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Abstract. We give a method of determining the centralizer of an elliptic element

in a real semisimple Lie algebra g, in relation with the maximal compact subalgebra of g

and the compact dual of g. Moreover, we determine a special central element (called the

H-element) of the isotropy subalgebra of each simple irreducible pseudo-Hermitian

symmetric Lie algebra.

1. Introduction.

Let g be a real semisimple Lie algebra. An element X 2 g is called semisimple, if the

operator adgX is semisimple. A semisimple element X is called elliptic, if the eigenvalues

of adgX are all purely imaginary. Let G be a connected Lie group with LieG ¼ g. The

adjoint orbit AdðGÞX through a semisimple element (resp. an elliptic element) X is

called a semisimple orbit (resp. an elliptic orbit). AdðGÞX is expressed as the coset space

G=CGðXÞ, where CGðXÞ is the centralizer of X in G. Note that elliptic orbits of

semisimple Lie groups can be characterized geometrically. Actually Dorfmeister-Guan

[5] and Kobayashi-Ono [11], Kobayashi [10] have shown that a semisimple orbit

G=CGðXÞ is elliptic if and only if it admits a G-invariant pseudo-Kähler metric.

Our main concern is how to determine the isotropy subgroup CGðXÞ for an

arbitrary elliptic element X. We consider this problem in the Lie algebra level. So our

problem is to determine the centralizer cgðXÞ of an arbitrary elliptic element X 2 g. The

first aim in this paper is to settle the problem. Let k be a maximal compact subalgebra of

g containing X, and let ðgu; kÞ be the compact dual of orthogonal symmetric Lie algebra

ðg; kÞ. Our main result is the structure theorem for cgðXÞ (cf. Theorem 3.4), which

enables us to determine it in terms of the centralizer ckðXÞ in k and the semisimple part

and the center of the centralizer cguðXÞ in gu. In Section 5, applying this structure

theorem to slð4;RÞ, we actually determine, up to inner automorphism, the centralizers

of all possible elliptic elements in slð4;RÞ (cf. Proposition 5.1).

In 1957, Berger [1] has classified simple (affine) symmetric spaces. In [1], the notion

of pseudo-Hermitian symmetric space was introduced. A symmetric space G=R is called

pseudo-Hermitian, if it has an invariant complex structure J and an invariant pseudo-
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Hermitian metric (with respect to J). In 1971, Shapiro [14] has shown that for a pseudo-

Hermitian symmetric space G=R, there exists an elliptic element T 2 g ¼ LieG which

satisfies two conditions (i) R is the centralizer CGðT Þ of T in G, and (ii) adgT induces the

complex structure J. Following Satake’s book [13], we prefer to call such an element T

the ‘‘H-element’’ in pseudo-Hermitian symmetric Lie algebra ðg; rÞ, where r ¼ LieR,

although in [13] the terminology ‘‘H-element’’ is used only for a Hermitian symmetric

Lie algebra.

Our second problem is to determine the H-elements in all simple irreducible

pseudo-Hermitian symmetric Lie algebras. In the course of the realization of pseudo-

Hermitian symmetric spaces of type K� as Siegel domains, Kaneyuki [7] solved the

problem for that specified type of pseudo-Hermitian symmetric spaces. In Section 6, we

completely settle this problem for all the twenty-nine simple irreducible pseudo-

Hermitian symmetric Lie algebras (cf. Theorem 6.16). We describe the H-elements in

terms of the dual basis for the simple roots. Our method depends on Theorem 3.4, and is

different from Kaneyuki’s.

In Section 2, we will collect the notation utilized through this paper. In Section 4,

we will define involutive outer-automorphisms of compact simple Lie algebras precisely

(cf. Lemmas 4.3 and 4.4) and make reference to the result of Murakami [12], which are

used in Sections 5 and 6. This paper is organized as follows:

Section 1 Introduction.

Section 2 Definitions and notation.

Section 3 The structure of cgðT Þ.
Section 4 Elementary facts about root theory.

Section 5 Determination of the centralizer cslð4;RÞðT Þ.
Section 6 The H-elements in pseudo-Hermitian symmetric Lie algebras.
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2. Definitions and notation.

DEFINITION 2.1. Let g be a real semisimple Lie algebra, let k be a maximal

compact subalgebra of g, and let

g ¼ k� ip ð� g
CÞ ðF1Þ

denote the Cartan decomposition. Then, a compact real form gu of gC can be given by

gu ¼ k� p ð� g
CÞ; ðF2Þ

and there exists an involutive automorphism � of gu such that
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k ¼ fK 2 gu j �ðKÞ ¼ Kg;
p ¼ fP 2 gu j �ðP Þ ¼ �Pg:

(
ðF3Þ

In these settings, we say that compact semisimple Lie algebra gu is related with ðg; kÞ as
in the formulae (F1) and (F2), and say that compact symmetric pair ðgu; �Þ is related

with ðg; kÞ as in the formulae (F1), (F2) and (F3).

DEFINITION 2.2 (Kobayashi [9] or [10]). Let g be a real semisimple Lie algebra.

An element S 2 g is called semisimple if adgS is a semisimple endomorphism of g. A

semisimple element T 2 g is said to be elliptic if any eigenvalue of adgT is purely

imaginary. Let G be a connected Lie group with Lie algebra g. The adjoint orbit AdðGÞS
through semisimple element S 2 g is called a semisimple orbit. The adjoint orbit

AdðGÞT through elliptic element T 2 g is said to be an elliptic orbit.

NOTATION 2.3. Throughout this paper, we utilize the following notation:

(n1) l
C : the complexification of real Lie algebra l.

(n2) Bl: the Killing form of Lie algebra l.

(n3) adl: the adjoint representation of Lie algebra l.

(n4) clðXÞ: the centralizer of X in Lie algebra l, for X 2 l.

(n5) lss: the semisimple part of reductive Lie algebra l, namely lss ¼ ½l; l�.
(n6) lz: the center part of reductive Lie algebra l.

(n7) rk l: the rank of real reductive Lie algebra l.

(n8) m� n: the direct sum of vector spaces m and n.

(n9) f jA: the restriction of mapping f to set A.

(n10) i: the imaginary unit, namely i ¼
ffiffiffiffiffiffiffi
�1
p

.

If �gg is a complex semisimple Lie algebra and if �hh is a Cartan subalgebra of �gg, then we

specially utilize the following notation:

(n11) 4ð�gg; �hhÞ: the set of non-zero roots of �gg with respect to �hh.

(n12) 4þð�gg; �hhÞ: the set of positive roots in4ð�gg; �hhÞ (with respect to some chosen order).

(n13) �4ð�gg;�hhÞ: the set of simple roots in 4ð�gg; �hhÞ (with respect to some chosen order).

Let g be a real semisimple Lie algebra with Cartan decomposition (F1) g ¼ k� ip. Then,
we utilize the following notation:

(n14) tn: an n-dimensional abelian subalgebra of g which is contained in k.

(n15) Rn: an n-dimensional abelian subalgebra of g which is contained in ip.

3. The structure of cgðT Þ.

Let g be a real semisimple Lie algebra, let k be a maximal compact subalgebra

of g, and let ðgu; �Þ be the compact symmetric pair related with ðg; kÞ as in the formulae

(F1) g ¼ k� ip, (F2) gu ¼ k� p (� gC), and (F3) k ¼ fK 2 gu j �ðKÞ ¼ Kg, p ¼
fP 2 gu j �ðP Þ ¼ �Pg. In Subsection 3.1, we verify that all elements of k are elliptic
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ones of g. In Subsection 3.2, we investigate relation between cgðT Þ and cguðT Þ, for

T 2 k. Finally in Subsection 3.3, we prove Theorem 3.4, and assert two Corollaries 3.6

and 3.8.

3.1.

Let ~�� be a Cartan involution of g ¼ k� ip defined by K þ iP 7! K � iP for K 2 k

and P 2 p. Define a positive-definite inner product h � ; � i on g by hX; Y i :¼
�BgðX; ~��ðY ÞÞ for X; Y 2 g. Then, it is obvious that h½K;X�; Y i ¼ �hX; ½K;Y �i for any

K 2 k and X; Y 2 g. Accordingly, each K 2 k is an elliptic element of g.

REMARK 3.1. For any elliptic element T 2 g, there exists a maximal compact

subalgebra of g such that T belongs to it. Therefore, there exists an inner automorphism

 of g which maps T into k (cf. Helgason [6, Theorem 7.2, p. 183]). Since cgðT Þ is
isomorphic to cgð ðT ÞÞ via  , one may assume that T belongs to a fixed, maximal

compact subalgebra k of g from the beginning, as far as clarifying cgðT Þ up to inner

automorphism of g.

3.2. Relation between cgðT Þ and cguðT Þ.
For T 2 k ¼ gu \ g, we study cguðT Þ first, and investigate relation between cgðT Þ and

cguðT Þ afterward.

3.2.1. Take any element T 2 k. Since adguT is semisimple, cguðT Þ is a reductive Lie

algebra. Thus, it can be decomposed as follows
�
recall Notation 2.3 (n5) and (n6) for

cguðT Þss and cguðT Þz
�
:

cguðT Þ ¼ cguðT Þss � cguðT Þz:

It follows from �ðT Þ ¼ T that �
�
cguðT Þ

�
� cguðT Þ. Therefore, we obtain �

�
cguðT Þss

�
�

cguðT Þss and �
�
cguðT Þz

�
� cguðT Þz because cguðT Þss ¼

�
cguðT Þ; cguðT Þ

�
. This provides

cguðT Þ ¼ ðcguðT Þss \ kÞ � ðcguðT Þss \ pÞ � ðcguðT Þz \ kÞ � ðcguðT Þz \ pÞ: ð3:2:1Þ

Here, we remark that

ckðT Þ ¼ ckðT Þss � ckðT Þz ¼ cguðT Þ \ k ¼ ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ; ð3:2:2Þ
cguðT Þ \ p ¼ ðcguðT Þss \ pÞ � ðcguðT Þz \ pÞ; ð3:2:3Þ

and that

the Killing form of cguðT Þss ¼ ðcguðT Þss \ kÞ � ðcguðT Þss \ pÞ
is negative-definite. ð3:2:4Þ

3.2.2. Now, let us investigate relation between cgðT Þ and cguðT Þ.
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LEMMA 3.2. With the assumptions above; for T 2 k, the following eight items hold:

(i) cgðT Þ ¼ ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ � iðcguðT Þss \ pÞ � iðcguðT Þz \ pÞ.
(ii) cgðT Þ is a reductive Lie algebra. Moreover, cgðT Þss ¼ ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ

and cgðT Þz ¼ ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ.
(iii) If cguðT Þss \ p 6¼ f0g, then

�
cgðT Þss; cguðT Þss \ k

�
is the non-compact dual, orthog-

onal symmetric Lie algebra of
�
cguðT Þss; cguðT Þss \ k

�
.

(iv) ckðT Þ is a maximal compact subalgebra of reductive Lie algebra cgðT Þ.
(v) cguðT Þz \ k � ckðT Þz.
(vi) cguðT Þ is the compact dual of reductive Lie algebra cgðT Þ.
(vii) cguðT Þss \ k is the orthogonal complement of cguðT Þz \ k in ckðT Þ (with respect to

Bgu
).

(viii) If cguðT Þss \ p 6¼ f0g, then
�
cgðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
is the non-compact

dual of orthogonal symmetric Lie algebra
�
cguðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
.

Here, ðcguðT Þz \ kÞ?ckðT Þz denotes the orthogonal complement of cguðT Þz \ k in ckðT Þz
with respect to Bgu

, namely

ðcguðT Þz \ kÞ?ckðT Þz :¼
�
C 2 ckðT Þz

�� Bgu
ðC; Y Þ ¼ 0 for all Y 2 cguðT Þz \ k

�
:

PROOF.

(i) For any X 2 cgðT Þ, one can describe it as X ¼ K þ iP (K 2 k; P 2 p)

because X 2 g ¼ k� ip. Then 0 ¼ ½X;T � ¼ ½K;T � þ i½P; T �. Since g ¼ k� ip is

Cartan decomposition, and since T 2 k, we obtain 0 ¼ ½K;T � ¼ ½P; T �. Accordingly,

it follows that K 2 cguðT Þ \ k and P 2 cguðT Þ \ p. This, together with (3.2.2) and

(3.2.3), concludes that X ¼ K þ iP 2 ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ � iðcguðT Þss \ pÞ �
iðcguðT Þz \ pÞ. Consequently, we have got cgðT Þ � ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ �
iðcguðT Þss \ pÞ � iðcguðT Þz \ pÞ. The converse inclusion is immediate from direct compu-

tations. For the reasons, we have shown the first item.

(ii) It follows from (i) and (3.2.1) that ðcgðT ÞÞC ¼ ðcguðT ÞÞ
C ; and hence cgðT Þ is

reductive. Since (i), and since
�
cguðT Þss

�C ¼ �
ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ

�C
and�

cguðT Þz
�C ¼ �

ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ
�C

, we perceive that ðcguðT Þss \ kÞ �
iðcguðT Þss \ pÞ is the semisimple part of cgðT Þ, and that ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ is
the center part of cgðT Þ—that is, cgðT Þss ¼ ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ and cgðT Þz ¼
ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ.

(iii) From (3.2.4) and
�
cguðT Þss

�C ¼ �
ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ

�C
, it is natural

that the Killing form of cgðT Þss ¼ ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ is negative-definite on

ðcguðT Þss \ kÞ � ðcguðT Þss \ kÞ, and positive-definite on iðcguðT Þss \ pÞ � iðcguðT Þss \ pÞ.
Therefore, we see that cgðT Þss ¼ ðcguðT Þss \ kÞ � iðcguðT Þss \ pÞ is the Cartan decompo-

sition by involution ~��jcgðT Þss , where ~�� was defined in Subsection 3.1. Hence
�
cgðT Þss;

cguðT Þss \ k
�
is an orthogonal symmetric Lie algebra when cguðT Þss \ p 6¼ f0g. Further-

more, it is the non-compact dual of
�
cguðT Þss; cguðT Þss \ k

�
, because cgðT Þss ¼ ðcguðT Þss \

kÞ � iðcguðT Þss \ pÞ and cguðT Þss ¼ ðcguðT Þss \ kÞ � ðcguðT Þss \ pÞ.
(iv) Since (3.2.2) and (i), we confirm that ckðT Þ ¼ ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ ¼

cgðT Þ \ k; and so ckðT Þ is a maximal compact subalgebra of cgðT Þ.
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(v) It is obvious from (3.2.2) that ckðT Þ ¼ ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ � cguðT Þ, so
that we obtain cguðT Þz \ k � ckðT Þ and

�
cguðT Þz \ k; ckðT Þ

�
�

�
cguðT Þz; cguðT Þ

�
¼ f0g.

Therefore, the item (v) holds.

(vi) The sixth item comes from (i) and (3.2.1).

(vii) It is natural from cguðT Þss ¼
�
cguðT Þ; cguðT Þ

�
that Bgu

ðcguðT Þss; cguðT ÞzÞ ¼ f0g, so
that ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ is an orthogonal decomposition with respect to Bgu

.

Therefore we conclude that item (vii) holds, because of (3.2.2) ckðT Þ ¼ ðcguðT Þss \ kÞ �
ðcguðT Þz \ kÞ and Bgu

being negative-definite.

(viii) By virtue of (iii) we can get the last item, if cguðT Þss \ k ¼ ckðT Þss �
ðcguðT Þz \ kÞ?ckðT Þz . Thus, let us prove that cguðT Þss \ k ¼ ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz . For

any X 2 cguðT Þss \ k, it can be written as X ¼ S þ C (S 2 ckðT Þss; C 2 ckðT Þz) because it

follows from (3.2.2) that cguðT Þss \ k � ckðT Þss � ckðT Þz. Since Bgu
ðcguðT Þss; cguðT ÞzÞ ¼ f0g,

we comprehend Bgu
ðX; cguðT Þz \ kÞ ¼ f0g; moreover, the item (v) and

Bgu
ðckðT Þss; ckðT ÞzÞ ¼ f0g mean that Bgu

ðS; cguðT Þz \ kÞ ¼ f0g. Hence, Bgu
ðC; cguðT Þz \

kÞ ¼ Bgu
ðX � S; cguðT Þz \ kÞ ¼ f0g; and so C 2 ðcguðT Þz \ kÞ?ckðT Þz . Accordingly X ¼ S þ

C 2 ckðT Þss � ðcguðT Þz \ kÞ?
ckðT Þz . Therefore, one perceives that cguðT Þss \ k � ckðT Þss �

ðcguðT Þz \ kÞ?ckðT Þz . Now, we will demonstrate that the converse inclusion also

holds. Definition of ðcguðT Þz \ kÞ?ckðT Þz , combined with (v) and Bgu
ðckðT Þss; ckðT ÞzÞ ¼ f0g,

implies that

Bgu

�
ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz ; cguðT Þz \ k

�
¼ Bgu

�
ckðT Þss; cguðT Þz \ k

�
� Bgu

�
ckðT Þss; ckðT Þz

�
¼ f0g:

Consequently, it follows from (vii) that ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz � cguðT Þss \ k. For the

reasons, we have proved that cguðT Þss \ k ¼ ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz . Hence, Lemma 3.2

has been shown. �

We will also verify the following lemma needed later:

LEMMA 3.3. In the settings above; for T 2 k, the following four items hold:

(1) rk g ¼ rk cgðT Þ ¼ rk gu ¼ rk cguðT Þ.
(2) rk k ¼ rk ckðT Þ.
(3) If dim cguðT Þz ¼ 1, then

cguðT Þz \ k ¼ spanRfTg;
cguðT Þz \ p ¼ f0g;
cguðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ:

8><
>:

(4) If rk g ¼ rk k, then
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cguðT Þz \ p ¼ f0g;
cguðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ;
cguðT Þz ¼ cgðT Þz

�
¼ cguðT Þz \ k

�
:

8><
>:

PROOF. The items (1) and (2) are obvious because T is semisimple.

(3) Since cguðT Þz ¼ ðcguðT Þz \ kÞ � ðcguðT Þz \ pÞ, we see that cguðT Þz \ k ¼ spanRfTg
and cguðT Þz \ p ¼ f0g in case of dim cguðT Þz ¼ 1. It follows from cguðT Þz \ p ¼ f0g and

(3.2.1) that cguðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ.
(4) If cguðT Þz \ p 6¼ f0g, then rk cguðT Þ > rk ckðT Þ because of (3.2.1) and (3.2.2).

Therefore, the items (1) and (2) show that rk g > rk k when cguðT Þz \ p 6¼ f0g. Thus by

the contraposition, we conclude that cguðT Þz \ p ¼ f0g if rk g ¼ rk k. The rest of proof is

immediate from cguðT Þz \ p ¼ f0g, (3.2.1) and Lemma 3.2-(ii). Consequently, we have

verified Lemma 3.3. �

3.3. Results.

Now, we will demonstrate the following (recall Notation 2.3 (n5) and (n6), for

cguðT Þss, cguðT Þz, ckðT Þss and ckðT Þz):

THEOREM 3.4. Let g be a real semisimple Lie algebra, let k be a maximal compact

subalgebra of g, and let gu be the compact semisimple Lie algebra related with ðg; kÞ as in
the formulae (F1) and (F2). For any element T 2 k, the structure of cgðT Þ is as follows:

(A) if ckðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ, then

cgðT Þ ¼ ckðT Þ � iðcguðT Þz \ pÞ;

(B) if ckðT Þ 6¼ cguðT Þss � ðcguðT Þz \ kÞ, then

cgðT Þ ¼ s� ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ:

Here, s is a semisimple Lie algebra such that
�
s; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
is the non-

compact dual of orthogonal symmetric Lie algebra
�
cguðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
,

where ðcguðT Þz \ kÞ?ckðT Þz is the orthogonal complement of cguðT Þz \ k in ckðT Þz with respect

to Bgu
.

PROOF. We are going to prove Theorem 3.4 by use of the notation utilized in this

section. Comparing ckðT Þ with cguðT Þss � ðcguðT Þz \ kÞ, we see whether cguðT Þss \ p ¼ f0g
or not, because it follows from (3.2.2) that ckðT Þ � ðcguðT Þss \ pÞ ¼ cguðT Þss � ðcguðT Þz \ kÞ.
Let us check two Cases (A) ckðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ and (B) ckðT Þ 6¼ cguðT Þss �
ðcguðT Þz \ kÞ, individually.

CASE (A): ckðT Þ ¼ cguðT Þss � ðcguðT Þz \ kÞ: In this case, cguðT Þss \ p ¼ f0g. Thus,

Lemma 3.2-(i) means that cgðT Þ ¼ ðcguðT Þss \ kÞ � ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ. Accord-

ingly, we deduce
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cgðT Þ ¼ ckðT Þ � iðcguðT Þz \ pÞ

by virtue of (3.2.2).

CASE (B): ckðT Þ 6¼ cguðT Þss � ðcguðT Þz \ kÞ: In this case, cguðT Þss \ p 6¼ f0g. Lemma

3.2-(viii) enables us to perceive that cgðT Þss is uniquely determined by duality�
cgðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
 !

�
cguðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
. Therefore if

s denotes cgðT Þss, then Lemma 3.2-(i) and -(ii) imply that

cgðT Þ ¼ s� ðcguðT Þz \ kÞ � iðcguðT Þz \ pÞ;

where s is a semisimple Lie algebra such that
�
s; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
is the non-

compact dual, orthogonal symmetric Lie algebra of
�
cguðT Þss; ckðT Þss � ðcguðT Þz \ kÞ?ckðT Þz

�
.

For the reasons, we have completed the proof of Theorem 3.4. �

REMARK 3.5. Theorem 3.4 implies that it is possible to determine cgðT Þ with
T 2 k, if four structures of ckðT Þ, cguðT Þ, cguðT Þz \ k and cguðT Þz \ p are clarified. These

four structures can be clarified by using two root theories for k and gu (see Section 5).

Accordingly, Theorem 3.4 enables us to assert that cgðT Þ can be determined by using

two root theories for k and gu.

Theorem 3.4 and Lemma 3.3-(3) lead the following:

COROLLARY 3.6. With the same assumptions in Theorem 3.4; for an element T 0 2
k with dim cguðT 0Þz ¼ 1, the structure of cgðT 0Þ is as follows:

(A) if ckðT 0Þ ¼ cguðT 0Þ, then

cgðT 0Þ ¼ ckðT 0Þ
�
¼ cguðT

0Þ
�
;

(B) if ckðT 0Þ 6¼ cguðT 0Þ, then

cgðT 0Þ ¼ s� spanRfT 0g:

Here, s is a semisimple Lie algebra such that
�
s; ckðT 0Þss � spanRfT 0g?ckðT 0Þz

�
is the non-

compact dual of orthogonal symmetric Lie algebra
�
cguðT 0Þss; ckðT 0Þss � spanRfT 0g?ckðT 0Þz

�
,

where spanRfT 0g?ckðT 0Þz is the orthogonal complement of spanRfT 0g in ckðT 0Þz with respect

to Bgu
.

REMARK 3.7. Corollary 3.6 enables us to determine cgðT 0Þ by using the structures

of cguðT 0Þ and ckðT 0Þ, in case of dim cguðT 0Þz ¼ 1.

Theorem 3.4 and Lemma 3.3-(4) allow us to get the following:

COROLLARY 3.8. With the same assumptions in Theorem 3.4, and with the

assumption of rk g ¼ rk k; for any element T 2 k, the structure of cgðT Þ is as follows:
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(A) if ckðT Þ ¼ cguðT Þ, then

cgðT Þ ¼ ckðT Þ
�
¼ cguðT Þ

�
;

(B) if ckðT Þ 6¼ cguðT Þ, then

cgðT Þ ¼ s� cguðT Þz:

Here, s is a semisimple Lie algebra such that
�
s; ckðT Þss � ðcguðT ÞzÞ

?
ckðT Þz

�
is the non-

compact dual of orthogonal symmetric Lie algebra
�
cguðT Þss; ckðT Þss � ðcguðT ÞzÞ

?
ckðT Þz

�
,

where ðcguðT ÞzÞ
?
ckðT Þz is the orthogonal complement of cguðT Þz in ckðT Þz with respect to Bgu

.

REMARK 3.9. By Corollary 3.8 we can completely determine cgðT Þ by using the

structures of cguðT Þ and ckðT Þ, in the case where g is of inner type.

4. Elementary facts about root theory.

In this section, we will first review the relation between root theory for a complex

semisimple Lie algebra and that for its compact real form (cf. Subsection 4.1), and next

define involutive outer-automorphisms of compact simple Lie algebras (cf. Lemmas 4.3

and 4.4 in Subsection 4.2). Lastly in Subsection 4.3, we will make reference to the result

of Murakami [12]. These arguments on this section are needed in Sections 5 and 6.

4.1. Weyl basis, and root-space decomposition.

Let �gg be a complex semisimple Lie algebra, and let �hh be a Cartan subalgebra of �gg.

Then, there exists a basis fX� j � 2 4ð�gg; �hhÞg of �gg (called Weyl basis) such that for all

�; � 2 4ð�gg; �hhÞ

½X�;X��� ¼ H�, ½H;X�� ¼ �ðHÞ �X� for H 2 �hh;

½X�;X�� ¼ 0 if �þ � 6¼ 0 and �þ � =2 4ð�gg; �hhÞ;
½X�;X�� ¼ N�;� �X�þ� if �þ � 2 4ð�gg; �hhÞ,

where the real constants N�;� satisfy N�;� ¼ �N��;�� (cf. [6, Theorem 5.5, p. 176]).

Here, for � 2 4ð�gg; �hhÞ we define H� 2 �hh by B�ggðH;H�Þ ¼ �ðHÞ for all H 2 �hh. By using this

Weyl basis, a compact real form gu of �gg can be given as follows:

gu ¼ i�hhR �
M

�24þð�gg;�hhÞ
spanRfX� �X��g � spanRfiðX� þX��Þg ð4:1:1Þ

(ref. the proof of Theorem 6.3 in [6, p. 181]), where �hhR is a real vector subspace of �hh

defined by

�hhR :¼ spanRfH� j � 2 4ð�gg; �hhÞg
�
¼ fH 2 �hh j �ðHÞ 2 R for all � 2 4ð�gg; �hhÞg

�
: ð4:1:2Þ

REMARK 4.1. (1) i�hhR is a maximal abelian subalgebra of gu. (2) Decomposition

(4.1.1) is the root-space decomposition of compact real form gu of �gg with respect to i�hhR.
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In this case, positive roots in 4ðgu; i�hhRÞ coincide with ones in 4ð�gg; �hhÞ multiplied by �i,
namely

4þðgu; i�hhRÞ ¼
�
� i�

�� � 2 4þð�gg; �hhÞ�
(cf. Toda and Mimura [15]).

4.2. Outer automorphisms.

Involutive outer-automorphisms of gu need be precisely defined, in Sections 5 and 6.

In order to obtain the goal, we will give two Lemmas 4.3 and 4.4.

Theorem 5.1 in Helgason [6, p. 421] and its proof enable us to demonstrate the

following:

LEMMA 4.2. Let �gg be a complex semisimple Lie algebra, let �hh be a Cartan

subalgebra of �gg, let gu be a compact real form of �gg with decomposition (4.1.1), and let � be

a real linear isomorphism of i�hhR. Suppose that the transposed mapping of �C satisfies

t�C
�
4ð�gg; �hhÞ

�
¼ 4ð�gg; �hhÞ;

where �C denotes the complex linear extension of � to �hh. Then, there exists an

automorphism � of �gg which satisfies three conditions

(i) �ðguÞ � gu; (ii) �ji�hhR ¼ �;
(iii) �ðH�bÞ ¼ Ht��1ð�bÞ and �ðX�bÞ ¼ Xt��1ð�bÞ for all b 2 f1; � � � ; rg:

Moreover, � is involutive if so is �. Here, f�bgrb¼1 denotes the set of simple roots in

4ð�gg; �hhÞ, and X�b are given in Subsection 4.1 ðH�b ¼ ½X�b;X��b �Þ.

By means of Lemma 4.2 we will define involutive outer-automorphisms of gu ¼
suð2lÞ and soð2lÞ, in Subsections 4.2.1 and 4.2.2.

4.2.1. Involutive outer-automorphism �1 of suð2lÞ, l � 2.

Let �hh be a Cartan subalgebra of the complex simple Lie algebra slð2l;CÞ of type
A2l�1. Fix a linear order in 4ðslð2l;CÞ; �hhÞ, and assume that f�ag2l�1a¼1 is the set of simple

roots in 4ðslð2l;CÞ; �hhÞ whose Dynkin diagram is as follows:

α1 α2

· · ·
α2l−2 α2l−1

(cf. Plate I in Bourbaki’s book [4, p. 265]). Suppose that suð2lÞ is situated in slð2l;CÞ as
compact real form with decomposition (4.1.1). Now, let fZag2l�1a¼1 be the dual basis of

f�ag2l�1a¼1 ¼ �4ðslð2l;CÞ;�hhÞ—that is, �aðZbÞ ¼ �ab. Then, it follows from (4.1.2) that Za 2 �hhR
for all 1 � a � 2l� 1, so that fZag2l�1a¼1 is a real basis of �hhR. Let us define an involutive,

real linear isomorphism �1 of i�hhR by
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�1ðiZaÞ :¼ iZ2l�a for 1 � a � 2l� 1:

From 4þðslð2l;CÞ; �hhÞ ¼ f
P

m�k<n �k j 1 � m < n � 2lg and t�1Cð�aÞ ¼ �2l�a, it is

obvious that t�1C
�
4ðslð2l;CÞ; �hhÞ

�
¼ 4ðslð2l;CÞ; �hhÞ, where �1C denotes the complex

linear extension of �1 to �hh. These arguments and Lemma 4.2 lead the following:

LEMMA 4.3. With the settings in Subsection 4.2.1; there exists an involutive outer-

automorphism �1 of slð2l;CÞ such that

(i) �1
�
suð2lÞ

�
� suð2lÞ; (ii) �1ðiZaÞ ¼ iZ2l�a;

(iii) �1ðH�aÞ ¼ Ht�1ð�aÞ and �1ðX�aÞ ¼ Xt�1ð�aÞ

for all 1 � a � 2l� 1. In particular, a maximal abelian subalgebra i�hhR of suð2lÞ is

decomposed as follows:

�
H 2 i�hhR

�� �1ðHÞ ¼ H�
¼ spanR

�
iðZp þ Z2l�pÞ; iZl

�� 1 � p � l� 1
�
;�

H 2 i�hhR
�� �1ðHÞ ¼ �H�

¼ spanR
�
iðZp � Z2l�pÞ

�� 1 � p � l� 1
�
:

Here, fZag2l�1a¼1 is the dual basis of f�ag2l�1a¼1 ¼ �4ðslð2l;CÞ;�hhÞ, and X�a are given in

Subsection 4.1 ðH�a ¼ ½X�a;X��a �Þ.

tσ1

α2l−1

· · ·
α2l−a

· · ·
αl+1

α1 · · · αa · · · αl−1

αl

�� �� ��

4.2.2. Involutive outer-automorphism �2 of soð2lÞ, l � 4.

Let �hh be a Cartan subalgebra of the complex simple Lie algebra soð2l;CÞ of type Dl.

Fix a linear order in4ðsoð2l;CÞ; �hhÞ, and assume that f�bglb¼1 is the set of simple roots in

4ðsoð2l;CÞ; �hhÞ whose Dynkin diagram is as follows:

α1 α2

· · ·
αl−3 αl−2 αl

αl−1

(cf. Plate IV in [4, p. 271]). Suppose that soð2lÞ is situated in soð2l;CÞ as compact real

form with decomposition (4.1.1). By discussions similar to those on Subsection 4.2.1,

we are able to get Lemma 4.4.

LEMMA 4.4. With the settings in Subsection 4.2.2; there exists an involutive outer-

automorphism �2 of soð2l;CÞ such that
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(i) �2
�
soð2lÞ

�
� soð2lÞ;

(ii) �2ðiZjÞ ¼ iZj for all 1 � j � l� 2; �2ðiZl�1Þ ¼ iZl and �2ðiZlÞ ¼ iZl�1;
(iii) �2ðH�bÞ ¼ Ht�2ð�bÞ and �2ðX�bÞ ¼ Xt�2ð�bÞ for all 1 � b � l:

Particularly, a maximal abelian subalgebra i�hhR of soð2lÞ is decomposed as follows:

�
H 2 i�hhR

�� �2ðHÞ ¼ H�
¼ spanR

�
iZj; iðZl�1 þ ZlÞ

�� 1 � j � l� 2
�
;�

H 2 i�hhR
�� �2ðHÞ ¼ �H�

¼ spanR
�
iðZl�1 � ZlÞ

�
:

Here fZbglb¼1 is the dual basis of f�bglb¼1 ¼ �4ðsoð2l;CÞ;�hhÞ, and X�b are given in Subsection

4.1 ðH�b ¼ ½X�b ;X��b �Þ.

tσ2
α1

· · ·
αl−2

αl−1

αl

�
�

REMARK 4.5. The above decomposition of i�hhR in Lemma 4.3 (resp. Lemma 4.4)

will be utilized in Section 5 (resp. Section 6).

4.3. Cartan decompositions.

Let �gg be a complex (semi)simple Lie algebra, and let �hh be a Cartan subalgebra

of �gg. Let us fix a linear order in4ð�gg; �hhÞ, and assume that the Dynkin diagram of �4ð�gg;�hhÞ is

one of the Dynkin diagrams in Bourbaki [4]. Then, two Lists of Murakami [12, p. 297

and p. 305] (also see Borel and de Siebenthal [2]) enable us to read off the following five

items:

(i) Real semisimple Lie algebra g such that gC ¼ �gg.

(ii) Maximal compact subalgebra k of g.

(iii) Compact real form gu of �gg with decomposition (4.1.1).

(iv) An involutive automorphism � of gu satisfying two conditions (1) it stabilizes a

maximal abelian subalgebra i�hhR of gu, and (2) compact symmetric pair ðgu; �Þ is
related with ðg; kÞ as in the formulae (F1) g ¼ k� ip, (F2) gu ¼ k� p, and (F3)

k ¼ fK 2 gu j �ðKÞ ¼ Kg and p ¼ fP 2 gu j �ðP Þ ¼ �Pg.
(v) The set of simple roots in 4ðk; k \ i�hhRÞ.

Here, we note that k \ i�hhR is a maximal abelian subalgebra of compact Lie algebra k.

For example, the five items stated above are as follows (ref. [12, p. 305, type AI]):

EXAMPLE 4.6. g ¼ slð2l;RÞ with l � 2.

(ii) k ¼ soð2lÞ.
(iii) gu ¼ suð2lÞ ¼ i�hhR �

L
�24þðslð2l;CÞ;�hhÞ spanRfX� �X��g � spanRfiðX� þX��Þg.

(iv) � ¼ �1 	 exp 2�iadsuð2lÞhl,
(v) �4ðk;k\i�hhRÞ ¼ f�i~��1; � � � ;�i~��l�1;�ið~��l�1 þ ~��lÞg,

1146 N. BOUMUKI



where �1 is given in Lemma 4.3 and hl 2 �hhR is defined by �aðhlÞ ¼ �la=2 for

�a 2 �4ðslð2l;CÞ;�hhÞ ¼ f�bg
2l�1
b¼1 , and where �i~��k :¼ �i�kjk\i�hhR for each �i�k 2 �4ðsuð2lÞ;i�hhRÞ

and 1 � k � l (refer to Remark 4.1).

REMARK 4.7. Involutive outer automorphisms �1 in Lemma 4.3 and �2 in Lemma

4.4 are the same as �	 utilized in Murakami’s List [12, p. 305].

NOTICE 4.8. There are differences with respect to numbering of simple roots

in the Dynkin diagrams of type E6, E7, E8 and G2, between Murakami [12] and

Bourbaki [4].
 Throughout this paper, we apply the numbering in Bourbaki [4] to our

arguments. Thus, we utilize the following Dynkin diagrams of type E6, E7 and G2:

e6 :
1

α1

2

α3

3

α4

2

α5

1

α6

2 α2

e7 :
2

α1

3

α3

4

α4

3

α5

2

α6

1

α7

2 α2

g2 :
3

α1

2

α2

C

C

C

and so we must rewrite List of Murakami [12, p. 297] as follows:

g maximal root hi ki g�i

E6
�1 þ 2�2 þ 2�3 h1 D5 � T EIII

þ3�4 þ 2�5 þ �6 h3 A1 � A5 EII

2�1 þ 2�2 þ 3�3 h1 A1 �D6 EVI

E7 þ4�4 þ 3�5 þ 2�6 h7 E6 � T EVII

þ�7 h2 A7 EV

G2 3�1 þ 2�2 h2 A1 � A1 G

5. Determination of the centralizer cslð4;RÞðT Þ.

This section is devoted to determining, up to inner automorphism, the centralizer of

an arbitrary elliptic element T in slð4;RÞ—that is, we will demonstrate Proposition 5.1

(on page 1148).

5.1.

First, let us introduce our settings. Let �hh be a Cartan subalgebra of slð4;CÞ. Fix a

linear order in 4ðslð4;CÞ; �hhÞ, and assume that f�tg3t¼1 is the set of simple roots


Erratum: p. 289, line 9 on [4], read ‘‘�1, �1 þ �2, 2�1 þ �2, 3�1 þ �2, 3�1 þ 2�2, �2’’ instead of ‘‘�1, �1 þ �2,

2�1 þ �2, 3�1 þ �2, 3�1 þ 2�2’’.
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in 4ðslð4;CÞ; �hhÞ whose Dynkin diagram is the Dynkin diagram utilized in Bourbaki

[4, p. 265, Plate I]. Then, List of Murakami [12, p. 305, type AI] enables us to obtain the

following five items:

(i) real simple Lie algebra g ¼ slð4;RÞ;
(ii) maximal compact subalgebra k ¼ soð4Þ of g;
(iii) compact real form gu ¼ suð4Þ of slð4;CÞ with decomposition (4.1.1);

(iv) involutive automorphism � ¼ �1 	 exp 2�iadsuð4Þh2 of gu satisfying two conditions

(1) it stabilizes a maximal abelian subalgebra i�hhR of gu and (2) compact

symmetric pair ðgu; �Þ is related with ðg; kÞ as in the formulae (F1) g ¼ k� ip, (F2)
gu ¼ k� p, and (F3) k ¼ fK 2 gu j �ðKÞ ¼ Kg and p ¼ fP 2 gu j �ðP Þ ¼ �Pg;

(v) the set of simple roots in 4ðk; k \ i�hhRÞ

(see Example 4.6 for detail). Here, we remark that the set of positive roots in

4ðgu; i�hhRÞ ¼ 4ðsuð4Þ; i�hhRÞ and the set of simple roots in 4ðk; k \ i�hhRÞ are as follows (cf.

Remark 4.1):

4þðgu; i�hhRÞ ¼ f�i� j � 2 4þðslð4;CÞ; �hhÞg

¼ �i
X

m�k<n
�k

����� 1 � m < n � 4

( )

¼
�i�1; �ið�1 þ �2Þ; �ið�1 þ �2 þ �3Þ;
�i�2; �ið�2 þ �3Þ; �i�3

( )
:

ð5:1:1Þ

gu = su(4):
−iα1 −iα2 −iα3

�4ðk;k\i�hhRÞ ¼ f�i~��1; �ið~��1 þ ~��2Þg; ð5:1:2Þ

k = so(4):
−iα̃1 −i(α̃1 + α̃2)

where �i~��s :¼ �i�sjk\i�hhR for each �i�s 2 4ðgu; i�hhRÞ and 1 � s � 2. In the settings, we

are going to prove Proposition 5.1.

PROPOSITION 5.1. For any elliptic element T 2 slð4;RÞ, there exists an inner

automorphism of slð4;RÞ which isomorphically maps cslð4;RÞðT Þ onto one of the following:

slð2;CÞ � t
1; t

2 �R1; slð2;RÞ � t
1 �R1; slð4;RÞ:

Here, the above four terms are given as follows:

1148 N. BOUMUKI



cslð4;RÞðT Þ T

slð2;CÞ � t1 
1 � iðZ1 � Z2 þ Z3Þ or 
2 � iZ2

t2 �R1 
1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2 with 
1 6¼ 
2
slð2;RÞ � t1 �R1 
1 � iðZ1 þ Z3Þ

slð4;RÞ 0

where fZtg3t¼1 is the dual basis of f�tg3t¼1 ¼ �4ðslð4;CÞ;�hhÞ and 
1; 
2 > 0.

PROOF. The proof of this proposition requires many arguments. For the reason,

we divide it into three processes. In the first process, we will provide a (positive) Weyl

chamber W
1
k with respect to �4ðk;k\i�hhRÞ and we will verify that, Proposition 5.1 can

be proved by studying four Cases (a) T ¼ 
1 � iðZ1 � Z2 þ Z3Þ, (b) T ¼

1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2, (c) T ¼ 
2 � iZ2 and (d) T ¼ 0 (
1; 
2 > 0). In the second

process, we will investigate Case (a) T ¼ 
1 � iðZ1 � Z2 þ Z3Þ and get cslð4;RÞðT Þ ¼
slð2;CÞ � t1. Finally in the third process, we will study Case (b) T ¼ 
1 �
iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2. However, Case (b) need be further divided into two Cases

(b-1) 
1 6¼ 
2 and (b-2) 
1 ¼ 
2. We consider Case (b-1) (resp. (b-2)) and have

cslð4;RÞðT Þ ¼ t2 �R1 (resp. slð2;RÞ � t1 �R1).

NOTICE 5.2. Without otherwise statements, we suppose that

g ¼ slð4;RÞ; gu ¼ suð4Þ; k ¼ soð4Þ;
� ¼ �1 	 exp 2�iadsuð4Þh2;

fZtg3t¼1: the dual basis of f�tg3t¼1 ¼ �4ðslð4;CÞ;�hhÞ

on the proof of Proposition 5.1.

PROCESS I. We aim to verify that, Proposition 5.1 can be proved by studying four

Cases (a) T ¼ 
1 � iðZ1 � Z2 þ Z3Þ, (b) T ¼ 
1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2, (c) T ¼ 
2 �
iZ2 and (d) T ¼ 0 (
1; 
2 > 0).

Since � ¼ �1 	 exp 2�iadsuð4Þh2 and ih2 2 i�hhR, one deduces that � ¼ �1 on i�hhR; and

thus Lemma 4.3 implies that

k \ i�hhR ¼ spanR
�
iðZ1 þ Z3Þ; iZ2

�
; ð5:1:3Þ

p \ i�hhR ¼ spanR
�
iðZ1 � Z3Þ

�
: ð5:1:4Þ

Now, let fiT1; iT2g be the dual basis of �4ðk;k\i�hhRÞ ¼ f�i~��1;�ið~��1 þ ~��2Þg (cf. (5.1.2)).

From (5.1.3), it is clear that

iT1 ¼ iðZ1 � Z2 þ Z3Þ;
iT2 ¼ iZ2

	
ð5:1:5Þ

because fZtg3t¼1 is the dual basis of f�tg3t¼1 ¼ �4ðslð4;CÞ;�hhÞ. Denote a Weyl chamber with

respect to �4ðk;k\i�hhRÞ by
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W
1
k ¼

�
H 2 k \ i�hhR

�� �i~��1ðHÞ � 0; �ið~��1 þ ~��2ÞðHÞ � 0
�
:

For any elliptic element T 2 g, Remark 3.1 enables us to assume that T 2 k. Then,

since k ¼ soð4Þ is compact semisimple, there exists an inner automorphism of k ð� gÞ
which maps T into W

1
k . Consequently, one may suppose that T belongs to W

1
k from the

beginning, as far as clarifying cgðT Þ up to inner automorphism of g ¼ slð4;RÞ.
Accordingly, we suppose that T 2W

1
k henceforth. This supposition allows us to

describe T as follows:

T ¼ 
1 � iT1 þ 
2 � iT2
�
¼ 
1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2

�
with 
1; 
2 � 0 ð5:1:6Þ

since fiT1; iT2g is the dual basis of f�i~��1;�ið~��1 þ ~��2Þg. For the coefficient of (5.1.6), the

following four cases only occur:

(a) 
1 > 0 and 
2 ¼ 0,

(b) 
1; 
2 > 0,

(c) 
1 ¼ 0 and 
2 > 0,

(d) 
1 ¼ 
2 ¼ 0.

Consequently, this proposition can be proved by studying four Cases (a) T ¼ 
1 � iT1�
¼ 
1 � iðZ1 � Z2 þ Z3Þ

�
, (b) T ¼ 
1 � iT1 þ 
2 � iT2

�
¼ 
1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2

�
,

(c) T ¼ 
2 � iT2
�
¼ 
2 � iZ2

�
and (d) T ¼ 0 (
1; 
2 > 0). From now on, we devote

ourselves to investigation of two Cases (a) and (b), because the other Cases (c) and (d)

are similar.

PROCESS II. CASE (a): T ¼ 
1 � iT1 2W1
k (
1 > 0). First, let us study ckðT Þ. Recall

that �4ðk;k\i�hhRÞ ¼ f�i~��1;�ið~��1 þ ~��2Þg (cf. (5.1.2)). For any root � ¼ �n1 � i~��1 � n2 �
ið~��1 þ ~��2Þ 2 4ðk; k \ i�hhRÞ (n1; n2 2 Z), it is obvious that

�ðT Þ ¼ 
1 � n1

since fiT1; iT2g is the dual basis of f�i~��1;�ið~��1 þ ~��2Þg. Therefore, � ¼ �n1 � i~��1 � n2 �
ið~��1 þ ~��2Þ 2 4ðk; k \ i�hhRÞ is a root of ckðT Þ if and only if �ðT Þ ¼ 0 if and only if n1 ¼ 0.

Accordingly, it follows that

�4ðckðT Þ; k\i�hhRÞ ¼ f�ið~��1 þ ~��2Þg; ða.iÞ

where we note that k \ i�hhR is a maximal abelian subalgebra of not only k but also ckðT Þ
because T 2W

1
k � k \ i�hhR. Lemma 3.3-(2) implies that rk ckðT Þ ¼ rk k ¼ rk soð4Þ ¼ 2.

This, together with (a.i), leads the following:

ckðT Þ ¼ suð2Þ � t
1: ða.iiÞ

Next, let us determine cguðT Þ. By virtue of (5.1.5), we can rewrite T ¼ 
1 � iT1 as

follows:
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T ¼ 
1 � iðZ1 � Z2 þ Z3Þ:

Therefore, for all positive roots in 4ðgu; i�hhRÞ (see (5.1.1)), direct calculations give us

�i�1ðT Þ ¼ 
1; �ið�1 þ �2ÞðT Þ ¼ 0; �ið�1 þ �2 þ �3ÞðT Þ ¼ 
1;
�i�2ðT Þ ¼ �
1; �ið�2 þ �3ÞðT Þ ¼ 0; �i�3ðT Þ ¼ 
1

ða.iiiÞ

because fZtg3t¼1 is the dual basis of �4ðslð4;CÞ;�hhÞ ¼ f�tg
3
t¼1. This (a.iii) shows that

4þðcguðT Þ; i�hhRÞ ¼ f� 2 4
þðgu; i�hhRÞ j �ðT Þ ¼ 0g

¼ f�ið�1 þ �2Þ; �ið�2 þ �3Þg

since 
1 > 0. In particular, it follows that

�4ðcgu ðT Þ; i�hhRÞ ¼ f�ið�1 þ �2Þ; �ið�2 þ �3Þg

because ð�1 þ �2Þ and ð�2 þ �3Þ are linearly independent. The Dynkin diagram of

�4ðcgu ðT Þ; i�hhRÞ is as follows:

Case (a) cgu(T ):
−i(α1 + α2) −i(α2 + α3).

Consequently, since rk cguðT Þ ¼ rk gu ¼ rk suð4Þ ¼ 3, we obtain

cguðT Þ ¼ suð2Þ � suð2Þ � t
1 ða.ivÞ

(cf. Lemma 3.3-(1)). Hence, Corollary 3.6, (a.ii) and (a.iv) imply that

cslð4;RÞðT Þ ¼ cgðT Þ ¼ slð2;CÞ � t
1

in Case (a).

PROCESS III. CASE (b): T ¼ 
1 � iT1 þ 
2 � iT2 2W
1
k (
1; 
2 > 0). In the first

place, we will investigate ckðT Þ. Since fiT1; iT2g is the dual basis of �4ðk;k\i�hhRÞ ¼
f�i~��1;�ið~��1 þ ~��2Þg, we have �i~��1ðT Þ ¼ 
1 > 0 and �ið~��1 þ ~��2ÞðT Þ ¼ 
2 > 0; and

hence T 2 k \ i�hhR is a regular element of k ¼ soð4Þ, so that

ckðT Þ ¼ k \ i�hhR:

It is obvious from (5.1.3) that k \ i�hhR is a 2-dimensional abelian subalgebra of k.

Accordingly we deduce that
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ckðT Þ ¼ t
2;

ckðT Þss ¼ f0g; ckðT Þz ¼ t
2:

(
ðb.iÞ

In the second place, let us consider cguðT Þ. By virtue of (5.1.5), one can rewrite

T ¼ 
1 � iT1 þ 
2 � iT2 as follows:

T ¼ i
�

1 � Z1 � ð
1 � 
2Þ � Z2 þ 
1 � Z3

�
: ðb.iiÞ

Thus, for all roots in 4þðgu; i�hhRÞ (see (5.1.1)), we provide

�i�1ðT Þ ¼ 
1; �ið�1 þ �2ÞðT Þ ¼ 
2;
�ið�1 þ �2 þ �3ÞðT Þ ¼ 
1 þ 
2; �i�2ðT Þ ¼ �
1 þ 
2;

�ið�2 þ �3ÞðT Þ ¼ 
2; �i�3ðT Þ ¼ 
1
ðb.iiiÞ

because fZtg3t¼1 is the dual basis of �4ðslð4;CÞ;�hhÞ ¼ f�tg
3
t¼1. This (b.iii) means that

4þðcguðT Þ; i�hhRÞ ¼
�
� 2 4þðgu; i�hhRÞ

�� �ðT Þ ¼ 0
�

¼
; if 
1 6¼ 
2,�
� i�2

�
if 
1 ¼ 
2.

(
ðb.ivÞ

From (b.iv), we separate Case (b) ‘‘T ¼ 
1 � iT1 þ 
2 � iT2 (
1; 
2 > 0)’’ into the following

two cases:

(b-1) 
1 6¼ 
2 and 
1; 
2 > 0;

(b-2) 
1 ¼ 
2 > 0.

CASE (b-1): T ¼ 
1 � iT1 þ 
2 � iT2 2W
1
k (
1 6¼ 
2 and 
1; 
2 > 0): It follows from

(b.iv) that �4ðcgu ðT Þ;i�hhRÞ ¼ ;. Thus, cguðT Þ ¼ i
�hhR ¼ ðk \ i�hhRÞ � ðp \ i�hhRÞ. Thereby, from

(5.1.3) and (5.1.4) we conclude that

cguðT Þ ¼ t
3;

cguðT Þss ¼ f0g; cguðT Þz ¼ t3;

cguðT Þz \ k ¼ t
2

�
¼ spanRfiðZ1 þ Z3Þ; iZ2g

�
;

cguðT Þz \ p ¼ t
1

�
¼ spanRfiðZ1 � Z3Þg

�
:

8>>>><
>>>>:

ðb-1.iÞ

Consequently, Theorem 3.4-(A), (b.i) and (b-1.i) allow us to get

cslð4;RÞðT Þ ¼ cgðT Þ ¼ t
2 �R1

in Case (b-1).
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CASE (b-2): T ¼ 
1 � iT1 þ 
2 � iT2 2W
1
k (
1 ¼ 
2 > 0): By (b.iv) we see that

�4ðcgu ðT Þ;i�hhRÞ ¼ f�i�2g. Thus, Lemma 3.3-(1) and rk gu ¼ rk suð4Þ ¼ 3 imply that

cguðT Þ ¼ suð2Þ � t2, so that

cguðT Þ ¼ suð2Þ � t
2;

cguðT Þss ¼ suð2Þ; cguðT Þz ¼ t
2:

(
ðb-2.iÞ

Now, let us prove Lemma 5.3.

LEMMA 5.3. With the assumptions and notation stated above; in Case (b-2), the

structures of cguðT Þz \ k and cguðT Þz \ p are as follows:

cguðT Þz \ k ¼ spanRfiðZ1 þ Z3Þg;
cguðT Þz \ p ¼ spanRfiðZ1 � Z3Þg:

PROOF. Since 
1 ¼ 
2 and (b.ii), one obtains T ¼ 
1 � iðZ1 þ Z3Þ. Therefore

iðZ1 þ Z3Þ belongs to cguðT Þz because 
1 > 0 and T is an element of cguðT Þz. On the other

hand, it is natural from (5.1.3) that iðZ1 þ Z3Þ 2 k. These deduce that

iðZ1 þ Z3Þ 2 cguðT Þz \ k: ðb-2.iiÞ

Now, we want to show

iðZ1 � Z3Þ 2 cguðT Þz \ p: ðb-2.iiiÞ

Let us apply the root-space decomposition (4.1.1) to cguðT Þ. Since 4þðcguðT Þ; i�hhRÞ ¼
f� 2 4þðgu; i�hhRÞ j �ðT Þ ¼ 0g ¼ f�i�2g and T ¼ 
1 � iðZ1 þ Z3Þ 2 i�hhR, we perceive that

cguðT Þ ¼ i�hhR � spanRfX�2
�X��2

g � spanRfiðX�2
þX��2

Þg

(recall Remark 4.1). Thus, any element X 2 cguðT Þ can be written as X ¼ H þ � �
ðX�2

�X��2
Þ þ � � iðX�2

þX��2
Þ (H 2 i�hhR; �; � 2 R). It follows from (5.1.4) that

iðZ1 � Z3Þ 2 i�hhR; and hence

�
iðZ1 � Z3Þ; X

�
¼

�
iðZ1 � Z3Þ; H þ � � ðX�2

�X��2
Þ þ � � iðX�2

þX��2
Þ
�

¼
�
iðZ1 � Z3Þ; � � ðX�2

�X��2
Þ þ � � iðX�2

þX��2
Þ
�

¼ � � �2ðZ1 � Z3Þ � iðX�2
þX��2

Þ � � � �2ðZ1 � Z3Þ � ðX�2
�X��2

Þ
¼ 0

because fZtg3t¼1 is the dual basis of �4ðslð4;CÞ;�hhÞ ¼ f�tg
3
t¼1. This implies that

iðZ1 � Z3Þ 2 cguðT Þz. On the other hand, we obtain iðZ1 � Z3Þ 2 p since (5.1.4).

For the reasons, we have shown (b-2.iii). It is obvious from (b-2.i) that dim
�
ðcguðT Þz \

kÞ � ðcguðT Þz \ pÞ
�
¼ dim cguðT Þz ¼ 2. This, together with (b-2.ii) and (b-2.iii),
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concludes Lemma 5.3. �

By Lemma 5.3 and (b-2.i), we deduce that

cguðT Þ ¼ suð2Þ � t
2;

cguðT Þss ¼ suð2Þ; cguðT Þz ¼ t2;

cguðT Þz \ k ¼ t
1

�
¼ spanRfiðZ1 þ Z3Þg

�
;

cguðT Þz \ p ¼ t
1

�
¼ spanRfiðZ1 � Z3Þg

�
:

8>>>><
>>>>:

ðb-2.ivÞ

Thus, Theorem 3.4-(B), together with (b.i) and (b-2.iv), means that

cslð4;RÞðT Þ ¼ cgðT Þ ¼ slð2;RÞ � t
1 �R1

in Case (b-2).

Now, let us collect the results obtained above. For T ¼ 
1 � iT1 þ 
2 � iT2�
¼ 
1 � iðZ1 � Z2 þ Z3Þ þ 
2 � iZ2

�
2W

1
k (see (5.1.6)), we investigated Case (a) by

means of Process II and Case (b) by means of Process III. Then, we had

cslð4;RÞðT Þ ¼
slð2;CÞ � t

1 in Case (a) 
1 > 0 and 
2 ¼ 0,

t
2 �R1 in Case (b-1) 
1; 
2 > 0 and 
1 6¼ 
2,
slð2;RÞ � t

1 �R1 in Case (b-2) 
1 ¼ 
2 > 0.

8><
>:

By investigations similar to those into Cases (a) and (b), we are able to confirm that

cslð4;RÞðT Þ ¼
slð2;CÞ � t

1 in Case (c) 
1 ¼ 0 and 
2 > 0,

slð4;RÞ in Case (d) 
1 ¼ 
2 ¼ 0

(

(see Cases (a), (b), (c) and (d) on page 1150). Consequently, we have completed the

proof of Proposition 5.1. �

REMARK 5.4. Let us explain that the four terms in Proposition 5.1 are concretely

obtained by use of matrices

cslð4;RÞðT Þ T (matrix)

slð2;CÞ � t1 �1 � ð�E14 � E23 þ E32 þ E41Þ or �2 � ðE14 � E23 þ E32 � E41Þ
t2 �R1 ð��1 þ �2Þ � ðE14 � E41Þ � ð�1 þ �2Þ � ðE23 � E32Þ with �1 6¼ �2

slð2;RÞ � t1 �R1 �1 � ð�E23 þ E32Þ
slð4;RÞ 0

where Eab denotes the matrix of degree 4 whose ðc; dÞ-th entry is �ca � �bd, and where

�1; �2 > 0.

For the purpose, we will have matrices corresponding to the dual basis fZtg3t¼1 of
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f�tg3t¼1 ¼ �4ðslð4;RÞ;�hhÞ (i.e. (5.1.9)). To do so, it is necessary to concretely determine a

compact simple Lie algebra gu which satisfies two conditions (I) it is a compact real form

(4.1.1) of slð4;CÞ, and (II) symmetric pair ðgu; �Þ is related with ðg; kÞ ¼ ðslð4;RÞ; soð4ÞÞ
as in the formulae (F1) g ¼ k� ip, (F2) gu ¼ k� p and (F3) k ¼ fK 2 gu j �ðKÞ ¼ Kg
and p ¼ fP 2 gu j �ðP Þ ¼ �Pg. Here � ¼ �1 	 exp 2�iadsuð4Þh2 is the involution given in

the first part of this section.

Denote by �hh0 the set of diagonal matrices in slð4;CÞ—that is,

�hh0 ¼ H 0 ¼ diagð1; 2; 3; 4Þ
�����
X4
a¼1

a ¼ 0

( )
:

Then, �hh0 is a Cartan subalgebra of slð4;CÞ, and it follows that ½H 0; Eab� ¼ ða � bÞ � Eab

for H 0 ¼ diagð1; 2; 3; 4Þ 2 �hh0 (1 � a; b � 4); so that a root �0ab :
�hh0 ! C is defined by

�0abðH 0Þ ¼ a � b for H 0 ¼ diagð1; 2; 3; 4Þ 2 �hh0

(cf. Helgason [6, pp. 186–187]). In this case, the set of simple roots in 4ðslð4;CÞ; �hh0Þ ¼
f�0cd j 1 � c 6¼ d � 4g can be

�4ðslð4;CÞ; �hh0Þ ¼ f�012; �023; �034g:

Remark that a Weyl basis fX�0
cd
j �0cd 2 4ðslð4;CÞ; �hh0Þg of slð4;CÞ (cf. Subsection 4.1)

and the dual basis fZ01; Z02; Z03g of �4ðslð4;CÞ;�hh0Þ ¼ f�012; �023; �034g are as follows:

X�0
cd
¼ Ecd for 1 � c 6¼ d � 4;

Z01 ¼ diagð 34;�
1
4;�

1
4;�

1
4 Þ;

Z02 ¼ diagð 1
2
; 1
2
;�1

2
;�1

2
Þ;

Z03 ¼ diagð 1
4
; 1
4
; 1
4
;�3

4
Þ:

8>><
>>: ð5:1:7Þ

Now, let g0u be a compact real form (4.1.1) of slð4;CÞ provided by this Weyl basis

fX�0
cd
j �0cd 2 4ðslð4;CÞ; �hh0Þg. Then, g0u accords with suð4Þ ¼ fA 2 slð4;CÞ j t �AA ¼ �Ag.

Denote the canonical decomposition of symmetric pair ðg0u; �Þ by

g
0
u ¼ k

0 � p
0;

where k0 (resp. p0) is the þ1 (resp. �1)-eigenspace of � in g0u ¼ suð4Þ. This gives us a real

form g0 of slð4;CÞ defined by

g
0 :¼ k

0 � ip0:

Notice that the above g0 ¼ k
0 � ip0 (resp. k0) is isomorphic to slð4;RÞ ¼ fB 2 glð4;RÞ j

TrB ¼ 0g (resp. soð4Þ ¼ fC 2 glð4;RÞ j tC ¼ �Cg), but does not accord with it. Indeed,
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k
0 and ip0 are as follows:

k
0 ¼

b11 � i a12 þ b12 � i a13 þ b13 � i 0

�a12 þ b12 � i b22 � i 0 a13 þ b13 � i
�a13 þ b13 � i 0 �b22 � i a12 þ b12 � i

0 �a13 þ b13 � i �a12 þ b12 � i �b11 � i

0
BBBB@

1
CCCCA

����������
apq; bst 2 R

8>>>><
>>>>:

9>>>>=
>>>>;
;

ip0 ¼

�c11 �c12 þ d12 � i �c13 þ d13 � i �c14 þ d14 � i
�c12 � d12 � i c11 �c23 þ d23 � i c13 � d13 � i
�c13 � d13 � i �c23 � d23 � i c11 c12 � d12 � i
�c14 � d14 � i c13 þ d13 � i c12 þ d12 � i �c11

0
BBBB@

1
CCCCA

����������
cuv; dxy 2 R

8>>>><
>>>>:

9>>>>=
>>>>;
:

For the reason, we define an automorphism ’ of slð4;CÞ by

’ :¼ Adðg0Þ; ð5:1:8Þ

where g0 is an element of GLð4;CÞ such that

g0 ¼

0 1 �i 0

�1 0 0 �i
i 0 0 1

0 i �1 0

0
BBBB@

1
CCCCA:

This automorphism ’ satisfies that ’ðg0Þ ¼ slð4;RÞ and ’ðk0Þ ¼ soð4Þ. Therefore, gu :¼
’ðg0uÞ is a compact simple Lie algebra satisfying the two conditions (I) it is a compact

real form (4.1.1) of slð4;CÞ provided by Weyl basis fX�cd j �cd 2 4ðslð4;CÞ; �hhÞg, and
(II) symmetric pair ðgu; �Þ is related with ðg; kÞ ¼ ðslð4;RÞ; soð4ÞÞ as in the formulae

(F1), (F2) and (F3), where we identify � with ’ 	 � 	 ’�1. Here, �hh :¼ ’ð�hh0Þ, �cd :¼
�0cd 	 ’�1 and X�cd :¼ ’ðX�0

cd
Þ (1 � c 6¼ d � 4). Notice that fZ1 :¼ ’ðZ01Þ; Z2 :¼ ’ðZ02Þ;

Z3 :¼ ’ðZ03Þg is the dual basis of �4ðslð4;CÞ;�hhÞ ¼ f�12; �23; �34g and is the following:

Z1 ¼ 1
4 diagð�1; 1; 1;�1Þ þ

i
2ðE23 � E32Þ;

Z2 ¼ i
2ð�E14 þ E23 � E32 þ E41Þ;

Z3 ¼ �1
4 diagð�1; 1; 1;�1Þ þ

i
2ðE23 � E32Þ

8>><
>>: ð5:1:9Þ

(see (5.1.7) and (5.1.8)). By using this dual basis fZtg3t¼1, the arguments on the end of

the proof of Proposition 5.1 lead the following:
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(a)
cslð4;RÞðT Þ ¼ slð2;CÞ � t

1;

T ¼ ð
1=2Þ � ð�E14 � E23 þ E32 þ E41Þ;

(

(b-1)
cslð4;RÞðT Þ ¼ t

2 �R1;

T ¼ ð�
1 þ 
2Þ=2 � ðE14 � E41Þ � ð
1 þ 
2Þ=2 � ðE23 � E32Þ with 
1 6¼ 
2;

(

(b-2)
cslð4;RÞðT Þ ¼ slð2;RÞ � t

1 �R1;

T ¼ 
1 � ð�E23 þ E32Þ;

(

(c)
cslð4;RÞðT Þ ¼ slð2;CÞ � t

1;

T ¼ ð
2=2Þ � ðE14 � E23 þ E32 � E41Þ;

(

(d)
cslð4;RÞðT Þ ¼ slð4;RÞ;
T ¼ 0

	

(
1; 
2 > 0). Therefore, we have obtained the four terms in Proposition 5.1 by means of

matrices Eab.

5.2. Other results.

Let g ¼ g1 � � � � � gn be a real semisimple Lie algebra, where all ga are simple ideals

of g (1 � a � n). Take any elliptic element T 2 g, and write it as T ¼ T 1 þ � � � þ Tn
(Ta 2 ga). Then, one sees that cgðT Þ ¼ cg1ðT 1Þ � � � � � cgnðTnÞ, and that each Ta is an

elliptic element of ga because adgT ðgaÞ � ga and adgT jga ¼ adgaT
a. Consequently, study

on the structure of cgðT Þ can be reduced to that of cgaðTaÞ. For every real simple Lie

algebra ga and any elliptic element Ta 2 ga, we can determine cgaðTaÞ up to inner

automorphism of ga, by utilizing arguments on this section. For example, we get the

following:

PROPOSITION 5.5. For any elliptic element T 2 g2ð2Þ, there exists an inner

automorphism of g2ð2Þ which isomorphically maps cg2ð2Þ ðT Þ onto one of the following:

suð2Þ � t
1; t

2; slð2;RÞ � t
1; g2ð2Þ:

Here, g2ð2Þ is determined by involution � ¼ exp 2�iadg2h2 (see List of Murakami [12, p.

297, type G] and our Notice 4.8) and the above four terms are given as follows:

cg2ð2Þ ðT Þ T

suð2Þ � t1 �1 � ið2Z1 � 3Z2Þ or �2 � iZ2

t2 �1 � ið2Z1 � 3Z2Þ � �2 � iZ2 with 3�1 6¼ 3�2; �2

slð2;RÞ � t1 �1 � iðZ1 � 2Z2Þ or �1 � iðZ1 � 3Z2Þ
g2ð2Þ 0

where fZ1; Z2g is the dual basis of �4ðgC
2
;�hhÞ ¼ f�1; �2g and �1; �2 > 0.

PROPOSITION 5.6. For any elliptic element T 2 su
ð2lÞ, there exists an inner

automorphism of su
ð2lÞ which isomorphically maps csu
ð2lÞðT Þ onto one of the following:
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Mk
a¼1

slðja � ja�1;CÞ � slðl� jk;CÞ � t
kþ1 �Rk;

Mk
a¼1

slðja � ja�1;CÞ � su

ð2l� 2jkÞ � t

k �Rk;

where l � 2, 0 � k � l� 1, 1 � j1 < � � � < jk � l� 1, and j0 :¼ 0. Here su
ð2lÞ is

determined by involution �1 in Lemma 4.3 (see List of type AII in [12, p. 305]; also

see Remark 4.7) and the above terms are given as follows:

csu
ð2lÞðT Þ ¼
Mk
a¼1

slðja � ja�1;CÞ � slðl� jk;CÞ � t
kþ1 �Rk;

T ¼
Xk
p¼1

�jp � iðZjp þ Z2l�jpÞ þ �l � iZl;

8>>>>><
>>>>>:

csu
ð2lÞðT Þ ¼
Mk
a¼1

slðja � ja�1;CÞ � su

ð2l� 2jkÞ � t

k �Rk;

T ¼
Xk
p¼1

�jp � iðZjp þ Z2l�jpÞ;

8>>>>><
>>>>>:

where fZjg2l�1j¼1 denotes the dual basis of �4ðslð2l;CÞ;�hhÞ ¼ f�jg
2l�1
j¼1 and �j1 ; � � � ; �jk ; �l > 0.

6. The H-elements in pseudo-Hermitian symmetric Lie algebras.

Our aim in this section is to determine the H-element in each simple irreducible

pseudo-Hermitian symmetric Lie algebra. First, let us introduce the notion of simple

irreducible pseudo-Hermitian symmetric Lie algebra.

DEFINITION 6.1 (Shapiro [14]). A simple symmetric Lie algebra ðg; rÞ is called

irreducible pseudo-Hermitian if gC is also simple, and if there exists an elliptic element

T 2 g such that cgðT Þ coincides with the isotropy subalgebra r. It is said to be reducible

pseudo-Hermitian, if g admits a structure of complex Lie algebra and r is not

semisimple. Remark that every semisimple pseudo-Hermitian symmetric Lie algebra is a

finite direct sum of simple irreducible or simple reducible pseudo-Hermitian symmetric

Lie algebras (cf. [14]).

We will illustrate the way of finding the H-elements in two simple irreducible

pseudo-Hermitian symmetric Lie algebras ðg; rÞ ¼ ðspð3;RÞ; suð2; 1Þ � t1Þ and ðsoð3; 5Þ;
soð3; 3Þ � t1Þ. These two examples correspond to the two cases where a maximal

compact subalgebra of g admits a non-trivial center (see Subsection 6.1) and admits no

centers (see Subsection 6.2). Lastly in Subsection 6.3, we will accomplish our aim (see

Theorem 6.16 on page 1171).

For the sake of Subsections 6.1.4 and 6.2.4, we are going to prove Lemma 6.2.
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LEMMA 6.2. Let ðg; rÞ be a semisimple pseudo-Hermitian symmetric Lie algebra,

let T be a semisimple element of g satisfying cgðT Þ ¼ r, and let hC be a Cartan subalgebra

of gC such that T 2 h
C . Then, the following three items (i), (ii) and (iii) hold:

(i) g is decomposed as

g ¼ r� q
�
¼ cgðT Þ � ½T ; g�

�
;

where q :¼ ½T; g�. In particular, r and q satisfy ½r; r� � r, ½r; q� � q and ½q; q� � r;

and thus the above decomposition is the canonical one of symmetric Lie algebra

ðg; rÞ.
(ii) The following three conditions (c1), (c2) and (c3) are mutually equivalent:

(c1) T is the H-element in ðg; rÞ;
(c2) adgCT j½T;gC � is a complex structure of ½T ; gC �;
(c3) �ðT Þ ¼ �i for all � 2 f� 2 4ðgC ; hCÞ j �ðT Þ 6¼ 0g.

(iii) If T is the H-element in ðg; rÞ, then an inner automorphism 	 :¼ exp�adgT of g is

involutive and the þ1 (resp. �1)-eigenspace of 	 in g coincides with r (resp. q).

PROOF.

(i) Since ðg; rÞ is symmetric Lie algebra, there exists an involutive automorphism ~		

of g such that

gþ1 ¼ r and g ¼ gþ1 � g�1; ð6.0.1Þ

where we denote by g�1 the �1-eigenspace of ~		 in g. Then, it is natural that

½gþ1; gþ1� � gþ1, ½gþ1; g�1� � g�1 and ½g�1; g�1� � gþ1. Therefore, the item (i) holds if

g�1 ¼ ½T ; g� (¼ q). Hence we will be devoted to showing that g�1 ¼ ½T; g� from now on.

The non-degeneracy of Bg, combined with Bgðgþ1; g�1Þ ¼ f0g and gþ1 ¼ r, implies that

g�1 ¼ fX 2 g j BgðX;RÞ ¼ 0 for all R 2 rg:

Accordingly, it follows from r ¼ cgðT Þ that

½T ; g� � g�1: ð6.0.2Þ

Since T is semisimple, g is decomposed as g ¼ cgðT Þ � ½T ; g�. Besides from cgðT Þ ¼ r ¼
gþ1, one obtains

g ¼ gþ1 � ½T ; g�: ð6.0.3Þ

Consequently, we have g�1 ¼ ½T ; g� by (6.0.1), (6.0.2) and (6.0.3). Thus, the item (i)

holds.

(ii) (c1)$(c2): In the first place, let us verify that two conditions (c1) and (c2) are

equivalent to each other. The hypothesis of r ¼ cgðT Þ, together with (i), enables us to
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confirm that

T is the H-element in ðg; rÞ if and only if

adgT jq is a complex structure of q ¼ ½T; g�:
ð6.0.4Þ

Furthermore, we see that

adgT jq is a complex structure of q ¼ ½T ; g� if and only if

adgCT j½T; gC � is a complex structure of ½T; gC �
ð6.0.5Þ

because a vector space ½T; gC � coincides with the complex vector subspace of gC

generated by ½T ; g�. Consequently, it follows from (6.0.4) and (6.0.5) that two conditions

(c1) and (c2) are equivalent to each other.

(c2)$(c3): In the second place, we will prove that two conditions (c2) and (c3) are

equivalent to each other. First, let us clarify the structure of ½T; gC �. Define 40ðgC ; hCÞ
and 41ðgC ; hC Þ by

40ðgC ; hCÞ :¼ f� 2 4ðgC ; hCÞ j �ðT Þ ¼ 0g;
41ðgC ; hCÞ :¼ f� 2 4ðgC ; hCÞ j �ðT Þ 6¼ 0g:

(

Then, the root-space decomposition of gC with respect to h
C is rewritten as follows:

g
C ¼ h

C �
M

�24ðgC ; hC Þ
spanCfX�g

¼ h
C �

M
�240ðgC ; hC Þ

spanCfX�g �
M

�241ðgC ; hC Þ
spanCfX�g

¼ cgC ðT Þ �
M

�241ðgC ; hC Þ
spanCfX�g;

where X�, � 2 4ðgC ; hC Þ, are given in Subsection 4.1. Therefore, we perceive that

½T ; gC � ¼
M

�241ðgC ; hC Þ
spanCfX�g ð6.0.6Þ

because ½T;X�� ¼ �ðT Þ �X� 6¼ 0 for all � 2 41ðgC ; hCÞ and semisimple element T 2 h
C

splits gC into cgC ðT Þ � ½T; gC �. Since (6.0.6) and since ðadgCT Þ2ðX�Þ ¼ ð�ðT ÞÞ2 �X�, we

conclude that adgCT j½T;gC � is a complex structure of ½T; gC � if and only if �ðT Þ ¼ �i for all
� 2 41ðgC ; hCÞ. Accordingly, two conditions (c2) and (c3) are equivalent to each other.

For the reasons, three conditions (c1), (c2) and (c3) are mutually equivalent.

(iii) If T is the H-element in ðg; rÞ, then it follows from (6.0.4) that ðadgT Þ2ðQÞ ¼
�Q for every Q 2 q. Hence, we deduce that
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	ðQÞ ¼ exp �adgT ðQÞ ¼
X
l�0

1

l !
ð�adgT ÞlðQÞ

¼
X
m�0

1

2m!
ð�adgT Þ2mðQÞ þ

X
n�0

1

ð2nþ 1Þ! ð�adgT Þ
2nþ1ðQÞ

¼
X
m�0
ð�1Þm �

�2m

2m!
�Qþ

X
n�0
ð�1Þn �

�2nþ1

ð2nþ 1Þ! � ½T;Q�

¼ cos� �Qþ sin � � ½T ;Q�
¼ �Q

for all Q 2 q. On the other hand, it is clear that

	ðRÞ ¼ exp�adgT ðRÞ ¼ R for any R 2 r

since r ¼ cgðT Þ. These, combined with (i), imply that 	 is an involutive automorphism of

g, and that r ¼ fX 2 g j 	ðXÞ ¼ Xg and q ¼ fY 2 g j 	ðY Þ ¼ �Y g. Consequently, we

have proved Lemma 6.2. �

NOTICE 6.3. If T is the H-element in pseudo-Hermitian symmetric Lie algebra

ðg; rÞ, then �T is also its H-element. Therefore, the H-element has irregularity with

respect to �-sign. We determine the H-element T in ðg; rÞ up to �-sign.

Now, let us illustrate the way of finding the H-element T in simple irreducible

pseudo-Hermitian symmetric Lie algebra ðspð3;RÞ; suð2; 1Þ � t1Þ.

REMARK 6.4. On discussions stated in Subsections 6.1 and 6.2; simple Lie

algebra g, maximal compact subalgebra k of g, compact symmetric pair ðgu; �Þ related
with ðg; kÞ as in the formulae (F1), (F2) and (F3), and so forth are determined by List of

Murakami [12] (read Subsection 4.3).

6.1. ðg; rÞ ¼ ðspð3;RÞ; suð2; 1Þ � t1Þ.
In Subsection 6.1.1, we will give two necessary conditions (N-1.1) and (N-1.2)

for T 2 k to satisfy cgðT Þ ¼ suð2; 1Þ � t1. In order to easily find T 2 k with cgðT Þ ¼
suð2; 1Þ � t1, we will prove Lemmas 6.7 and 6.8 in Subsection 6.1.2. By direct

calculations, we will attempt to find T 2 k with cgðT Þ ¼ suð2; 1Þ � t1 in Subsection

6.1.3. Finally in Subsection 6.1.4, we will demonstrate that element T , found in

Subsection 6.1.3, is the H-element in ðspð3;RÞ; suð2; 1Þ � t1Þ.

NOTICE 6.5. In Subsection 6.1, we assume that

g ¼ spð3;RÞ; gu ¼ spð3Þ; k ¼ suð3Þ � t
1;

fZag3a¼1: the dual basis of f�ag3a¼1 ¼ �4ðspð3;CÞ;�hhÞ:
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6.1.1. Two necessary conditions.

First, we suppose that T 2 k satisfies cgðT Þ ¼ suð2; 1Þ � t1, and we will obtain two

necessary conditions (N-1.1) and (N-1.2). For suð2; 1Þ � t1, one deduces that

suð3Þ � t1 is its compact dual; ð6:1:1Þ
suð2Þ � t2 is its maximal compact subalgebra: ð6:1:2Þ

Since cgðT Þ ¼ suð2; 1Þ � t1, the following is immediate from (6.1.1) and Lemma 3.2-(vi):

cguðT Þ ¼ suð3Þ � t
1: ðN-1.1Þ

On the other hand, Lemma 3.2-(iv) and (6.1.2) imply that

ckðT Þ ¼ suð2Þ � t
2: ðN-1.2Þ

Accordingly, we have got two necessary conditions (N-1.1) and (N-1.2).

REMARK 6.6. Corollary 3.6 implies that these two conditions (N-1.1) and (N-1.2)

are also a sufficient condition for T 2 k to satisfy cgðT Þ ¼ suð2; 1Þ � t1.

6.1.2. Existence zone.

In order to find an element T 2 k with cgðT Þ ¼ suð2; 1Þ � t1, we want to restrict its

existence zone. By the arguments mentioned below, one will be able to expect that an

element T ¼
P3

a¼1 �a � iZa 2 i�hhR � k with ‘‘�1; �2 � 0’’ satisfies cgðT Þ ¼ suð2; 1Þ � t1,

where �hh denotes a Cartan subalgebra of gC ¼ spð3;CÞ. Note that i�hhR is a maximal

abelian subalgebra of gu ¼ spð3Þ and of k ¼ suð3Þ � t1.

In the first place, let us enumerate the set of positive roots in 4ðgu; i�hhRÞ; the set

of simple roots in 4ðkss; kss \ i�hhRÞ (see Notation 2.3 (n5) for kss); and the Dynkin

diagrams of �4ðgu;i�hhRÞ and �4ðk;k\i�hhRÞ (ref. List of Murakami [12, p. 297, type CI]).

4þðgu; i�hhRÞ ¼
�
�i�

�� � 2 4þðspð3;CÞ; �hhÞ�

¼

�i�1; �ið�1 þ �2Þ;
�ið�1 þ 2�2 þ �3Þ; �i�2;

�ið�1 þ �2 þ �3Þ; �ið�2 þ �3Þ;
�ið2�1 þ 2�2 þ �3Þ; �ið2�2 þ �3Þ;
�i�3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

ð6:1:3Þ

�4ðkss; kss\i�hhRÞ ¼
�
�i�1jkss\i�hhR ; �i�2jkss\i�hhR

�
: ð6:1:4Þ
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gu = sp(3):
2

−iα1

2

−iα2

1

−iα3.

k = su(3) ⊕ t1:
−iα1 −iα2

×
.

Here, we recollect Remark 4.1, and refer to Plate III in [4, p. 269].y In the second place,

let us demonstrate the following:

LEMMA 6.7. With the assumptions in Subsection 6.1; for any T 2 k ¼ suð3Þ � t1,

there exists an inner automorphism  of g ¼ spð3;RÞ such that

 ðTssÞ 2W
2
kss

and  ðTzÞ ¼ Tz:

Here Tss (resp. Tz) denotes the kss (resp. kz)-component of T 2 k, and W2
kss

denotes a Weyl

chamber with respect to �4ðkss;kss\i�hhRÞ (see (6.1.4)) defined by

W
2
kss
¼

�
H 0 2 kss \ i�hhR

�� �i�1ðH 0Þ � 0; �i�2ðH 0Þ � 0
�
:

PROOF. Since Tss 2 kss, and since kss is compact semisimple, there exists an

element K0 2 kss such that exp adkssK
0ðTssÞ 2W

2
kss
. Since kss � g, we can define an inner

automorphism  of g by  :¼ exp adgK
0. Then, it is clear that  ðTssÞ 2W2

kss
, and that

 ðTzÞ ¼ Tz because Tz belongs to the center of k. Therefore, we have completed the proof

of Lemma 6.7. �

Lemma 6.7 means that an element T , which we want to find, should exist in the

following set:

�
H ¼ Hss þHz 2 i�hhR

�� �i�1ðHssÞ � 0; �i�2ðHssÞ � 0
�



¼

�
H ¼ Hss þHz 2 i�hhR

�� Hss 2W
2
kss

��
;

ð6:1:5Þ

where Hss (resp. Hz) is the kss (resp. kz)-component of H 2 i�hhR � k. We here note that

kz � i�hhR.
Now, put an element T 2 i�hhR as

P3
a¼1 �a � iZa (�a 2 R). In the third place, we will

research a condition for T ¼
P3

a¼1 �a � iZa 2 i�hhR to belong to the set (6.1.5). We perceive

that

kss ¼ fK 2 k ¼ suð3Þ � t
1 j Bgu

ðK;K00Þ ¼ 0 for all K00 2 kzg ð6:1:6Þ

because Bgu
is negative-definite, k ¼ kss � kz is the direct sum and Bgu

ðkss; kzÞ ¼ f0g. By
use of (6.1.6), we will prove Lemma 6.8.

yErratum: p. 269, line 10 on [4], read ‘‘2�i ¼ 2
P

i�k<l �k þ �l’’ instead of ‘‘2�i ¼
P

i�k<l �k þ �l’’.
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LEMMA 6.8. With the settings in Subsection 6.1; for T ¼
P3

a¼1 �a � iZa 2 i�hhR, it
belongs to the set (6.1.5) if and only if ‘‘�1; �2 � 0.’’

PROOF. We confirm that

kz ¼ spanRfiZ3g ð6:1:7Þ

because k ¼ suð3Þ � t1 is determined by involutive inner automorphism � ¼
exp 2�iadguh3 of gu ¼ spð3Þ (see List of Murakami [12, p. 297, type CI]), h3 2 �hhR is

defined by �aðh3Þ ¼ �3a=2 for �a 2 �4ðspð3;CÞ;�hhÞ ¼ f�ag
3
a¼1, namely h3 ¼ ð1=2Þ � Z3, and

the coefficient of �i�3 with respect to maximal root in4þðgu; i�hhRÞ is one (recall (6.1.3)).
Let us rewrite T ¼

P3
a¼1 �a � iZa as follows:

T ¼
X2
b¼1

�b

�
iZb �

Bgu
ðiZb; iZ3Þ

Bgu
ðiZ3; iZ3Þ

iZ3


þ
�
�3 þ

X2
b¼1

�b
Bgu
ðiZb; iZ3Þ

Bgu
ðiZ3; iZ3Þ


iZ3: ð
Þ

Since iZa 2 i�hhR � k, and since (6.1.6) and (6.1.7), we see that the first term and the

other term of right-hand side in equation (
) are an element of kss and of kz, respectively.

Hence, it follows that T ¼
P3

a¼1 �a � iZa belongs to the set (6.1.5) if and only if

‘‘�1; �2 � 0’’ because fZag3a¼1 is the dual basis of �4ðspð3;CÞ;�hhÞ ¼ f�ag
3
a¼1. For the reasons,

we have obtained the conclusion. �

6.1.3. The way of finding an element T 2 k with cgðT Þ ¼ suð2; 1Þ � t1.

Suppose that T 2 k ¼ suð3Þ � t1 satisfies cgðT Þ ¼ suð2; 1Þ � t1. Then, we confirmed

that it satisfied two conditions (N-1.1) cguðT Þ ¼ suð3Þ � t1 and (N-1.2) ckðT Þ ¼ suð2Þ � t2

(see Subsection 6.1.1). Moreover, we concluded that there existed an inner auto-

morphism of g ¼ spð3;RÞ which mapped T to an element
P3

a¼1 �a � iZa 2 i�hhR with

‘‘�1; �2 � 0’’ (see Subsection 6.1.2). For the reasons, we will search the set
�P3

a¼1 �a �
iZa 2 i�hhR

�� �1; �2 � 0
�

for an element T which satisfies two conditions (N-1.1) and

(N-1.2). The search depends only on direct calculations, but it is not too hard.

Let T be an element
P3

a¼1 �a � iZa 2 i�hhR with ‘‘�1; �2 � 0’’ (recall that fZag3a¼1 is the
dual basis of �4ðspð3;CÞ;�hhÞ ¼ f�ag

3
a¼1). Necessary condition (N-1.2) ckðT Þ ¼ suð2Þ � t2

implies that

either case ‘‘�1 > 0 and �2 ¼ 0’’ or case ‘‘�1 ¼ 0 and �2 > 0’’ only occurs ð6:1:8Þ

because ckðT Þ ¼ t3 (resp. suð3Þ � t1) if �1; �2 > 0 (resp. �1 ¼ �2 ¼ 0)
�
see Dynkin

diagram of k ¼ suð3Þ � t1 on page 1163
�
. It follows from (N-1.1) cguðT Þ ¼ suð3Þ � t1 and

(6.1.8) that

�3 � 0

because cguðT Þ ¼ suð2Þ � t2 if ‘‘�1 > 0, �2 ¼ 0 and �3 > 0,’’ or if ‘‘�1 ¼ 0, �2 > 0 and

�3 > 0’’
�
see Dynkin diagram of gu ¼ spð3Þ on page 1163

�
. Furthermore, we see that
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�3 < 0 ð6:1:9Þ

by virtue of (N-1.1) and (6.1.8). It is natural that cgðT Þ ¼ cgð� � T Þ for any non-zero

scalar � 2 R; and thus, since (6.1.8) and (6.1.9), one may assume that

(I) ‘‘�1 > 0, �2 ¼ 0 and �3 ¼ �1’’ or (II) ‘‘�1 ¼ 0, �2 > 0 and �3 ¼ �1.’’

Case (I) T ¼ ið�1 � Z1 � Z3Þ (�1 > 0): In this case, it is clear that T satisfies the

condition (N-1.2), namely ckðT Þ ¼ suð2Þ � t2.

ck(T ), T = i(λ1 · Z1 − Z3):
−iα2

For any root in 4þðgu; i�hhRÞ (see (6.1.3)), direct calculations give us

�i�1ðT Þ ¼ �1; �ið�1 þ �2ÞðT Þ ¼ �1;
�ið�1 þ 2�2 þ �3ÞðT Þ ¼ �1 � 1; �i�2ðT Þ ¼ 0;

�ið�1 þ �2 þ �3ÞðT Þ ¼ �1 � 1; �ið�2 þ �3ÞðT Þ ¼ �1;
�ið2�1 þ 2�2 þ �3ÞðT Þ ¼ 2�1 � 1; �ið2�2 þ �3ÞðT Þ ¼ �1;

�i�3ðT Þ ¼ �1

ð6:1:10Þ

because T ¼ ið�1 � Z1 � Z3Þ and fZag3a¼1 is the dual basis of f�ag
3
a¼1. This (6.1.10) means

that the set4þðcguðT Þ; i�hhRÞ ¼ f� 2 4þðgu; i�hhRÞ j �ðT Þ ¼ 0g consists of three-elements if

�1 ¼ 1, two-elements if �1 ¼ 1=2, and one-element if �1 6¼ 1; 1=2 (because �1 > 0).

Therefore by necessary condition (N-1.1) cguðT Þ ¼ suð3Þ � t1, we anticipate that �1 ¼ 1.

Suppose that T ¼ iðZ1 � Z3Þ, namely �1 ¼ 1. Then, it is obvious from (6.1.10) that

4þðcguðT Þ; i�hhRÞ ¼
�
� 2 4þðgu; i�hhRÞ

�� �ðT Þ ¼ 0
�

¼
�ið�1 þ 2�2 þ �3Þ; �i�2;

�ið�1 þ �2 þ �3Þ

( )
:

Accordingly, we get �4ðcgu ðT Þ;i�hhRÞ ¼ f�i�2; �ið�1 þ �2 þ �3Þg. Therefore, the Dynkin

diagram of �4ðcgu ðT Þ;i�hhRÞ is as follows:

cgu(T ), T = i(Z1 − Z3):
−iα2 −i(α1 + α2 + α3).

This, together with rk cguðT Þ ¼ rk gu ¼ rk spð3Þ ¼ 3, shows that cguðT Þ ¼ suð3Þ � t1 (cf.

Lemma 3.3-(1)); and so T ¼ iðZ1 � Z3Þ satisfies the condition (N-1.1). Therefore, we

conclude that element T ¼ iðZ1 � Z3Þ 2 i�hhR � k satisfies two conditions (N-1.1) cguðT Þ ¼
suð3Þ � t1 and (N-1.2) ckðT Þ ¼ suð2Þ � t2. Thus by using Corollary 3.6, the centralizer of

T ¼ iðZ1 � Z3Þ in g ¼ spð3;RÞ coincides with suð2; 1Þ � t1. Consequently, we have found
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an elliptic element T ¼ iðZ1 � Z3Þ 2 g with cgðT Þ ¼ suð2; 1Þ � t1.

REMARK 6.9. An element T ¼ iðZ2 � Z3Þ in Case (II) satisfies cgðT Þ ¼
suð2; 1Þ � t1, too. Thereby, we can obtain cgðT Þ ¼ suð2; 1Þ � t1 by using not only

T ¼ iðZ1 � Z3Þ but also T ¼ iðZ2 � Z3Þ (see Cases (I) and (II) on page 1165).

6.1.4. The H-element T ¼ iðZ1 � Z3Þ in ðg; rÞ ¼ ðspð3;RÞ; suð2; 1Þ � t1Þ.
In Subsection 6.1.3, we verified that element T ¼ iðZ1 � Z3Þ 2 i�hhR � k satisfied

cgðT Þ ¼ suð2; 1Þ � t1. In this subsection, we will demonstrate that T ¼ iðZ1 � Z3Þ is the
H-element in ðspð3;RÞ; suð2; 1Þ � t1Þ.

Define 4þ1 ðspð3;CÞ; �hhÞ by

4þ1 ðspð3;CÞ; �hhÞ :¼ f� 2 4þðspð3;CÞ; �hhÞ j �ðT Þ 6¼ 0g:

Then, Lemma 6.2-(ii) allows us to conclude that T ¼ iðZ1 � Z3Þ 2 i�hhR is the H-element

in ðspð3;RÞ; suð2; 1Þ � t1Þ if �ðT Þ ¼ �i for all � 2 4þ1 ðspð3;CÞ; �hhÞ. Therefore, we will

show that �ðT Þ ¼ �i for all � 2 4þ1 ðspð3;CÞ; �hhÞ. It follows from (6.1.3) and T ¼
iðZ1 � Z3Þ that

4þ1 ðspð3;CÞ; �hhÞ ¼
�1; �1 þ �2;

�2 þ �3; 2�1 þ 2�2 þ �3;

2�2 þ �3; �3

8><
>:

9>=
>;

because fZag3a¼1 is the dual basis of f�ag3a¼1 ¼ �4ðspð3;CÞ;�hhÞ. This provides

�ðT Þ ¼ i or �i

for any � 2 4þ1 ðspð3;CÞ; �hhÞ. For the reasons, we have shown that T ¼ iðZ1 � Z3Þ is the
H-element in ðspð3;RÞ; suð2; 1Þ � t1Þ.

Summarizing the statements in Subsection 6.1, we get the following table:

PROPOSITION 6.10.

(g,r) ðspð3;RÞ; suð2; 1Þ � t1Þ
T iðZ1 � Z3Þ

ckðT Þ suð2Þ � t2

cguðT Þ suð3Þ � t1

cgðT Þ suð2; 1Þ � t1

6.2. ðg; rÞ ¼ ðsoð3; 5Þ; soð3; 3Þ � t1Þ.
Let us recall Remark 6.4. We will illustrate the way of finding the H-element T in

simple irreducible pseudo-Hermitian symmetric Lie algebra ðsoð3; 5Þ; soð3; 3Þ � t1Þ. Our

arguments on this subsection are similar to those on Subsection 6.1—that is, we obtain

two necessary conditions (N-2.1) and (N-2.2) for T 2 k to satisfy cgðT Þ ¼ soð3; 3Þ � t1 (in
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Subsection 6.2.1); and show Lemmas 6.12 and 6.13, in order to easily find an element

T 2 k which satisfies (N-2.1) and (N-2.2) (in Subsection 6.2.2). Moreover in Subsection

6.2.3, direct computations enable us to find T 2 k with cgðT Þ ¼ soð3; 3Þ � t1. Lastly in

Subsection 6.2.4, we verify that element T , found in Subsection 6.2.3, is the H-element

in ðsoð3; 5Þ; soð3; 3Þ � t1Þ.

NOTICE 6.11. In Subsection 6.2, we utilize the following settings:

g ¼ soð3; 5Þ; gu ¼ soð8Þ; k ¼ soð3Þ � soð5Þ;

fZjg4j¼1: the dual basis of f�jg4j¼1 ¼ �4ðsoð8;CÞ; �hhÞ:

6.2.1. Two necessary conditions.

Let T be an element of k such that cgðT Þ ¼ soð3; 3Þ � t1. Two necessary conditions

which T should satisfy are as follows:

cguðT Þ ¼ soð6Þ � t
1; ðN-2.1Þ

ckðT Þ ¼ soð3Þ � soð3Þ � t
1 ðN-2.2Þ

(apply arguments on Subsection 6.1.1).

6.2.2. Existence zone.

In order to find an element T 2 k with cgðT Þ ¼ soð3; 3Þ � t1, we want to restrict

its existence zone. By discussions stated below, we will search the set
�
�1 � iZ1 þ �2 �

iZ2 þ �3 � iðZ3 þ Z4Þ 2 k \ i�hhR
�� �1; ð�2 þ �3Þ; �3 � 0

�
for an element T which satisfies

two conditions (N-2.1) and (N-2.2), in Subsection 6.2.3.

First, let us notice that k ¼ soð3Þ � soð5Þ is determined by an involution � ¼
�2 	 exp 2�iadsoð8Þh2 of gu ¼ soð8Þ (cf. List of type DI in the paper [12] on page 305;

Remark 4.7). Here, �2 is defined in Lemma 4.4 and h2 2 �hhR is defined by �jðh2Þ ¼ �2j=2
for �j 2 �4ðsoð8;CÞ;�hhÞ ¼ f�jg

4
j¼1. Lemma 4.4 means that

k \ i�hhR ¼ spanR
�
iZ1; iZ2; iðZ3 þ Z4Þ

�
ð6:2:1Þ

because � ¼ �2 on i�hhR.

Now, let us enumerate the set of positive roots in 4ðgu; i�hhRÞ, the set of

simple roots in 4ðk; k \ i�hhRÞ, and their Dynkin diagrams (cf. List of Murakami

[12, p. 305, type DI]).
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4þðgu; i�hhRÞ ¼
�
� i�

�� � 2 4þðsoð8;CÞ; �hhÞ�

¼

�ið�1 þ �2Þ; �ið�1 þ �2 þ �3Þ; �ið�2 þ �3Þ;
�i�3; �ið�1 þ 2�2 þ �3 þ �4Þ; �i�1;

�ið�1 þ �2 þ �3 þ �4Þ; �i�2; �ið�1 þ �2 þ �4Þ;
�ið�2 þ �3 þ �4Þ; �ið�2 þ �4Þ; �i�4

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð6:2:2Þ

�4ðk; k\i�hhRÞ ¼ f�i~��1; �i~��3; �ið~��2 þ ~��3Þg; ð6:2:3Þ

where �i~��b :¼ �i�bjk\i�hhR for �i�b 2 4ðgu; i�hhRÞ (1 � b � 3). Here, recall Remark 4.1, and

see Plate IV in [4, p. 271].z

gu = so(8):
−iα1 −iα2 −iα4.

−iα3

k = so(3) ⊕ so(5):
−iα̃1 −i(α̃2 + α̃3) −iα̃3.

Let fiT1; iT2; iT3g be the dual basis of �4ðk;k\i�hhRÞ ¼ f�i~��1;�i~��3;�ið~��2 þ ~��3Þg. Then, it
follows from (6.2.1) that

iT1 ¼ iZ1;

iT2 ¼ ið�Z2 þ Z3 þ Z4Þ;
iT3 ¼ iZ2

8><
>: ð6:2:4Þ

because fZjg4j¼1 is the dual basis of �4ðsoð8;CÞ;�hhÞ ¼ f�jg
4
j¼1.

Next, we give the following:

LEMMA 6.12. With the assumptions in Subsection 6.2; let W3
k be a Weyl chamber

with respect to �4ðk;k\i�hhRÞ (see (6.2.3)) defined by

W
3
k ¼

H 2 k \ i�hhR �i~��1ðHÞ � 0; �i~��3ðHÞ � 0;

�ið~��2 þ ~��3ÞðHÞ � 0

( )
:

For any element of k ¼ soð3Þ � soð5Þ, there exists an inner automorphism of g ¼ soð3; 5Þ
which maps it into W3

k .

PROOF. Refer to the proof of Lemma 6.7. �

zErratum: p. 271, line 8 on [4], read ‘‘�i � �j ¼
P

i�k<l �k’’ instead of ‘‘�i � �j ¼
P

i<k<l �k’’.
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For any element �1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ of k \ i�hhR (see (6.2.1)), we

comprehend

�1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ
¼ �1 � iT1 þ �3 � iT2 þ ð�2 þ �3Þ � iT3

ð6:2:5Þ

by virtue of (6.2.4). Since (6.2.5), and since fiTbg3b¼1 is the dual basis of �4ðk;k\i�hhRÞ, we

obtain Lemma 6.13.

LEMMA 6.13. In the settings in Subsection 6.2; for an element �1 � iZ1 þ �2 � iZ2 þ
�3 � iðZ3 þ Z4Þ of k \ i�hhR, it belongs to W

3
k if and only if ‘‘�1; ð�2 þ �3Þ; �3 � 0.’’ Here,W3

k is

defined in Lemma 6.12.

6.2.3. The way of finding an element T 2 k with cgðT Þ ¼ soð3; 3Þ � t1.

Let T be an element of k such that cgðT Þ ¼ soð3; 3Þ � t1. Then, it satisfies two

necessary conditions (N-2.1) and (N-2.2) (see Subsection 6.2.1). On the other hand,

each element of k can be mapped into W
3
k (recall Lemma 6.12). Therefore, we are

going to search the set of elements �1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ 2 k \ i�hhR with

‘‘�1; ð�2 þ �3Þ; �3 � 0’’ for an element T which satisfies two conditions (N-2.1) and (N-2.2)

(see Lemma 6.13).

REMARK 6.14. Suppose that T 2 k satisfies two necessary conditions (N-2.1)

cguðT Þ ¼ soð6Þ � t1 and (N-2.2) ckðT Þ ¼ soð3Þ � soð3Þ � t1. Then, Corollary 3.6 implies

that cgðT Þ ¼ soð3; 3Þ � t1. Consequently, two conditions (N-2.1) and (N-2.2) become a

sufficient condition for T 2 k to satisfy cgðT Þ ¼ soð3; 3Þ � t1.

Let T ¼ �1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ be an element of k \ i�hhR with

‘‘�1; ð�2 þ �3Þ; �3 � 0.’’ Taking Dynkin diagram of k into consideration
�
see Dynkin

diagram of k ¼ soð3Þ � soð5Þ on page 1168
�
, we perceive that

4þðk; k \ i�hhRÞ ¼
�i~��3; �ið~��1 þ ~��2 þ ~��3Þ;
�i~��1; �ið~��1 þ 2ð~��2 þ ~��3ÞÞ;
�ið~��2 þ ~��3Þ

8><
>:

9>=
>;:

Thus, for all roots in 4þðk; k \ i�hhRÞ, direct computations tell us

�i~��3ðT Þ ¼ �3;
�ið~��1 þ ~��2 þ ~��3ÞðT Þ ¼ �1 þ �2 þ �3;

�i~��1ðT Þ ¼ �1;
�i

�
~��1 þ 2ð~��2 þ ~��3Þ

�
ðT Þ ¼ �1 þ 2�2 þ 2�3;

�ið~��2 þ ~��3ÞðT Þ ¼ �2 þ �3

ð6:2:6Þ

because �i~��b ¼ �i�bjk\i�hhR (1 � b � 3), T ¼ �1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ 2 k \ i�hhR
and fZjg4j¼1 is the dual basis of �4ðsoð8;CÞ;�hhÞ ¼ f�jg

4
j¼1. Let us suppose that ð�2 þ �3Þ > 0.
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Then, both �1 and �3 must be zero because of �1; �3 � 0, (6.2.6) and the necessary

condition (N-2.2) ckðT Þ ¼ soð3Þ � soð3Þ � t1. Hence T ¼ �1 � iZ1 þ �2 � iZ2 þ �3� iðZ3 þ
Z4Þ ¼ �2 � iZ2; and therefore cguðT Þ ¼ soð4Þ � suð2Þ � t1 (see Dynkin diagram of gu ¼
soð8Þ on page 1168). Consequently, the necessary condition (N-2.1) cguðT Þ ¼ soð6Þ � t1

can not hold if ð�2 þ �3Þ > 0. For the reasons, we will consider the case ð�2 þ �3Þ ¼ 0

from now on. It is immediate from ð�2 þ �3Þ ¼ 0 and (6.2.6) that

�i~��3ðT Þ ¼ �3;
�ið~��1 þ ~��2 þ ~��3ÞðT Þ ¼ �1;

�i~��1ðT Þ ¼ �1;
�i

�
~��1 þ 2ð~��2 þ ~��3Þ

�
ðT Þ ¼ �1;

�ið~��2 þ ~��3ÞðT Þ ¼ 0:

ð6:2:7Þ

Therefore, we conclude that �1 > 0 and �3 ¼ 0 by the necessary condition (N-2.2)

ckðT Þ ¼ soð3Þ � soð3Þ � t1. Indeed, the other cases can not satisfy the necessary

condition (N-2.2) because ckðT Þ ¼ soð3Þ � soð5Þ if �1 ¼ �3 ¼ 0; ckðT Þ ¼ soð5Þ � t1 if �1 ¼
0 and �3 > 0; and ckðT Þ ¼ soð3Þ � t2 if �1; �3 > 0. Accordingly, it follows from �1 >

0; ð�2 þ �3Þ ¼ �3 ¼ 0 that T ¼ �1 � iZ1 þ �2 � iZ2 þ �3 � iðZ3 þ Z4Þ ¼ �1 � iZ1 with �1 > 0.

This element T ¼ �1 � iZ1 2 k (�1 > 0) satisfies two conditions (N-2.1) cguðT Þ ¼ soð6Þ � t1

and (N-2.2) ckðT Þ ¼ soð3Þ � soð3Þ � t1.

cgu(T ), T = ν1 · iZ1: −iα2 −iα4.

−iα3

ck(T ), T = ν1 · iZ1:
−i(α̃2 + α̃3) −iα̃3.

Consequently, Remark 6.14 implies that T ¼ �1 � iZ1 (�1 > 0) satisfies cgðT Þ ¼
soð3; 3Þ � t1. Thus, we have found an elliptic element T ¼ �1 � iZ1 of g ¼ soð3; 5Þ
satisfying cgðT Þ ¼ soð3; 3Þ � t1.

6.2.4. The H-element T ¼ iZ1 in ðg; rÞ ¼ ðsoð3; 5Þ; soð3; 3Þ � t1Þ.
In Subsection 6.2.3, we got an element T ¼ �1 � iZ1 2 k \ i�hhR with cgðT Þ ¼ soð3; 3Þ �

t1 (�1 > 0). In this subsection, we will verify that T ¼ iZ1 is the H-element in

ðsoð3; 5Þ; soð3; 3Þ � t1Þ.
Define 4þ1 ðsoð8;CÞ; �hhÞ by

4þ1 ðsoð8;CÞ; �hhÞ :¼
�
� 2 4þðsoð8;CÞ; �hhÞ

�� �ðT Þ 6¼ 0
�
:

Then, Lemma 6.2-(ii) means that T ¼ iZ1 2 i�hhR is the H-element in ðsoð3; 5Þ; soð3; 3Þ �
t1Þ if �ðT Þ ¼ �i for every � 2 4þ1 ðsoð8;CÞ; �hhÞ. Hence, the rest of our arguments are

devoted to showing that �ðT Þ ¼ �i for every � 2 4þ1 ðsoð8;CÞ; �hhÞ. Since (6.2.2) and

T ¼ iZ1, we have
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4þ1 ðsoð8;CÞ; �hhÞ ¼
�1 þ �2; �1 þ �2 þ �3;

�1 þ 2�2 þ �3 þ �4; �1;

�1 þ �2 þ �3 þ �4; �1 þ �2 þ �4

8><
>:

9>=
>;;

and thus

�ðT Þ ¼ i for all � 2 4þ1 ðsoð8;CÞ; �hhÞ

because fZjg4j¼1 is the dual basis of �4ðsoð8;CÞ;�hhÞ ¼ f�jg
4
j¼1. Consequently, T ¼ iZ1 is the

H-element in ðsoð3; 5Þ; soð3; 3Þ � t1Þ.
Summarizing the statements in Subsection 6.2, we obtain the following table:

PROPOSITION 6.15.

ðg; rÞ ðsoð3; 5Þ; soð3; 3Þ � t1Þ
T iZ1

ckðT Þ soð3Þ � soð3Þ � t1

cguðT Þ soð6Þ � t1

cgðT Þ soð3; 3Þ � t1

6.3. Results.

In Subsections 6.1 and 6.2, we have discussed the way of finding the H-elements T

in two simple irreducible pseudo-Hermitian symmetric Lie algebras ðg; rÞ. The way gives

us the following Table I which exhausts all simple irreducible pseudo-Hermitian

symmetric Lie algebras:

THEOREM 6.16.

Table I.

1 ðg; rÞ
�
su
ð2lÞ; slðl;CÞ � t1

�
: l � 2

T iZl

ckðT Þ suðlÞ � t1

cguðT Þ suðlÞ � suðlÞ � t1

cgðT Þ slðl;CÞ � t1

2 ðg; rÞ
�
slð2l;RÞ; slðl;CÞ � t1

�
: l � 2

T iZl

ckðT Þ suðlÞ � t1

cguðT Þ suðlÞ � suðlÞ � t1

cgðT Þ slðl;CÞ � t1
1

Continued on the next page.
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Continued.

3x ðg; rÞ
�
suðlþ 1� j; jÞ; suðm; kÞ � suðlþ 1� j�m; j� kÞ � t1

�
:

l � 3, 1 � j � ½l�12 � þ 1, 1 � k � ½j�22 � þ 1, 1 � m � ½l�j�12 � þ 1

T iðZk � Zj þ ZjþmÞ
ckðT Þ suðkÞ � suðj� kÞ � suðmÞ � suðlþ 1� j�mÞ � t3

cguðT Þ suðmþ kÞ � suðlþ 1�m� kÞ � t1

cgðT Þ suðm; kÞ � suðlþ 1� j�m; j� kÞ � t1

4 ðg; rÞ
�
suðlþ 1� j; jÞ; suðj� kÞ � suðlþ 1� j; kÞ � t1

�
:

l � 3, 1 � j � ½l�12 � þ 1, 1 � k � j� 1

T iðZk � ZjÞ
ckðT Þ suðj� kÞ � suðkÞ � suðlþ 1� jÞ � t2

cguðT Þ suðj� kÞ � suðlþ 1þ k� jÞ � t1

cgðT Þ suðj� kÞ � suðlþ 1� j; kÞ � t1

5 ðg; rÞ
�
suðlþ 1� j; jÞ; suðmÞ � suðlþ 1�m� j; jÞ � t1

�
:

l � 2, 1 � j � ½l�12 � þ 1, 1 � m � l� j
T iðZj � ZjþmÞ

ckðT Þ suðmÞ � suðjÞ � suðlþ 1�m� jÞ � t2

cguðT Þ suðmÞ � suðlþ 1�mÞ � t1

cgðT Þ suðmÞ � suðlþ 1�m� j; jÞ � t1

6 ðg; rÞ
�
suðlþ 1� j; jÞ; suðjÞ � suðlþ 1� jÞ � t1

�
:

l � 1, 1 � j � ½l�12 � þ 1

T iZj

ckðT Þ suðjÞ � suðlþ 1� jÞ � t1

cguðT Þ suðjÞ � suðlþ 1� jÞ � t1

cgðT Þ suðjÞ � suðlþ 1� jÞ � t1

7 ðg; rÞ
�
spðl� j; jÞ; suðl� j; jÞ � t1

�
: l � 3, 1 � j � ½l�12 � þ 1

T iðZj � ZlÞ
ckðT Þ suðjÞ � suðl� jÞ � t2

cguðT Þ suðlÞ � t1

cgðT Þ suðl� j; jÞ � t1

8 ðg; rÞ
�
spðl;RÞ; suðl� k; kÞ � t1

�
: l � 3, 1 � k � ½l�22 � þ 1

T iðZk � ZlÞ
ckðT Þ suðkÞ � suðl� kÞ � t2

cguðT Þ suðlÞ � t1

cgðT Þ suðl� k; kÞ � t1

Continued on the next page.

xErratum: p. 297, line 4 on [12], read ‘‘Ai�1 � Al�i � T ’’ instead of ‘‘Ai � Al�i�1 � T ’’.
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Continued.

9 ðg; rÞ
�
spðl;RÞ; suðlÞ � t1

�
: l � 3

T iZl

ckðT Þ suðlÞ � t1

cguðT Þ suðlÞ � t1

cgðT Þ suðlÞ � t1

10 ðg; rÞ
�
soð2lþ 1� 2j; 2jÞ; soð2lþ 1� 2j; 2j� 2Þ � t1

�
:

l � 2, 1 � j � l
T iðZj�1 � ZjÞ where Z0 :¼ 0

ckðT Þ soð2j� 2Þ � soð2l� 2jþ 1Þ � t1

cguðT Þ soð2l� 1Þ � t1

cgðT Þ soð2lþ 1� 2j; 2j� 2Þ � t1

11 ðg; rÞ
�
soð2l� 2jþ 1; 2jÞ; soð2l� 2j� 1; 2jÞ � t1

�
: l � 2, 1 � j � l� 1

T iðZj � Zjþ1Þ
ckðT Þ soð2jÞ � soð2l� 2j� 1Þ � t1

cguðT Þ soð2l� 1Þ � t1

cgðT Þ soð2l� 1� 2j; 2jÞ � t1

12 ðg; rÞ
�
soð2l� 2j; 2jÞ; soð2l� 2j; 2j� 2Þ � t1

�
: l � 4, 1 � j � ½ l2�

T iðZj�1 � ZjÞ where Z0 :¼ 0

ckðT Þ soð2j� 2Þ � soð2l� 2jÞ � t1

cguðT Þ soð2l� 2Þ � t1

cgðT Þ soð2l� 2j; 2j� 2Þ � t1

13 ðg; rÞ
�
soð2l� 2j; 2jÞ; soð2l� 2j� 2; 2jÞ � t1

�
: l � 4, 1 � j � ½ l2�

T iðZj � Zjþ1Þ
ckðT Þ soð2jÞ � soð2l� 2j� 2Þ � t1

cguðT Þ soð2l� 2Þ � t1

cgðT Þ soð2l� 2j� 2; 2jÞ � t1

14 ðg; rÞ
�
soð2l� 2j� 1; 2jþ 1Þ; soð2l� 2j� 1; 2j� 1Þ � t1

�
:

l � 4, 1 � j � ½ l2�
T iZ1

ckðT Þ soð2j� 1Þ � soð2l� 2j� 1Þ � t1

cguðT Þ soð2l� 2Þ � t1

cgðT Þ soð2l� 2j� 1; 2j� 1Þ � t1

15 ðg; rÞ
�
soð2l� 2j� 1; 2jþ 1Þ; soð2l� 2j� 3; 2jþ 1Þ � t1

�
:

l � 4, 0 � j � minfl� 3; ½ l2�g
T iðZj � Zjþ1Þ where Z0 :¼ 0

ckðT Þ soð2jþ 1Þ � soð2l� 2j� 3Þ � t1

cguðT Þ soð2l� 2Þ � t1

cgðT Þ soð2l� 2j� 3; 2jþ 1Þ � t1

Continued on the next page.
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Continued.

16 ðg; rÞ
�
soð2l� 2j; 2jÞ; suðl� j; jÞ � t1

�
: l � 4, 1 � j � ½ l2�

T iðZj � ZlÞ
ckðT Þ suðjÞ � suðl� jÞ � t2

cguðT Þ suðlÞ � t1

cgðT Þ suðl� j; jÞ � t1

17 ðg; rÞ
�
so
ð2lÞ; suðl� k; kÞ � t1

�
: l � 4, 1 � k � ½l�22 � þ 1

T iðZk � ZlÞ
ckðT Þ suðkÞ � suðl� kÞ � t2

cguðT Þ suðlÞ � t1

cgðT Þ suðl� k; kÞ � t1

18 ðg; rÞ
�
so
ð2lÞ; suðlÞ � t1

�
: l � 4

T iZl

ckðT Þ suðlÞ � t1

cguðT Þ suðlÞ � t1

cgðT Þ suðlÞ � t1

19 ðg; rÞ
�
so
ð2lÞ; so
ð2l� 2Þ � t1

�
: l � 4

T iZ1

ckðT Þ suðl� 1Þ � t2

cguðT Þ soð2l� 2Þ � t1

cgðT Þ so
ð2l� 2Þ � t1

20 ðg; rÞ
�
e6ð2Þ; so


ð10Þ � t1
�

T iðZ1 � Z3Þ
ckðT Þ suð5Þ � t2

cguðT Þ soð10Þ � t1

cgðT Þ so
ð10Þ � t1

21 ðg; rÞ
�
e6ð2Þ; soð6; 4Þ � t1

�
T iðZ2 � Z3Þ

ckðT Þ soð6Þ � soð4Þ � t1

cguðT Þ soð10Þ � t1

cgðT Þ soð6; 4Þ � t1

22 ðg; rÞ
�
e6ð�14Þ; soð8; 2Þ � t1

�
T iZ6

ckðT Þ soð8Þ � t2

cguðT Þ soð10Þ � t1

cgðT Þ soð8; 2Þ � t1

Continued on the next page.
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Continued.

23 ðg; rÞ
�
e6ð�14Þ; soð10Þ � t1

�
T iZ1

ckðT Þ soð10Þ � t1

cguðT Þ soð10Þ � t1

cgðT Þ soð10Þ � t1

24 ðg; rÞ
�
e6ð�14Þ; so


ð10Þ � t1
�

T iðZ1 � Z3Þ
ckðT Þ suð5Þ � t2

cguðT Þ soð10Þ � t1

cgðT Þ so
ð10Þ � t1

25 ðg; rÞ
�
e7ð�5Þ; e6ð2Þ � t1

�
T iðZ1 � Z2Þ

ckðT Þ suð6Þ � suð2Þ � t1

cguðT Þ e6 � t1

cgðT Þ e6ð2Þ � t1

26 ðg; rÞ
�
e7ð�5Þ; e6ð�14Þ � t1

�
T iðZ1 � Z7Þ

ckðT Þ soð10Þ � t2

cguðT Þ e6 � t1

cgðT Þ e6ð�14Þ � t1

27 ðg; rÞ
�
e7ð7Þ; e6ð2Þ � t1

�
T iðZ2 � Z6Þ

ckðT Þ suð6Þ � suð2Þ � t1

cguðT Þ e6 � t1

cgðT Þ e6ð2Þ � t1

28 ðg; rÞ
�
e7ð�25Þ; e6 � t1

�
T iZ7

ckðT Þ e6 � t1

cguðT Þ e6 � t1

cgðT Þ e6 � t1

29 ðg; rÞ
�
e7ð�25Þ; e6ð�14Þ � t1

�
T iðZ6 � Z7Þ

ckðT Þ soð10Þ � t2

cguðT Þ e6 � t1

cgðT Þ e6ð�14Þ � t1
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REMARK 6.17. Let us comment on the above table of pseudo-Hermitian sym-

metric Lie algebra ðg; rÞ ¼ ðg; cgðT ÞÞ.

(i) All simple irreducible pseudo-Hermitian symmetric Lie algebras in Table I are

taken from Berger’s classification of (affine) symmetric spaces (cf. Berger [1]).

(ii) The H-element T in ðg; rÞ has irregularity with respect to �-sign (cf. Notice 6.3).

(iii) g, k and gu are determined by two Lists of Murakami [12, p. 297 and p. 305] (read

Subsection 4.3). However, we utilize Dynkin diagrams given in the book of

Bourbaki [4] (recall Notice 4.8).

(iv) fZaga denotes the dual basis of f�aga whose Dynkin diagram given in Bourbaki

[4], where f�aga is the set of simple roots, and where the type of Dynkin diagram is

determined by that of gC .

(v) Denote by 	 an inner automorphism exp �adgT of g. Then 	 is an involutive

automorphism of g such that r ¼ fX 2 g j 	ðXÞ ¼ Xg (cf. Lemma 6.2). In

particular, 	 is commutative with a Cartan involution ~�� of g defined in Subsection

3.1, because T 2 k and 	 ¼ exp�adgT .

(vi) Let g ¼ r� q be the canonical decomposition of symmetric pair ðg; 	Þ. Define a

linear transformation I of q and a skew-symmetric form ! on q by I :¼ adgT jq and
by !ðX; Y Þ :¼ BgðT ; ½X; Y �Þ for X; Y 2 q, respectively. Then I is an adgr-invariant

complex structure of q, and ! is an adgr-invariant symplectic form on q. Moreover,

! is I-invariant.

(vii) Pair gu with cguðT Þ. Then, pairs ðgu; cguðT ÞÞ exhaust all simple Hermitian

symmetric Lie algebras of compact type, and pairs ðgCu ; cgCu ðT ÞÞ ¼ ðg
C
u ; ðcguðT ÞÞ

CÞ
exhaust all simple reducible pseudo-Hermitian symmetric Lie algebras. Moreover,

T is the H-element in ðgu; cguðT ÞÞ and in ðgCu ; cgCu ðT ÞÞ.
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[ 2 ] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos,

Comment. Math. Helv., 23 (1949), 200–221.

[ 3 ] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80

(1958), 458–538.

[ 4 ] N. Bourbaki, ‘‘Lie groups and Lie algebras, Chapters 4–6’’, (originally published as ‘‘Groupes et algèbres
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