
doi: 10.2969/jmsj/06010171

Linear stability of projected canonical curves
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Abstract. Let f : S �! B be a non locally trivial relatively minimal fibred

surface. We prove a lower bound for the slope of f depending increasingly from

the relative irregularity of f and the Clifford index of the general fibres.

1. Introduction and preliminaries.

Let f : S �! B be a surjective holomorphic map with connected fibres from a

complex smooth projective surface S onto a complex smooth curve B. We always

assume that it is relatively minimal, i.e., that there is no (�1)–rational curve

contained in a fibre of f . Let F be a general fibre. We call f a fibration of genus g

whenever g ¼ gðF Þ; we also set b ¼ gðBÞ. The fibration is called smooth if all its

fibres are smooth, isotrivial if all its smooth fibres are reciprocally isomorphic, and

locally trivial if it is smooth and isotrivial (i.e. an holomorphic fibre bundle).

Let !S be the canonical line bundle of S and KS any canonical divisor. Set

pg ¼ h0ðS; !SÞ, q ¼ h1ðS; !SÞ, �OS ¼ pg � q þ 1 and let eðXÞ be the topological

Euler characteristic of X. We consider the following relative invariants:

K2
f ¼ ðKS � f�KBÞ2 ¼ K2

S � 8ðb� 1Þðg� 1Þ
�f ¼ deg f�!S=B ¼ �OS � ðb� 1Þðg� 1Þ
ef ¼ eðSÞ � eðBÞeðF Þ ¼ eðSÞ � 4ðb� 1Þðg� 1Þ
qf ¼ qðSÞ � b:

We have the following classical results, when g � 2:
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(i) (Noether) 12�f ¼ ef þK2
f .

(ii) (Zeuthen-Segre) ef � 0. Moreover, ef ¼ 0 if and only if f is smooth.

(iii) (Arakelov) K2
f � 0. Moreover, if K2

f ¼ 0 then f is isotrivial.
(iv) �f � 0. Moreover, �f ¼ 0 if and only if f is locally trivial.
(v) 0 � qf � g. When b � 1 qf ¼ 0 if and only if f is the Albanese map of S.

On the other hand, qf ¼ g if and only if S ¼ B� F (cf. [10]).

We say that f is a non-Albanese fibration if qf > 0.

When f is not locally trivial, Xiao (cf. [30]) defines the slope of f as

sðfÞ ¼
K2
f

�f
:

It follows immediately from Noether’s equality that 0 � sðfÞ � 12.

We are mostly concerned with a lower bound of the slope. The main known

result in this direction is:

If g � 2 and f is not locally trivial, then sðfÞ � 4� 4
g,

which is known as the slope inequality. It was first proven by Horikawa

and Persson for hyperelliptic fibrations. Xiao gives a proof for general fibrations

(cf. [30]) and, independently, Cornalba and Harris prove it for semistable

fibrations (i.e., for fibrations where all the fibres are semistable curves in the sense

of Deligne and Mumford). Later on, in [26] it has been proved a generalization

of their method which can be applied to any fibration.

The slope of a fibration turns out to be sensible to a lot of geometric

properties, both of the fibres of f and of S (see [2] for a complete reference).

We like to pay attention to the influence of the relative irregularity of the the

fibration, qf . In view of our argument, also the Clifford index of f appears closely

related to this problem. In [16], there is a very interesting attempt to exhibit

the lower bound of the slope as an increasing function of the Clifford index.

This seems very clear for hyperelliptic or trigonal fibrations (see also [17], [24]),

and for general Clifford index, but in the intermediate cases, generality conditions

are necessary ([6]).

In the case of the relative irregularity qf , it seems again that the lower bound

of the slope should be an increasing function of qf . A crucial point where the

relative irregularity qf appears in a fibration is given by the so called Fujita

decomposition:

f�!f ¼ A � O
�qf
B
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which also produces a decomposition of the relative Jacobian fibration associated

to f . In particular, notice that a general fibre of a non-Albanese fibration has

non simple Jacobian.

The first result which manifests the influence of qf on the slope is due to

Xiao ([30]): sðfÞ � 4 whenever qf > 0 and equality holds only if qf ¼ 1. Explicit

lower bounds depending on qf are given in [19] and in [8], but they are rather

complicated and seem far to be sharp. However, from these results it seems

clear that there should be a lower bound for the slope which is an increasing

function of the relative irregularity.

We conjecture the following simple behavior for the bound.

CONJECTURE 1.1. Let f : S �! B be a fibration of genus g, with relative

irregularity qf < g� 1. Then

sðfÞ � 4
g� 1

g� qf
:

This bound, if true, is sharp (Example 4.1). Apart from the aforementioned

result of Xiao, some other evidences for this conjecture are the following.

. It is true when PðO�qf
B Þ does not meet the general fibre and the projection

from it induces a birational and linearly stable map (Remark 3.5).

. It is true when PðO�qf
B Þ does not meet the general fibre and A is a

semistable sheaf on B (Remark 3.3).

. There is an analogous canonical decomposition of f�!f in case the fibration

is a double cover fibration. In that situation, the corresponding conjectured

bound holds (see Example 4.1 and [12]).

. In a semistable fibration with s singular fibres, Vojta proves the following

inequality

K2
f � ð2g� 2Þð2b� 2þ sÞ

which combined with slope inequality gives

�f �
g

2
ð2b� 2þ sÞ:

However, a sharper bound of this type holds (cf. [3] and [29]), namely

�f �
q � qf

2
ð2b� 2þ sÞ
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which is exactly the bound we would obtain using our conjectured bound

instead of slope inequality in Vojta’s formula.

To our knowledge, the only known counterexamples to the bound above

belong to the extremal case qf ¼ g� 1 (cf. [22] and Remark 4.6).

Our approach is the following. Consider any vector subbundle F � f�!f .

The inclusion induces a linear system on F which is just the projection

Pðf�!fÞ �! PðFÞ

restricted to the canonical embedding of F (assume it is non hyperelliptic).

Information about the degree and rank of this linear system is the main ingredient

for applying Xiao’s method. In some cases this information allows to conclude

that the projection is linearly stable; roughly speaking, this means that any linear

subsystem can only increase the ratio between the degree and the rank (see

section 2 for a more precise definition). In the case of curves linear stability

implies Hilbert stability and so we can also apply Cornalba-Harris method to

study a lower bound of the slope sðfÞ.
With this purpose, we start in section 2 studying when a projection of a

canonical curve is linearly stable. Our main result in this direction is

THEOREM 1.2. Let C � Pg�1 be a canonical non-hyperelliptic curve. Let

� � Pg�1 be a proper ðs� 1Þ-space. Let k be any positive integer smaller or equal

to min ½s=2	; ½f CliffðCÞ=2	g. Then there is a non-empty open set of ðk� 1Þ-spaces
contained in � that induce linearly stable projections.

In section 3 we use this information to study a lower bound of the slope of

non-Albanese fibrations. We obtain

THEOREM 1.3. Let f : X ! B be a fibred surface. Let m :¼
minfCliffðfÞ; qfg. Then the slope of f satisfies the inequality

sðfÞ � 4
g� 1

g� ½m=2	
:

Although the main ingredient for the theorem is the result of linear stability

of section 2, we give two different proofs of this result, one by applying Xiao’s

method and another one using the one of Cornalba-Harris. We present this fact as

another instance that, at least in the case of surfaces, both methods, of different

nature, produce the same results. We believe that this parallelism (which does not

clearly hold for higher dimensions) merits further investigation.
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The two invariants involved in our main result, the relative irregularity and

the Clifford index, are of very different nature. Theorem 1.3 gives a strong

inequality for big values of both these invariants. It is therefore important to

verify that this two quantities are independent, and in particular that they can

grow simultaneously. In section 4 we provide examples of fibred surfaces with

both qf and CliffðfÞ large, but also of surfaces with large qf and small CliffðfÞ, and
vice versa.

ACKNOWLEDGEMENTS. We thank Maurizio Cornalba, who gave us un-

countably helpful suggestions. We would also like to thank Gian Pietro Pirola, for

many useful discussions, and Andreas Leopold Knutsen for his kind help with the

examples of the last section.

2. Linear stability of projections of a canonical curve.

In this section we prove, under suitable assumptions, the linear stability of

general projections of canonical curves. This is the key property that allows us to

apply both Xiao’s and Cornalba-Harris method in the second part of the paper.

The notion of linear stability was first defined by Mumford in [20] for

embeddings in projective spaces. The following is a natural generalization for

curves with any map to projective spaces. For a more general treatment, see [26].

Let C be a smooth curve, together with a non-degenerate map in a projective

space  : C ! Pr. Consider the base point free linear series A associated to the

morphism e  obtained eliminating the base points of  . If d is the degree of A and r

is its dimension (i.e. A is a grd), we define the reduced degree of the pair ðC; Þ as

red.degðC; Þ : ¼
d

r

(we will also use the notation red.degðC;A Þ, or red.degðC; V Þ, where V �
H0ðC; �OPrð1ÞÞ is the linear system such that A ¼ PðV Þ).

DEFINITION 2.1. With the same notations as above, we say that  : C ! Pr

is linearly semistable (resp. stable) if for any projection � on a positive

dimensional projective space,

red.degðC; � 
  Þ � red.degðC; Þ

(resp. red.degðC; � 
  Þ > red.degðC; Þ).

In other words, we are asking that for any linear series A 0 (of degree d0 and
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dimension r0) contained in the linear series associated to  the inequality d0=r0 �
d=r has to be satisfied.

REMARK 2.2. It is easy to see that when  is induced from a line bundle, it

is sufficient to check the inequality for any complete linear series contained in the

one associated to  . The classical results on divisors on curves, such as Clifford’s

Theorem and its generalizations ([10], [23]) and the Riemann-Roch Theorem,

imply quite easily the following results (cf. [1] and [25]).

(1) If C is a non-hyperelliptic curve, the canonical embedding of C in Pg�1 is

linearly stable.

(2) If C is hyperelliptic, the canonical morphism is linearly semistable, but

not stable.

(3) If C is a smooth curve of genus g � 1 and L is a line bundle on C of degree

d > 2g, the embedding induced by L is linearly stable.

We are interested in the linear stability of projections from the canonical

image of a curve.

EXAMPLE 2.3. If C is a trigonal curve, the projection from a point outside

the canonical image can be linearly unstable. Indeed, consider any effective

divisor P1 þ P2 þ P3 belonging to the g13 on C (the Pi’s need not be distinct). By

the geometric Riemann-Roch Theorem these points span a line ‘ � Pg�1. Let P be

a point of ‘ disjoint from C. It can be easily checked that the projection � from P

is a birational morphism. The image of �, C, has a triple point R. If we consider

the projection  from R, we have, for g � 5

red.degðC; Þ ¼
2g� 5

g� 3
<

2g� 2

g� 2
¼ red.degðC; �Þ:

From now on, C is a non-hyperelliptic curve embedded in Pg�1 by its

canonical system.

Let p� be the projection from a ðk� 1Þ-plane � disjoint from C. We search for

conditions for p� to be linearly stable.

Call V ¼ Annð�Þ � H0ð!CÞ the linear system associated to p�, and V ¼ jV j
the associated linear series. Let W � V be any proper subsystem. We call W ¼
jW j the linear series, and W the base point free linear series obtained from W by

eliminating the base points.

If dimW ¼ g� k� �, and degW ¼ 2g� 2� d, thenW is not destabilising for

V if and only if
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� � d
g� k� 1

2g� 2
:

Let D be the effective divisor of base points of W . Roughly speaking, the

inequality above implies that D should impose ‘‘enough’’ conditions on V itself.

Indeed, a sufficient condition for W not to be destabilising is

dimV ð�DÞ � dimV � d
g� k� 1

2g� 2
; ð2:1Þ

where, as usual, V ð�DÞ ¼ V \H0ð!Cð�DÞÞ. The geometric meaning of

this condition is that the ðk� 1Þ-plane � intersect the ðdþ h0ðDÞÞ-plane spanned

by D in a plane of dimension smaller or equal to g� h0ð!Cð�DÞÞ �
dðg� k� 1Þ=ð2g� 2Þ � 1.

REMARK 2.4. Using the stronger versions of Clifford Theorem proved

in [10] and [23], it can be shown that the projection of a canonical non-trigonal

curve from any point not contained in it is linearly stable. Moreover, one can show

that the projection of a trigonal canonical curve from a point not contained in a

trisecant line is linearly stable (cf. [25]). In what follows, we generalize these

results for projections from positive dimensional subspaces.

Given a line bundle L over a smooth curve C, its Clifford index is

CliffðLÞ ¼ degL� 2ðh0ðLÞ � 1Þ. If D is a divisor on C, CliffðDÞ :¼ CliffðOCðDÞÞ.

DEFINITION 2.5. The Clifford index of a curve C of genus g � 4 is the

integer:

CliffðCÞ ¼ minfCliffðLÞ j L 2 PicðCÞ; h0ðLÞ � 2; h1ðLÞ � 2g:

When g ¼ 2 we set CliffðCÞ ¼ 0; when g ¼ 3 we set CliffðCÞ ¼ 0 or 1 according to

whether C is hyperelliptic or not.

A line bundle with h0 and h1 greater or equal to 2 is said to contribute to

the Clifford index. Brill-Noether theory shows that CliffðCÞ � ðg� 1Þ=2½ 	, and

that equality holds if C is general in moduli. Clifford’s Theorem says that the

curves with Clifford index 0 are exactly the hyperelliptic ones. It is easy to

prove that the curves with Clifford index 1 are the trigonal ones and the smooth

plane quintics. In general, the Clifford index and the gonality of a curve C are

related by the following (cf. [13])
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gonðCÞ � 3 � CliffðCÞ � gonðCÞ � 2:

REMARK 2.6. As the Clifford index of a curve C measures how large is the

ratio between the degree and the dimension of special linear series on C, it seems

natural to guess that the canonical curves with higher Clifford index have linearly

stable projections from positive-dimensional subspaces of Pg�1. However, this

guess is false. The problem is that the Clifford index does not control the divisors

having H1 of dimension 1. Indeed, consider a non-hyperelliptic curve C with

arbitrary Clifford index, and let D ¼ P0 þ . . .Pk be an effective divisor consisting

of kþ 1 points that impose independent conditions on H0ð!CÞ. Consider a section

’ of H0ð!CÞ not vanishing at anyone of the Pi’s (a general section will do). The

linear subsystem V of H0ð!CÞ spanned by H0ð!Cð�DÞÞ and by ’ has no base

points by construction, and has dimension g� k. Hence, V induces the projection

of the canonical image of C from a subspace of projective dimension k� 1 disjoint

from it. As soon as k > 1 this projection is linearly unstable, because

red.degðV Þ ¼ 2g� 2

g� k� 1
> red.degð!Cð�DÞÞ ¼

2g� 3� k

g� k� 2
:

Note that h1ð!Cð�DÞÞ ¼ 1, and hence !Cð�DÞ is one of the divisors that does not
contribute to the Clifford index of C.

PROPOSITION 2.7. Let C � Pg�1 be a canonical curve, and k an integer such

that CliffðCÞ � 2k. Let � be a ðk� 1Þ-plane in Pg�1 disjoint from C such that

dimð� \ spanðDÞÞ < d
gþ k� 1

2g� 2
� 1 ð2:2Þ

for any special effective divisor D on C with degree d � 2k� 1 such that

dim spanðDÞ ¼ d� 1.

Then the projection with centre � is linearly stable.

PROOF. Let V � H0ðC; !CÞ be the linear system associated to the

projection with centre �. Let W � V be any linear subsystem with dimW � 2;

we need to check that red.degðC;WÞ � red.degðC; V Þ. Let LW be the line

bundle generated by the sections of W . LW ¼� !Cð�DÞ, with D ¼ AnnðW Þ \ C.
Observe that

� \ spanðDÞ ¼ PðAnnðV þH0ð!Cð�DÞÞÞ � PðH0ð!CÞ_Þ ¼ Pg�1:
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Applying Grassman formula to V þH0ð!Cð�DÞÞ, condition (2.1) translates as:

dimð� \ spanðDÞÞ �
k

2g� 2
dþ CliffðDÞ

2
� 1: ð2:3Þ

Note that spanðDÞ is a plane of dimension ðdþ cÞ=2� 1.

If D contributes to the Clifford index of C then inequality (2.3) is trivially

satisfied as the right side term is bigger than k� 1, which is the dimension of �.

If, on the other hand, D does not contribute to the Clifford index, necessarily

we have h0ðOCðDÞÞ ¼ 1, because h1ðOCðDÞÞ ¼ h0ð!Cð�DÞÞ � dimW � 2. By the

geometric version of the Riemann-Roch Theorem, the points of D are in general

position (i.e. dim spanðDÞ ¼ d� 1). Moreover, notice that in this case d ¼
CliffðDÞ.

If d > 2kðg� 1Þ=ðgþ k� 1Þ, then condition (2.3) is satisfied with strict

inequality, because the space spanðDÞ has dimension strictly smaller than the

number on the right hand side. Hence we can consider the case

d �
2kðg� 1Þ
gþ k� 1

:

In particular, d has to be smaller or equal to 2k� 1, and under this assumption,

inequality (2.3) is implied by (2.2). Hence, the proof is concluded. �

For the applications contained in the next section, we need to treat the

following situation. Suppose that we are given a linear subspace � of Pg�1 of

dimension dim� ¼ s� 1 (without any assumption on it). We want to find the

biggest possible integer k such that there exists a linear subspace � of dimension

k� 1 contained in � such that the projection �� with centre � is linearly stable.

Of course k will depend on the dimension of �.

THEOREM 2.8. Let C � Pg�1 be a canonical non-hyperelliptic curve. Let

� � Pg�1 be a proper ðs� 1Þ-space. Let k be any positive integer smaller or equal

to min ½s=2	; ½CliffðCÞ=2	f g. Then there is a non-empty open set of ðk� 1Þ-spaces
contained in � that induce linearly stable projections of degree 2g� 2.

PROOF. We try and find a linear space � � � satisfying the assumptions

of Proposition 2.7. We can replace conditions (2.2) with the following (more

restrictive) ones:
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dimð� \ spanðDÞÞ �
d

2
� 1 ð2:4Þ

for any special divisor D on C with degree d � 2k� 1 such that dim spanðDÞ ¼
d� 1.

Observe that condition (2.4) for d even is implied by the same condition for

dþ 1. Hence we can suppose d odd. We seek the existence of � in � that does not

contain any ððd� 1Þ=2Þ-space contained in the span of d points in general position.

Let us bound from the above the dimension of such ‘‘bad’’ spaces in the

grassmanian Grðk; gÞ of ðk� 1Þ-spaces in Pg�1.

. The dimension of the spaces spanðDÞ is d.

. The dimension of the ððd� 1Þ=2Þ-spaces contained in a fixed ðd� 1Þ-space
spanðDÞ is dimGrððdþ 1Þ=2; dÞ ¼ d2=4� 1=4.

. The dimension of the ðk� 1Þ-spaces contained in � that contain

a fixed ðd� 1Þ=2-space is dimGrðk� ðd� 1Þ=2� 1; s� ðd� 1Þ=2� 1Þ ¼
ðk� ðdþ 1Þ=2Þðs� kÞ.

Hence there exists a ðk� 1Þ-space in � satisfying conditions (2.4) as soon as the

grassmanian of ðk� 1Þ-planes contained in � has dimension strictly greater than

the dimension of the ‘‘bad’’ family, i.e.

kðs� kÞ ¼ dimGrðk; sÞ > dþ d2 � 1

4
þ k� dþ 1

2

� �
ðs� kÞ;

which becomes

s � kþ 1þ dþ 1

2
: ð2:5Þ

As d varies from 1 to 2k� 1, we see that the inequality obtained is s � 2kþ 1.

For d ¼ 2k� 1, we can slightly improve the bound arguing as follows.

Inequality (2.4) for d ¼ 2k� 1 means that � in � is not entirely contained in any

ð2k� 2Þ-space spanðDÞ. Let us make the following remark

If � is not the whole Pg�1, then for any r � s, there is at most a finite number

of r-secant ðr� 1Þ-spaces entirely contained in �.

Indeed, if there were a positive dimensional family of d secant ðr� 1Þ-spaces
contained in �, then the whole curve C would be contained in �, contradicting the

fact that the canonical morphism is non-degenerate.
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Therefore, the ðk� 1Þ-spaces contained in � that are also contained in a

spanðDÞ are of dimension at most

2k� 1þ dimGr k; 2k� 2ð Þ ¼ k2 � 1;

and the same argument as above gives the bound kðs� kÞ > k2 � 1, hence s � 2k.

Noting that for d � 2k� 3 conditions (2.5) are satisfied for s � 2k, we can

conclude the proof. �

REMARK 2.9. Note that the condition CliffðCÞ � 2k implies necessarily that

g has to be greater or equal to 4kþ 1. Hence, if we consider for instance � ¼ Pg�1,

the above result is empty for 4k � g. However, it implies for instance that if C

has general Clifford index (which is a general condition) then there exists a

linear space of dimension ðg� 1Þ=4½ 	 � 1 such that the projection from it is a

linearly stable map. It has to be remarked anyway that for k ‘‘big’’ with respect to

g, the sufficient conditions made in the proof of Theorem 2.8 to simplify the

original conditions for stability contained in Proposition 2.7, become consistently

restrictive.

3. Application to the slope of fibred surfaces.

Let f : S �! B be a non-Albanese fibration. We are interested in giving a

lower bound for the slope sðfÞ as an increasing function of qf . For this we will

apply relative projections to the relative canonical map S ffiffi ffiffi x

Pðf�!fÞ which

induce, on the general fibre F , a linearly stable projection. The bigger the center

of the projection is, the better is the bound we get. In the analysis of linear

stability of projections of canonical curves in the previous section, appears as a

fundamental ingredient the Clifford index. As we will see, the bound we get

involves naturally this two invariants: the Clifford index of the general fibre and

the relative irregularity qf .

Taking any linear subspace of the canonical embedding of a concrete fibre F

we are not sure we can extend it to a relative linear subspace over B (in order to

make a relative projection), except it is contained in the trivial part PðO�qf
B Þ of

the Fujita decomposition

f�!f ¼ A � O
�qf
B :

Moreover, such an election allows us to control the degree of the sheaves

involved, since degA ¼ deg f�!f .

We present here two different proofs. To the, yet classical, method of Xiao to
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study the slope of fibrations, has recently joined the generalized Cornalba-Harris

method. Although they are of different nature, the application of both seem to

give very similar results in several situations (cf. [25], [26]), at least in the case of

fibred surfaces ([7] gives a higher dimensional example). It is an intriguing

question whether both methods are in fact equivalent or not. Our aim is to show

how either method provides, in this case, exactly the same bound, and to present

this fact as an instance of this parallelism.

As we will see, Xiao and Cornalba-Harris start from a subsheaf of the

pushforward of a line bundle on the total space (in our, and most cases, f�!f);

from this, they give as an output an inequality involving divisor classes on the

base. However, while Xiao’s method needs almost no hypothesis, the one of

Cornalba-Harris requires a GIT stability condition on the maps induced by the

subsheaf on the general fibres. Nevertheless, as hopefully the computations made

here will show, the linear stability of the maps induced on the general fibres,

although not required by Xiao, is a fundamental ingredient for both the

approaches.

Applying our results on linear stability of projections, we are able to find a

direct factor E of f�!f which induces linearly stable projections on the general

fibres, and such that deg E ¼ �f .

Given a fibred surface f : S �! B, we define its Clifford index CliffðfÞ as the
maximum of the Clifford indices of the fibres (cf. [16]). As Cliff is a lower

semicontinuous locally constant function, CliffðfÞ is the Clifford index of the

general fibres.

PROPOSITION 3.1. Let f : S �! B be a fibred surface. If k ¼
minf½CliffðfÞ=2	; ½qf=2	g, there exists a decomposition

f�!f ¼ E � O�k
B

such that the fibre of E on general t 2 B is a linear system inducing a linearly stable

degree 2g� 2 morphism of the fibre f�1ðtÞ ¼ Ft.

PROOF. If f is an Albanese fibration, or if CliffðfÞ � 1, E is the whole sheaf

f�!f , and the statement is satisfied, because for a general fibre F , H0ðF; !F Þ is

base-point-free, and it induces a linearly stable embedding (Remark 2.2).

Otherwise, let us consider the Fujita decomposition

f�!f ¼ A � O
�qf
B :
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The sheaf A induces on a fibre Ft a projection of the canonical image from the

ðqf � 1Þ-plane �t ¼ PðAnnðA � kðtÞÞ (of course �t is canonically identified with

PðO�qf
B � kðtÞÞ).
A general fibre F is smooth and CliffðF Þ ¼ Clifff . Let us fix such a general

fibre, and drop the small t from the notations.

Let � be a k� 1-plane contained in � and let A0 � H0ð!F Þ be the linear

system associated with the projection from it. Note that, as O
�qf
B is trivial, we can

extend � to a trivial direct factor of f�!f and get a decomposition

f�!f ¼ E � O�k
B :

By Theorem 2.8, as conditions 2k � qf and CliffðF Þ � 2k are satisfied, on any

general fibre there exists a dense open set of ðk� 1Þ-plane contained in � inducing

linearly stable, base-point-free projections of degree 2g� 2. So we can choose one

� in our fixed fibre F such that the fibre of the corresponding E on general t enjoys

the same properties. �

We now come to the two proofs of Theorem 1.3.

Via Xiao’s method.

Xiao’s method is a well established way of studying slopes of fibrations

(cf. [30], [2], [5], [21], [17], [18]). We just sketch it and refer to [2] and to [30] for

details. Consider the Harder-Narashimann filtration of any subsheaf F of f�!f :

0 ¼: E 0 � E 1 � 
 
 
 � E n ¼ F

and let �1 > 
 
 
 > �n (�i :¼ �ðE i=E i�1Þ) be the associated slopes. Set ri ¼ rkE i.

We have

degF ¼
Xn
i¼1

rið�i � �iþ1Þ; ðwhere �nþ1 ¼ 0Þ

For technical reasons, it is necessary that all the sequence of slopes is

decreasing (including �nþ1 ¼ 0), so we need �n � 0. This is always achieved if F is

not only a subsheaf but also a direct summand of f�!f (which is a nef vector

bundle on B).

For each i, the composite of the natural sheaf homomorphisms
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f�E i ! f�f�!f ! !f

induces a rational map S ! PBðE iÞ. Up to a suitable sequence of blowing-ups

� : bSS �! S (which does not modify the general fibre F ), the above map becomes a

morphism for every i. Let Mi be the moving part of the pull-back of the

tautological line bundle Hi on PBðE iÞ.MijF is a base point free linear system on F

which induces a map into Pri�1 (a fibre of PBðE iÞ ! B), of degree di.

PROPOSITION 3.2. (cf. [30]) For any sequence of indices with 1 � i1 < 
 
 

< im � n we have

M2
n �

Xm
p¼1

ðdip þ dipþ1
Þð�ip � �ipþ1

Þ

where imþ1 ¼ nþ 1.

Then, we can proceed to give a proof of 1.3:

PROOF OF 1.3.

Following the notations of Proposition 3.1, we put F ¼ E ¼ A � O�ðqf�kÞ

and apply 3.2 for the whole set of indexes f1; 2; . . . ; ng:

M2
n �

Xn
i¼1

ðdi þ diþ1Þð�i � �iþ1Þ:

Since by construction the linear system MnjF is linearly stable and of degree

dn ¼ 2g� 2, then for all i ¼ 1; . . . ; n we have

di

ri � 1
�

dn

rn � 1
¼

2g� 2

qf � k� 1
¼: �:

Using that riþ1 � ri þ 1 and that degE ¼ deg f�!f ¼ �f we conclude

M2
n � 2��f � ��1:

On the other hand, Mn � ��Kf and both are nef, so we have

K2
f ¼ ð��KfÞ2 �M2

n � 2��f � ��1:
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Finally, defining now F ¼ f�!f and taking the set of indexes f1; ng we obtain

K2
f � ð2g� 2Þ�1

which combined with the previous inequality produces the desired result

K2
f � 4

g� 1

g� k
�f :

�

REMARK 3.3. In the particular case when A is semistable, we can take in

the previous proof F ¼ A . Then the same argument produce

K2
f � 2

d

g� qf
�f :

If, moreover, we know that PðO�qf
B Þ does not meet the general fibre F , then

d ¼ 2g� 2 and so

K2
f � 4

g� 1

g� qf
�f :

Via a Theorem of Cornalba and Harris.

The method of Cornalba-Harris is introduced in [11]. Let us summarize the

version for fibred surfaces1 following the generalization presented in [26].

THEOREM 3.4 (Cornalba-Harris). Let f : S ! B be a fibred surface. Let L

be a line bundle on S and F a coherent subsheaf of f�L of rank r such that for

general t 2 B the linear system

F � kðtÞ � H0ðFt; LjFtÞ

induces a linearly stable map. Let G h be a coherent subsheaf of f�L
�h that contains

the image of the morphism

SymhF �! f�L
�h;

1The original Cornalba-Harris Theorem requires the assumption of Hilbert instead of linear

stability. For curves, linear stability implies Hilbert stability as proved in [1] or in [25]. It is not known

whether the converse implication holds.
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and coincides with it at general t. If N ¼ rankG h is of the form AhþOð1Þ and

degG h of the form Bh2 þOðhÞ, the following inequality holds:

rB� A degF � 0: ð3:6Þ

Let us consider the particular case in which F ¼ f�L and G h ¼ f�L
�h. By the

Riemann-Roch Theorem

deg f�L
�h ¼ deg f!L

�h þ degR1f�L
�h ¼

h2

2
L2 �

h

2
LKf þ deg f�!f þ degR1f�L

�h:

Let d be the relative degree of L. For large enough h, By Riemann-Roch on

the general fibre, N ¼ dh� gþ 1, where g is the genus of the fibration. Suppose

that degR1f�L
�h ¼ Ch2 þOðhÞ; in this case the computation of the leading

coefficient of degGh gives:

rL2 þ r C � 2d deg f�L � 0: ð3:7Þ

PROOF OF THEOREM 1.3.

Let us use Proposition 3.1. If k ¼ 0 (Clifff � 1, or f is an Albanese

morphism), the statement of Theorem 1.3 is just the slope inequality.

Otherwise, observe that the sheaf E of Proposition 3.1 satisfies the

assumptions of Theorem 3.4. Consider the morphism of sheaves

SymhE �! f�!
�h
f ;

and call G h its image.

On general t, the morphism induced by E � kðtÞ has degree 2g� 2. Moreover,

we now prove that it is birational. Indeed, as a consequence of Castelnuovo’s

bound (cf. [1] Exercise B-7), either the map induced by E � kðtÞ is birational or it
factors through a double cover over a curve of genus at most k. This last case is

impossible, because it would imply that

CliffðfÞ ¼ CliffðFtÞ � gonFt � 2 � � � k;

contrary to the assumption. Hence,

rankG h ¼ h0ðF; ðj�OPg�k�1ð1ÞÞ�hÞ ¼ ð2g� 2ÞhþOð1Þ;
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where Ft is the image of Ft. Moreover,

degG h � deg f�!
�h
f

because f�!
�h
f is nef (cf. [28]). Hence, the coefficient of h2 in degG h is smaller than

K2
f=2, and inequality (3.6) implies

ðg� kÞ
K2
f

2
� ð2g� 2Þ�f � 0;

as claimed. �

REMARK 3.5. Suppose that, under suitable assumptions, the fibre of A

itself on general t 2 B was a base point free linear system of degree d which

induced a linear semistable morphism. Both the Cornalba-Harris Theorem and

the method of Xiao would give as a result the inequality

sðfÞ � 2
d

g� qf
;

which coincides with the bound of Conjecture 1.1 if d ¼ 2g� 2, that’s to say if

PðO�qf
B Þ is disjoint from the general fibre.

4. Examples.

EXAMPLE 4.1. This example is constructed in [4], sec 4.5 (see also [12,

Example 4.1]). Let � and B be smooth curves. Let � > 0 be the genus of �.

We consider B� �. Let p1 and p2 be the two projections, and H1, H2 their

general fibres. Consider a smooth divisor R 2 j2nH1 þ 2mH2j (by Bertini’s

Theorem such a divisor exists, at least for sufficiently large n and m). Let

� : X ! B� � be the double cover ramified over R. Call L the associated line

bundle such that L �2 ¼ OB��ðRÞ.
Consider the fibration f :¼ p1 
 � : X ! B; its general fibre is a double

cover of �, and its genus is g ¼ 2� þm� 1. A computation shows that its slope is

sðfÞ ¼ 4
2� þm� 2

� þm� 1
¼ 4

g� 1

g� �
:

The relative irregularity is exactly qf ¼ �. Indeed,
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q ¼ h1ðX;OXÞ ¼ h1ðB� �;OB��Þ þ h1ðB� �;L �1Þ ¼
¼ bþ � þ h1ðB;KBðnP1ÞÞ þ h1ð�; K�ðmP2ÞÞ ¼ bþ �:

Hence, notice that this fibrations have slope reaching the expected bound of

Conjecture 1.1, (regardless to the Clifford index). Quite interestingly, these

fibrations are also examples of slope minimal with respect to the bound for double

cover fibrations established in [12].

What about the Clifford index? In general, the gonality of the general fibre of

these fibrations is at most twice the gonality of the quotient �, and so it is smaller

or equal to � þ 3 if � is odd, and � þ 2 if � is even. Hence, the Clifford index of the

general fibre Xt is smaller or equal to � þ 1 for odd � and to � for even �. Under

suitable assumptions, the Clifford index is ‘‘almost’’ �, as shown by the following

standard argument.

LEMMA 4.2. Suppose that � has general gonality gonð�Þ ¼ � ¼ ½ð� þ 3Þ=2	,
and suppose that � is a prime number. If we choose m � �2 þ � þ 4 in the above

construction, then CliffðXtÞ � � for odd �, and CliffðXtÞ � � � 1 for even �.

PROOF. Let � be the gonality of Xt. We want to prove that � ¼ 2�. By

definition of gonality, � � 2�. Let us suppose then that � is strictly smaller than

2�. Consider the following diagram

Xt

σ1 ↙ ↓ σ ↘ σ2

P1 β1←− Xt
β2−→ P1

π1 ↖ ∩ ↗ π2

P1× P1

where 	1 is a degree � morphism, and 	2 the composition of the quotient

morphism  : Xt ! � with a morphism � ! P1 of degree �; the �i are the

projections, 	 ¼ 	1 � 	2 and Xt ¼ 	ðXtÞ. Let d be the degree of 	; clearly d j 2�
and d j �, hence d ¼ 1; 2; � are the only possibilities. By the adjunction formula,

2paðXtÞ � 2 ¼ ðKP1�P1Xt þX
2

t Þ ¼ 2
ð��Þ
d2

�
�

d
� 2�

d
þ 1:

If d ¼ 1, then g � paðXtÞ � ð2�� 1Þð� � 1Þ � ð� þ 2Þð� þ 1Þ. Remembering that

g ¼ 2� þm� 1, we deduce that m has to be smaller or equal to �2 þ � þ 3,

contrary to the assumption.
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If d ¼ 2, then observe that by assumption g > �ð� þ 1Þ þ 1 � 4ðpaðXtÞÞ þ 1,

then it follows from Lemma 1.7 of [12], that Xt is isomorphic to �. But then �1
would be a morphism from � to P1 of degree strictly smaller than �, which is a

contradiction.

It remains to deal with the case d ¼ �. In this case, It has to be Xt ¼ P1, and

	 ¼ 	1. Then, one can consider the composite morphism Xt ���!
	� 

P1 � �, which

has degree either 1 or � (remember that � is prime). The case of degree 1 would

imply (again by adjunction) that g � ð� þ 3Þð3� � 1Þ=4þ 1, so it can be excluded.

The case of degree � would imply that � ¼� P1, a contradiction, because we

assumed that � ¼ gð�Þ > 0. �

EXAMPLE 4.3. The following construction leads in particular to examples of

fibrations with qf ¼ 2 and Clifford index big. Let S be an abelian surface, and let

C be a smooth curve of genus g � 3 contained in it. By the adjunction formula,

C2 ¼ ðCKS þ C2Þ ¼ 2g� 2. By Riemann-Roch

h0ðS;OSðCÞÞ ¼
ðCKS þ C2Þ

2
þ �S ¼ g� 1 � 2:

Hence we can consider an algebraic pencil (i.e. a linear series of dimension 1) in

jCj. Let bSS be the blow up of S in the 2g� 2 base points. The pencil induces a

fibration f : bSS �! P1, which clearly has relative irregularity qf ¼ qðSÞ ¼ 2, and

whose Clifford index is the Clifford index of C.

In the following we shall prove that there exist abelian surfaces containing

curves of arbitrary genus and Clifford index big. We will use an argument

suggested to us by A. Knutsen.

Let us first recall the following definitions and results.

A line bundle L on a variety X is said to be k-very ample if for any 0-

dimensional scheme Z of length kþ 1, the restriction map

H0ðX;LÞ �! H0ðZ;OZðLÞÞ

is surjective; hence, in particular, a line bundle is 0-very ample iff it is globally

generated, 1-very ample iff it is very ample, 2-very ample iff it separates tangent

vectors, and so on. If C is a smooth curve then the gonality of C is kþ 1 if and only

if !C is ðk� 1Þ-very ample but not k-ample (this is a straightforward consequence

of Riemann-Roch).

If C is a smooth curve contained in a smooth projective surface S, by

adjunction
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!C ’ ð!S � OSðCÞÞ � OC:

Hence, we derive immediately that if gonðCÞ � kþ 1, then !S � OSðCÞ is not k-

very ample. We will use the following result.

THEOREM 4.4 (Bauer-Szemberg, [9]). Let S be an abelian surface with

Picard number 1, and L a line bundle on S of type ð1; dÞ, d � 1. Then L is k-very

ample if and only if d � 2kþ 3.

We are now ready to prove the following

LEMMA 4.5. Let S be an abelian surface with Picard number 1 and let L be

an ample line bundle of type ð1; dÞ, with d � 1. Then if C is a smooth curve of genus

g contained in the linear system associated to L, gonðCÞ � ðd=2Þ ¼ ððgþ 1Þ=2Þ.

PROOF. Let kþ 1 be the gonality of C. Remember that gðCÞ ¼ d� 1.

Suppose by contradiction that kþ 1 < d=2. This implies that d � 2kþ 3, and by

Theorem 4.4, OSðCÞ ’ !S � OSðCÞ is k-very ample. From the above remarks it

follows that gonðCÞ > kþ 1, which is the desired contradiction. �

It is worth noticing that the construction above can be made in much more

generality using the results of [27].

Hence, we can construct fibrations from an Abelian surface to P1 with

‘‘almost general’’ Clifford index.

REMARK 4.6. Note that these fibrations all have slope 6. Indeed, given any

such fibration f : bSS �! P1,

Kf ¼ KbS � f�KP1 �
X2g�2

i¼1

Ei þ 2C;

where Ei are the exceptional divisors of the blow up bSS ! S. Hence,

K2
f ¼

X2g�2

i¼1

Ei þ 2C 

X2g�2

i¼1

Ei þ 2C

 !

¼ 4
X2g�2

i¼1

E1 
 C
 !

þ
X2g�2

i¼1

Ei 

X2g�2

i¼1

Ei

 !
¼ 6ðg� 1Þ;
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and

deg f�!f ¼ �bS � �P1�F ¼ g� 1:

This slope is coherent, and indeed bigger than, the bound given by Theorem 1.3,

which is 4.

It is also coherent with the bound of Conjecture 1.1, for any genus except

for g ¼ 3, when it gives a counterexample for the case qf ¼ g� 1.

REMARK 4.7. One could make an analogous construction starting from a

K3 surface. By a result of Knutsen ([15]) there are K3 surfaces containing curves

of any possible gonality. Hence this construction leads to fibrations with qf ¼ 0

and CliffðfÞ arbitrary. In this case the slope is 6ðg� 1Þ=ðgþ 1Þ. Note that this

slope reaches exactly the bound for fibrations with general Clifford index and odd

genus found by Konno (cf. [16], [2]) and by Eisenbud-Harris for semistable

fibrations([14]).
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