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Abstract. Let BdHðRmÞ be the hyperspace of nonempty bounded closed

subsets of Euclidean space Rm endowed with the Hausdorff metric. It is well

known that BdHðRmÞ is homeomorphic to the Hilbert cube minus a point. We

prove that natural dense subspaces of BdHðRmÞ of all nowhere dense closed sets,

of all perfect sets, of all Cantor sets and of all Lebesgue measure zero sets are

homeomorphic to the Hilbert space ‘2. For each 0 � 1 < m, let

�mk ¼ fx ¼ ðxiÞmi¼1 2 Rm : xi 2 R nQ except for at most k many ig;

where �2kþ1
k is the k-dimensional Nöbeling space and �m0 ¼ ðR nQÞm. It is also

proved that the spaces BdHð�10Þ and BdHð�mk Þ, 0 � k < m� 1, are homeomorphic

to ‘2. Moreover, we investigate the hyperspace CldHðRÞ of all nonempty closed

subsets of the real line R with the Hausdorff (infinite-valued) metric. It is shown

that a nonseparable component H of CldHðRÞ is homeomorphic to the Hilbert

space ‘2ð2@0 Þ of weight 2@0 in case where H 63 R; ½0;1Þ; ð�1; 0�.

Introduction.

In this paper, we consider metric spaces and their hyperspaces endowed with

the Hausdorff metric. Specifically, given a metric space X ¼ hX; di, we shall

denote by CldðXÞ and BdðXÞ the hyperspaces consisting of all nonempty closed

sets and of all nonempty bounded closed sets in X respectively and by dH the

Hausdorff metric, which is infinite-valued on CldðXÞ if X is unbounded. We shall

sometimes write CldHðXÞ or BdHðXÞ to emphasize the fact that we consider this

space with the Hausdorff metric topology.

A theorem of Antosiewicz and Cellina [2] states that, given a convex set X

in a normed linear space, every continuous multivalued map ’ : Y ! BdHðXÞ
from a closed subset Y of a metric space Z can be extended to a continuous map
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f : Z ! BdHðXÞ. Using the language of topology, this theorem says that, under

the above assumptions, BdHðXÞ is an absolute extensor or an absolute retract (in

the class of metric spaces). In [8], it is proved that the above result is still valid

when X is replaced by a dense subset of a convex set in a normed linear space.

More generally, BdHðXÞ is an absolute retract, whenever the metric on X is

almost convex (see Section 3 for the definition). This condition was further

weakened in [17], which has turned out to be actually a necessary and sufficient

one by Banakh and Voytsitskyy [4]. In the last paper, several equivalent

conditions are given, which are too technical to mention them here. We refer to [4]

for the details.

It is a natural question whether BdHðXÞ and some of its natural subspaces are

homeomorphic to some standard spaces, like the Hilbert cube/space, etc. Since

the Hausdorff metric topology coincides with the Vietoris topology on the

hyperspace expðXÞ of nonempty compact sets, the above question was already

answered, applying known results, in case where bounded closed sets in X are

compact. Among the known results, let us mention the theorem of Curtis and

Schori [10] (cf. [19, Chapter 8]), saying that expðXÞ is homeomorphic to (�) the

Hilbert cube Q ¼ ½�1; 1�! if and only if X is a Peano continuum, that is, it is

compact, connected and locally connected. Later, Curtis [9] characterized non-

compact metric spaces X for which expðXÞ is homeomorphic to the Hilbert

cube minus a point Q n 0 (¼ Q n f0g) or the pseudo-interior s ¼ ð�1; 1Þ! of Q.1

In particular, BdHðRmÞ ¼ expðRmÞ � Q n 0. For more information concerning

Vietoris hyperspaces, we refer to the book [13].

The aim of this work is to study topological types of some of the natural

subspces of the Hausdorff hyperspace. We consider the following subspaces of

BdHðXÞ:

. NwdðXÞ — all nowhere dense closed sets;

. PerfðXÞ — all perfect sets;2

. CantorðXÞ — all compact sets homeomorphic to the Cantor set.

In case X ¼ Rm with the standard metric, we can also consider the following

subspace:

. NðRmÞ — all closed sets of the Lebesgue measure zero.

We show that, in case X ¼ Rm, the above spaces are homeomorphic to the

separable Hilbert space ‘2. Actually, we prove that if F is one of the above spaces

then the pair hBdHðRmÞ;Fi is homeomorphic to hQ n 0; s n 0i.

1It is well known that s is homeomorphic to the separable Hilbert space ‘2.
2I.e., completely metrizable closed sets which are dense in itself.
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The completion of a metric space X ¼ hX; di is denoted by h ~XX; di. Then

BdHðX; dÞ can be identified with the subspace of BdHð ~XX; dÞ, via the isometric

embedding A 7! cl ~XXA. Thus we shall often write BdðX; dÞ � Bdð ~XX; dÞ, having in

mind this identification. In this case, Bdð ~XX; dÞ is the completion of BdðX; dÞ. By

such a reason, we also consider a dense subspace D of a metric space X ¼ hX; di.
For each 0 � k < m, let

�mk ¼ fx ¼ ðxiÞmi¼1 2 Rm : xi 2 R nQ except for at most k many ig;

which is the universal space for completely metrizable subspaces in Rm of

dim � k. In case 2kþ 1 < m, �mk is homeomorphic to the k-dimensional Nöbeling

space �2kþ1
k , which is the universal space for all separable completely metrizable

spaces. Note that �m0 ¼ ðR nQÞm � R nQ. We show that the pairs

hBdðRÞ;BdðR nQÞi and hBdðRmÞ;Bdð�mk Þi; 0 � k < m� 1;

are homeomorphic to hQ n 0; s n 0i, so we have BdHð�mk Þ � ‘2 if hm; ki ¼ h1; 0i or

0 � k < m� 1.

We also study the space CldHðRÞ. It is very different from the hyperspace

expðRÞ. It is not hard to see that CldHðRÞ has 2@0 many components, BdðRÞ is

the only separable one and any other component has weight 2@0 . We show that

a nonseparable component H of CldHðRÞ is homeomorphic to the Hilbert space

‘2ð2@0Þ of weight 2@0 in case where H 63 R; ½0;1Þ; ð�1; 0�. This is a partial answer

(in case n ¼ 1) of Problem 4 in [17].

1. Preliminaries.

We use standard notation concerning sets and topology. For example, we

denote by ! the set of all natural numbers (nonnegative integers). Given a set X,

we denote by ½X�<! the family of all finite subsets of X.

Given a metric space X ¼ hX; di and a set A � X, we denote by BðA; rÞ and

BðA; rÞ the open and the closed r-balls centered at A, that is,

BðA; rÞ ¼ fx 2 X : distðx;AÞ < rg and

BðA; rÞ ¼ fx 2 X : distðx;AÞ � rg:

The Hausdorff metric dH on CldðXÞ is defined as follows:

dHðA;CÞ ¼ inffr > 0 : A � BðC; rÞ and C � BðA; rÞg;
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where dH is actually a metric on BdðXÞ but dH is infinite-valued for CldðXÞ if

hX; di is unbounded. The spaces CldHðXÞ and BdHðXÞ are sometimes denoted by

CldHðX; dÞ and BdHðX; dÞ to emphasize the fact that they are determined by the

metric on X. In fact, the metric %ðx; yÞ ¼ dðx; yÞ=ð1þ dðx; yÞÞ induces the same

topology on X as d but the Hausdorff metric %H induces a different one on CldðXÞ.
On the other hand, the Hausdorff metric induced by the metric �ddðx; yÞ ¼
minfdðx; yÞ; 1g is finite-valued and induces the same topology on CldHðXÞ as dH ;

moreover CldðXÞ is equal to BdðXÞ as sets. Note that the subspace FinðXÞ ¼
½X�<! n f;g of BdHðXÞ of all nonempty finite subsets of X is dense in BdHðXÞ
if and only if every bounded set in X ¼ hX; di is totally bounded.

FACT 1.1. For a metric space X ¼ hX; di, the following hold:

(i) If d is complete then hBdðX; dÞ; dHi is a complete metric space and the

space CldHðXÞ is completely metrizable.

(ii) The space BdHðX; dÞ is separable if and only if every bounded set in X is

totally bounded.

We use the standard notation expðXÞ for the Vietoris hyperspace of

nonempty compact sets in X. Note that expðXÞ � BdðXÞ for every metric space

X ¼ hX; di and it is well known that the Hausdorff metric induces the Vietoris

topology on expðXÞ. However, if closed bounded sets of X are not compact, then

the space BdHðXÞ is very different from BdV ðXÞ endowed with the Vietoris

topology. We use the following notation:

A� ¼ fC 2 CldðXÞ : C \A 6¼ ;g and Aþ ¼ fC 2 CldðXÞ : C � Ag;

where A � X. When dealing with BdðXÞ (or other subspace of CldðXÞ), we still

write A� and Aþ instead of A� \ BdðXÞ and Aþ \ BdðXÞ respectively.

In the rest of this section, we shall give preliminary results of infinite-

dimensional topology. For the details, we refer to the book [3]. We abbreviate

‘‘absolute neighborhood retract’’ to ‘‘ANR’’.

Let X ¼ hX; di be a metric space. It is said that a map f : Y ! X can be

approximated by maps in a class F of maps if for every map � : X ! ð0; 1Þ there

exists a map g : Y ! X which belongs to F and such that dðfðyÞ; gðyÞÞ < �ðfðyÞÞ
for every y 2 Y . A closed subset A � X is a Z-set in X if the identity map idX of X

can be approximated by maps f : X ! X such that f ½X� \ A ¼ ;. Strengthening

the last condition to clXðf ½X�Þ \ A ¼ ;, we define the notion of a strong Z-set. In

case X is locally compact, every Z-set in X is a strong Z-set. Moreover, it is well

known that every Z-set in an ‘2-manifold is a strong Z-set. A countable union of

(strong) Z-sets is called a (strong) Z�-set. We call X a (strong) Z�-space if it is a
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(strong) Z�-set in itself. An embedding f : X ! Y is called a Z-embedding if f½X�
is a Z-set in Y .

It is said that D � X is homotopy dense in X if there exists a homotopy

h : X � ½0; 1� ! X such that h0 ¼ id and ht½X� � D for every t > 0, where

htðxÞ ¼ hðx; tÞ. The complement of a homotopy dense subset of X is said to be

homotopy negligible. If A � X is a homotopy negligible closed set then A is

a Z-set in X.

FACT 1.2. For a closed set A in an ANR X, the following are equivalent:

(a) A is a Z-set in X;

(b) each map f : ½0; 1�n ! X, n 2 !, can be approximated by maps into X nA;

(c) A is homotopy negligible in X.

FACT 1.3. Let D be a homotopy dense subset of an ANR X. Then the

following hold:

(i) D is also an ANR.
(ii) A closed set A � X is a Z-set in X if and only if A \D is a Z-set in D.

(iii) If A � X is a strong Z-set in X then A \D is a strong Z-set in D.

PROPOSITION 1.4. Assume that X is a homotopy dense subset of a Q-

manifold M. Then X is an ANR and every Z-set in X is a strong Z-set.

Furthermore, X is a strong Z�-space if and only if X is contained in a Z�-set inM.

PROOF. We verify only the ‘‘furthermore’’ statement. Assume X �S
n2! Zn, where each Zn is a Z-set in M. Then each Zn is a strong Z-set in M,

because M is locally compact, and therefore by Fact 1.3 (iii), each Zn \X
is a strong Z-set in X. Conversely, if X ¼

S
n2! Xn, where each Xn is a (strong)

Z-set in X, then by Fact 1.3 (ii), Zn ¼ clMXn is a Z-set in M. Clearly,

X �
S
n2! Zn. �

Let C be a topological class of spaces, that is, if X is homeomorphic to some

Y 2 C then X also belongs to C . It is said that C is open (resp. closed) hereditary

if X 2 C whenever X is an open (resp. closed) subspace of some Y 2 C . A space X

is called strongly C -universal if for every Y 2 C and every closed subset A � Y ,

every map f : Y ! X such that f � A is a Z-embedding can be approximated

by Z-embeddings g : X ! Y such that g � A ¼ f � A. Similarly, one defines

C -universality, relaxing the above condition to the case A ¼ ;, that is, X is

C -universal if every map f : Y ! X of Y 2 C can be approximated by Z-

embeddings.

FACT 1.5. Let X be an ANR such that every Z-set in X is strong and let C
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be an open and closed hereditary topological class of spaces. If every open

subspace U � X is C -universal then X is strongly C -universal.

Given a topological class C of spaces, we denote by �C the class of all spaces

of the form X ¼
S
n2! Xn, where each Xn is closed in X and Xn 2 C . Recall that X

is a C -absorbing space if X 2 �C is a strongly C -universal ANR which is a strong

Z�-space. In case C is closed hereditary, we can write X ¼
S
n2! Xn, where each

Xn is a strong Z-set in X and Xn 2 C .

We shall denote by M0 and M1 the classes of all compact metrizable

spaces and all Polish spaces3 respectively. Let � ¼ Q n s denote the pseudo-

boundary4 of Q.

FACT 1.6. If X is an M0-absorbing homotopy dense subspace of Q, then

hQ; Xi � hQ;�i. In case X � Q n 0, hQ n 0; Xi � hQ n 0;�i.

FACT 1.7. Assume that X is a both homotopy dense and homotopy

negligible subset of a Hilbert cube manifold M. If X is �-compact then it is a

strong Z�-space.

PROOF. Assume X ¼
S
n2! Kn, where each Kn is compact. Then each Kn is

closed in M and therefore it is a strong Z-set by Fact 1.3 (iii). �

2. Borel classes of several Hausdorff hyperspaces.

Let h ~XX; di denote the completion of hX; di. We identify BdðX; dÞ with the

subspace of Bdð ~XX; dÞ, via the isometric embedding A 7! cl ~XXA. Then, hBdð ~XXÞ; dHi
is a completion of hBdðXÞ; dHi. Moreover, it should be noticed that A 2 Bdð ~XXÞ n
BdðXÞ if and only if A 6¼ cl ~XXðA \XÞ. Saint Raymond proved in [20, Théorème 1]

that if X is the union of a Polish subset and a �-compact subset then BdHðXÞ is

F�� (hence Borel) in BdHð ~XXÞ.5 In particular, we have the following:

PROPOSITION 2.1. If X ¼ hX; di is �-compact then the space hBdðXÞ; dHi is
F�� in its completion hBdð ~XXÞ; dHi.

Moreover, the following can be easily obtained by adjusting the proof

of [20, Théorème 1]:6

3I.e., separable completely metrizable spaces.
4In some articles (e.g. [3]), � denotes the radial interior of Q, i.e., � ¼ fx 2 Q : supn2! jxðnÞj < 1g.

However, there is an auto-homeomorphism of Q which maps the pseudoboundary onto the radial

interior.
5In [20], X is assumed to be a subspace of a compact metric space, but the proof is valid without

this assumption. Moreover, it is also proved in [20, Théorème 6] that if BdHðXÞ is absolutely Borel

(i.e., Borel in its completion) then X is the union of a Polish subset and a �-compact subset.
6A similar result was proved by Costantini [7] for the Wijsman topology.
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PROPOSITION 2.2. If X ¼ hX; di is Polish (d is not necessarily complete)

then the space hBdðXÞ; dHi is G� in its completion hBdð ~XXÞ; dHi.

For the readers’ convenience, direct short proofs of the above two

propositions are given in the Appendix. Combining Fact 1.1 and Proposition 2.2,

we have the following:

COROLLARY 2.3. IfX ¼ hX; di is Polish in which every bounded set is totally

bounded, then the space BdHðXÞ is also Polish.

Concerning the spaces NwdðXÞ and PerfðXÞ, we prove here the following:

PROPOSITION 2.4. For every separable metric space X, the space NwdðXÞ is
G� in BdHðXÞ.

PROOF. Let fUn : n 2 !g be a countable open base for X. For each

n 2 !, let

Fn ¼ fA 2 BdðXÞ : Un � Ag:

Then each Fn is closed in BdHðXÞ and
S
n2!Fn ¼ BdðXÞ nNwdðXÞ. �

PROPOSITION 2.5. If X is locally compact then PerfðXÞ is G� in BdHðXÞ.

PROOF. Let fUn : n 2 !g enumerate an open base of X such that clUn is

compact for every n 2 !. Note that, by compactness, ðclUnÞ� is closed in

BdHðX; dÞ. For each n;m 2 ! define

�ðn;mÞ ¼ hk; li 2 !2 : Uk \ Ul ¼ ;; Uk [ Ul � B Un; 2
�mð Þ

� �
:

We claim that

BdðX; dÞ n PerfðXÞ ¼
[

n;m2!

\
hk;li2�ðn;mÞ

ðclUnÞ� n ðU�
k \ U�

l Þ
� �

:

The set on the right-hand side is F�, so this will finish the proof.

Note that a closed set in a Polish space is perfect if and only if it has

no isolated points. If A 2 BdðX; dÞ n PerfðXÞ then there is y 2 A which is isolated

in A. We can find n;m 2 ! such that y 2 Un and BðUn; 2�mÞ \ A ¼ fyg. Then

A 2 ðclUnÞ� and A =2 U�
k \ U�

l whenever hk; li 2 �ðn;mÞ.
Conversely, assume that there are n;m 2 ! such that A 2 ðclUnÞ� and A =2
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U�
k \ U�

l for every hk; li 2 �ðn;mÞ. Then A \ BðUn; 2�mÞ 6¼ ; and the second

condition says that A \ BðUn; 2�mÞ does not contain two points, so it is a

singleton. Thus A =2 PerfðXÞ. �

Replacing ðclUnÞ� by BðUn; 2�mÞ� in the formula from the proof above, we

obtain the following:

COROLLARY 2.6. The space PerfðXÞ is F�� in BdHðXÞ if X is Polish.

Since CantorðRmÞ ¼ PerfðRmÞ \ NwdðRmÞ, the following is a combination of

Propositions 2.4 and 2.5:

COROLLARY 2.7. The space CantorðRmÞ is G� in BdHðRmÞ.

Now, we shall prove the following:

PROPOSITION 2.8. The space NðRmÞ is Polish.

PROOF. Let fIn : n 2 !g enumerate all open rational cubes (i.e. products of

rational intervals) in Rm. Given k 2 !, we define

Sk ¼ s 2 ½!�<! :
X
n2s

jInj < 2�k

( )
;

where jIj denotes the volume of the cube I � Rm. We claim that

NðRmÞ ¼
\
k2!

[
s2Sk

[
n2s

In

 !þ

:

Clearly, if A belongs to the right-hand side then for each k 2 ! there is s � ! such

that A �
S
n2s In and

P
n2s jInj < 2�k; therefore A has Lebesgue measure zero.

Assume now A has Lebesgue measure zero and fix k < !. Then A �
S
n2! Jn,

where each Jn is an open rational cube and
P

n2! jJnj < 2�k. By compactness,

A � J0 [ � � � [ Jl�1 for some l and fJ0; . . . ; Jl�1g ¼ fIn : n 2 sg for some s 2 Sk.

Thus A 2
S
s2Skð

S
n2s InÞ

þ. �

3. Almost convex metric spaces.

Recall that a metric d on X is almost convex if for every � > 0, � > 0 and for

every x; y 2 X such that dðx; yÞ < �þ �, there exists z 2 X with dðx; zÞ < � and

dðz; yÞ < �.
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Fix a dense set X in a separable Banach space E. Let d denote the metric on

X induced by the norm of E. Then hX; di is an almost convex metric space and

therefore by a result of [8] the space BdðX; dÞ is an absolute retract. In case where

X is G�, the space BdðX; dÞ is completely metrizable by Proposition 2.2. If

additionally E is finite-dimensional then BdðX; dÞ is Polish by Corollary 2.3. In

case where X is �-compact, by Proposition 2.1, BdðX; dÞ is absolutely F��. It is

natural to ask whether these spaces or their subspaces, discussed in Section 2, are

homeomorphic to some standard spaces. Such standard spaces appear as

homotopy dense subspaces of the Hilbert cube Q.

Let UNbðX; dÞ denote the family of all sets of the form BðC; tÞ, the closed

t-neighborhood of C 2 BdðX; dÞ, where t > 0.

PROPOSITION 3.1. If hX; di is an almost convex metric space then the

subspace UNbðX; dÞ is homotopy dense in BdðX; dÞ.

PROOF. Define a homotopy h : BdðX; dÞ � ½0; 1� ! BdðX; dÞ by the formula:

hðA; tÞ ¼ BðA; tÞ:

It suffices to verify the continuity of h with respect to Hausdorff metric topology.

It has been checked in [8] that dHðBðA; tÞ;BðA; sÞÞ � jt� sj. Thus we have

dHðhðA; tÞ; hðB; sÞÞ � dHðhðA; tÞ; hðA; sÞÞ þ dHðhðA; sÞ; hðB; sÞÞ
� jt� sj þ dHðhðA; sÞ; hðB; sÞÞ:

It remains to check that dHðBðA; sÞ;BðB; sÞÞ � dHðA;BÞ.
To complete the proof, we show the following:

r > dHðA;BÞ; " > 0 ¼) rþ " � dHðBðA; sÞ;BðB; sÞÞ:

For this aim, it suffices to check that BðA; sÞ � BðBðB; sÞ; rþ "Þ; then by

symmetry we shall also get BðB; sÞ � BðBðA; sÞ; rþ "Þ.
For each x 2 BðA; sÞ, choose a 2 A such that dðx; aÞ < sþ ". There is b 2 B

such that dða; bÞ < r. Then we have dðx; bÞ < sþ rþ ". Using the almost convexity

of d, we can find y such that dðb; yÞ < s and dðy; xÞ < rþ ". Then y 2 BðB; sÞ and

hence x 2 Bðy; rþ "Þ � BðBðB; sÞ; rþ "Þ. �

Denote by RegðX; dÞ the hyperspace of all nonempty bounded regularly

closed subsets of a metric space hX; di. Clearly, UNbðX; dÞ � RegðX; dÞ.
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COROLLARY 3.2. Let hX; di be an almost convex metric space and D � X a

dense set. Then the spaces RegðX; dÞ and BdðD; dÞ are homotopy dense in

BdðX; dÞ.

PROOF. Regarding BdðD; dÞ � BdðX; dÞ via the embedding A 7! clXA, we

have RegðX; dÞ � BdðD; dÞ. This follows from the fact that clðD \ UÞ ¼ clU

for every open set U � X. Since UNbðX; dÞ is homotopy dense in BdðX; dÞ by

Proposition 3.1 and UNbðX; dÞ � RegðX; dÞ, we have the result. �

4. Strict deformations.

Assume we are looking at certain homotopy dense subspaces of the Hilbert

cube Q. Let X 	 X0 be such spaces. If X0 � � then, in order to conclude

that hQ; Xi � hQ;�i, it suffices to check that X is a Z�-set in Q, by applying

[6, Theorem 6.6]. However, to see that X0 � �, we have to check that X0 is

strongly M0-universal. Below is a tool which simplifies this step. To formulate it,

we need some extra notions concerning homotopies.

A homotopy ’ : X � ½0; 1� ! X is called a strict deformation if ’0 ¼ id and

’ðx; tÞ ¼ ’ðx0; t0Þ ^ t > 0 ^ t0 > 0 ¼) x ¼ x0:

It is said that ’ omits A � X if ’½X � ð0; 1�� \A ¼ ;. Finally, we say that a space

X is strictly homotopy dense in Y if X � Y and there exists a strict deformation

which omits Y nX (so in particular X is homotopy dense in Y ).

LEMMA 4.1. For every Z-set A in a Q-manifold M, there exists a strict

deformation of M which omits A.

PROOF. Find a Z-embedding f0 : M !M which is properly 2�2-homotopic

to the identity and so that f0½M� \A ¼ ;. Further, find a Z-embedding

f1 : M !M which is properly 2�3-homotopic to the identity and f1½M� \
ðf0½M� [ AÞ ¼ ;. Continuing this way, we find Z-embeddings fn : M !M,

n 2 !, such that fn is properly 2�n�2-homotopic to the identity and

fn½M� \ ðfn�1½M� [ � � � [ f0½M� [ AÞ ¼ ;:

Then, we have proper 2�ðnþ1Þ-homotopies gn : M � ½0; 1� !M, n 2 !, such that

gn0 ¼ fn and gn1 ¼ fnþ1. We can define a homotopy g : M � ½0; 1� !M by

gðx; 0Þ ¼ x and

gðx; tÞ ¼ gnðx; 2� 2nþ1tÞ for 2�ðnþ1Þ � t � 2�n, n 2 !:
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Note that g2�n ¼ fn for each n 2 !, each g �M � ½2�n�1; 2�n� is proper and 2�n�1-

close to the projection prM : M � ð0; 2�n� !M. The continuity of g at ðx; 0Þ is

guaranteed by the last fact. Using the strong M0-universality of M (see [3,

Theorem 1.1.26]), we can inductively obtain hn : M � ½0; 1� !M, n 2 !, such that

(1) hn �M � ½2�n�1; 1� is a Z-embedding,

(2) hn �M � ½2�n; 1� ¼ hn�1 �M � ½2�n; 1�,
(3) hn �M � ½0; 2�n�1� ¼ g �M � ½0; 2�n�1�,
(4) hn �M � ½2�n�1; 2�n� is 2�n�1-close to g �M � ½2�n�1; 2�n�, hence it is 2�n-

close to prM : M � ½2�n�1; 2�n� !M,

(5) hn½M � ½2�n�1; 1�� is disjoint from A.

Finally, the limit h ¼ limn!1 hn is the desired one. �

THEOREM 4.2. Assume that X is a Z�-subset of a Q-manifold M which is

strictly homotopy dense in M. Then X is an M0-absorbing space. In particular, if

M � Q then hM;Xi � hQ;�i and if M � Q n 0 then hM;Xi � hQ n 0;�i.

PROOF. The assumption says in particular that X is homotopy dense in M,

so it follows from Proposition 1.4 that X is an ANR being a strong Z�-space. It

remains to check that X is strongly M0-universal. For the additional statement,

we can just apply Fact 1.6.

Fix a map f : A! X of a compact metric space such that f � B is a

Z-embedding, where B � A is closed. Note that every compact subset of X is

a Z-set in M, hence it is a Z-set in X by Fact 1.3 (ii), so we just have to preserve

f � B, not worrying about Z-sets. We assume that A is endowed with the metric

such that diamðAÞ � 1. Fix " > 0. Using the strong M0-universality of M

(see [3, Theorem 1.1.26]), we can find a Z-embedding g : A!M which is "=2-close

to f and such that g½A nB� \X ¼ ; (here we use the fact that X is a Z�-set in M

and also that f ½B� is a Z-set in M).

By Lemma 4.1, we have a strict deformation ’ : M � ½0; 1� !M which omits

f ½B�. Fix a metric d for M and choose a map � : A! ½0; 1� so that ��1ð0Þ ¼ B and

dðgðaÞ; ’ðgðaÞ; �ðaÞÞÞ < "

4
for every a 2 A:

On the other hand, by the assumption, there is a strict deformation  : M �
½0; 1� !M which omits M nX. Define h : A! X by setting

hðaÞ ¼  ð’ðgðaÞ; �ðaÞÞ; �ðaÞÞ;

where � : A! ½0; 1� is a map chosen so that B ¼ ��1ð0Þ and
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dðhðaÞ; ’ðgðaÞ; �ðaÞÞÞ < min
"

4
; distð’ðgðaÞ; �ðaÞÞ; f½B�Þ

� �
:

This ensures us that h is "=2-close to g and that hðaÞ =2 f ½B� whenever a 2 A nB.

Then h is a map which is "-close to f and h½A� � X. Furthermore,

h � B ¼ g � B ¼ f � B. It remains to check that h is one-to-one (then it is a

Z-embedding, since every compact set in X is a Z-set).

Suppose hðaÞ ¼ hða0Þ. If a; a0 2 B then gðaÞ ¼ gða0Þ and consequently a ¼ a0.

When a; a0 2 A n B, since  and ’ are strict deformations, gðaÞ ¼ gða0Þ and hence

a ¼ a0. In case a 2 B and a0 =2 B, we have hðaÞ ¼ gðaÞ ¼ fðaÞ 2 f ½B� but hða0Þ =2
f ½B� because ’ omits f ½B�. Thus, this case does not occur. �

5. Pseudo-interiors of BdHðRmÞ.

Throughout this section, m > 0 is a fixed natural number. A particular case

of a well known theorem of Curtis [9] says that BdHðRmÞ ¼ expðRmÞ is

homeomorphic to Q n 0. We shall consider the standard (convex) Euclidean

metric d on Rm. In this section, we investigate various G� subspaces of BdHðRmÞ.
The main result of this section is the following:

THEOREM 5.1. Let F � BdHðRmÞ be one of the subspaces below:

NwdðRmÞ; PerfðRmÞ; CantorðRmÞ; NðRmÞ; BdðDÞ;

where D is a dense G� set in Rm such that Rm nD is also dense in Rm and in case

m > 1 it is assumed that D ¼ p½D� �R, where p : Rm ! Rm�1 is the projection

onto the first m� 1 coordinates. Then the pair hBdðRmÞ;Fi is homeomorphic to

hQ n 0; s n 0i.

Applying Theorem 5.1 above, we have

COROLLARY 5.2. Suppose hm; ki ¼ h1; 0i or 0 � k < m� 1. Then,

hBdðRmÞ;Bdð�mk Þi � hQ n 0; s n 0i:

Consequently, BdHð�mk Þ � ‘2.

PROOF. As a direct consequence of Theorem 5.1, we have

hBdðRÞ;Bdð�10Þi ¼ hBdðRÞ;BdðR nQÞi � hQ n 0; s n 0i:

204 W. KUBIŚ and K. SAKAI



For each 0 � k < m� 1, observe that Rm n ð�m�1
k �RÞ ¼ ðRm�1 n �m�1

k Þ �R �
Rm n �mk . Thus, it follows that

BdðRmÞ n Bdð�m�1
k �RÞ � BdðRmÞ n Bdð�mk Þ:

By Proposition 2.2 and Corollary 3.2, Bdð�mk Þ is a homotopy dense G� set

in BdHðRmÞ, which implies that BdðRmÞ n Bdð�mk Þ is a Z�-set in BdðRmÞ. On

the other hand, we can apply Theorem 5.1 to obtain

hBdðRmÞ;BdðRmÞ n Bdð�m�1
k �RÞi � hQ n 0;�i:

Then, it follows from Theorem 6.6 in [6] that

hBdðRmÞ;BdðRmÞ n Bdð�mk Þi � hQ n 0;�i:

Thus, we have the result. �

The conclusion of Theorem 5.1 is equivalent to

hBdHðRmÞ;BdHðRmÞ nFi � hQ n 0;�i:

We saw in Section 2 that the subspace F � BdðRmÞ in Theorem 5.1 is G�, that is,

BdHðRmÞ nF is F� in BdHðRmÞ. If F contains a homotopy dense subset of

BdHðRmÞ then the complement BdHðRmÞ nF is a Z�-set. Thus, in order to apply

Theorem 4.2 to obtain the result, it suffices to show that F contains a homotopy

dense subset of BdHðRmÞ and the complement BdHðRmÞ nF contains a strictly

homotopy dense subset of BdHðRmÞ. Observe that

FinðRmÞ � NðRmÞ � NwdðRmÞ and CantorðRmÞ � PerfðRmÞ:

As a special case of a well known result due to Curtis and Nguyen To

Nhu [11], we have

hBdHðRmÞ;FinðRmÞi ¼ hexpðRmÞ;FinðRmÞi � hQ n 0;Qf n 0i;

where Qf denotes the subspace of Q consisting of all eventually zero sequences,

which is homotopy dense in Q. This fact implies the following:

LEMMA 5.3. The subspace FinðRmÞ is homotopy dense in BdHðRmÞ.
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Using Lemma 5.3 above, we can easily show the following:

LEMMA 5.4. The space CantorðRmÞ is homotopy dense in BdHðRmÞ.

PROOF. Let h be a homotopy of BdHðRmÞ which witnesses that FinðRmÞ is

homotopy dense, i.e., hðA; tÞ is a finite set for every t > 0. Choose a Cantor set

C � ½0; 1�m with 0 2 C and define a homotopy ’ : BdHðRmÞ � ½0; 1� ! BdHðRmÞ
by

’ðA; tÞ ¼ hðA; tÞ þ tC:

Then ’0 ¼ id and ’ðA; tÞ 2 CantorðRmÞ for every t > 0 because a finite union of

Cantor sets is a Cantor set. �

Concerning the space BdðDÞ in Theorem 5.1, we have shown in Corollary 3.2

that it is homotopy dense in BdHðRmÞ. Thus, to complete the proof of

Theorem 5.1, it remains to show the following:

LEMMA 5.5. Under the same assumption as Theorem 5.1, each of the

following spaces are strictly homotopy dense in BdHðRmÞ:

BdðRmÞ nNwdðRmÞ; BdðRmÞ n PerfðRmÞ; BdðRmÞ n BdðDÞ:

First, we show the following lemma, which also gives a direct proof of

Lemma 5.3:

LEMMA 5.6. For D � Rm, if Rm nD is dense in Rm then FinðRmÞ n BdðDÞ
is homotopy dense in BdHðRmÞ.

PROOF. Let H ¼ FinðRmÞ n BdðDÞ, that is, H consists of all nonempty

finite sets A � Rm such that A nD 6¼ ;. Then H is dense in BdHðRmÞ. Moreover,

H is closed under finite unions, i.e., A [B 2 H whenever A;B 2 H . Recall that

hBdHðRmÞ;[i is a Lawson semilattice (see [18]), that is, the union operator

hA;Bi 7! A [B is continuous and BdHðRmÞ has an open base consisting of

subsemilattices; namely, every open ball with respect to the Hausdorff metric is a

subsemilattice of hBdHðRmÞ;[i. By virtue of [16, Theorem 5.1], it suffices to show

that H is relatively LC0 in BdHðRmÞ. Recall that a subspace Y of a space X is

relatively LC0 in X if every neighborhood U of each x 2 X contains a

neighborhood V of x in X such that every a; b 2 V \ Y can be joined by a path

in U \ Y .

Fix A 2 BdHðRmÞ and " > 0. For each A0; A1 2 BdH ðA; "=2Þ \H , we describe

how to construct a path in BdH ðA; "Þ \H which joins A0 to A0 [ A1. Let
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A1 ¼ fp0; . . . ; pn�1g. For each i < n, find qi 2 A0 such that kpi � qik < "=2, and

define

hðtÞ ¼ A0 [ fð1� tÞqi þ tpi : i < ng for each t 2 ½0; 1�:

Then hðtÞ 2 H because A0 � hðtÞ 2 FinðRmÞ. Further, dHðA0; hðtÞÞ < "=2, that

is, hðtÞ 2 BdH ðA; "Þ. Finally, hð0Þ ¼ A0 and hð1Þ ¼ A0 [A1. By the same argu-

ment, we can construct a path in BdH ðA; "Þ \H which joins A0 [ A1 to A1. �

PROOF OF LEMMA 5.5. First, we show the case m ¼ 1. It suffices to

construct a strict deformation ’ : BdHðRÞ � ½0; 1� ! BdHðRÞ which omits

NwdðRÞ [ PerfðRÞ [ BdðDÞ. Let h be a homotopy of BdðRÞ which witnesses that

FinðRÞ n BdðDÞ is homotopy dense (Lemma 5.6). Since BdHð½1; 2�Þ � Q, we have

an embedding g : BdHðRÞ ! BdHð½1; 2�Þ. The desired ’ can be defined as follows:

’ðA; tÞ ¼ hðA; tÞ [ fmaxhðA; tÞ þ ½t; 2t�; minhðA; tÞ � tgðAÞg:

∗∗∗ ∗
h(A, t)

∗∗

max h(A, t)min h(A, t)

max h(A, t) + [t, 2t]min h(A, t) − tg(A)

min h(A, t) − [t, 2t]

For each t > 0, it is clear that ’ðA; tÞ =2 NwdðRÞ [ PerfðRÞ. Since hðA; tÞ
contains an isolated point from R nD which remains to be isolated in ’ðA; tÞ, we

see that ’ðA; tÞ =2 BdðDÞ. Given ’ðA; tÞ for t > 0, we can reconstruct t as the

length of the interval J � ’ðA; tÞ with max J ¼ max’ðA; tÞ. Consequently, gðAÞ
can be reconstructed from ’ðA; tÞ. Thus, ’ is a strict deformation.

Next, we show the case m > 1. To see that BdðRmÞ n PerfðRmÞ and BdðRmÞ n
BdðDÞ are strictly homotopy dense in BdHðRmÞ, we shall construct a strict

deformation ’ : BdHðRmÞ � ½0; 1� ! BdHðRmÞ which omits PerfðRmÞ [ BdðDÞ.
Recall p : Rm ! Rm�1 is the projection onto the first m� 1 coordinates. Note

that p½D� is a dense G� set in Rm�1 and Rm�1 n p½D� is also dense in Rm�1. Let

em ¼ h0; 0; . . . ; 0; 1i 2 Rm.

Since Rm n ðp½D� �RÞ is dense in Rm, it follows from Lemma 5.6 that

FinðRmÞ n Bdðp½D� �RÞ is homotopy dense in BdHðRmÞ. Let h be a homotopy

of BdðRmÞ which witnesses this, i.e., for t > 0, hðA; tÞ is finite and p½hðA; tÞ� 6�
p½D�. Since BdHð½3=5; 2=3�Þ � Q, we have an embedding g : BdHðRmÞ !
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BdHð½3=5; 2=3�Þ. The desired ’ can be defined as follows:

’ðA; tÞ ¼ hðA; tÞ þ t
[
i2!

2�i gðAÞ [
3

4
; 1

� �	 

em [ f2emg

 !
:

a

a + tg(A) a + [3/4, 1]tem

a + 2tem

a + t(g(A) ∪ [3/4, 1]em)

· · ·∗
∗∗

∗ ∗
h(A, t)

a + 2−1t(g(A) ∪ [3/4, 1]em)

∗∗

For each t > 0, ’ðA; tÞ has an isolated point because maxprm½’ðA; tÞ� is

attained by an isolated point of ’ðA; tÞ, where prm denotes the projection

onto the m-th coordinate. Hence, ’ðA; tÞ =2 PerfðRmÞ. Since p½’ðA; tÞ� ¼ p½hðA; tÞ�
is finite and contains a point of Rm�1 n p½D�, it follows that clð’ðA; tÞ \
ðp½D� �RÞÞ 6¼ ’ðA; tÞ, which means ’ðA; tÞ =2 Bdðp½D� �RÞ.

Given ’ðA; tÞ for t > 0, we can find t as the distance from maxprm½’ðA; tÞ� to

the interior of prm½’ðA; tÞ�. Let a0 2 ’ðA; tÞ be such that

prmða0Þ ¼ min prm½’ðA; tÞ� ¼ min prm½hðA; tÞ�:

Then, for sufficiently large i,

a0 þ 2�it gðAÞ [
3

4
; 1

� �	 

em

	 

\ hðA; tÞ ¼ ;:

Thus, we can reconstruct 2�itgðAÞ and consequently also gðAÞ from ’ðA; tÞ. This

shows that ’ is a strict deformation.

For BdðRmÞ nNwdðRmÞ, we define a homotopy  : BdHðRmÞ � ½0; 1� !
BdHðRmÞ as follows:

 ðA; tÞ ¼ hðA; tÞ þ t
[
i2!

2�i gðAÞ [
3

4
; 1

� �	 

em [ B 2em;

1

2

	 
 !
:

In other wards, replacing the points aþ 2tem 2 ’ðA; tÞ, a 2 hðA; tÞ, by the closed

balls
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aþ tB 2em;
1

2

	 

¼ B aþ 2tem;

t

2

	 

; a 2 hðA; tÞ;

we can obtain  ðA; tÞ from ’ðA; tÞ. Evidently  omits NwdðRmÞ. Given  ðA; tÞ for

t > 0, let a0 2  ðA; tÞ be such that

prmða0Þ ¼ min prm½ ðA; tÞ� ¼ min prm½hðA; tÞ�:

Then we can get t as the diameter of the ball Bða0 þ 2tem; t=2Þ (which is equal to

2/3 of the distance from a0 to this ball). Now, by the same arguments as for ’, we

can reconstruct gðAÞ from  ðA; tÞ. Thus,  is a strict deformation. �

Let us note that the subspace UNbðRÞ [ FinðRÞ is actually equal to the space

PolðRÞ consisting of all compact polyhedra in R. It follows from the result of [21]

that the pair hexpðRÞ;PolðRÞi is homeomorphic to hQ;Qfi.

6. Nonseparable components of CldHðRÞ.

In this section, we consider the space CldHðRÞ of all nonempty closed subsets

of R. We shall also consider its natural subspaces, using the same notation as

before, but having in mind the new setting. For example, PerfðRÞ and NwdðRÞ
will denote the subspace of CldðRÞ consisting of all perfect closed subsets of R and

all closed sets with no interior points, respectively. Now PerfðRÞ \NwdðRÞ
consists of all nonempty closed (possibly unbounded) subsets of R which have

neither isolated points nor interior points. In the new setting, we have

CantorðRÞ ¼ PerfðRÞ \ NwdðRÞ \ BdðRÞ:

As shown in [17, Proposition 7.2], CldHðRÞ has 2@0 many components, BdðRÞ
is the only separable one and any other component has weight 2@0 . The following

is the main theorem in this section:

THEOREM 6.1. Let H be a nonseparable component of CldHðRÞ which does

not contain R, ½0;þ1Þ, ð�1; 0�. Then H � ‘2ð2@0Þ.

We shall say that a set A � R has infinite uniform gaps if there are � > 0 and

pairwise disjoint open intervals I0; I1; . . . such that diam In � �, A \ In ¼ ; and

bdIn � A for every n 2 !. Define

V ¼ fA 2 CldðRÞ : A has infinite uniform gapsg:
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Clearly, V is open in CldHðRÞ and V \ BdðRÞ ¼ ;. For each A 2 CldðRÞ n BdðRÞ
and " > 0, let D � A be a maximal "-discrete subset. Then D 2 V and dHðA;DÞ �
" because D � A � BðD; "Þ. Thus, V is dense in CldHðRÞ n BdðRÞ.

If H is a nonseparable component of CldHðRÞ and R; ½0;þ1Þ; ð�1; 0� =2 H

then H � V . Indeed, each A 2 H is unbounded and every component of R nA is

an open interval. Let J be the set of all bounded component of R n A. Assume

that fdiam I : I 2 Jg is bounded. When A is bounded below (or bounded above),

dHðA; ½0;1ÞÞ <1 (or dHðA; ð�1; 0�Þ <1), which implies ½0;þ1Þ 2 H (or

ð�1; 0� 2 H ). When A is not bounded below nor above, dHðA;RÞ <1,

which implies R 2 H . Therefore, fdiam I : I 2 Jg is unbounded. In particular,

A has infinite uniform gaps.

Due to Theorem A in [17], every component of CldHðRÞ is an AR, hence it is

contractible. Since a contractible ‘2ð2@0Þ-manifold is homeomorphic to ‘2ð2@0Þ,
Theorem 6.1 above follows from the following theorem:

THEOREM 6.2. The open dense subset V of CldHðRÞ is an ‘2ð2@0Þ-manifold.

PROOF. It suffices to show that each A0 2 V has an open neighborhood

U � V which is an ‘2ð2@0Þ-manifold. In this case, U is a completely metrizable

ANR because it is an open set in a completely metrizable ANR CldHðRÞ. Due to

Toruńczyk characterization of ‘2ð2@0Þ-manifold [22] (cf. [23]), we have to show

that U has the following two properties:

(i) For each maps f : ½0; 1�n � 2! ! U and � : U ! ð0; 1Þ, there exists a map

g : ½0; 1�n � 2! ! U such that dHðgðzÞ; fðzÞÞ < �ðfðzÞÞ for each z 2 ½0; 1�n �
2! and fg½½0; 1�n � fxg� : x 2 2!g is discrete in U ;

(ii) For any finite-dimensional simplicial complexes Kn, n 2 !, with

card Kn � 2@0 , for every maps f :
L

n2! jKnj ! U and � : U ! ð0; 1Þ, there

exists a map g :
L

n2! jKnj ! U such that dHðgðzÞ; fðzÞÞ < �ðfðzÞÞ for each

z 2
L

n2! jKnj and fg½jKnj� : n 2 !g is discrete in U .

In the above, 2! is the discrete space of all functions of ! to 2 ¼ f0; 1g. To this end,

it suffices to prove the following:

. For each map � : U ! ð0; 1Þ, there exist maps fx : U ! U , x 2 2!, such

that dHðfxðAÞ; AÞ < �ðAÞ for every A 2 U and ffx½U � : x 2 2!g is discrete.

Fix A0 2 V and choose open intervals I0; I1; . . . such that diam In � �, A0 \
In ¼ ; and bdIn � A0 (i.e., inf In, sup In 2 A0) for every n 2 !. Taking a

subsequence if necessary, we may assume that either sup In < inf Inþ1 for every

n 2 ! or inf In > sup Inþ1 for every n 2 !. Because of similarity, we may assume

that the first possibility occurs.
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Choose intervals ½an; bn� � In, n 2 !, so that bn � an > �=4,

inf
n2!

distðan;R n InÞ ¼ inf
n2!

ðan � inf InÞ >
�

4
and

inf
n2!

distðbn;R n InÞ ¼ inf
n2!

ðsup In � bnÞ >
�

4
:

In−1 In

A0 A0
an bnbn−1an−1

◦ ◦◦◦

Observe that if A 2 CldHðRÞ and dHðA;A0Þ < �=4 then A \ ðbn�1; anÞ 6¼ ; for

every n 2 !, where b�1 ¼ �1. For each A 2 CldHðRÞ with dHðA;A0Þ < �=4, we

can define

rnðAÞ ¼ maxðA \ ðbn�1; anÞÞ; n 2 !:

For each A;A0 2 CldHðRÞ with dHðA;A0Þ; dHðA0; A0Þ < �=4, we have

jrnðAÞ � rnðA0Þj � dHðA;A0Þ:

Indeed, without loss of generality, we may assume that rnðAÞ < rnðA0Þ. Then, the

open interval ðrnðAÞ; bnÞ contains no points of A and rnðA0Þ 2 ðrnðAÞ; bnÞ. Since

bn � rnðA0Þ > �=2 and

rnðA0Þ � rnðAÞ � jrnðA0Þ � rnðA0Þj þ jrnðAÞ � rnðA0Þj <
�

2
;

we have jrnðA0Þ � rnðAÞj � dHðA;A0Þ. Then, it follows that

inf
n2!

ðan � rnðAÞÞ � dHðA;A0Þ � inf
n2!

ðan � rnðA0ÞÞ

� inf
n2!

ðan � rnðAÞÞ þ dHðA;A0Þ:

This means that A 7! infn2!ðan � rnðAÞÞ is continuous. Since rnðA0Þ ¼ inf In, we

have infn2!ðan � rnðA0ÞÞ > �=4. Thus, A0 has the following open neighborhood:

U ¼ A 2 CldHðRÞ : dHðA;A0Þ <
�

4
; inf
n2!

ðan � rnðAÞÞ >
�

4

� �
� V :
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Now, for each map � : U ! ð0; 1Þ, we define a map � : U ! ð0; 1Þ as follows:

�ðAÞ ¼ min
1

2
�ðAÞ;

1

4
� � dHðA;A0Þ; inf

n2!
ðan � rnðAÞÞ �

1

4
�

� �
:

Given a sequence x ¼ ðxðnÞÞn2! 2 2!, let

fxðAÞ ¼ A [
[
n2!

rnðAÞ þ 0;
1

2
�ðAÞ

� �
[ f�ðAÞ � xðnÞg

	 
	 

:

bn−1 an

A ∩ (bn−1, an)

rn(A)

rn(A) + β(A)

rn(A) + [0, 1
2β(A)]

∗◦ ◦

This defines a map fx : U ! U which is �-close to id. We claim that if x 6¼ y 2 2!

then

dHðfxðAÞ; fyðA0ÞÞ � min
1

4
�ðAÞ; 1

4
�ðA0Þ

� �
for every A;A0 2 U :

Indeed, assume that xðnÞ ¼ 1, yðnÞ ¼ 0 and let s ¼ minf14�ðAÞ;
1
4�ðA0Þg. Then

(1) maxðfxðAÞ \ ðbn�1; anÞÞ ¼ rnðAÞ þ �ðAÞ;
(2) fxðAÞ has no points in the open interval ðrnðAÞ þ 1

2�ðAÞ; rnðAÞ þ �ðAÞÞ;
(3) maxðfyðA0Þ \ ðbn�1; anÞÞ ¼ rnðA0Þ þ 1

2�ðA0Þ;
(4) ½rnðA0Þ; rnðA0Þ þ �ðA0Þ=2� � fyðA0Þ.

In case rnðA0Þ þ 1
2�ðA0Þ � rnðAÞ þ �ðAÞ þ s or rnðA0Þ þ 1

2�ðA0Þ � rnðAÞ þ �ðAÞ � s,

we have

dHðfxðAÞ \ ðbn�1; anÞ; fyðA0Þ \ ðbn�1; anÞÞ � s:

In case rnðAÞ þ �ðAÞ � s < rnðA0Þ þ 1
2
�ðA0Þ � rnðAÞ þ �ðAÞ þ s, since 2s � 1

2
�ðA0Þ,

we have rnðA0Þ < rnðAÞ þ �ðAÞ � s, hence rnðAÞ þ �ðAÞ � s 2 fyðA0Þ. Thus, it

follows that

dHðfxðAÞ \ ðbn�1; anÞ; fyðA0Þ \ ðbn�1; anÞÞ � s:
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Finally, we show that ffx½U � : x 2 2!g is a discrete collection of U . If not, we

have A, Ai 2 U and xi 2 2!, i 2 !, such that xi 6¼ xj if i 6¼ j, and fxiðAiÞ ! A

(i! 1). Then c ¼ infi2! �ðAiÞ ¼ 0. Indeed, otherwise we could find i < j such that

dHðfxiðAiÞ; AÞ; dHðfxjðAjÞ; AÞ <
c

10

and �ðAiÞ; �ðAjÞ > 4c=5. It follows that dHðfxiðAiÞ; fxjðAjÞÞ < c=5, but

dHðfxiðAiÞ; fxjðAjÞÞ � min
�ðAÞ
4

;
�ðA0Þ
4

� �
>
c

5
;

which is a contradiction. Thus, infi2! �ðAiÞ ¼ 0. Taking a subsequence, we may

assume that limi!1 �ðAiÞ ¼ 0. Then Ai ! A (i! 1) because dHðfxiðAiÞ; AiÞ �
�ðAiÞ. It follows that �ðAÞ ¼ 0, which is a contradiction. This completes

the proof. �

Let DðXÞ be the subspace of CldHðXÞ consisting of all discrete sets in X. It

follows from the result of [4] that DðXÞ is homotopy dense in CldHðXÞ for every

almost convex metric space X. By the same proof, Lemma 5.6 can be extended to

CldHðRmÞ.

PROPOSITION 6.3. Assume D � Rm is such that Rm nD is dense. Then

DðRmÞ n CldðDÞ is homotopy dense in CldHðRmÞ.

Now, we consider the subspaces NðRÞ, NwdðRÞ, PerfðRÞ and CldðR nQÞ of

CldHðRÞ. Similarly to BdHðRÞ, the following can be shown:

PROPOSITION 6.4. The complements CldðRÞ nNðRÞ, CldðRÞ nNwdðRÞ,
CldðRÞ n PerfðRÞ and CldðRÞ n CldðR nQÞ are Z�-sets in the space CldHðRÞ.

Due to Negligibility Theorem ([1], [12]) if M is an ‘2ð2@0Þ-manifold and

A is a Z�-set in M then M nA �M. Thus, combining Proposition 6.4 and

Theorem 6.1, we have the following:

COROLLARY 6.5. Let H be a nonseparable component of CldHðRÞ which

does not contain R, ½0;þ1Þ, ð�1; 0�. Then H \NðRÞ, H \NwdðRÞ, H \
PerfðRÞ and H \ CldðR nQÞ are homeomorphic to ‘2ð2@0Þ.

7. Open problems.

The following questions are left open.

Hausdorff hyperspaces of Rm and their dense subspaces 213



QUESTION 1. In case m > 1, under the only assumption that D � Rm is a

dense G� set and Rm nD is also dense in Rm, is the pair hBdðRmÞ;BdðDÞi
homeomorphic to hQ n 0; s n 0i? In particular, is the pair hBdðRmÞ;Bdð�mm�1Þi
homeomorphic to hQ n 0; s n 0i?

QUESTION 2. Does Theorem 6.1 hold even if H contains R, ½0;1Þ or

ð�1; 0�?

QUESTION 3. For m > 1, is CldHðRmÞ n BdðRmÞ an ‘2ð2@0Þ-manifold?

8. Appendix.

For the convenience of readers, we give short and straightforward proofs of

Propositions 2.1 and 2.2.

PROPOSITION 8.1 (2.1). If hX; di is �-compact then the space hBdðXÞ; dHi is
F�� in its completion hBdð ~XXÞ; dHi.

PROOF. Fix a countable open base fUn : n 2 !g for ~XX. Since Un \X is F�,

we have Un \X ¼
S
k2! K

n
k , where each Kn

k is compact. Observe that, by

compactness, the sets ð ~XX nKn
k Þ

þ are open in the Hausdorff metric topology. We

claim that

Bdð ~XXÞ n BdðXÞ ¼
[
n2!

U�
n \

\
k2!

ð ~XX nKn
k Þ

þ
 !

;

which shows that Bdð ~XXÞ n BdðXÞ is a countable union of G� sets. This is what we

want to prove.

Assume A 2 Bdð ~XXÞ n BdðXÞ, that is, A 6¼ cl ~XXðA \XÞ. Then there is n 2 !

such that Un \A 6¼ ; and Un \A \X ¼ ;, which means that A 2 U�
n and A 2

ð ~XX nKn
k Þ

þ for every k 2 !. Conversely, if A 2 U�
n \

T
k2!ð ~XX nKn

k Þ
þ then Un \A 6¼

; and Un \ A \X ¼ ;, so A 6¼ cl ~XXðA \XÞ. �

PROPOSITION 8.2 (2.2). If hX; di is Polish then the space hBdðXÞ; dHi is G�

in its completion hBdð ~XXÞ; dHi.

PROOF. Let fWn : n 2 !g be a family of open subsets of ~XX such that

X ¼
T
n2! Wn. Fix a countable open base fVn : n 2 !g for ~XX. We claim that

Bdð ~XXÞ n BdðXÞ ¼
[
n2!

[
k2!

V �
n n ðVn \WkÞ�

� �
: ð
Þ
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As V � is open in the metric space hBdð ~XX; dÞ; dHi whenever V � ~XX is open, it

follows that V �
n is F� and therefore the set on the right-hand side of (
) is F� in

BdHð ~XXÞ. It remains to prove (
).

If A 2 V �
n n ðVn \WkÞ� then we have x 2 Vn \ A. Since Vn \ ðA \XÞ ¼ ;, it

follows that x =2 cl ~XXðA \XÞ. Thus A =2 BdðXÞ. Now assume A 2 Bdð ~XXÞ n BdðXÞ,
that is, A 6¼ cl ~XXðA \XÞ. Then there exists an open set U � ~XX such that U \A 6¼ ;
and U \ A \X ¼ ;. Hence

T
k2! A \ U \Wk ¼ ;. Note that A \ U is a Baire

space because of the completeness of h ~XX; di. Thus, by the Baire Category

Theorem, there exists k 2 ! such that A \ U \Wk is not dense in A \ U . Find

a basic open set Vn � U such that Vn \A 6¼ ; and Vn \ A \Wk ¼ ;. Then

A 2 V �
n n ðVn \WkÞ�. �

Let BðXÞ denote the Borel field on a topological space X. Given H � CldðXÞ,
the Effros �-algebra EðHÞ is the �-algebra generated by

fU� \ H : U is open in Xg:

It is well known that EðexpðXÞÞ ¼ BðexpðXÞÞ for every separable metric space X

(see [5, Theorem 6.5.15]).7 Whenever X is a separable metric space in which every

bounded set is totally bounded, we can regard BdHðXÞ � expð ~XXÞ by the

identification as in Section 2, where ~XX is the completion of X. Then, we have

not only EðBdðXÞÞ ¼ BðBdHðXÞÞ but also EðHÞ ¼ BðHÞ for H � BdHðXÞ. This

implies that EðHÞ is standard if H is absolutely Borel (cf. [15, 12.B]). The results

in Section 2 provide such hyperspaces H.

In relation to the results above, we can prove the following:

PROPOSITION 8.3. Let X ¼ hX; di be an analytic metric space in which

bounded sets are totally bounded. Then, the space BdHðXÞ is analytic.

PROOF. The completion h ~XX; di of hX; di is a Polish space in which closed

bounded sets are compact. Then BdHð ~XX; dÞ ¼ expð ~XXÞ is Polish. Fix a countable

open base fUn : n 2 !g for ~XX. Since X is analytic, there exists a tree fXs : s 2 !<!g
of closed subsets of ~XX such that X ¼

S
f2!!

T
n2! Xf�n, which is the result of the

Suslin operation on the family fXs : s 2 !<!g (e.g., see [14, Lemma 11.7]). We

may assume that Xs 	 Xt whenever s � t. Let Ws ¼ BðXs; 2
�jsjÞ, where jsj denotes

the length of the sequence s. Then clWs 	 clWt whenever s � t. Moreover,T
n2! Xf�n ¼

T
n2! clWf�n for each f 2 !!. We claim that

7EðCldðXÞÞ ¼ BðCldHðXÞÞ for every totally bounded separable metric space X (cf. [5, Hess’

Theorem 6.5.14 with Theorem 3.2.3]).
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BdðX; dÞ ¼
\
k2!

[
f2!!

\
n2!

ðBdð ~XX; dÞ n U�
k Þ [ ðUk \Wf�nÞ�

� �
; ð]Þ

where, as usual, we regard BdðX; dÞ � Bdð ~XX; dÞ, via the embedding A 7! cl ~XXA.

The above formula (]) shows that BdðX; dÞ can be obtained from Bdð ~XX; dÞ by

using the Suslin operation and countable intersection, which shows that it is

analytic. It remains to prove (]).

Fix A 2 Bdð ~XX; dÞ n BdðX; dÞ. Then A 6¼ clðA \XÞ and hence there exists k 2
! such that A 2 U�

k and clUk \A \X ¼ ;. Then A =2 Bdð ~XX; dÞ n U�
k . For each

f 2 !!, we have

A \ clUk \
\
n2!

clWf�n ¼ A \ clUk \
\
n2!

Xf�n ¼ ;:

By compactness, there is n 2 ! such that A \ clUk \ clWf�n ¼ ;, hence A =2
ðUk \Wf�nÞ�.

Now assume that A 2 Bdð ~XX; dÞ does not belong to the right-hand side of (]),

that is, there exists k 2 ! such that A 2 U�
k and for every f 2 !! there is n 2 !

with A =2 ðUk \Wf�nÞ�. In particular, A \ Uk \
T
n2! Xf�n ¼ ; for every f 2 !!

and consequently Uk \A \X ¼ ;. On the other hand, A \ Uk 6¼ ;. Thus it

follows that A 6¼ cl ~XXðA \XÞ, which means A =2 BdðX; dÞ. �
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