uαf))αβ/(n−ν)

}p]

dx ≤ C

∫

B(z,r)

Mf(x)pdx

≤ Crν(log(2 + r−1))−β

for z ∈ Rn and r > 0, which yields the required property. ¤

In case ν = n− αp > 0, we modify Lemma 2.3 and Theorem 2.4 as follows:

Lemma 2.5. Let ν = n − αp > 0, β ≤ p and G be a bounded open set in
Rn. Let f be a nonnegative measurable function on G such that ‖f‖p,ν,β ≤ 1. If
β < p, then

∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ C(log(1/δ))1−β/p
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and if β = p, then

∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ C log(log(1/δ))

for x ∈ G and 0 < δ < 1/4.

In view of Lemma 2.5, we have the following exponential integrability of
Trudinger type; see Nakai [15, Theorem 2.2]. We also refer the reader to the
paper by Sawano, Sobukawa and Tanaka [19, Theorem 3.1].

Theorem 2.6. Let ν = n− αp > 0, β ≤ p and G be a bounded open set in
Rn. Then there exist positive constants c1 and c2 such that in case β < p,

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

exp(c1Uαf(x)p/(p−β))dx ≤ c2

and in case β = p,

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

exp(exp(c1Uαf(x)))dx ≤ c2

for all z ∈ G and r > 0, whenever f is a nonnegative measurable function on G

satisfying ‖f‖p,ν,β,G ≤ 1.

Remark 2.7. In the conclusion of Theorem 2.6 for β = 0 we can not add
an exponent q > 1 such that

r−ν

∫

G∩B(z,r)

exp(c1Uαf(x)q)dx ≤ c2.

For this, consider the function f(y) = |y|−αχG(y), where G = B(0, 1). If
ν = n− αp > 0, then

r−ν

∫

B(x,r)

|f(y)|pdy ≤ r−ν

∫

B(x,r)

|x− y|−αpdy ≤ Cr−νrn−αp = C

for all x ∈ G and r > 0, so that f ∈ Lp,ν(G). On the other hand, we see that
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Uαf(x) ≥
∫

G\B(x,|x|/2)

|x− y|α−nf(y)dy

≥ 3−α

∫

G\B(x,|x|/2)

|x− y|−ndy ≥ C log(2/|x|)

for x ∈ G, and hence

r−ν

∫

G∩B(0,r)

exp(cUαf(x)q)dx = ∞

for r > 0, c > 0 and q > 1.

Theorem 2.6 is somewhat different from the usual Trudinger’s inequality when
f ∈ Lp(G) as in Remark 2.7. Here we will modify Theorem 2.6 when ν = n−αp >

0.

Lemma 2.8. Let ν = n− αp > 0 and RG denote the diameter of G. If f is
a nonnegative measurable function on G such that

|||f |||pp,ν = sup
x∈G

∫ RG

0

(
t−ν

∫

B(x,t)

f(y)pdy

)
dt

t
≤ 1, (2.2)

then
∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ C(log(1/δ))1/p′

for x ∈ G and 0 < δ < 1/4.

Remark 2.9. Note that

‖f‖p,ν,0 ≤ C|||f |||p,ν (2.3)

and

|||f |||p,ν ≤ C‖f‖p,ν,β when β > 1. (2.4)

Further, we see from condition (2.2) that

lim
r→0

r−ν

∫

B(x,r)

f(y)pdy = 0. (2.5)
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Proof of Lemma 2.8. In view of Hölder’s inequality and (2.2), we have

∫

G\B(x,δ)

|x− y|α−nf(y)dy

≤
( ∫

G\B(x,δ)

|x− y|(α−n+ν/p)p′dy

)1/p′( ∫

G\B(x,δ)

|x− y|−νf(y)pdy

)1/p

≤ C

( ∫ RG

δ

t−1dt

)1/p′( ∫ RG

δ

(
t−ν

∫

B(x,t)

f(y)pdy

)
dt

t

)1/p

≤ C(log(1/δ))1/p′ ,

as required. ¤

Theorem 2.10. Let ν = n − αp > 0 and G be a bounded open set in Rn.
Then there exist positive constants c1 and c2 such that

r−ν

∫

G∩B(z,r)

exp(c1Uαf(x)p′)dx ≤ c2

for all z ∈ G and r > 0, whenever f is a nonnegative measurable function on G

satisfying |||f |||p,ν ≤ 1.

Proof. Suppose ν = n− αp > 0 and |||f |||p,ν ≤ 1. We have by Lemma 2.8

Uαf(x) ≤ CδαMf(x) + C(log(1/δ))1/p′

for x ∈ G and 0 < δ < 1/4. Now, considering δ = Mf(x)−1/α(log(2 +
Mf(x)))1/(αp′) when Mf(x) is large enough, we obtain

Uαf(x) ≤ C(log(2 + Mf(x)))1/p′ ,

which yields

∫

G∩B(z,r)

exp(C1pUαf(x)p′)dx ≤
∫

G∩B(z,r)

(2 + Mf(x))pdx

≤ C2

∫

G∩B(z,r)

dx + C2

∫

G∩B(z,r)

Mf(x)pdx
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for z ∈ G and r > 0. Hence Lemma 2.1 gives

r−ν

∫

G∩B(z,r)

exp(C1pUαf(x)p′)dx ≤ C3

for such z and r, as required. ¤

Remark 2.11. Let ν = n − αp > 0 and G be a bounded open set in Rn.
Then we can find a positive constant c such that

r−ν

∫

G∩B(z,r)

{exp(cUαf(x)p′)− 1}dx ≤ 1

for all z ∈ G and r > 0, whenever f is a nonnegative measurable function on G

satisfying |||f |||p,ν ≤ 1.

3. Variable exponents and boundedness of maximal operators.

In what follows we assume that G is a bounded open set in Rn, and consider
a positive continuous function p(·) on G.

In this section let us assume that:

(p1) 1 < p∗(G) = infG p(x) ≤ supG p(x) = p∗(G) < ∞;

(p2) |p(x)− p(y)| ≤ a log(log(1/|x− y|))
log(1/|x− y|) +

b

log(1/|x− y|)
whenever |x− y| < 1/4, x ∈ G and y ∈ G.

Let 1/p′(x) = 1− 1/p(x).
We know the following result.

Lemma 3.1 ([9, Lemma 2.1]). There exists a positive constant C such that

|p′(x)− p′(y)| ≤ ω(|x− y|) whenever x ∈ G and y ∈ G,

where ω(r) = ω(r;x) = a
(p(x)−1)2

log(log(1/r))
log(1/r) + C

log(1/r) for 0 < r ≤ r0 (≤ 1/4) and
ω(r) = ω(r0) for r ≥ r0; here r0 is chosen so small that ω(r) is nondecreasing for
fixed x ∈ G.

For 0 ≤ ν ≤ n and a real number β, we define the family Lp(·),ν,β(G) of all
measurable functions f on G such that
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‖f‖p(·),ν,β,G

= inf
{

λ > 0 : sup
x∈G,r>0

r−ν(log(2 + r−1))β

∫

G∩B(x,r)

∣∣∣∣
f(y)
λ

∣∣∣∣
p(y)

dy ≤ 1
}

< ∞.

Lemma 3.2 (cf. [9, Lemma 2.2]). Suppose 0 ≤ ν < n. If f is a nonnegative
measurable function on G with ‖f‖p(·),ν,β,G ≤ 1, then

{Mf(x)}p(x) ≤ C
{
Mg(x)(log(2 + Mg(x)))A(x)p(x) + 1

}
,

where g(y) = f(y)p(y) and A(x) = a(n− ν)/p(x)2; we set f = 0 and g = 0 outside
G as before.

Proof. Let f be a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1. Then note that

r−ν(log(2 + r−1))β

∫

B(x,r)

f(y)p(y)dy ≤ 1 (3.1)

whenever x ∈ G and r > 0. If r ≥ 1/2, then we see that

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ 1
|B(x, r)|

∫

B(x,r)

{1 + f(y)p(y)}dy ≤ C

by our assumption. For 0 < k ≤ 1 and 0 < r < 1/2, we have by Lemma 3.1

1
|B(x, r)|

∫

B(x,r)

f(y)dy

≤ k

{
1

|B(x, r)|
∫

B(x,r)

(1/k)p′(y)dy +
1

|B(x, r)|
∫

B(x,r)

f(y)p(y)dy

}

≤ k
{
(1/k)p′(x)+ω(r) + F

}
,

where F = |B(x, r)|−1
∫

B(x,r)
f(y)p(y)dy. Here, considering

k = F−1/{p′(x)+ω(r)} = F−1/p′(x)+η(x)

with η(x) = ω(r)/{p′(x)(p′(x) + ω(r))} when F ≥ 1, we have
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1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ 2F 1/p(x)Fω(r)/p′(x)2 ;

if F < 1, then we can take k = 1 to obtain

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ 2.

Hence it follows that

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ 2
{
F 1/p(x)Fω(r)/p′(x)2 + 1

}
.

If r ≤ F−1/(n−ν), then we see that

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ C
{
F 1/p(x)(log(2 + F ))A(x) + 1

}
.

Next we treat the case where F−1/(n−ν) < r. Then we have

F 1/p(x)+ω(r)/p′(x)2

≤ Cr(ν−n)/p(x)r−(n−ν)ω(r)/p′(x)2(log(2 + r−1))−β(1/p(x)+ω(r)/p′(x)2)

×
{

r−ν(log(2 + r−1))β

∫

B(x,r)

f(y)p(y)dy

}1/p(x)+ω(r)/p′(x)2

≤ Cr(ν−n)/p(x)(log(1/r))A(x)−β/p(x)

×
{

r−ν(log(2 + r−1))β

∫

B(x,r)

f(y)p(y)dy

}1/p(x)+ω(r)/p′(x)2

≤ Cr(ν−n)/p(x)(log(1/r))A(x)−β/p(x)

×
{

r−ν(log(2 + r−1))β

∫

G∩B(x,r)

f(y)p(y)dy

}1/p(x)

≤ C(log(1/r))A(x)

{
r−n

∫

G∩B(x,r)

f(y)p(y)dy

}1/p(x)

,

in view of (3.1). Since F−1/(n−ν) < r implies that (log(1/r))A(x) ≤ C(log F )A(x),
we find
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F 1/p(x)+ω(r)/p′(x)2 ≤ C(log F )A(x)

{
r−n

∫

G∩B(x,r)

f(y)p(y)dy

}1/p(x)

≤ CF 1/p(x)(log F )A(x).

Now we have established

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ C
{
F 1/p(x)(log(2 + F ))A(x) + 1

}
(3.2)

for all x ∈ G and r > 0, which completes the proof. ¤

Theorem 3.3. For 0 ≤ ν < n − αp∗(G), let A′ > A∗(G) = supx∈G A(x)
when a > 0 and A′ = 0 when a = 0. Then there exists c > 0 such that

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

{
Mf(x)(log(2 + Mf(x)))−A′}p(x)

dx ≤ c

for z ∈ G and r > 0, whenever f is a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1.

Proof. Let f be a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1. Write

f = fχ{y:f(y)≥1} + fχ{y:f(y)<1} = f1 + f2.

Let p0(x) = p(x)/p0 with 1 < p0 < p∗(G). Then we have

∫

G∩B(x,r)

f1(y)p0(y)dy ≤
∫

G∩B(x,r)

f1(y)p(y)dy,

which implies that ‖f1‖p0(·),ν,β,G ≤ 1. Hence it follows from Lemma 3.2 that

{Mf1(x)}p0(x) ≤ C
{
Mg(x)(log(2 + Mg(x)))a0(n−ν)/p0(x) + 1

}

for x ∈ G, where g(y) = f(y)p0(y) and a0 = a/p0. Since Mf2 ≤ 1 on G, we
establish

{Mf(x)}p0(x) ≤ C
{
Mg(x)(log(2 + Mg(x)))a0(n−ν)/p0(x) + 1

}
.
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If a > 0, then we can find p0 > 1 such that a0(n − ν)/p0(x) < A′p0(x), so
that

{Mf(x)}p(x) ≤ C
{
Mg(x)(log(2 + Mg(x)))A′p(x)/p0 + 1

}p0
,

which yields

{
Mf(x)(log(2 + Mf(x)))−A′}p(x) ≤ C(Mg(x) + 1)p0 .

Note from (3.1) that

r−ν(log(2 + r−1))β

∫

B(z,r)

g(y)p0dy ≤ 1

for z ∈ G and r > 0. Hence we see from Lemma 2.1 that

∫

G∩B(z,r)

{
Mf(x)(log(2 + Mf(x)))−A′}p(x)

dx

≤ C

∫

G∩B(z,r)

Mg(x)p0dx + C

∫

G∩B(z,r)

dx

≤ Crν(log(2 + r−1))−β

for z ∈ G and r > 0. ¤

Remark 3.4. Set Φ(r, x) = (r(log(2 + r))−A′)p(x) for r ≥ 0 and x ∈ G.
Then Theorem 3.3 assures the existence of c0 > 0 such that

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

Φ(c0Mf(x), x)dx ≤ 1

for all z ∈ G and r > 0, whenever ‖f‖p(·),ν,β,G ≤ 1. As in Edmunds and Rákosńık
[7], we define

‖f‖Φ,ν,β,G

= inf
{

λ > 0 : sup
z∈G,r>0

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

Φ(|f(x)|/λ, x)dx ≤ 1
}

;

then it follows that
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‖Mf‖Φ,ν,β,G ≤ c0
−1‖f‖p(·),ν,β,G for f ∈ Lp(·),ν,β(G).

When ν = β = 0, Theorem 3.3 was proved by the authors [9], which is an
extension of Diening [5] (when a = 0).

4. Riesz potentials.

In this section, if 0 < ν < n− αp(x), then we define the Sobolev exponent of
p(·) by

1
p](x)

=
1

p(x)
− α

n− ν
.

For a function q(x) on G, we set q∗(G) = infG q(x) as in (p1).

Lemma 4.1 (cf. [9, Lemma 3.1]). Let f be a nonnegative measurable function
on G with ‖f‖p(·),ν,β,G ≤ 1.

(1) If 0 < ν < n− αp∗(G), then

∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ Cδ−(n−ν)/p](x)(log(1/δ))A(x)−β/p(x);

(2) if ν ≥ n− αp(x) > 0 and (A(·)− β/p(·))∗(G) > −1, then

∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ C(log(1/δ))A(x)−β/p(x)+1;

(3) if ν ≥ n− αp(x) > 0 and A(x)− β/p(x) + 1 ≤ 0, then

∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ C log(log(1/δ))

for x ∈ G and 0 < δ < 1/4, where A(x) = a(n− ν)/p(x)2 as before.

Proof. For a nonnegative measurable function f on G with ‖f‖p(·),ν,β,G ≤
1, we see from (3.1) and (3.2) that

1
|B(x, r)|

∫

B(x,r)

f(y)dy ≤ Cr−(n−ν)/p(x)(log(2 + 1/r))A(x)−β/p(x)
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for x ∈ G and r > 0. Letting RG denote the diameter of G, we obtain

I(δ) =
∫

G\B(x,δ)

|x− y|α−nf(y)dy

≤
∫ RG

δ

( ∫

B(x,r)

f(y)dy

)
d(−rα−n) + Rα−n

G

∫

B(x,RG)

f(y)dy

≤ C

∫ RG

δ

rn−(n−ν)/p(x)(log(2 + r−1))A(x)−β/p(x)d(−rα−n)

≤ C

∫ RG

δ

rα−(n−ν)/p(x)(log(2 + r−1))A(x)−β/p(x) dr

r

for 0 < δ < RG/2. If n− ν − αp(x) ≥ n− ν − αp∗(G) > 0, then

I(δ) ≤ Cδα−(n−ν)/p(x)(log(1/δ))A(x)−β/p(x)

= Cδ−(n−ν)/p](x)(log(1/δ))A(x)−β/p(x);

if n− ν − αp(x) ≤ 0 and A(x)− β/p(x) + 1 ≥ (A(·)− β/p(·))∗(G) + 1 > 0, then

I(δ) ≤ C(log(1/δ))A(x)−β/p(x)+1;

and if n− ν − αp(x) ≤ 0 and A(x)− β/p(x) + 1 ≤ 0, then

I(δ) ≤ C log(log(1/δ))

for small δ > 0, say 0 < δ ≤ δ0. Since I(δ) ≤ I(δ0) for δ > δ0, we complete the
proof of the present lemma. ¤

Lemma 4.2. Let f be a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1. If x ∈ G and 0 < ν < n− αp∗(G), then

ρ(Uαf(x), Aβ(x))p](x) ≤ C
{
ρ(Mf(x), A(x))p(x) + 1

}
,

where ρ(t, y) = t (log(2 + t))−y and Aβ(x) = A(x)− αβ/(n− ν).

Proof. For 0 < δ < 1/4 we have by Lemma 4.1

Uαf(x) ≤ CδαMf(x) + Cδ−(n−ν)/p](x)(log(1/δ))A(x)−β/p(x).
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Considering δ = Mf(x)−p(x)/(n−ν)(log(2 + Mf(x)))p(x)(A(x)−β/p(x))/(n−ν) when
Mf(x) is large enough, we see that

Uαf(x) ≤ C
{
Mf(x)p(x)/p](x)(log(2 + Mf(x)))αp(x)(A(x)−β/p(x))/(n−ν) + 1

}
.

Hence it follows that

ρ(Uαf(x), Aβ(x))p](x) ≤ C
{
ρ(Mf(x), A(x))p(x) + 1

}
,

as required. ¤

Set A′β > A∗β(G) = A∗(G)− αβ/(n− ν) when a > 0 and A′β = −αβ/(n− ν)
when a = 0. In view of Theorem 3.3 and Lemma 4.2, we have the following result,
which gives an extension of Diening [6] together with Futamura and the authors
[9].

Theorem 4.3. Suppose 0 ≤ ν < n − αp∗(G). Then there exists a positive
constant c0 such that

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

{
Uαf(x)(log(2 + Uαf(x)))−A′β

}p](x)
dx ≤ c0

for z ∈ G and r > 0, whenever f is a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1.

When n−αp∗(G) ≤ ν < n, we discuss the exponential integrability of variable
exponent Riesz potentials.

Theorem 4.4. Suppose n−αp∗(G) ≤ ν < n and (A(·)−β/p(·))∗(G) > −1,
that is, β < infx∈G p(x)(A(x) + 1). Then there exist positive constants c1 and c2

such that

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

exp
(
c1Uαf(x)1/(A(x)−β/p(x)+1)

)
dx ≤ c2

for z ∈ G and r > 0, whenever f is a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1.

Proof. Suppose n − αp∗(G) ≤ ν < n and ‖f‖p(·),ν,β,G ≤ 1. For 0 < δ <

1/4, we have by Lemma 4.1



600 Y. Mizuta and T. Shimomura

Uαf(x) ≤ CδαMf(x) + C(log(1/δ))A(x)−β/p(x)+1.

Now, considering δ = Mf(x)−1/α(log(2 + Mf(x)))(A(x)−β/p(x)+1)/α when Mf(x)
is large enough, we obtain

Uαf(x) ≤ C1(log(2 + Mf(x)))A(x)−β/p(x)+1.

Taking p0 such that 1 < p0 < p∗(G), we find

∫

G∩B(z,r)

exp
(
p0(C−1

1 Uαf(x))1/(A(x)−β/p(x)+1)
)
dx

≤
∫

G∩B(z,r)

(2 + Mf(x))p0dx

≤ C

∫

G∩B(z,r)

dx + C

∫

G∩B(z,r)

{
Mf(x)(log(2 + Mf(x)))−A′}p(x)

dx

for z ∈ G and r > 0. Hence Theorem 3.3 gives

∫

G∩B(z,r)

exp
(
p0(C−1

1 Uαf(x))1/(A(x)−β/p(x)+1)
)
dx ≤ Crν(log(2 + r−1))−β

for such z and r, which proves the present theorem. ¤

Theorem 4.5. Suppose n−αp∗(G) ≤ ν < n and β ≥ supx∈G p(x)(A(x)+1).
Then there exist positive constants c1 and c2 such that

r−ν(log(2 + r−1))β

∫

G∩B(z,r)

exp(exp(c1Uαf(x)))dx ≤ c2

for z ∈ G and r > 0, whenever f is a nonnegative measurable function on G with
‖f‖p(·),ν,β,G ≤ 1.

Remark 4.6. Let p(·) satisfy

p(x) ≥ p0 + ω(|x0 − x|),

where ω(r) = a(log(log(1/r)))/ log(1/r) + b/ log(1/r) is increasing on (0, r0).
Suppose f is a nonnegative measurable function on B0 = B(x0, r0) satisfying
‖f‖p(·),ν,β ≤ 1 for ν = n−αp0 > 0 and β > p0− 1− aα. Then, in view of [13], we
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see that Uαf is continuous on B0 and

|Uαf(x)− Uαf(x0)| = o((log(1/|x0 − x|))−A)

as x → x0, where A = (aα + β + 1)/p0 − 1 > 0.
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