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Abstract. In this paper we investigate the relationship among the following
integrals

Z

B
|u(x)|p−i|∇u(x)|i(1− |x|)αdV (x),

where i ∈ {0, 1, 2}, 1 < p < ∞, α > 0, and where u is an arbitrary harmonic function
on the unit ball B ⊂ Rn. Growth of the integral means of harmonic functions is also
compared to the integral means of their gradient.

1. Introduction and auxiliary results.

Throughout this paper B(a, r) = {x ∈ Rn | |x − a| < r} denotes the open ball
centered at a of radius r, where |x| denotes the norm of x ∈ Rn and B is the open unit
ball in Rn, rB = B(0, r), S = ∂B = {x ∈ Rn | |x| = 1} is the boundary of B. Let dV

denote the Lebesgue measure on Rn, dσ the surface measure on S, σn the surface area
of S, dVN the normalized Lebesgue measure on B, dσN the normalized surface measure
on S.

Let H (B) denote the set of harmonic functions on B. Some basic facts on harmonic
functions can be found, for example, in [1].

For u ∈ H (B) and p ∈ (0,∞), we denote the integral mean of u by

Mp
p (u, r) =

∫

S

|u(rζ)|pdσN (ζ), r ∈ [0, 1)

while

M∞(u, r) = sup
|x|<r

|u(x)|.

The Hardy harmonic space H p(B), p ∈ (0,∞), consists of all u ∈ H (B) such that

‖u‖H p = sup
0<r<1

Mp(u, r) < ∞.

A function f ∈ C1(B) is said to be a Bloch function if
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‖f‖B = sup
x∈B

(1− |x|)|∇f(x)| < +∞

where |∇f(x)| = ( ∑n
i=1

∣∣∂f(x)
∂xi

∣∣2)1/2. The space of Bloch functions is denoted by B(B).
Let p > 0. A Borel function f , locally integrable on B, is said to be a BMOp(B)

function if

‖f‖BMOp
= sup

B(a,r)⊂B

(
1

V (B(a, r))

∫

B(a,r)

|f(x)− fB(a,r)|pdV (x)
)1/p

< +∞

where the supremum is taken over all balls B(a, r) in B, and fB(a,r) is the mean value
of f over B(a, r). In [8] for p ≥ 1, Muramoto proved that B(B) ∩H (B) is isomorphic
to BMOp(B) ∩H (B) as Banach spaces, which inspired us to calculate exactly BMOp

norm for harmonic functions, which is theme of [11]. In the proof of the main result in
[11], we essentially proved a generalization of Hardy-Stein identity, see, for example, [6].
This identity is included in the following lemma.

Lemma 1. Let 1 < p < +∞, u ∈ H (B), then for every r ∈ (0, 1) the following
identity holds

∫

S

|u(rζ)|p dσN (ζ) = |u(0)|p +
p(p− 1)
n(n− 2)

∫

rB

|u(x)|p−2|∇u(x)|2(|x|2−n − r2−n)dVN (x),

n ≥ 3. (1)

It turns out that Lemma 1 is a very useful result. We already used this lemma in
our investigations in [13] and [14], where among the other things we generalized some
Yamashita’s results in [17] and [18]. In this paper we present some new applications of
the result. By differentiating formula (1) the following identity of Hardy-Stein type is
obtained.

Corollary 1. Let 1 < p < +∞, u ∈ H (B), r ∈ (0, 1), n ≥ 3, then

d

dr

∫

S

|u(rζ)|p dσN (ζ) =
p(p− 1)

n
r1−n

∫

rB

|u(x)|p−2|∇u(x)|2dVN (x). (2)

For the case of holomorphic functions in Cn, similar identity was proved in [15].
In the sequel we keep our attention to the case n ≥ 3. Analogous results hold in the

case n = 2. Formulations and proofs of the corresponding results we leave to the reader.
Multiplying (2) by rn−1, using polar-coordinates in the right-hand side integral and

then differentiating in r we obtain the next corollary:

Corollary 2. Let 1 < p < +∞, r ∈ (0, 1), n ≥ 3 and u ∈ H (B), then

d

dr

(
rn−1 d

dr

(
Mp

p (u, r)
))

= p(p− 1)rn−1

∫

S

|u(rζ)|p−2|∇u(rζ)|2dσN (ζ). (3)



Integral means of harmonic functions 585

Let p ∈ (1,∞), α ∈ (−1,∞) and

Ap,α(u) = p(p− 1)
∫

B

|u(x)|p−2|∇u(x)|2(1− |x|)αdVN (x).

Corollary 3. Let 1 < p < +∞, α > 0 and n ≥ 3, u ∈ H (B), then

Ap,α(u) = nα

∫ 1

0

d

dr

(
Mp

p (u, r)
)
rn−1(1− r)α−1dr. (4)

Proof. Multiplying (3) by (1 − r)αdr, then integrating from 0 to 1 and using
integration by parts it follows that:

Ap,α(u) = p(p− 1)n
∫ 1

0

rn−1

∫

S

|u(rζ)|p−2|∇u(rζ)|2dσN (ζ)(1− r)αdr

= n

∫ 1

0

d

dr

(
rn−1 d

dr

(
Mp

p (u, r)
))

(1− r)αdr

= nα

∫ 1

0

d

dr

(
Mp

p (u, r)
)
rn−1(1− r)α−1dr,

as desired. ¤

For holomorphic functions on the unit disk U (we denote the set by H(U)), in [16]
the authors considered the relationship between the following two integrals:

A(f, α) =
∫

U

|f ′(z)|2(1− |z|)1−αdm(z)

and

B(f, α) =
∫

U

|f(z)| |f ′(z)|(1− |z|)1−αdm(z).

They have proved the following result:

Theorem A. Let α ∈ (−∞, 2). Then the following statements are true.

(a) There is a constant Kα > 0 depending only on α such that

B(f, α) ≤ KαA(f, α− 1)

for all f ∈ H(U) with f(0) = 0 and A(f, α− 1) < ∞, if and only if α ∈ (−∞, 1).
When α ∈ (−∞, 1), Kα may be taken as [(2− α)(1− α)/6]−1/2.

(b) For all f ∈ H(U) with f(0) = 0,
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A(f, α− 1) ≤ 2−1(2− α)B(f, α),

where the constant 2−1(2− α) is sharp.

Theorem A motivated us to investigate the relationship between the integrals:

∫

U

|f (n)(z)|p|f (k)(z)|q(1− |z|)np+kq+αdm and
∫

U

|f ′|p+q(1− |z|)αdm

where 0 < p, q < ∞, α > −1, k, n ∈ N∪{0} and where f is an arbitrary analytic function
on the unit disc U , see, [11]. As a consequence of Theorem 2.1 in [9] and Theorem 2 in
[12], with the weight function ω(z) = (1− |z|)α, we have that the next result holds:

Corollary 4. Suppose 0 < p, q < ∞, α > −1 and k, n ∈ N ∪ {0}. Then there is
a constant C = C(p, q, k, n, α) such that

∫

U

|f (n)(z)|p|f (k)(z)|q(1− |z|)np+kq+αdm

≤ C

(
|f(0)|p+q +

∫

U

|f ′(z)|p+q(1− |z|)p+q+αdm

)

for all f ∈ H(U).

As a by-product we showed that the following quantities

An,α(f) = |f(0)|n+1 +
∫

U

|f ′(z)|n+1(1− |z|)p+n+1dm(z)

and

Bn,α(f) = |f(0)|n+1 +
∫

U

|f(z)|n |f ′(z)|(1− |z|)p+1dm(z),

are equivalent, for n ∈ N and p > −1.
The equivalence was motivated by Remark 1 in [16]. A natural question is whether

any similar equivalence holds if n is replaced by a real parameter. Our aim is to obtain
such results for the case of harmonic functions on the unit ball. Note that analytic
functions are harmonic.

The paper is organized as follows. In Section 2 we give some auxiliary results which
we use in the proofs of the main results of the paper. In Section 3 we investigate the
relationship among the following integrals

∫

B

|u(x)|p−i|∇u(x)|i(1− |x|)αdV (x),

where i ∈ {0, 1, 2}, 1 < p < ∞, α > 0, and where u is an arbitrary harmonic function on
the unit ball B ⊂ Rn. Motivated by paper [5] in Section 4 we prove some growth results
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concerning the integral means of harmonic functions and their gradients.
In what follows we shall be using the convention that C will denote a positive

constant which is not necessarily the same at difference occurrences.

2. Auxiliary results.

In order to prove the main results of this paper we need several auxiliary results
which are incorporated in the following lemmas.

Lemma 2. Suppose 0 < p < ∞ and u ∈ H (B). Then

∣∣∣∣
d

dr
(|u(x)|p)

∣∣∣∣ ≤ p|u(x)|p−1|∇u(x)|, (5)

for almost every x = rζ ∈ B.

Proof. Since u is real analytic ([1]), the set of all zeros of u has Lebesgue measure
0. For u ≡ 0 the result is obvious. If u 6≡ 0, at points x where u is not zero we have

∣∣∣∣
d

dr
(|u(x)|p)

∣∣∣∣ = p|u(x)|p−1

∣∣∣∣
〈

u(rζ)
|u(rζ)| , 〈∇u(x), ζ〉

〉∣∣∣∣ ≤ p|u(x)|p−1|∇u(x)|, (6)

where x = rζ and where we interpret complex numbers u(rζ)
|u(rζ)| and 〈∇u(x), ζ〉 as vectors

in R2. ¤

Lemma 3. Suppose 1 ≤ p < ∞, α ∈ (−1,∞) and u ∈ H (B). Then for every
r0 ∈ (0, 1), there is a positive constant C depending only on n, p, α and r0 such that

∫

B

|u(x)|p(1− |x|)αdVN (x) ≤ C

∫

B\r0B

|u(x)|p(1− |x|)αdVN (x). (7)

Proof. For each r0 ∈ (0, 1) there is an n0 ∈ N such that (n0 − 1)(1− r0) ≤ r0 <

n0(1− r0) ≤ 1. Hence r0B ⊂ n0(1− r0)B ⊂ B, and consequently

∫

r0B

|u(x)|p(1− |x|)αdVN (x) ≤
∫

n0(1−r0)B

|u(x)|p(1− |x|)αdVN (x). (8)

On the other hand, we have

∫

n0(1−r0)B

|u(x)|p(1− |x|)αdVN (x) =
n0∑

k=1

Ik, (9)

where

Ik =
∫

k(1−r0)B\(k−1)(1−r0)B

|u(x)|p(1− |x|)αdVN (x),
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and k ∈ {1, . . . , n0}.
Assume first that α ∈ (−1, 0]. By the polar coordinates, and monotonicity of the

function Mp
p (u, r)(1− r)αrn−1 when p ≥ 1 ([7]), we have

Ik = n

∫ (1−r0)k

(1−r0)(k−1)

∫

S

|u(rζ)|pdσN (ζ)(1− r)αrn−1dr

≤ n

∫ 1

r0

∫

S

|u(rζ)|pdσN (ζ)(1− r)αrn−1dr

=
∫

B\r0B

|u(x)|p(1− |x|)αdVN (x). (10)

From (8), (9) and (10), we obtain (7) in this case.
Assume now that α ∈ (0,∞). Then by the monotonicity of the function

Mp
p (u, r)rn−1, we have that for every k ∈ {1, . . . , n0 − 1}

Ik ≤ nMp
p (u, (1− r0)k)[(1− r0)k]n−1

∫ (1−r0)k

(1−r0)(k−1)

(1− r)αdr

= nMp
p (u, (1− r0)k)[(1− r0)k]n−1

∫ (1−r0)k

(1−r0)(k−1)
(1− r)αdr

∫ 1

r0
(1− r)αdr

∫ 1

r0

(1− r)αdr

≤ nMp
p (u, r0)rn−1

0

∫ 1−r0

0
(1− r)αdr∫ 1

r0
(1− r)αdr

∫ 1

r0

(1− r)αdr

= nC(α, r0)Mp
p (u, r0)rn−1

0

∫ 1

r0

(1− r)αdr

≤ nC(α, r0)
∫ 1

r0

Mp
p (u, r)(1− r)αrn−1dr

= C(α, r0)
∫

B\r0B

|u(x)|p(1− |x|)αdVN (x). (11)

Similarly, it can be proved that

∫ (1−r0)n0

(1−r0)(n0−1)

∫

S

|u(rζ)|pdσN (ζ)(1− r)αrn−1dr

≤ C1(α, r0)
∫

B\r0B

|u(x)|p(1− |x|)αdVN (x). (12)

From (9), (11) and (12) estimate (7) follows in the case α ∈ (0,∞). ¤

Lemma 4. Let u ∈ C(1)(B), α, β ∈ (0,∞), q ∈ [0, α] and γ > −1, then
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Jα,β,γ(u) =
∫

B

|u(x)|α|∇u(x)|β(1− |x|)γdVN (x)

≤
( ∫

B

|u(x)|α−q|∇u(x)|β+q(1− |x|)γ+qdVN (x)
) β

β+q

×
( ∫

B

|u(x)|α+β(1− |x|)γ−βdVN (x)
) q

β+q

, (13)

for a positive constant C independent of u.

Proof. When q = 0 inequality (13) is obvious. Note that the integral Jα,β,γ(u)
can be written in the following form

Jα,β,γ(u) =
∫

B

(|u(x)| β(α−q)
β+q |∇u(x)|β(1−|x|) β(γ+q)

β+q
) ·(|u(x)| q(α+β)

β+q (1−|x|) q(γ−β)
β+q

)
dVN (x).

Applying Hölder’s inequality with exponents β+q
β and β+q

q to the last integral we obtain
(13). ¤

The following lemma is well known and can be found, for example, in [4].

Lemma 5. Let p > n−1
n , x ∈ B, r = |x| and ζ ∈ S, then

∫

S

dσ(ζ)
|x− ζ|np

<
cp,n

(1− r)np−n+1
, 0 ≤ r < 1 (14)

for some positive constant cp,n, depending only on p and n.

3. Area type inequalities.

In this section we investigate the relationship among some area types of integrals.

Theorem 1. Let u ∈ H (B). Then the following statements are true:
(a) If p > 1 and α > 0, then

∫

B

|u(x)|p−2|∇u(x)|2(1− |x|)αdVN (x) ≤ C

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x),

for some positive constant independent of u.
(b) If p > 1, q ∈ (1, p], α > 1, then

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x)

≤ C

∫

B

|u(x)|p−q|∇u(x)|q(1− |x|)α+q−2dVN (x), (15)

for some positive constant C depending only on n, p and α.
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Proof. (a) From (4) and by Lemma 2, we have

Ap,α(u) = p(p− 1)
∫

B

|u(x)|p−2|∇u(x)|2(1− |x|)αdVN (x)

= nα

∫ 1

0

d

dr

(
Mp

p (u, r)
)
rn−1(1− r)α−1dr

≤ npα

∫ 1

0

∫

S

|u(rζ)|p−1|∇u(rζ)|rn−1(1− r)α−1dr

≤ pα

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x),

from which desired inequality follows. Note that since Mp
p (u, r) is nondecreasing function

it has the derivative for a.a. r ∈ (0, 1) and d
dr Mp

p (u, r) =
∫

S
d
dr (|u(rζ)|p)dσN (ζ).

(b) Let

Jp,α(u) =
∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x).

By Lemma 4 with α = p− 1, β = 1, γ = α− 1 and with exponents q and q′ = q/(q− 1),
it follows that

Jp,α(u) ≤
( ∫

B

|u(x)|p−q|∇u(x)|q(1− |x|)α+q−2dVN (x)
)1/q

×
( ∫

B

|u(x)|p(1− |x|)α−2dVN (x)
)1/q′

. (16)

Now we estimate the last integral by Jp,α(u). Applying polar-coordinates and inte-
gration by parts in r, we have

Jp,α(u) = n

∫ 1

0

∫

S

|u(rζ)|p−1|∇u(rζ)|dσN (ζ)rn−1(1− r)α−1dr

≥ n

p

∫ 1

0

∫

S

d

dr
(|u(rζ)|p)dσN (ζ)rn−1(1− r)α−1dr (by Lemma 2)

≥ n

p

∫

S

∫ 1

0

d

dr
(|u(rζ)|p)rn−1(1− r)α−1drdσN (ζ)

=
n

p

∫

S

∫ 1

0

|u(rζ)|p((n + α− 2)r − n + 1)rn−2(1− r)α−2drdσN (ζ)

≥ n(α− 1)
2p

∫ 1

2n+α−3
2(n+α−2)

∫

S

|u(rζ)|pdσN (ζ)(1− r)α−2rn−1dr
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=
(α− 1)

2p

∫

B\ 2n+α−3
2(n+α−2) B

|u(x)|p(1− |x|)α−2dVN (x)

≥ Cp,n,α

∫

B

|u(x)|p(1− |x|)α−2dVN (x), (by Lemma 3). (17)

Replacing estimate (17) into inequality (16) and using the fact that q and q′ are conjugate
exponents, we obtain inequality (15). ¤

Theorem 2. Let u ∈ H (B). Then the following statements are true:
(a) If 2 ≤ p < ∞ and α > 1, then

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x) ≤ C

∫

B

|u(x)|p(1− |x|)α−2dVN (x), (18)

for some positive constant independent of u.
(b) If p > 1 and α > 2, then

∫

B

|u(x)|p(1− |x|)α−2dVN (x)

≤ C

(
Mp

p

(
u,

2n + α− 3
2(n + α− 2)

)
+

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x)
)

, (19)

for some positive constant C depending only on n, p and α.

Proof. (a) Integrating (4) by parts, we get

Ap,α(u) = nα

∫ 1

0

d

dr

(
Mp

p (u, r)
)
rn−1(1− r)α−1dr

= nα

∫ 1

0

Mp
p (u, r)[(α− 1)r − (n− 1)(1− r)]rn−2(1− r)α−2dr.

Hence,

Ap,α(u) ≤ nα(α− 1)
∫ 1

0

Mp
p (u, r)rn−1(1− r)α−2dr

= α(α− 1)
∫

B

|u(x)|p(1− |x|)α−2dVN (x). (20)

From (15) with q = 2 and (20), (18) follows.
(b) As in the proof of inequality (17) and by Lemma 3, we have

∫ 1

2n+α−3
2(n+α−2)

Mp
p (u, r)rn−1(1− r)α−2dr



592 S. Stević

≤ 2
α− 1

∫ 1

2n+α−3
2(n+α−2)

Mp
p (u, r)[(α− 1)r − (n− 1)(1− r)]rn−2(1− r)α−2dr

=
2

α− 1

∫ 2n+α−3
2(n+α−2)

0

Mp
p (u, r)[n− 1− (n + α− 2)r]rn−2(1− r)α−2dr

+
2

α− 1

∫ 1

0

d

dr

(
Mp

p (u, r)
)
rn−1(1− r)α−1dr

≤ CMp
p

(
u,

2n + α− 3
2(n + α− 2)

)
+

2p

n(α− 1)

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x). (21)

On the other hand

∫ 2n+α−3
2(n+α−2)

0

Mp
p (u, r)rn−1(1− r)α−2dr ≤ CMp

p

(
u,

2n + α− 3
2(n + α− 2)

)
, (22)

for some positive C independent of u.
From (21) and (22) inequality (19) follows. ¤

The following statement is a consequence of Theorems 1 and 2.

Corollary 5. Let u ∈ H (B), u(0) = 0, p ≥ 2 and α > 1. Then the following
quantities

∫

B

|u(x)|p−2|∇u(x)|2(1− |x|)αdVN (x),

and

∫

B

|u(x)|p−1|∇u(x)|(1− |x|)α−1dVN (x)

are equivalent.
If α > 2, then these quantities are equiconvergent with

∫

B

|u(x)|p(1− |x|)α−2dVN (x).

Remark 1. If we multiply formula (3) by any C(1) radial weight function ω(1−|x|),
such that ω(0) = 0, and then integrate obtained equality by parts we obtain

Ap,ω(u) =
∫

B

|u(x)|p−2|∇u(x)|2ω(1− |x|)dVN (x)

=
n

p(p− 1)

∫ 1

0

d

dr

(
Mp

p (u, r)
)
ω′(1− r)rn−1dr.
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If ω′(0) = 0 another integration by parts gives

Ap,ω(u) =
n

p(p− 1)

∫ 1

0

Mp
p (u, r)[rω′′(1− r)− (n− 1)ω′(1− r)]rn−2dr.

By these formulas, Lemma 2 and some simple calculations it follows that

Ap,ω(u) ≤ 1
(p− 1)

∫

B

|u(x)|p−1|∇u(x)|ω′(1− |x|)dVN (x)

and

Ap,ω(u) ≤ 1
p(p− 1)

∫

B

|u(x)|pω′′(1− |x|)dVN (x).

Imposing some additional conditions on the weight function ω one can obtain the converse
inequalities.

4. Integral means of harmonic functions.

In this section we study the harmonic functions whose integral means satisfy the
following growth condition

Mp(u, r) = O

(
1

(1− r)a

)
, as r → 1.

Our motivation stems from [5].
The following theorem is a well-known generalization of a result of Hardy and Lit-

tlewood for holomorphic functions on the unit disk:

Theorem B. Let p ∈ [1,∞], a ∈ R+ \ {1} and u ∈ H (B), then

Mp(∇u, r) = O

(
1

(1− r)a

)
, as r → 1 (23)

if and only if

Mp(u, r) = O

(
1

(1− r)a−1

)
, as r → 1. (24)

We will sketch a proof of Theorem B for the benefit of the reader. In fact, if p ≥ 1
then condition (24) implies (23) for every a ∈ R. Indeed, by the Cauchy’s estimate ([1])
and by the subharmonicity of the function |u|p, we have

|∇u(x)|p ≤ C

r
sup

y∈B(x,r/4)

|u(y)|p ≤ C

rp+n

∫

x∈B(x,r/2)

|u(y)|pdV (y). (25)
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Replacing r by (1 − |x|)/2 in (25), x by Ux, where U is an arbitrary orthogonal trans-
formation of Rn, and then applying the change t → Ut, we obtain

|∇u(Ux)|p ≤ C

(1− |x|)n+p

∫

B(x,(1−|x|)/2)

|u(Ut)|pdV (t). (26)

Integrating (26) with respect to the Haar measure on the orthogonal group and then
applying Fubini’s theorem, it follows that

Mp
p (∇u, r) ≤ C

(1− |x|)n+p

∫

B(x,(1−|x|)/2)

Mp
p (u, |t|)dV (t). (27)

From (27), using condition (24) and fact that

1
2
(1− |x|) < 1− |t| < 3

2
(1− |x|) when t ∈ B(x, (1− |x|)/2),

we get (23).
On the other hand we have that

|u(x)| ≤ |u(0)|+
∫ 1

0

|∇u(xt)|dt.

From this and since p ≥ 1, by Minkowski’s inequality it follows that

Mp(u, r) ≤ |u(0)|+
∫ 1

0

Mp(∇u, rt)dt. (28)

Using condition (23) in (28) we obtain that (24) holds.

Remark 2. The proof of the implication (23) ⇒ (24) holds also for the case
p ∈ (0, 1). Namely, inequality (25) also holds in this case, since the function |u|p satisfied
so called HL-property, see, for example [3] or [11].

Remark 3. Note that if a ∈ (0, 1) and u satisfies (23), then u ∈ H p(B).

From above mentioned we see that the case a = 1 is more interesting. Applying
inequality (28) in the case p ∈ [1,∞), or the preceeding inequality, in the case p = ∞, it
follows that:

If p ≥ 1 and u is a harmonic function on B such that

Mp(∇u, r) = O

(
1

1− r

)
, as r → 1 (29)

then
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Mp(u, r) = O

(
ln

1
1− r

)
, as r → 1. (30)

It is interesting that estimate (30) can be improved in the case p ∈ (1,∞) using
methods described in [5]. We will formulate and prove a result corresponding to the
main one in [5], although we will generalized it in Theorem 5, for its proof is interesting
and relies on the fundamental identity (2). In what follows we use the notation Ip(u, r) =
Mp

p (u, r). The following result holds:

Theorem 3. If p ∈ [2,∞) and u is a harmonic function on B which satisfies
condition (29), then

Mp(u, r) = O

((
ln

1
1− r

)β )
, as r → 1, (31)

for all β > 1/2.

Proof. By Corollary 2 and using the fact that the integral means of harmonic
functions are nondecreasing functions when p > 1, we have

I ′′p (u, r) ≤ p(p− 1)
∫

S

|u(rζ)|p−2|∇u(rζ)|2 dσN (ζ). (32)

Set

A1(r) =
{

ζ ∈ S : |∇u(rζ)| ≤ |u(rζ)|
(1− r) ln 1

1−r

}
,

and let Ac
1(r) denote the complement of the set A1(r) with respect to the set S.

Since p > 2, from (32) we get

I ′′p (u, r) ≤ p(p− 1)
n

( ∫

A1(r)

+
∫

Ac
1(r)

)
|u(rζ)|p−2|∇u(rζ)|2dσ(ζ)

≤ p(p− 1)
n

(
Ip(u, r)

(1− r)2 ln2 1
1−r

+
(

(1− r) ln
1

1− r

)p−2

Ip(∇u, r)
)

.

From (29) and (30), it follows that

I ′′p (u, r) = O

(
1

(1− r)2
lnp−2 1

1− r

)
, as r → 1.

Integrating twice the last formula we obtain

Ip(u, r) = O

(
lnp−1 1

1− r

)
, as r → 1.
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Repeating the procedure we can get that

Ip(u, r) = O

(
lnpak

1
1− r

)
, as r → 1,

where ak satisfies the following difference equation

ak+1 =
(p− 2)ak + 1

p
, a1 = p.

Since ak+1− 1/2 = p−2
p (ak− 1/2), it follows that the sequence ak decreasingly converges

to 1/2, from which the result follows. ¤

Motivated by Theorem 3, we can expect that the constant β there can be replaced
by 1/2. In order to prove the result we need a consequence of [13, Theorem 3].

Theorem 4. Let 2 ≤ p < s + 2, s ≤ p, then

∫ 1

0

M2
2s

s−p+2
(∇u, ρ)(1− ρ)dρ < ∞

implies u ∈ H p(B), moreover

‖u‖2H p ≤ |u(0)|2 + p(p− 1)
∫ 1

0

M2
2s

s−p+2
(∇u, ρ)(1− ρ)dρ. (33)

Proof. In [13, Theorem 3] we have proved that

M2
p (u, r) ≤ |u(0)|2 + p(p− 1)

∫ r

0

M2
2s

s−p+2
(∇u, ρ)(1− ρ)dρ. (34)

Letting r → 1−0 in (34) and applying the Monotone Convergence Theorem we get (33).
¤

We are now in a position to improve the estimate in Theorem 3.

Theorem 5. If 2 ≤ p < s + 2, s ≤ p, and u ∈ H (B) such that

M 2s
s−p+2

(∇u, r) = O

(
1

1− r

)
, as r → 1 (35)

then

Mp(u, r) = O

((
ln

1
1− r

)1/2 )
, as r → 1. (36)
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Proof. By Theorem 4 applied to the (harmonic) functions u(rx), r ∈ (0, 1), and
condition (35), it follows that

M2
p (u, r) ≤ |u(0)|2 + p(p− 1)

∫ 1

0

M2
2s

s−p+2
(∇u, rρ)(1− ρ)dρ

≤ |u(0)|2 + C

(
− 1

r
+

1
r2

ln
1

1− r

)

= O

(
ln

1
1− r

)
, (37)

as desired. ¤

If we chose p = s in Theorem 5, we get the following corollary:

Corollary 6. Let p ∈ [2,∞) and u ∈ H (B) such that

Mp(∇u, r) = O

(
1

1− r

)
, as r → 1.

Then

Mp(u, r) = O

((
ln

1
1− r

)1/2 )
, as r → 1.

The following theorem is a generalization of well-known Littlewood-Paley inequality
for holomorphic functions on the unit disk:

Theorem C. Suppose p ∈ (0, 2] and u ∈ H (B). Then there is a constant C =
C(p, n) such that

sup
0≤r<1

∫

S

|u(rζ)|pdσ(ζ) ≤ C

(
|u(0)|p +

∫

B

|∇u(x)|p(1− |x|)p−1dV (x)
)

.

In particular, if
∫

B
|∇u(x)|p(1− |x|)p−1dV (x) < ∞, then u ∈ H p(B).

For the case p ∈ (0, 2] we have the following result.

Theorem 6. If p ∈ (0, 2] and u is a harmonic function on B such that

Mp(∇u, r) = O

(
1

1− r

)
, as r → 1 (38)

then

Mp(u, r) = O

((
ln

1
1− r

)1/p )
, as r → 1. (39)
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Proof. We may assume that u(0) = 0. Applying Theorem C to the dilations
ur(x) = u(rx), we obtain

Ip(u, r) ≤ C

∫

B

|∇u(rx)|p(1− |x|)p−1dV (x)

= Crp

∫ 1

0

Ip(∇u, rρ)(1− ρ)p−1ρn−1dρ

≤ C

∫ 1

0

(1− ρ)p−1

(1− rρ)p
dρ

= C

( ∫ r

0

(1− ρ)p−1

(1− rρ)p
dρ +

∫ 1

r

(1− ρ)p−1

(1− rρ)p
dρ

)
,

for r ∈ (0, 1).
Hence

Ip(u, r) ≤ C

( ∫ r

0

dρ

1− ρ
+

1
(1− r)p

∫ 1

r

(1− ρ)p−1dρ

)
,

= O

(
ln

1
1− r

)
, as r → 1,

finishing the proof of the result. ¤

Remark 4. It is interesting that the proof of the fact that if a harmonic function
u satisfies condition (23) then u ∈ H p(B) for a ∈ (0, 1) can be proved as in the proof of
Theorem 6. Indeed, we have

Ip(u, r) ≤ C

∫ 1

0

(1− ρ)p−1

(1− rρ)ap
dρ ≤

∫ 1

0

(1− ρ)p(1−a)−1dρ,

for every r ∈ (0, 1), from which it follows that u ∈ H p(B).

The following result corresponds to Proposition 2 in [5].

Theorem 7. If p ∈ (1,∞), u ∈ H (B) satisfying condition (29), then

M∞(u, r) = O

((
1

1− r

)(n−1)/p )
, as r → 1. (40)

Proof. By the Poisson integral formula and Hölder’s inequality, we have

|u(x)| ≤ ρn−2

∫

S

ρ2 − |x|2
|ρζ − x|n |u(ρζ)|dσN (ζ)

≤ ρn−2

( ∫

S

(
ρ2 − |x|2
|ρζ − x|n

)p′

dσN (ζ)
)1/p′

Mp(u, ρ),
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for every |x| < ρ < 1.
Setting ρ = (1 + |x|)/2, and applying Lemma 5, it follows that

|u(x)| ≤ C(1− |x|)
( ∫

S

dσN (ζ)
|ρζ − x|np′

)1/p′

Mp(u, (1 + |x|)/2)

≤ C

(1− |x|)n−1
p

Mp(u, (1 + |x|)/2). (41)

On the other hand, we have

|u(ρζ)− u(0)| =
∣∣∣∣
∫ ρ

0

〈∇u(tζ), ζ〉dt

∣∣∣∣ ≤
∫ ρ

0

|∇u(tζ)|dt.

Hence

|u(ρζ)| ≤ |u(0)|+
∫ ρ

0

|∇u(tζ)|dt.

Using Minkowski’s inequality in continuous form, it follows that

Mp(u, ρ) ≤ |u(0)|+
( ∫

S

( ∫ ρ

0

|∇u(tζ)|dt

)p

dσN (ζ)
)1/p

≤ |u(0)|+
∫ ρ

0

( ∫

S

|∇u(tζ)|pdσN (ζ)
)1/p

dt

≤ |u(0)|+
∫ ρ

0

Mp(∇u, t)dt. (42)

Combining (41) and (42) with ρ = (1 + r)/2, using the change p → kp, with k > 1, we
obtain that

M∞(u, r) ≤ C
Mkp(u, (1 + r)/2)

(1− r)
n−1
kp

≤ C

( |u(0)|+ ∫ (1+r)/2

0
Mkp(∇u, s)ds

(1− r)
n−1
kp

)
. (43)

Further we have

Mkp(∇u, s) =
( ∫

S

|∇u(sζ)|kp−p|∇u(sζ)|pdσN (ζ)
)1/kp

≤ M∞(∇u, s)1−1/kMp(∇u, s)1/k. (44)

Since all partial derivatives of a harmonic function are harmonic, using (41) and an
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elementary inequality we have that

|∇u(x)| ≤ C

(1− |x|)n−1
p

Mp(∇u, (1 + |x|)/2). (45)

From (29), (44), (45) and the monotonicity of the integral mean Mp(∇u, r) (|∇u| is a
subharmonic function, see [15]), it follows that

Mkp(∇u, s) ≤ C
Mp(∇u, (1 + s)/2)

(1− s)
n−1

p (1− 1
k )

≤ C

(1− s)1+
n−1

p (1− 1
k )

. (46)

From (43) and (46) it follows that

M∞(u, r) ≤ O

(∫ (1+r)/2

0
(1− s)−(1+ n−1

p (1− 1
k ))

(1− r)
n−1
kp

)
= O

((
1

1− r

)(n−1)/p )
,

as r → 1, finishing the proof. ¤
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