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Abstract. We show that a second main theorem of Nevanlinna theory holds
for meromorphic functions on general complete Kähler manifolds. It is well-known in
classical Nevanlinna theory that a meromorphic function whose image grows rapidly
enough can omit at most two points. Our second main theorem implies this fact
holds for meromorphic functions on general complete Kähler manifolds.

Introduction.

Let us recall the second main theorem in the classical Nevanlinna theory. Let
f be a nonconstant meromorphic function on C or the unit disc in C and a1, . . . , aq

be distinct points of C ∪ {∞}. Suppose that f(o) 6= ak, k = 1, . . . , q.
In the case of C, we have

q∑

k=1

m(ai, r) + N1(r) ≤ 2T (r) + O(log T (r) + log r)

holds for r outside an exceptional set of disjoint union of intervals of finite total
length where m(a, r), T (r) and N1(r) mean proximity function of f , characteristic
function of f and counting function of critical points of f , respectively(see [9] or
[10] for their definitions). It is well-known that little Picard’s theorem asserting
that f can omit at most two points follows from this theorem. Note that T (r) is
unbounded and O(log T (r) + log r) can be reduced to o(T (r)) in this case.

In the case of unit disc,
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q∑

k=1

m(ai, r) + N1(r) ≤ 2T (r) + O

(
log

1
1− r

)
+ O(log T (r))

holds for r outside an exceptional set of finite logarithmic length. Of course in this
case little Picard’s theorem does not hold. But we can see in both the cases that if
T (r) grows rapidly enough, f can omit at most two points. Our naive question is
to ask if this holds even for meromorphic functions on general Kähler manifolds.
Namely if the image of a meromorphic function on any Kähler manifold grows
large enough, can it omit at most two points? Moreover can we have a second
main theorem on general Kähler manifolds? Our result answers this question.

Theorem 1. Let f be a nonconstant meromorphic function on a complete
Kähler manifold M and a1, . . . , aq distinct points in C ∪ {∞}. Then

q∑

j=1

m(r, aj) + N1(r) ≤ 2T (r) + S(r) + O(log T (r))

holds except for r in an exceptional set of finite length where S(r) is given by (3.1)
after Theorem 13 in the section 3.

Here m(a, r), T (r), N1(r) are a proximity function, characteristic function
and counting function of critical points of f , respectively. They can be defined
similarly to the classical cases and are their natural generalization. We will give
their definitions in the sections 1 and 2. We also note that the remainder term
S(r) is independent of f and determined by some quantities of M .

We can define a defect δ(a, f) by

δ(a, f) = lim inf
r→∞

m(r, a)
T (r)

.

Since the first main theorem holds in our case as classical cases:

m(r, a) + N(r, a) = T (r) + O(1),

we have δ(a, f) = 1 provided f omits a. From our second main theorem we see
that if a meromorphic function f on M satisfies limr→∞ S(r)/T (r) = 0, then

q∑

i=1

δ(ai, f) ≤ 2.
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This implies that f can omit at most two points under the assumption.
The proof of this result is based on a method developed in [1] and [2] where

we used some stochastic tools. These tools are based on a diffusion process called
Brownian motion or Kähler diffusion on M (cf. [12]) whose generator is one half of
the Laplacian associated with the Kähler metric. If f is a nonconstant holomorphic
map from M to P 1(C) and Xt is the Brownian motion on M , then f(Xt) behaves
as a Brownian motion on P 1(C) with a new clock. In the case that M = C,
this fact is called Lévy’s conformal invariance of Brownian motion and applied to
the studies of complex analysis. Especially B. Davis’ proof of Picard’s theorem
([6], [7]) is well-known (see also [3]). Remark that if M is assumed only to be
Hermitian, this property does not necessarily hold. This property is fundamental
also in our paper. We analyze these processes on the target P 1(C) in the section
2.1 and on the source manifolds in the section 2.2 independently. Remark that
we essentially use Riemannian properties of the manifolds to obtain the results in
these two sections. Kählerity of M implies the Lévy’s invariance and thus we can
synthesize these results to obtain our main results. For this analysis it is useful
to write such Nevanlinna’s quantities as the characteristic function, the proximity
function and the counting function in terms of Brownian motion, while they can
be defined in terms of the objects of analysis like Green’s functions and harmonic
measures. These probabilistic expressions are given in the section 1. The outline of
the proofs of our main results presented here is similar to [2] where we considered
the case of submanifolds in Cn. To extend our method to general cases we need
some other estimates of Green’s functions discussed in the section 2.2.

Our method is also applicable to the case when the target manifolds are
general compact Riemann surfaces. Let N be a compact Riemann surface
without boundary. If a holomorphic map f from M as above to N satisfies
limr→∞ S(r)/T (r) = 0, then we have a defect relation:

q∑

i=1

δ(ai, f) ≤ χ(N),

where χ(N) is the Euler characteristic of N .
We would note that there are well-known works on generalization of Nevan-

linna theory. H. Wu considered Nevanlinna theory for holomorphic maps between
open Riemann surfaces and compact Riemann surfaces ([22]). He gave a natural
generalization of the classical Nevanlinna theory. Though the method is slightly
different from his, our result is in the same direction. W. Stoll considered Nevan-
linna theory for meromorphic maps on parabolic manifolds ([19]). Note that the
class of parabolic manifolds excludes some negatively curved manifolds.

The author would like to thank Professor Hironori Kumura and Professor



474 A. Atsuji

Junjiro Noguchi for fruitful discussions with him.

1. Proximity function, counting function and characteristic func-
tion in Nevanlinna theory.

We first give the setting of this paper. Let M be a smooth, complete Kähler
manifold with a Kähler form ω = (

√−1/2)gijdzi ∧ dzj with m = dim M . Let ∆M

be the Laplacian with respect to the Kähler metric. We have a C2−class, nonneg-
ative exhaustion function u on M . Then B(r) denotes {x ∈ M | u(x) < r} and
∂B(r) = {x ∈ M | u(x) = r}. By Sard’s theorem ∂B(r) is a smooth submanifold
in M for a.e.r. Then we can consider only smooth ∂B(r) throughout this paper.
Let dπx

r be a harmonic measure on ∂B(r) with respect to x ∈ B(r) and gr(x, y)
be Green’s function of (1/2)∆M on B(r) with Dirichlet boundary condition. Let
f be a nonconstant meromorphic function on M , namely a holomorphic map from
M to P 1(C): 1-dimensional complex projective space.

We define proximity function, counting function and characteristic function
for meromorphic function f on M .

Fix a reference point o in M with u(o) < 1. Let a ∈ P 1(C) such that f(o) 6= a.
Define

m(r, a) =
∫

∂B(r)

log[f(z), a]−2dπo
r(z),

T (r) = cm

∫

B(r)

gr(o, z)f∗ωo ∧ ωm−1

where ωo is the Fubini-Study metric on P 1(C), cm = 2πm/(m− 1)! and

[w, a] =
|w − a|√

|w|2 + 1
√
|a|2 + 1

(if a 6= ∞),

=
1√

|w|2 + 1
(if a = ∞).

Remark that our definition of the characteristic function follows the manner of
Ahlfors-Shimizu (cf. [20]) in the classical cases.

Since log[f(z), a]−2 is a δ-subharmonic function, ∆M log[f(z), a]−2 can be
regarded as a signed measure denoted by dµ. This signed measure dµ, which is
called a Riesz charge of log[f(z), a]−2, has a unique Jordan decomposition dµ =
dµ1− dµ2 (cf. [11]). We note that µ2 is supported by f−1(a). We define counting
function of the points f−1(a) by
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N(r, a) =
1
2

∫

B(r)∩f−1(a)

gr(o, z)dµ2(z).

It is easy to see that these quantities coincide with ones defined in [18] up to
constants in the case when M = Cn with the standard metric. We are seeing this
here for the case of M = C. In this case we have gr(o, z) = (1/π) log(r/|z|). Set
A(t) =

∫
|z|<t

f∗ωo ∧ ωm−1. By integration by parts

T (r) =
∫

|z|<r

1
π

log
r

|z|f
∗ωo ∧ ωm−1

=
∫ r

0

1
π

log
r

t
A′(t)dt

=
1
π

∫ r

0

1
t
A(t)dt.

Note that if ζ is the zero of f − a with multiplicity nf (ζ),

∆ log[f(z), a]−2 = −4πnf (ζ)δζ + positive part

on a neighborhood of ζ. Then the negative part of the Riesz charge of
log[f(z), a]−2, dµ2 =

∑
f(ζ)=a 4πnf (ζ)δζ . Set

n(t, a) =
∫

|ζ|<t

∑

f(ζ)=a

nf (ζ)δζ .

Then

N(r, a) = 2π
∑

f(ζ)=a, |ζ|<r

gr(o, ζ)nf (ζ)

= 2
∑

f(ζ)=a, |ζ|<r

log
r

|ζ|nf (ζ)

= 2
∫ r

0

n(t, a)
t

dt

provided f(o) 6= a. Since the harmonic measure dπo
r(z) on {|z| = r} is the

normilized uniform measure, then
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m(r, a) =
1
2π

∫ 2π

0

log[f(reiθ), a]−2dθ.

We use the following probabilistic expression of these quantities since they
are convenient for our calculus carried out later. We can define a diffusion process
X whose generator is (1/2)∆M . We call X a Kähler diffusion on M or Brownian
motion on M (cf. [12]). Let τr = inf{t > 0 | Xt /∈ B(r)}. Note that simple re-
lationships between harmonic measure, Green’s function and hitting distribution,
occupation times of Brownian motion, respectively(cf. [3]). Let φ ∈ Cb(M). Then

∫

∂B(r)

φ(z)dπo
r(z) = Eo[φ(Xτr

)]

and

∫

∂B(r)

φ(z)gr(o, z)dV (z) = Eo

[ ∫ τr

0

φ(Xt)dt

]
,

where Eo denotes the expectation by the measure Po of X starting from o and dV

is the volume measure defined from the Kähler metric. Let

e(x) =
1
2
‖df‖2 = 2m

f∗ωo ∧ ωm−1

ωm
. (1.1)

Then we have

m(r, a) = Eo[log[f(Xτr ), a]−2], (1.2)

T (r) = Eo

[ ∫ τr

0

e(Xs)ds

]
. (1.3)

Locally

e(z) =
2|df |2

(1 + |f |2)2 (z),

where

|df |2 =
∑

i,j

gij ∂f

∂zi

∂f

∂zj
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with (gij) = (gij)
−1. Then the characterisitic function can be written as

T (r) = Eo

[ ∫ τr

0

2|df |2
(1 + |f |2)2 (Xs)ds

]
.

We remark that the infinity of P 1(C) is of logarithmic capacity zero, namely
polar for f(Xt) unless f is constant. Thus the local expression of T (r) as above is
possible. Our counting function N(r, a) has a probabilistic expression as follows
([1]).

N(r, a) = lim
λ→∞

λPo

(
sup

0≤t≤τr

log[f(Xt), a]−2 > λ
)
.

By a direct calculation we have

1
2
∆M log[f(z), a]−2 =

2|df |2
(1 + |f |2)2 (z)

on the set {z|f(z) 6= a}. Then Ito’s formula or Dynkin’s formula implies

Theorem 2 (First main theorem, [1], [2]).

m(r, a) + N(r, a) = T (r) + log[f(o), a]−2 for a ∈ P 1(C) with f(o) 6= a,

0 < r < ∞.

2. Main lemmas.

We have two essential propositions about some properties of the target P 1(C)
and the source manifold M . They play main roles for proving our second main
theorem.

2.1. An estimate of additive functionals of Brownian motion on
P 1(C).

Before stating the lemma we recall some facts about Brownian motion on
P 1(C). We say a diffusion process Yt whose generator is the half of Laplacian
with respect to Fubini-Study metric is Brownian motion on P 1(C) specifically. If
f : M → P 1(C) is a holomorphic map,

f(Xt) = Yρt
,
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for some Brownian motion Yt on P 1(C) where

ρt =
∫ t

0

e(Xs)ds

and e is half of the energy density of f defined by (1.1). We need the following
fact valid in general situation.

Lemma 3 ([1]). Let h be a nonnegative function on a Riemannian manifold
N . Let X be Brownian motion on N . If h satisfies

sup
x

Ex

[ ∫ 1

0

h(Xt)dt

]
< ∞,

then there exists a constant c > 0 such that

E

[ ∫ T

0

h(Xt)dt

]
≤ cE[T ] + c,

for any stopping time T .

We use a local estimate of heat kernel for short time as follows:

Lemma 4 (cf. [5]). Let N be a d-dimensional compact Riemannian manifold
without boundary and p(t, x, y) the heat kernel with respect to (1/2)∆N . Define

e(t, x, y) =
1

(2πt)d/2
e−

d(x,y)2

2t ,

where d(x, y) is the Riemannian distance of N . Then for any compact set K in
N there exists a constant CK > 0 such that

lim
t→0

p(t, x, y)
e(t, x, y)

= 1 + CKd(x, y) x, y ∈ K.

We wish to show

Proposition 5. Let

k(w) =
1∏q

j=1[w, aj ]2(log[w, aj ])4
,
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for distinct points a1, a2, . . . , aq and Y the Brownian motion on P 1(C) with Y0 =
y ∈ P 1(C) \ {a1, . . . , aq}. Then there exist constants c1, c2 > 0 such that for any
stopping time T

Ey

[ ∫ T

0

k(Yt)dt

]
≤ c1Ey[T ] + c2

holds.

Proof. By Lemma 3, we have only to check the following in our case.

sup
x

Ex

[ ∫ 1

0

k(Yt)dt

]
< ∞. (2.1)

To check the boundedness of the expectation in (2.1), we may consider
only the integration over small neighborhoods of each aj . Since a function
u 7→ 1/(u2(log u)4) is decreasing for u ∈ (0, 1/2), we consider the integral

∫ 1

0

∫

d(x,y)<δ

1
2πt

e−
d(x,y)2

2t
1

d(x, y)2(log d(x, y))4
dv(y)dt

with small δ > 0.
The convergence of this integral is equivalent to that of

∫ 1

0

∫ δ

0

1
2πt

e−
r2
2t

r

r2(log r)4
drdt.

Since

∫ 1

0

1
2πt

e−
r2
2t dt =

1
2π

∫ ∞

r2/2

e−u du

u
∼ −const. log r (r → 0),

the above integral is bounded by

C

∫ δ

0

1
r| log r|3 dr < ∞,

where C > 0 is a constant independent of x. ¤

We have the following corollary to Proposition 5.
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Corollary 6. If f is a nonconstant meromorphic function on M , then we
have

Eo

[ ∫ τr

0

k ◦ f(Xt)e(Xt)dt

]
≤ c1T (r) + c2,

where τr = {t > 0 | Xt /∈ B(r)} and e(x) is given by (1.1).

Proof. There exists Brownian motion Y on P 1 such that

f(Xt) = Yρt
, with ρt =

∫ t

0

e(Xs)ds.

Take this Y as one in Proposition 5 and T = ρτr . By (1.1) and (1.3), Eo[ρτr ] =
T (r). Use time-change argument. ¤

2.2. Dirichlet Green’s functions and harmonic measure on M .
The following inequality is a key point of our proof of the second main theo-

rem.

Proposition 7. Let X be a Kähler diffusion on M as above and x ∈ B(r).
Assume that K is a nonnegative locally integrable function on M and bounded on
a neighborhood of x. For δ > 0 there exits C(x, r, δ) > 0 independent of K and
Eδ ⊂ [0,∞) with |Eδ| < ∞ such that for r 6∈ Eδ

Ex[K(Xτr )] ≤ C(x, r, δ)
(

Ex

[ ∫ τr

0

K(Xt)dt

])(1+δ)2

holds.

To get this we have to observe harmonic measures and Green’s functions with
Dirichlet boundary condition on B(r). We first consider the harmonic measure on
∂B(r). We assume that ∂B(r) is a smooth submanifold of M . Let Pr(x, y) be the
Poisson kernel on ∂B(r), namely

Pr(x, y) =
dπx

r (y)
dAr(y)

,

where dπx
r (y) is the harmonic measure on ∂B(r) with respect to x and dAr is the

induced measure on ∂B(r).
To estimate Pr(x, y) we use the following estimate originally due to Kasue

([14]).
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Lemma 8. There exist constants a2(x, r), a3(r) > 0 and 0 < α < r such
that

gr(x, y) ≤ a2(x, r)φ1(y) (y ∈ B(r) \B(α)), (i)

sup
x∈∂B(r)

‖∇φ1‖(x) ≤ a3(r)λr sup
x∈B(r)

φ1(x), (ii)

where φ1 is the grand state corresponding to the first eigenvalue λr > 0 of the
Dirichlet Laplacian on B(r) with φ1 > 0 and

∫
B(r)

φ1(x)2dv(x) = 1.

Proof. For x ∈ B(r) there exists α > 0 such that u(x) < α. Set

a2(x, r) =
supy∈∂B(α) gr(x, y)

inf∂B(α) φ1(x)
.

Then since φ1 is a superharmonic function on B(r) and gr(x, y) is harmonic func-
tion on B(r)\B(α), maximum principle implies the assertion (i). As for (ii), Kasue
showed in [14] (Corollary 3.1) that

sup
∂B(r)

‖∇φ1‖(x) ≤
∫ IB(r)

0

λr sup
x∈∂B(t)

φ1(x)hm−1
R,Λ (t)dt,

where hR,Λ(t) is the solution of

h′′(t) + Rh(t) = 0, with h(0) = 1, and h′(0) = Λ,

R is the lower bound of Ricci curvature of B(r), Λ is the upper bound of the trace
of second fundamental form of ∂B(r) and IB(r) = supB(r) d(x, ∂B(r)). Hence we
can take

a3(r) =
∫ IB(r)

0

hm−1
R,Λ (t)dt. ¤

Define

C1(x, r) = a2(x, r)a3(r)λr sup
B(r)

φ1(x). (2.2)

Then we have
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Lemma 9. For each x ∈ B(r)

Pr(x, y) ≤ C1(x, r).

Proof. Take the normal derivative of both sides of (i) in Lemma 8. ¤

Remark 10. If we have a subharmonic exhaustion function u, then we can
give the constant C1(x, r) defined by (2.2) in a simpler form. We remark that there
always exists a subharmonic exhaustion function on any complete Riemannian
manifold ([8]).

Suppose that u is a subharmonic exhaustion function and u is smooth. If
u(x) < α < r, for y ∈ ∂B(r)

Pr(x, y) ≤ supy∈∂B(α) gr(x, y)
r − α

‖∇u‖(y).

Proof. Set

v(y) = sup
z∈∂B(α)

gr(x, z)
r − u(y)
r − α

.

Then v is superharmonic on B(r) \ B(α) and v(y) = 0 on ∂B(r). Then v(y) ≥
gr(x, y) on B(r) \B(α). Take normal derivatives of both sides. ¤

We also need a lower estimate of the Green’s function. Define σr = inf{t >

0 : Xt ∈ B(r)}.

Lemma 11. Assume that ‖∇u‖(x) 6= 0 for x ∈ B(r2) \B(r1). If µ(0)(t) is a
Lipschitz continuous function on (0,∞) such that

1
2

sup
x∈∂B(t)

∆Mu

‖∇u‖2 (x) ≤ µ(0)(t) (2.3)

for t ∈ [r1, r2], then

Py(σr1 < τr2) ≥
∫ r2

u(y)
exp

(− ∫ t

r1
2µ(0)(z)dz

)
dt

∫ r2

r1
exp

(− ∫ t

r1
2µ(0)(z)dz

)
dt

for y ∈ B(r2) \B(r1).
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Proof. By Ito’s formula

u(Xt)− u(X0) = B

( ∫ t

0

‖∇u‖2(Xs)ds

)
+

1
2

∫ t

0

∆Mu(Xs)ds,

where B(t) is a one dimensional standard Brownian motion. Set ηt =∫ t

0
‖∇u‖2(Xs)ds. Define a new process X̃t by X̃ηt

= Xt. Then

u(X̃t)− u(X0) = B(t) +
1
2

∫ t

0

∆Mu

‖∇u‖2 (X̃s)ds.

Define another diffusion process xt by the solution of the following stochastic
differential equation:

dxt = dB(t) + µ0(xt)dt, x0 = u(X0).

Set τ̃r = inf{t > 0 : xt > r} and σ̃r = inf{t > 0 : xt < r}. Similarly to [21]
(see also Chapter 6.4 of [12]), by the comparison theorem of stochastic differential
equations we have

xt ≥ X̃t for t ≤ ησr1
∧ τ̃r2 .

Hence

Py(σr1 < τr2) = Py(ησr1
< ητr2

) ≥ Pu(y)(σ̃r1 < τ̃r2).

By the formula of the scale functions of one dimensional diffusion processes (cf.
[13]) we have

Pu(y)(σ̃r1 < τ̃r2) =

∫ r2

u(y)
exp

(− ∫ t

r1
2µ(0)(z)dz

)
dt

∫ r2

r1
exp

(− ∫ t

r1
2µ(0)(z)dz

)
dt

. ¤

Lemma 12. There exists r′ with r > r′ > 0 such that

gr(x, y) ≥ C2(x, r)
∫ r

u(y)

exp
(
−

∫ t

u(x)

2µ(z)dz

)
dt

with u(x) < u(y) and u(x) ≤ r′. Here C2(x, r) is defined by
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C2(x, r) = inf
y∈∂B(r′)

gr(x, y)
( ∫ r

u(x)

exp
(
−

∫ t

u(x)

2µ(z)dz

)
dt

)−1

,

where µ(t) is defined by

µ(t) = 0 for 0 ≤ t < r′, µ(t) = µ(0)(t) for r′ ≤ t < r

and µ(0)(t) is a Lipschitz continuous function satisfying (2.3) in Lemma 11 on
[r′, r].

Remark that if u is smooth enough (e.g. C3-class), we can take

µ(0)(z) =
1
2

sup
x∈∂B(z)

∆Mu/‖∇u‖2(x).

Proof. Recall that we assume ∂B(r) is smooth and ‖∇u‖ 6= 0 there. Hence
there exists r > r′ > 0 such that ‖∇u‖ 6= 0 on B(r) \B(r′).

Let y ∈ B(r) \B(r′). By maximum principle, we have

gr(x, y) ≥ inf
z∈∂B(r′)

gr(x, z)Py(σr′ < τr).

By Lemma 11

Py(σr′ < τr) ≥
∫ r

u(y)
exp

(− ∫ t

r′ 2µ(0)(z)dz
)
dt

∫ r

r′ exp
(− ∫ t

r′ 2µ(0)(z)dz
)
dt

.

For y ∈ B(r′) we have gr(x, y) ≥ infz∈∂B(r′) gr(x, z), since gr(x, y) is a super-
harmonic function in y. ¤

Proof of Proposition 7. Set

γr(s) =
∫ r

s

exp
(
−

∫ t

u(x)

2µ(z)dz

)
dt.

Ex

[ ∫ τr

0

K(Xt)dt

]
=

∫

B(r)

K(y)gr(x, y)dv(y)

≥ C2(x, r)
∫

B(r)

K(y)γr(u(y))dv(y)

= C2(x, r)
∫ r

0

γr(t)
∫

∂B(t)

K(y)
dAt(y)
‖∇u‖(y)

dt
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holds for a.e. r > 0. In the last line we used the co-area formula.
Define for δ > 0

Eδ =
{

r ∈ (0,∞)
∣∣∣∣
∫

∂B(r)

K(y)
dAr(y)
‖∇u‖(y)

> exp
(

(1 + δ)
∫ r

u(x)

2µ(z)dz

)

·
( ∫ r

0

γr(t)
∫

∂B(t)

K(y)
dAr(y)
‖∇u‖(y)

dt

)(1+δ)2}
.

As usual argument on Nevanlinna theory (cf. [18], [20]), it is easy to see that Eδ

is a disjoint union of intervals and the total length of Eδ is finite. Thus if r /∈ Eδ,

∫

∂B(r)

K(y)dAr(y) ≤ C3(x, r)
C2(x, r)(1+δ)2

( ∫

B(r)

K(y)gr(x, y)dv(y)
)(1+δ)2

,

where

C3(x, r, δ) =
(

sup
x∈B(r)

‖∇u‖(x)
)

exp
(

(1 + δ)
∫ r

u(x)

2µ(z)dz

)
. (2.4)

On the other hand, by Lemma 9

Ex[K(Xτr
)] =

∫

∂B(r)

K(y)dπx
r (y)

≤ C1(x, r)
∫

∂B(r)

K(y)dAr(y).

Hence we can take

C(x, r, δ) =
C1(x, r)C3(x, r, δ)

C2(x, r)(1+δ)2
. (2.5)

¤

3. Second main theorem.

Let R = (Rij) be the Ricci curvature of M . Define R(x) by
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R(x) = inf
ξ∈TxM, ‖ξ‖=1

R(ξ, ξ)

and

N(r,Ric) = −
∫

B(r)

gr(o, z)R(x)dv(x).

We also define

N1(r) = lim
λ→∞

λPo

(
sup

0≤t≤τr

log− e(Xt) > λ
)
,

where log− e(X) denotes the negative part of log e(X). Then we restate our second
main theorem using these quantities.

Theorem 13. Let f be a nonconstant meromorphic function on a complete
Kähler manifold M and a1, . . . , aq distinct points in C ∪ {∞}. Let δ > 0. Then

q∑

j=1

m(r, aj) + N1(r) ≤ 2T (r) + 2N(r,Ric) + log C(o, r, δ) + O(log T (r))

holds for all r except on a disjoint union of intervals of finite total length depending
on δ, where C(o, r, δ) is given by (2.5) in Proposition 7.

Theorem 1 follows from Theorem 13 with

S(r) = log C(o, r, δ) + 2N(r,Ric). (3.1)

In this section we give the proof of this theorem.
By the same calculation as in [17] (Theorem 4.1) or [16], we have

Lemma 14.

1
2
∆M log e(x) ≥ −2e(x) + 2R(x)

if e(x) 6= 0.

For the proof of Theorem 13, we need
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Lemma 15.

Eo[log(k(f(Xτr
))e(Xτr

))]

≥
q∑

i=1

m(r, ai) + N1(r)− 2T (r)− 2N(r,Ric)− const. log T (r),

where k(w) =
∏q

j=1[w, aj ]−2(log[w, aj ])−4.

Proof. By Ito’s formula or the first main theorem and Jensen’s inequality
it is easy to see that

Eo[log(k(f(Xτr
))e(Xτr

))]

=
q∑

i=1

{m(r, ai) + E[log(log[f(Xτr
), ai]−2)−4}+ E[log e(Xτr

)]

≥
q∑

i=1

m(r, ai)− 4q log T (r) + E[log e(Xτr
)] + O(1).

Note that log e(x) is upper bounded on B(r). Thus the singularity of the function
can be reduced to that of log− e(x). Define Tλ = inf{t > 0 : log− e(Xt) > λ}. By
Ito’s formula and Lemma 14 we have

Eo[log e(Xτr∧Tλ
)] = Eo

[
1
2

∫ τr∧Tλ

0

∆M log e(Xt)dt

]

≥ −2Eo

[ ∫ τr∧Tλ

0

e(Xt)dt

]
+ 2Eo

[ ∫ τr∧Tλ

0

R(Xt)dt

]
.

The left hand side equals

Eo[log+ e(Xτr )]− Eo[log− e(Xτr ) : τr ≤ Tλ]− λPo(τr > Tλ).

Note Po(τr > Tλ) = Po(sup0≤t≤τr
log− e(Xt) > λ) and Po(τr ≤ Tλ) → 1 as λ →∞

since the set of the critical points of f is polar provided f is nonconstant. Letting
λ →∞, by monotone convergence theorem we have

Eo[log e(Xτr )] ≥ N1(r)− 2N(r,Ric)− 2T (r). ¤
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Proof of Theorem 13. From the above lemma we have to show that

Eo[log(k(f(Xτr
))e(Xτr

))] ≤ log C(o, r, δ) + O(log T (r))

holds except for r in a set of finite Lebesgue measure.
For δ > 0 there exists Eδ ⊂ [0,∞) with |Eδ| < ∞ such that for r /∈ Eδ

Eo[log(k(f(Xτr
))e(Xτr

))] ≤ log Eo[k(f(Xτr
))e(Xτr

)] (by Jensen’s inequality)

≤ (1 + δ)2 log Eo

[ ∫ τr

0

k(f(Xs))e(Xs)ds

]
+ log C(o, r, δ)

(by Proposition 7)

≤ (1 + δ)2 log T (r) + log C(o, r, δ) + O(1).

In the last inequality we used Corollary 6. ¤

4. A generalization of the target manifolds.

We extend the above discussion to the cases where the target manifolds are
general one dimensional compact Kähler manifolds.

Let N be a compact Riemann surface equipped with a metric ds2
N and its

Kähler form ωN . As before we can define Brownian motion W on N whose gen-
erator is (1/2)∆N , where ∆N is the Laplacian on N defined from ds2

N . Let dvN

be the volume form defined from ωN . W has a transition function p(t, x, y) which
is the fundamental solution of heat operator ∂/∂t − 1/2∆N with respect to dvN .
We first introduce a new proximity function. Set

g(x, y) = 2π

∫ ∞

0

(
p(t, x, y)− 1

V olN (N)

)
dt + C,

where V olN (N) is the volume of N with respect to dvN and C is a positive constant
such that g(x, y) > 0 for all x, y ∈ N .

We know

Lemma 16 (cf. [4]).

1
2
∆Ng(x, y) = −2πδx(y) +

2π

V olN (N)
.

Then the similar argument to the previous sections implies that
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Proposition 17. For x, y ∈ N with x 6= y and any stopping time T with
Ex[T ] < ∞,

Ex[g(WT , y)]− g(x, y) + N(T ) =
2π

V olN (N)
Ex[T ],

where

N(T ) = lim
λ→∞

λPx

(
sup

0≤t≤T
g(Wt, y) > λ

)
.

We also note that for fixed x ∈ N

g(x, y) = log
1

d(x, y)2
+ a smooth function of y

if y is in a neighborhood of x.
Let M a complete Kähler manifold satisfying the same assumptions as the

previous sections and f : M → N be a nonconstant holomorphic map. We define
the proximity function using g(x, y) as before. Define

m(r, a) =
∫

∂B(r)

g(f(x), a)dπo
r(x)

for a ∈ N with f(o) 6= a.
Define the characteristic function of f by

T (r) = cm

∫

B(r)

gr(o, y)f∗ωN ∧ ω,

where cm = 2πm/(m− 1)! with m = dim M .
It can be expressed as

T (r) =
∫

B(r)

gr(o, y)e(y)dvM (y)

= Eo

[ ∫ τr

0

e(Xs)ds

]

where e(x) = trMf∗ds2
N as before.
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Note that g(f(x), a) is a δ-subharmonic function on M . It has a negative
part of its Riesz charge, say dν, which is supported by f−1(a). Hence the counting
function N(r, a) can be defined by

N(r, a) =
1
2

∫

B(r)

gr(o, y)dν(y).

By Lemma 16

dν = 4πf∗δa.

As the case of P 1(C), there exists a Brownian motion W on N such that

f(Xt) = Wρt
with ρt =

∫ t

0

e(Xs)ds.

Set T =
∫ τr

0
e(Xs)ds in Proposition 17. Then we have

Theorem 18 (First main theorem).

m(r, a)− g(f(o), a) + N(r, a) =
2π

V olN (N)
T (r).

As for the second main theorem we can carry out the same procedure as the
case of P 1(C). Let a1, . . . , aq be distinct points in N . Define

h(x) =
q∏

j=1

eg(x,aj)(g(x, a))−4.

Thanks to Lemma 4 and the asymptotics of g(x, a) as d(a, x) → 0, we can
check the validity of

sup
y∈N

Ey

[ ∫ 1

0

h(Wt)dt

]
< ∞.

Then Proposition 5 is applicable to this case. Hence we have

Eo

[ ∫ τr

0

h ◦ f(Xt)e(Xt)dt

]
≤ c1T (r) + c2
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for some constants c1 > 0, c2 > 0.
Note that Lemma 14 holds for general cases by replacing “2”in the term before

−e(x) by K(x): the Gaussian curvature of N . Namely,

Lemma 19 (cf. [16], [17]).

1
2
∆M log e(x) ≥ −K(x)e(x) + 2R(x)

for x ∈ M such that e(x) 6= 0.

Hence we have

Eo[log(h(f(Xτr ))e(Xτr ))]

≥
q∑

i=1

m(r, ai) + N1(r)− Eo

[ ∫ τr

0

K ◦ f(Xt)e(Xt)dt

]

− 2N(r,Ric)− const. log T (r).

Set u(x) =
∫

N
g(x, y)K(y)dvN (y). Note that u is bounded on N . Let W be a

Brownian motion on N starting from w and T a stopping time with Ew[T ] < ∞.
By Proposition 16 and Ito’s formula, we have

Ew[u(WT )]− u(w) = −2πEw

[ ∫ T

0

K(Wt)dt

]
+

2πC(N)
V olN (N)

Ew[T ],

where C(N) is the total curvature of N defined by

C(N) =
∫

N

K(x)dvN (x).

Recall the expression that f(Xt) = Wρt
, which is described before Theorem

18. By the time-change argument as we used before,

Eo[u(f(Xτr
))]− u(f(o))

= −2πEo

[ ∫ τr

0

K(f(Xt))e(Xt)dt

]
+

2πC(N)
V olN (N)

Eo

[ ∫ τr

0

e(Xt)dt

]
.

Recall Eo[
∫ τr

0
e(Xt)dt] = T (r). Hence we have
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Eo

[ ∫ τr

0

K(f(Xt))e(Xt)dt

]
=

C(N)
V olN (N)

T (r) + O(1).

Therefore we have a second main theorem in this case.

Theorem 20. Let f be a nonconstant holomorphic map from a complete
Kähler manifold M to a compact Riemann surface N without boundary and
a1, . . . , aq (6= f(o)) distinct points in N . Let δ > 0. Then

q∑

j=1

m(r, aj) + N1(r) ≤ C(N)
V olN (N)

T (r) + 2N(r,Ric) + log C(o, r, δ) + O(log T (r))

holds for all r except on a disjoint union of intervals of finite total length depending
on δ, where C(o, r, δ) is given by (2.5).

Taking account of Theorem 18 we define the defect δ(a, f) by

δ(a, f) =
V olN (N)

2π
lim inf
r→∞

m(r, a)
T (r)

.

Then we have

Theorem 21 (Defect relation). If T (r) →∞ as r →∞, then

q∑

i=1

δ(ai, f) ≤ C(N)
2π

+
V olN (N)

2π
lim sup

r→∞
2N(r,Ric) + log C(o, r, δ)

T (r)
.

By Gauss-Bonnet theorem, we have

Corollary 22.

q∑

i=1

δ(ai, f) ≤ χ(N) +
V olN (N)

2π
lim sup

r→∞
2N(r,Ric) + log C(o, r, δ)

T (r)
,

where χ(N) is the Euler characteristic of N .
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