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Abstract. The first half of this paper (Section 1) deals with the structure of the

twisted homology group associated to the Wirtinger integral. A basis of the first

homology group is given, and the vanishing of the homology groups of the other

dimensions is proved. The second half (Section 2) deals with the structure of the twisted

cohomology groups associated to the Wirtinger integral. The isomorphism between the

twisted cohomology groups and the cohomology groups associated to a certain

subcomplex of the de Rham complex is established, and a basis of the first cohomology

group of this subcomplex (therefore, of the first twisted cohomology group) is given. The

vanishing of the cohomology groups of the other dimensions is also proved.

Introduction.

In his paper [16], Wirtinger showed, 1902, that the composite function

F ð�; �; �; �ð�ÞÞ of the Gauss hypergeometric function F ð�; �; �; zÞ and the lambda

function

z ¼ �ð�Þ ¼
�1ð0; �Þ4

�3ð0; �Þ4

has the following integral representation

F ð�; �; �; �ð�ÞÞ ¼
2�� ð�Þ

�ð�Þ�ð� � �Þ �1ð0; �Þ
2�2��2ð0; �Þ2��2��2��3ð0; �Þ2�þ2�

�
Z 1

2

0

�ðu; �Þ2��1�1ðu; �Þ2��2��1�2ðu; �Þ2��2�þ1�3ðu; �Þ�2�þ1du:

(In this paper we follow Chandrasekharan’s notation for theta functions. See ‘‘Notation

for theta functions’’ below.) The right-hand side, regarded as a function of � , is single-

valued and holomorphic on the upper-half plane H, and we proposed in our paper [15]

to call itWirtinger integral. This integral representation was forgotten for a long while in

the study on hypergeometric functions, whereas we have recently given in [15] a new

derivation of the connection formulas for the Gauss hypergeometric function by
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exploiting the Wirtinger integral and Jacobi’s imaginary transformations for theta

functions. Our result suggests a possibility to reconstruct the theory of the Gauss

hypergeometric function on the basis of the Wirtinger integral and theta functions, and

to generalize the theory of the Gauss hypergeometric function from the viewpoint of the

Wirtinger integral. We can also give an intrinsic definition of the Wirtinger integral

with the aide of the twisted de Rham theory. Such a treatment was given first by Aomoto

[1] in the case of hypergeometric functions in several variables arising from hyperplane

configurations of a complex projective space. Using the notation introduced in Section 1,

we have a natural non-degenerate bilinear form of the twisted homology and cohomology

groups H1ðM; �LL Þ �H1ðM;L Þ ! C by which the image of any pair ð	; ’Þ 2
H1ðM; �LL Þ �H1ðM;L Þ, where we can regard ’ as a holomorphic 1-form defined on

M, is expressed as
R
	 T ðuÞ’ 2 C . Every image contains the parameter � , and is regarded

as a single-valued holomorphic function defined on H, which we also call Wirtinger

integral. Therefore the computations of the twisted homology and cohomology groups

are basic tasks for studying the properties of the Wirtinger integral further. The

computation of the twisted (co)homology groups consists of the proof of the vanishing of

the groups of various dimensions, and of the construction of a basis of a non-vanishing

group. Thanks to the duality of the homology and cohomology, the vanishings of the

homology and cohomology groups of a same dimension are concluded simultaneously if

the vanishing of either the homology group or the cohomology group is proved.

Aomoto [1] studied the vanishing of cohomology groups of a complex projective

space minus a divisor with coefficients in a local system of arbitrary rank. He also

studied in [2] the vanishing of cohomology groups of a compact Kähler manifold minus a

certain cycle of real codimension two with coefficients in a local system of rank one with

the aide of the Morse theory. The vanishing of cohomology groups is discussed also in

Aomoto [3] and [4]. Kita and Noumi [13] (see also Kita [12]) generalized the results in

Aomoto [1] to the case of a complex projective space minus a divisor of more general

class than Aomoto’s with coefficients in a local system of arbitrary rank. A basis of

a non-vanishing homology group on a complex projective space minus hyperplanes

with local system coefficients was given by Kita [10] and [11] (see also Aomoto [2] and

Orlik-Terao [14], Chapter 6). Deligne [7] (especially Corollaire 6.11) established the

isomorphism between the cohomology groups with local system coefficients and the

cohomology groups associated to the logarithmic complex of an affine variety minus a

divisor. Aomoto [1], [3], [4] obtained some results about the structure of a non-vanishing

cohomology group of a complex projective space minus a divisor with local system

coefficients. Kita and Noumi [13] (see also Kita [12]) established the isomorphism

between the cohomology groups with coefficients in a local system of arbitrary rank and

the cohomology groups associated to the vector-valued logarithmic complex of a

complex projective space minus a divisor, and Kita [12] constructed explicitly a basis of

a non-vanishing cohomology group of a complex projective space minus hyperplanes

associated to the logarithmic complex in the case where the rank of the local system is

one. One can find a detailed account about the results mentioned above also from

Aomoto-Kita’s book [5].

The purpose of this paper is to develop an analogous theory of homology and

cohomology of the complex torus C=� minus the four points 0; 12 ;
�
2 ;

1þ�
2 (where �
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denotes the lattice generated by 1 and �) with coefficients in the local system (and its

dual) defined by the power product of theta functions T ðuÞ associated to the integrand of

the Wirtinger integral. In Section 1 we give a computation (including the construction of

a basis) of the twisted homology groups H�ðM; �LL Þ of M ¼ C=� � f0; 12 ; �2 ; 1þ�2 g with

coefficients in the local system �LL defined by T ðuÞ by exploiting the Mayer-Vietoris

exact sequence (Theorem 1). In Section 2, to investigate the structure of the twisted

cohomology groups H�ðM;L Þ, we first show the vanishing of the groups H0ðM;L Þ and
H2ðM;L Þ. Next, we establish the isomorphism between the group H1ðM;L Þ and the

first de Rham cohomology group H1
DRð��ð�DÞ;rÞ of the de Rham complex ��ð�DÞ of

differential forms meromorphic on C=� and holomorphic on M. Although this

isomorphism has been already established algebro-geometrically by Deligne [7], we

give here a complex-analytical proof by Mittag-Leffler’s theorem (Lemma 2.2). Our

proof leads us to introduce a subcomplex of ��ð�DÞ consisting of differential forms ’

with ordpð’Þ � �ordpðDÞ for p 2 C=� , where D denotes the effective divisor D ¼
2½0� þ ½12� þ ½�2� þ ½1þ�2 � of degree 5 (for the notation, see [8]). Then we establish the

isomorphism between the cohomology group H1
DRð��ð�DÞ;rÞ (and therefore H1ðM;L Þ)

and the first cohomology group of the preceding subcomplex of ��ð�DÞ, and give a basis

of the latter cohomology group, which makes clear the structure of the group H1ðM;L Þ
(Theorem 2). Our result tells us that a 1-form having a pole (or poles) of degree more

than one is indispensable to giving a basis of the group H1ðM;L Þ. This situation is

different from the situation in the case of the cohomology of a complex projective space

minus hyperplanes considered by Kita and Noumi ([13], [12]). Finally, we refer to the

recent work of Ito [18] briefly. He studied there the twisted homology and cohomology

of C=� minus movable four points with coefficients in a local system arising from

the configuration space of (essentially) two points of C=� . His local system is of

different kind from ours. Consequently, he obtained from the pairing of the homology

and cohomology the integral representations which are functions defined on the

configuration space.

ACKNOWLEDGEMENTS. The author would like to thank K. Iohara and K. Ito for

illuminating discussion. The author would like to thank also Professors K. Matsumoto,

M. Yoshida and the referee for giving him valuable comments on the manuscript of this

paper.

NOTATION FOR THETA FUNCTIONS. In this paper we adopt Chandrasekharan’s

notation for theta functions ([6]): �ðu; �Þ, �1ðu; �Þ, �2ðu; �Þ and �3ðu; �Þ. The relations

between his theta functions and the theta functions �ijðu; �Þ (i; j ¼ 0; 1) in Mumford’s

notation ([19]) are as follows: �ðu; �Þ ¼ ��11ðu; �Þ, �1ðu; �Þ ¼ �10ðu; �Þ, �2ðu; �Þ ¼
�01ðu; �Þ, �3ðu; �Þ ¼ �00ðu; �Þ. The zeros of �ðu; �Þ, �1ðu; �Þ, �2ðu; �Þ, �3ðu; �Þ are congruent
to u ¼ 0, u ¼ 1

2, u ¼ �
2, u ¼ 1þ�

2 modulo � , respectively.

1. Twisted homology groups.

Let � 2 C be such that Imð�Þ > 0. We set � ¼ Z þ Z� , D ¼ f0; 12 ; �2 ; 1þ�2 g, and

M ¼ C=� �D, where Z denotes the additive group of integers, and C the additive

group of complex numbers. Let p; q; r; s be complex numbers satisfying pþ q þ rþ s ¼ 0.
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Throughout this paper we assume that p; q; r; s are not integers, and that the sum

and the difference of any two of them are not integers either. If we set T ðuÞ ¼
�ðuÞp�1ðuÞq�2ðuÞr�3ðuÞs, where �iðuÞ means �iðu; �Þ, then we have T ðuþ 1Þ ¼
e�ðpþqÞ�iT ðuÞ and T ðuþ �Þ ¼ eðpþrÞ�iT ðuÞ. We set ! ¼ dðlogT ðuÞÞ. We define a con-

nection r by r’ ¼ d’þ ! ^ ’. Then we have rr ¼ 0 and rð1Þ ¼ !. Let L and �LL be

the local systems on M defined by T ðuÞ�1 and T ðuÞ, respectively: L ¼ CT ðuÞ�1 and
�LL ¼ CT ðuÞ. They are dual to each other. In this section we compute the twisted

homology groups H�ðM; �LL Þ. Let us consider the following two-dimensional complex

K1 and one-dimensional complex K2:

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

K1 γ

α

β

γ δ ε γ

β

α

γεδ

ζ µ

νρ

�
�

�
�

�
�

���
�

�
�

�
�

��
K2 ρ

ζ µ

ν

σ

�0

�

1
2

�1+τ
2

�

τ
2

In the figure for K1, let the 1-chains h�; 
i þ h
; "i þ h"; �i and h�; �i þ h�; �i þ h�; �i in
K1 be homologous to the 1-chains defined by the periods 1 and � of the torus C=� ,

respectively, and let no 2-chain be contained inside the square ���� of K1. In the figure

for K2, we added the four points 0; 12 ;
�
2 ;

1þ�
2 to the complex K2 to indicate the

configuration of chains of K2. These points are not 0-chains of K2. We set K ¼ K1 [K2

and K0 ¼ K1 \K2. Since the complex K is homotopically equivalent to the real surface

M, the group H�ðM; �LL Þ is isomorphic to H�ðK; �LL Þ. In order to compute H�ðK; �LL Þ, we
need the homology groups of the three subcomplexes K0; K1; K2. Since pþ q þ rþ s ¼ 0,

the complex K0 is homotopically equivalent to the circle S1, from which we have

immediately

LEMMA 1.1. H2ðK0; �LL Þ ¼ 0, H1ðK0; �LL Þ ¼� C , H0ðK0; �LL Þ ¼� C .

For the complex K1, we have

LEMMA 1.2. H2ðK1; �LL Þ ¼ 0, H1ðK1; �LL Þ ¼� C , H0ðK1; �LL Þ ¼ 0.

PROOF. Since there is no non-zero element c 2 C2ðK1; �LL Þ such that @c ¼ 0, we

have Z2ðK1; �LL Þ ¼ 0, that is, H2ðK1; �LL Þ ¼ 0. We see that two 1-chains h�; �i þ h�; i þ
h; �i þ h�; �i and h�; 
i þ h
; "i þ h"; �i þ h�; �i þ h�; �i þ h�; �i þ h�; "i þ h"; 
i þ
h
; �i þ h�; �i þ h�; �i þ h�; �i belong to Z1ðK1; �LL Þ but not to B1ðK1; �LL Þ. Since they

are homologous to each other, we have H1ðK1; �LL Þ ¼� Cðh�; �i þ h�; i þ h; �i þ h�; �iÞ.
Finally, since @ðh�; 
i þ h
; "i þ h"; �iÞ ¼ ðe�ðpþqÞ�i � 1Þh�i, we have h�i 2 B0ðK1; �LL Þ.
Similarly, we have h
i; h"i; h�i; h�i 2 B0ðK1; �LL Þ. Moreover, since h�i ¼ h�i þ @h�; �i, we
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have h�i 2 B0ðK1; �LL Þ. Similarly, we have h�i; hi; h�i 2 B0ðK1; �LL Þ. Therefore we see

that Z0ðK1; �LL Þ ¼ B0ðK1; �LL Þ, that is, H0ðK1; �LL Þ ¼ 0. �

The result for the complex K2 is as follows:

LEMMA 1.3. H2ðK2; �LL Þ ¼ 0, H1ðK2; �LL Þ ¼� C3, H0ðK2; �LL Þ ¼ 0.

PROOF. Since @ðh�; �i þ h�; 	i þ h	; �iÞ ¼ ðe2�ip � 1Þh�i, we have h�i 2 B0ðK2; �LL Þ.
Similarly, we have h�i; hi; h�i; h	i 2 B0ðK2; �LL Þ. So we have H0ðK2; �LL Þ ¼ 0. We define

four 1-chains cp; cq; cr; cs 2 C1ðK2; �LL Þ by cp ¼ h	; �i þ h�; �i þ h�; 	i, cq ¼ h	; �i þ
h�; i þ h; 	i, cr ¼ h	; �i þ h�; �i þ h�; 	i, cs ¼ h	; i þ h; �i þ h�; 	i, where we assume

that the restrictions of the branches of T ðuÞ to the four chains define the same germ at

the common initial point 	 of those chains. Then we have @cp ¼ ðe2�ip � 1Þh	i, @cq ¼
ðe2�iq � 1Þh	i, @cr ¼ ðe2�ir � 1Þh	i, @cs ¼ ðe2�is � 1Þh	i. For k; l 2 fp; q; r; sg ðk 6¼ lÞ, we

set ckl ¼ ð1=ðe2�ik � 1ÞÞck � ð1=ðe2�il � 1ÞÞcl. Then we see that ckl 2 Z1ðK2; �LL Þ, ckl ¼
�clk, cpq þ cqs ¼ cps, crp þ cpq ¼ crq, cpq þ cqs þ csr þ crp ¼ 0. Let us consider the chain

c ¼ h�; �i þ h�; i þ h; �i þ h�; �i. Since pþ q þ rþ s ¼ 0, we have c 2 Z1ðK2; �LL Þ. Here

we assume that the restrictions of the branches of T ðuÞ to the chains c and cp define the

same germ at the common point � of those chains. Then we have c ¼ cp þ e2�ipcq þ
e2�iðpþqþsÞcr þ e2�iðpþqÞcs, from which it follows by simple calculation that c ¼
ðe2�ip � 1Þcpq þ ðe2�iðpþqÞ � 1Þcqs þ ðe�2�ir � 1Þcsr. Since cpq; cqs; csr are linearly independ-

ent, we have Z1ðK2; �LL Þ ¼ Ccpq �Ccqs �Ccsr. Therefore we have H1ðK2; �LL Þ ¼�
Z1ðK2; �LL Þ ¼� C3. �

Let us now apply the Mayer-Vietoris exact sequence to the complexes K;K1; K2; K
0

(for the Mayer-Vietoris exact sequence, see [9]):

0 ! H2ðK; �LL Þ ! H1ðK0; �LL Þ ! H1ðK1; �LL Þ �H1ðK2; �LL Þ ! H1ðK; �LL Þ
! H0ðK0; �LL Þ ! H0ðK1; �LL Þ �H0ðK2; �LL Þ ! H0ðK; �LL Þ ! 0:

ð1.1Þ

Since H0ðK1; �LL Þ �H0ðK2; �LL Þ ¼ 0 by Lemmas 1.2 and 1.3, we have H0ðK; �LL Þ ¼ 0.

Furthermore, since the map H1ðK0; �LL Þ ! H1ðK1; �LL Þ is an isomorphism and the map

H1ðK0; �LL Þ ! H1ðK2; �LL Þ is injective, the map H1ðK0; �LL Þ ! H1ðK1; �LL Þ �H1ðK2; �LL Þ is
also injective, from which it follows that H2ðK; �LL Þ ¼ 0. Therefore the exact sequence

(1.1) is turned to

0 ! H1ðK0; �LL Þ ! H1ðK1; �LL Þ �H1ðK2; �LL Þ ! H1ðK; �LL Þ ! H0ðK0; �LL Þ ! 0;

from which we have the exact sequence

0 ! H1ðK1; �LL Þ �H1ðK2; �LL Þ
� �

=H1ðK0; �LL Þ ! H1ðK; �LL Þ�!� H0ðK0; �LL Þ ! 0: ð1.2Þ

By abuse of notation we may think H1ðK1; �LL Þ �H1ðK2; �LL Þ
� �

=H1ðK0; �LL Þ ¼� Ccpq �
Ccqs �Ccsr. Without loss of generality we may think that H0ðK0; �LL Þ ¼ Ch�i. Let us

construct an element c0 2 H1ðK; �LL Þ such that �ðc0Þ ¼ h�i. If we regard c0 as an element

in Z1ðK; �LL Þ, then we can write c0 ¼ c1 þ c2 for some ci 2 C1ðKi; �LL Þ (i ¼ 1; 2). So it is

sufficient to construct ci 2 C1ðKi; �LL Þ (i ¼ 1; 2) such that �ðc0Þ ¼ @ðc1Þ ¼ �@ðc2Þ ¼ h�i.
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We see that such elements c1 and c2 must satisfy the conditions ci 62 Z1ðKi; �LL Þ (i ¼ 1; 2).

We define c1 and c2 by c1 ¼ ð1=ðe��iðpþqÞ � 1ÞÞðh�; �i þ h�; �i þ h�; �iÞ and c2 ¼
ð1=ð1� e2�ipÞÞðh�; �i þ h�; 	i þ h	; �iÞ, where we assume that the restrictions of the

branches of T ðuÞ to the chains c1 and c2 define the same germ at the common initial

point � of those chains. We have @ðc1Þ ¼ h�i and @ðc2Þ ¼ �h�i. Then the sum c0 ¼ c1 þ c2
is the desired solution of the equation �ðc0Þ ¼ h�i. If we set c02 ¼ ð1=ð1� e2�irÞÞðh�; 	i þ
h	; �i þ h�; �iÞ, the sum c0 ¼ c1 þ c02 is also a cycle satisfying the same equation.

Since c0 ¼ c0 þ cpr, we have c0 � c0 2 ker�. Furthermore, if we set c01 ¼ ð1=
ðe�iðpþrÞ � 1ÞÞðh�; �i þ h�; 
i þ h
; �iÞ, the sum c00 ¼ c01 þ c2 is also a cycle satisfying the

same equation. Since c00 � c0 � h�; �i þ h�; i þ h; �i þ h�; �i 2 Z1ðK0; �LL Þ, regarding c0
and c00 as their homology classes, we have c00 � c0 2 ker�. Therefore we see that the set

of the elements of H1ðK; �LL Þ mapped by � to h�i coincides with c0 þ ker�. We note that

Cc0 \ ker� ¼ 0. If we define the map � : H0ðK0; �LL Þ ! H1ðK; �LL Þ by �ðh�iÞ ¼ c0, then we

see that the exact sequence (1.2) is split. Namely we have H1ðK; �LL Þ ¼� ½ðH1ðK1; �LL Þ �
H1ðK2; �LL ÞÞ=H1ðK0; �LL Þ� � �ðH0ðK0; �LL ÞÞ. Here we note that the map � is an iso-

morphism. Since the complex K and the surface M are homotopically equivalent, we

arrive at the following

THEOREM 1. We have H2ðM; �LL Þ ¼ H0ðM; �LL Þ ¼ 0, H1ðM; �LL Þ ¼� Ccpq �Ccqs �
Ccsr �Cc0, where cpq, cqs, csr, c0 are regarded as cycles on M by abuse of notation.

REMARK 1. The homology groups of M with integral coefficients are given by

H2ðM;ZÞ ¼ 0, H1ðM;ZÞ ¼� Z5, H0ðM;ZÞ ¼� Z. We see that the Euler number of the

homology with integral coefficients is equal to that of the homology with the local

system coefficients.

REMARK 2. Theorem 1 follows also from the following fact (see Eilenberg [17],

Section 28): Since M has the property �iðMÞ ¼ 0 ði 6¼ 1Þ, the homology groups

HiðM; �LL Þ are isomorphic respectively to the homology groups Hið�1ðM;a0Þ; �LL a0Þ of

the fundamental group �1ðM;a0Þ, where �LL a0 denotes the fibre of �LL on a0 2M. The

latter groups are computable in a purely algebraic manner.

2. Twisted cohomology groups.

Let �k ðk ¼ 0; 1Þ be the sheaf of holomorphic k-forms on M. We have the exact

sequence 0 ! C ! �0 �!d �1 ! 0. Since the local system L ¼ CT ðuÞ�1 is locally

constant and without torsion, the tensor functor 	CL is exact. Namely we have the

exact sequence 0 ! L ! �0 	C L �!d �1 	C L ! 0. If we define the isomorphism

between �k and �k 	C L by �k 3 ’ 7! T ðuÞ’ 2 �k 	C L , then we have dðT ðuÞ’Þ ¼
T ðuÞr’, which means that the following diagram is commutative:

CL

Ωk ∇−−−−→ Ωk+1



�



�

Ωk ⊗ C⊗−−−−→
d

Ωk+1 L ,
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where the vertical arrows represent isomorphisms. Combining this commutative

diagram and the preceding exact sequence for L , we have the exact sequence 0 !
L ! �0 �!r �1 ! 0, from which it follows by the standard procedure that the following

exact sequence holds:

0 ! H0ðM;L Þ ! H0ðM;�0Þ�!r H0ðM;�1Þ ! H1ðM;L Þ ! H1ðM;�0Þ

�!r H1ðM;�1Þ ! 0:

Then we have

LEMMA 2.1. H0ðM;L Þ ¼ 0, H1ðM;L Þ ¼� H0ðM;�1Þ=rðH0ðM;�0ÞÞ.

PROOF. By definition we have H0ðM;L Þ ¼ ff 2 �ðM;�0Þ j rf ¼ 0g, where

�ðM;�0Þ denotes the vector space of single-valued holomorphic functions on M.

Since the function f satisfying the equation rf ¼ 0 is of the form fðuÞ ¼
c�ðuÞ�p�1ðuÞ�q�2ðuÞ�r�3ðuÞ�s for some constant c, which is in general multivalued,

we have H0ðM;L Þ ¼ 0. It is well-known that H1ðU;�0Þ ¼ 0 for an arbitrary open

Riemann surface U (e.g. [8]). Then we have the short exact sequence 0 !
H0ðM;�0Þ�!r H0ðM;�1Þ ! H1ðM;L Þ ! 0, and therefore H1ðM;L Þ ¼� H0ðM;�1Þ=
rðH0ðM;�0ÞÞ. �

Let �kð�DÞ (k ¼ 0; 1) be the sheaf of meromorphic k-forms on C=� which are

holomorphic on M ¼ C=� �D (where D ¼ f0; 12 ; �2 ; 1þ�2 g). The restriction of �kð�DÞ to
M is a subsheaf of �k. We have a subcomplex 0 ! L ! �0ð�DÞ�!r �1ð�DÞ ! 0

of the complex 0 ! L ! �0 �!r �1 ! 0. The natural map of sheaf complexes,

� : ð��ð�DÞ;rÞ ! ð��;rÞ, induces the natural homomorphism of the de Rham

cohomologies: �� : H
1
DRð��ð�DÞ;rÞ ! H1

DRð��;rÞ, where H1
DRð��ð�DÞ;rÞ ¼

H0ðM;�1ð�DÞÞ=rðH0ðM;�0ð�DÞÞÞ and H1
DRð��;rÞ ¼ H0ðM;�1Þ=rðH0ðM;�0ÞÞ. In

fact we have

LEMMA 2.2. �� is the isomorphism.

It is well-known that this lemma is proved algebro-geometrically by the Grothendieck-

Deligne comparison theorem ([7], II, Section 6). Nevertheless we give here a complex-

analytical proof by exploiting Mittag-Leffler’s theorem because our proof tells us what

subcomplex of the de Rham complex ð��ð�DÞ;rÞ with poles in D is suitable to take

for establishing the isomorphism between the group H1
DRð��ð�DÞ;rÞ and the first

cohomology group of such a subcomplex whose structure is easier to study. This will

be explained in detail after the proof.

PROOF OF LEMMA 2.2. Let ’ be an element in H0ðM;�1Þ. We set ’ ¼ fðuÞdu.
Then the function fðuÞ is single-valued and holomorphic on M, and may have isolated

essential singularities at u ¼ 0; 12 ;
�
2 ;

1þ�
2 (and therefore fðuÞ is expanded there in Laurent

series). Let P0ðuÞ, P1ðuÞ, P2ðuÞ, P3ðuÞ be the principal parts of the Laurent expansions of
fðuÞ at u ¼ 0; 12 ;

�
2 ;

1þ�
2 , respectively. For a while, let us restrict ourselves to the case of

the neighbourhood at u ¼ 0. Let us find a function Q0ðuÞ single-valued around u ¼ 0
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satisfying the equation P0ðuÞdu ¼ rQ0, that is, P0ðuÞ ¼ ðdQ0=duÞ þQ0ðd=duÞðlogT ðuÞÞ.
Here we may assume that P0ðuÞ ¼

P
n�1 a�nu

�n. By the quadrature we have the general

solution of this equation: Q0 ¼ T ðuÞ�1½
R
T ðuÞP0ðuÞduþ C� for some constant C. Since Q0

is single-valued, the condition C ¼ 0 is necessary. Let us investigate the behaviour of the

solution Q0ðuÞ with C ¼ 0 around u ¼ 0. Since p is not an integer (Section 1), the

multivaluedness of T ðuÞ around u ¼ 0 comes from the factor up. Namely we can write

T ðuÞ ¼ up � ðsingle-valued holomorphic functionÞ around u ¼ 0. Moreover, since we can

write T ðuÞP0ðuÞ ¼
Pn¼þ1

n¼�1 cnu
pþn around u ¼ 0, we have

Z
T ðuÞP0ðuÞdu ¼

Xn¼þ1

n¼�1

cn

pþ nþ 1
upþnþ1;

which is of the form up � (single-valued analytic function which may have an

isolated singularity at u ¼ 0) around u ¼ 0. Consequently, the function Q0ðuÞ ¼
T ðuÞ�1 R T ðuÞP0ðuÞdu is a single-valued analytic function around u ¼ 0 which may have

an isolated singularity at u ¼ 0, and therefore can be expanded in Laurent series at

u ¼ 0. We set Q0ðuÞ ¼
Pn¼þ1

n¼�1 bnu
n, the Laurent expansion at u ¼ 0. Moreover we set

Q0�ðuÞ ¼
P

n
0 bnu
n and Q0þðuÞ ¼

P
n�1 bnu

n. Substituting Q0 ¼ Q0� þQ0þ into the

original equation above, we have P0 ¼ Q0
0� þQ0

0þ þQ0� � ðlogT ðuÞÞ0 þQ0þ � ðlogT ðuÞÞ0.
Since ðlogT ðuÞÞ0 has a pole of order one at u ¼ 0 and Q0þ has a zero of order one at u ¼ 0,

the product Q0þ � ðlogT ðuÞÞ0 is holomorphic at u ¼ 0, and so is Q0
0þ. Consequently, we

see that in the right-hand side of the preceding relation the sum Q0
0� þQ0� � ðlogT ðuÞÞ0

contributes to the principal part P0. Therefore, setting rQ0� ¼ gðuÞdu, we see that the

principal part of the Laurent expansion of gðuÞ at u ¼ 0 is equal to P0. By the similar

argument, we obtain functions Q1�ðuÞ, Q2�ðuÞ, Q3�ðuÞ from the principal parts P1ðuÞ,
P2ðuÞ, P3ðuÞ, respectively. We give the Laurent expansions for Qk�ðuÞ (k ¼ 0; 1; 2; 3) as

follows: Q0�ðuÞ ¼
P

n
0 b
ð0Þ
n un, Q1�ðuÞ ¼

P
n
0 b

ð1Þ
n ðu� 1

2
Þn, Q2�ðuÞ ¼

P
n
0 b

ð2Þ
n ðu� �

2
Þn,

Q3�ðuÞ ¼
P

n
0 b
ð3Þ
n ðu� 1þ�

2
Þn. We set Q0� ¼ Q0� � b

ð0Þ
0 � ðbð0Þ�1 þ b

ð1Þ
�1 þ b

ð2Þ
�1 þ b

ð3Þ
�1Þu�1,

Q1� ¼ Q1� � b
ð1Þ
0 , Q2� ¼ Q2� � b

ð2Þ
0 , Q3� ¼ Q3� � b

ð3Þ
0 . We see that the residue of Q0� at

u ¼ 0 is �bð1Þ�1 � b
ð2Þ
�1 � b

ð3Þ
�1, that of Q1� at u ¼ 1

2 is b
ð1Þ
�1, that of Q2� at u ¼ �

2 is b
ð2Þ
�1, and that

of Q3� at u ¼ 1þ�
2

is b
ð3Þ
�1. By Mittag-Leffler’s theorem (e.g. see [8]), there exists a global

function Q� 2 H0ðM;�0Þ whose principal parts of the Laurent expansions at u ¼
0; 12 ;

�
2 ;

1þ�
2 coincide with Q0�, Q1�, Q2� and Q3�, respectively. We note that the 1-form

P0ðuÞdu�rbð0Þ0 �rððbð0Þ�1 þ b
ð1Þ
�1 þ b

ð2Þ
�1 þ b

ð3Þ
�1Þ=uÞ � rQ0� is holomorphic at u ¼ 0, and

that the forms PkðuÞdu�rbðkÞ0 �rQk� (k ¼ 1; 2; 3) are holomorphic at u ¼ 1
2
; �
2
; 1þ�

2
,

respectively. Then there exist a constant � and an Abelian 1-form � of third kind with

poles in f0; 1
2
; �
2
; 1þ�

2
g such that the principal part of the Laurent expansion at u ¼ 0 of

the 1-form �PðuÞduþ �, where PðuÞ denotes the Weierstrass P -function with periods 1

and � , coincides with that of rð1=uÞ, and that the 1-form fðuÞdu� ðbð0Þ0 þ b
ð1Þ
0 þ b

ð2Þ
0 þ

b
ð3Þ
0 Þrð1Þ � ðbð0Þ�1 þ b

ð1Þ
�1 þ b

ð2Þ
�1 þ b

ð3Þ
�1Þð�PðuÞduþ �Þ � rQ�, say �, is holomorphic on the

whole torus C=� . Here we note that rð1Þ (¼ !) is an Abelian 1-form of third kind,

and �PðuÞdu is an Abelian 1-form of second kind. Setting  ¼ ðbð0Þ0 þ b
ð1Þ
0 þ b

ð2Þ
0 þ

b
ð3Þ
0 Þrð1Þ þ ðbð0Þ�1 þ b

ð1Þ
�1 þ b

ð2Þ
�1 þ b

ð3Þ
�1Þð�PðuÞduþ �Þ þ �, we see that  2 H0ðM;�1ð�DÞÞ

and ’ ¼  þrQ�. From this result we can show the surjectivity of the map �� as follows.

Let us take ½’� 2 H1
DRð��;rÞ arbitrarily, where ’ 2 H0ðM;�1Þ. If we form ½ � 2
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H1
DRð��ð�DÞ;rÞ from the element  2 H0ðM;�1ð�DÞÞ whose existence is guaranteed

above, then we have ��½ � ¼ ½’�, which proves the surjectivity of ��. The proof of the

injectivity of �� is as follows. For ½ � 2 H1
DRð��ð�DÞ;rÞ, we set ��½ � ¼ 0. This equation is

translated into the assertion that there exists a single-valued function g 2 H0ðM;�0Þ
such that  ¼ rg. If we set  ¼ fðuÞdu, we see that fðuÞ is holomorphic on M and has

poles at u ¼ 0; 12 ;
�
2 ;

1þ�
2 if fðuÞ is not holomorphic there. The equation is rewritten

as fðuÞ ¼ ðdg=duÞ þ gðuÞðd=duÞðlogT ðuÞÞ, from which we have the solution

gðuÞ ¼ T ðuÞ�1 R T ðuÞfðuÞdu. By the same argument as when we constructed Q0 from

P0 and investigated the behaviour of Q0 at u ¼ 0, we see that gðuÞ is single-valued and

holomorphic on M, and has poles at u ¼ 0; 12 ;
�
2 ;

1þ�
2 if gðuÞ is not holomorphic there.

Therefore we conclude that gðuÞ 2 H0ðM;�0ð�DÞÞ, and ½ � ¼ 0 as the equality in

H1
DRð��ð�DÞ;rÞ, which proves the injectivity of ��. �

Inspired by the proof of Lemma 2.2, we give the following formulation. Let D be

the effective divisor on C=� given by D ¼ 2½0� þ ½12� þ ½�2� þ ½1þ�2 �. Let �D be the sheaf of

meromorphic 1-forms on C=� which are multiples of the divisor �D. Then �D is a

subsheaf of �1ð�DÞ. Let OD be the sheaf of meromorphic functions on C=� which are

multiples of the divisor �D. We introduce two complexes:

0 ! H0ðM;�0ð�DÞÞ�!r H0ðM;�1ð�DÞÞ ! 0; 0 ! C �!r H0ðC=�;�DÞ ! 0;

where the latter is a subcomplex of the former: C � H0ðM;�0ð�DÞÞ and

H0ðC=�;�DÞ � H0ðM;�1ð�DÞÞ, and H0ðC=�;�DÞ ¼ f’ : holomorphic 1-form on M j
ordpð’Þ � �ordpðDÞ for p 2 C=�g. Let us observe the structure of the vector space

H0ðC=�;�DÞ. First we have

LEMMA 2.3. dimH0ðC=�;�DÞ ¼ 5.

PROOF. The Riemann-Roch formula for a compact Riemann surfaceX is given by

dimH0ðX;O�DÞ � dimH0ðX;�DÞ ¼ 1� g� degD. In our case, since X ¼ C=� , g ¼ 1,

degD ¼ 5, H0ðX;O�DÞ ¼ 0, we have dimH0ðX;�DÞ ¼ 5. �

Let PðuÞ be the Weierstrass P -function with periods 1 and � . For i; j 2 f1; 2; 3g
(i 6¼ j), we define 1-forms !i, !ij by

!1 ¼
1

2
d log PðuÞ �P

1

2

� �� �
¼ d log �1ðuÞ � d log �ðuÞ ¼ ���21

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

du;

!2 ¼
1

2
d log PðuÞ �P

�

2

� �� �
¼ d log �2ðuÞ � d log �ðuÞ ¼ ���22

�1ðuÞ�3ðuÞ
�ðuÞ�2ðuÞ

du;

!3 ¼
1

2
d log PðuÞ �P

1þ �

2

� �� �
¼ d log �3ðuÞ � d log �ðuÞ ¼ ���23

�1ðuÞ�2ðuÞ
�ðuÞ�3ðuÞ

du;

!12 ¼ d log �2ðuÞ � d log �1ðuÞ ¼ ��23
�ðuÞ�3ðuÞ
�1ðuÞ�2ðuÞ

du;

!13 ¼ d log �3ðuÞ � d log �1ðuÞ ¼ ��22
�ðuÞ�2ðuÞ
�1ðuÞ�3ðuÞ

du;
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!23 ¼ d log �3ðuÞ � d log �2ðuÞ ¼ ���21
�ðuÞ�1ðuÞ
�2ðuÞ�3ðuÞ

du:

Moreover we set !ij ¼ �!ji. Then we have !1 þ !12 ¼ !2, !1 þ !13 ¼ !3, !2 þ !23 ¼ !3,

!12 þ !23 ¼ !13. Therefore we see that the maximal number of linearly independent

1-forms among ones defined above is three. The 1-form !1 has poles of order one at

u ¼ 1
2 ; 0 with residues þ1;�1, respectively, !2 has poles of order one at u ¼ �

2 ; 0 with

residues þ1;�1, respectively, !3 has poles of order one at u ¼ 1þ�
2
; 0 with residues

þ1;�1, respectively, !12 has poles of order one at u ¼ �
2 ;

1
2 with residues þ1;�1,

respectively, !13 has poles of order one at u ¼ 1þ�
2 ; �2 with residues þ1;�1, respectively,

and !23 has poles of order one at u ¼ 1þ�
2
; �
2
with residues þ1;�1, respectively. We see

that all !i; !ij lie in H0ðC=�;�DÞ. Besides, we note that the two forms du and PðuÞdu
also lie in H0ðC=�;�DÞ. Therefore we have

LEMMA 2.4. The five 1-forms: du, PðuÞdu and three linearly independent 1-forms

among !i, !ij, form a basis of H0ðC=�;�DÞ.

The inclusion map between the two complexes defined above induces a natural

map I : H0ðC=�;�DÞ=rðCÞ �! H1
DRð��ð�DÞ;rÞ ¼ H0ðM;�1ð�DÞÞ=rH0ðM;�0ð�DÞÞ.

We wish to prove that I is the isomorphism.

LEMMA 2.5. I is injective.

PROOF. It follows immediately from the fact rH0ðM;�0ð�DÞÞ \H0ðC=�;�DÞ ¼
rðCÞ. �

The surjectivity of I follows immediately from the following

LEMMA 2.6. For an arbitrary ’ 2 H0ðM;�1ð�DÞÞ, there exist  2 H0ðC=�;�DÞ
and f 2 H0ðM;�0ð�DÞÞ such that ’ ¼  þrf.

PROOF. The lemma holds if it is proved for the following two cases: (i) ’ has only

one pole of order 2 at u ¼ 1
2 or u ¼ �

2 or u ¼ 1þ�
2 ; (ii) ’ has only one pole of order more

than 2 at u ¼ 0 or u ¼ 1
2 or u ¼ �

2 or u ¼ 1þ�
2 .

(i) Without loss of generality, we may concentrate our attention on the case where

u ¼ 1
2. The other cases are treated similarly. Let us compute

r
�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

� �
¼

d

du

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

� �
duþ

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

!: ð2.1Þ

Here we have

d

du

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

� �

¼
�1ðuÞ�3ðuÞf�ðuÞ�02ðuÞ � �0ðuÞ�2ðuÞg þ �ðuÞ�2ðuÞf�1ðuÞ�03ðuÞ � �01ðuÞ�3ðuÞg

�ðuÞ2�1ðuÞ2
:
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Applying the formulas f�0ðuÞ�2ðuÞ � �ðuÞ�02ðuÞg�1�3 ¼ �1ðuÞ�3ðuÞ�2�0, f�03ðuÞ�1ðuÞ �
�3ðuÞ�01ðuÞg�1�3 ¼ �2ðuÞ�ðuÞ�2�0 and �0 ¼ ��1�2�3 to the right-hand side of the preceding

equality, we have

d

du

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

� �
¼ ���22

�3ðuÞ2

�ðuÞ2
þ ��22

�2ðuÞ2

�1ðuÞ2
: ð2.2Þ

The relation ! ¼ �p!3 � q!13 � r!23 implies

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

! ¼ p��23
�2ðuÞ2

�ðuÞ2
� q��22

�2ðuÞ2

�1ðuÞ2
þ r��21

( )
du: ð2.3Þ

Substituting (2.2) and (2.3) into (2.1), we have

r
�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

� �
¼ ���22

�3ðuÞ2

�ðuÞ2
þ ð1� qÞ��22

�2ðuÞ2

�1ðuÞ2
þ p��23

�2ðuÞ2

�ðuÞ2
þ r��21

( )
du: ð2.4Þ

Here we note that

P uþ
1

2

� �
�P

1þ �

2

� �
¼ �2�21�

2
2

�2ðuÞ2

�1ðuÞ2
;

PðuÞ �P
1þ �

2

� �
¼ �2�21�

2
2

�3ðuÞ2

�ðuÞ2
;

PðuÞ �P
�

2

� �
¼ �2�21�

2
3

�2ðuÞ2

�ðuÞ2
:

Then the equality (2.4) means that, for ’ ¼ Pðuþ 1
2Þdu, the lemma holds if we take

 ¼ PðuÞduþ ðholomorphic 1-formÞ.
(ii) Without loss of generality, we may assume that ’ has only one pole of order 

(� 3) at u ¼ 0. Moreover, we may assume that such a 1-form ’ is written by ’ ¼
PðuÞkP0ðuÞldu (2kþ 3l ¼  � 3, k � 0, l � 0). In this case we prove the lemma by

induction on . Let us first prove it for

’ ¼ P0ðuÞdu ¼ �2�3�21�
2
2�

2
3

�1ðuÞ�2ðuÞ�3ðuÞ
�ðuÞ3

du:

We have

r �2�21�
2
2

�3ðuÞ2

�ðuÞ2

 !
¼ �2�21�

2
2d

�3ðuÞ2

�ðuÞ2

 !
þ �2�21�

2
2

�3ðuÞ2

�ðuÞ2
ð�p!3 � q!13 � r!23Þ

¼
�
�2�ð�0Þ2

�1ðuÞ�2ðuÞ�3ðuÞ
�ðuÞ3

þ �2�21�
2
2

�3ðuÞ2

�ðuÞ2
� p��23

�1ðuÞ�2ðuÞ
�ðuÞ�3ðuÞ
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þ �2�21�
2
2

�3ðuÞ2

�ðuÞ2
� ð�qÞ��22

�ðuÞ�2ðuÞ
�1ðuÞ�3ðuÞ

þ �2�21�
2
2

�3ðuÞ2

�ðuÞ2
� r��21

�ðuÞ�1ðuÞ
�2ðuÞ�3ðuÞ

�
du

¼ ðp� 2Þ�3�21�22�23
�1ðuÞ�2ðuÞ�3ðuÞ

�ðuÞ3
� q�3�21�

4
2

�2ðuÞ�3ðuÞ
�ðuÞ�1ðuÞ

þ r�3�41�
2
2

�3ðuÞ�1ðuÞ
�ðuÞ�2ðuÞ

( )
du;

which proves the lemma for ’ ¼ P0ðuÞdu. Next we proceed to the general case. Since

PðuÞ satisfies the differential equation P0ðuÞ2 ¼ 4PðuÞ3 � g2PðuÞ � g3 (g2, g3 are

constants), we may assume without loss of generality that the general 1-form ’ is of

the form

’ ¼
�3ðuÞ
�ðuÞ

� �2N �1ðuÞ�2ðuÞ�3ðuÞ
�ðuÞ3

 !M

du (N � 1, M ¼ 0 or 1):

We have already proved the lemma in the case where  ¼ 2N þ 3M 
 3. So we assume

that  � 4. Let us compute

r
�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1

 !
¼ d

�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1

 !
þ
�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1
!: ð2.5Þ

It holds:

d

du

�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1

 !

¼
�01ðuÞ�2ðuÞ�3ðuÞ

2N�3

�ðuÞ2N�1
þ
�1ðuÞ�02ðuÞ�3ðuÞ

2N�3

�ðuÞ2N�1
þ ð2N � 3Þ

�1ðuÞ�2ðuÞ�3ðuÞ2N�4�03ðuÞ
�ðuÞ2N�1

� ð2N � 1Þ
�1ðuÞ�2ðuÞ�3ðuÞ2N�3�0ðuÞ

�ðuÞ2N

¼
�2ðuÞ�3ðuÞ2N�3f�ðuÞ�01ðuÞ � �0ðuÞ�1ðuÞg

�ðuÞ2N
þ
�1ðuÞ�3ðuÞ2N�3f�ðuÞ�02ðuÞ � �0ðuÞ�2ðuÞg

�ðuÞ2N

þ ð2N � 3Þ
�1ðuÞ�2ðuÞ�3ðuÞ2N�4f�ðuÞ�03ðuÞ � �0ðuÞ�3ðuÞg

�ðuÞ2N
:

Applying the formula f�0ðuÞ�1ðuÞ � �ðuÞ�01ðuÞg�2�3 ¼ �2ðuÞ�3ðuÞ�1�0 and several similar

ones to the right-hand side of the preceding equality, we have

d

du

�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1

 !
¼ ���21

�2ðuÞ2�3ðuÞ2N�2

�ðuÞ2N
� ��22

�1ðuÞ2�3ðuÞ2N�2

�ðuÞ2N

� ð2N � 3Þ��23
�1ðuÞ2�2ðuÞ2�3ðuÞ2N�4

�ðuÞ2N
:

ð2.6Þ
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Moreover it holds:

�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1
! ¼

�1ðuÞ�2ðuÞ�3ðuÞ2N�3

�ðuÞ2N�1
ð�p!3 � q!13 � r!23Þ

¼
�
p��23

�1ðuÞ2�2ðuÞ2�3ðuÞ2N�4

�ðuÞ2N
� q��22

�2ðuÞ2�3ðuÞ2N�4

�ðuÞ2N�2

þ r��21
�1ðuÞ2�3ðuÞ2N�4

�ðuÞ2N�2

�
du:

ð2.7Þ

Substituting (2.6) and (2.7) into (2.5), we see that the lemma holds for

’ ¼
�3ðuÞ
�ðuÞ

� �2N

du;

that is, for M ¼ 0. Finally, it holds:

r
�3ðuÞ2N

�ðuÞ2N

 !
¼ d

�3ðuÞ2N

�ðuÞ2N

 !
þ
�3ðuÞ2N

�ðuÞ2N
ð�p!3 � q!13 � r!23Þ

¼
�
�2N��23

�1ðuÞ�2ðuÞ�3ðuÞ2N�1

�ðuÞ2Nþ1
þ p��23

�1ðuÞ�2ðuÞ�3ðuÞ2N�1

�ðuÞ2Nþ1

� q��22
�2ðuÞ�3ðuÞ2N�1

�ðuÞ2N�1�1ðuÞ
þ r��21

�1ðuÞ�3ðuÞ2N�1

�ðuÞ2N�1�2ðuÞ

�
du;

from which we see that the lemma holds for

’ ¼
�3ðuÞ
�ðuÞ

� �2N�2�1ðuÞ�2ðuÞ�3ðuÞ
�ðuÞ3

du;

that is, for M ¼ 1 too. Therefore Lemma 2.6 is proved completely. �

Combining everything above, we arrive at

THEOREM 2. We have H0ðM;L Þ ¼ H2ðM;L Þ ¼ 0 and H1ðM;L Þ ¼�
H0ðC=�;�DÞ=rðCÞ ¼ C ½du� �C ½PðuÞdu� �C ½!ð1Þ� �C ½!ð2Þ�. Here ½’� denotes the

image of an element ’ in H0ðC=�;�DÞ by the natural map H0ðC=�;�DÞ !
H0ðC=�;�DÞ=rðCÞ, and !ð1Þ and !ð2Þ denote vectors in the subspace generated by all

!i and !ij in H
0ðC=�;�DÞ such that the images ½!ð1Þ� and ½!ð2Þ� are linearly independent

in H0ðC=�;�DÞ=rðCÞ.
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