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Abstract. Let N and P be smooth manifolds of dimensions n and p respec-
tively such that n ≥ p ≥ 2 or n < p. Let O(N, P ) denote an open subspace of
J∞(N, P ) which consists of all regular jets and singular jets of certain given K -
invariant class (including fold jets if n ≥ p). An O-regular map f : N → P refers to a
smooth map such that j∞f(N) ⊂ O(N, P ). We will prove that a continuous section
s of O(N, P ) over N has an O-regular map f such that s and j∞f are homotopic
as sections. As an application we will prove this homotopy principle for maps with
K -simple singularities of given class.

Introduction.

Let N and P be smooth (C∞) manifolds of dimensions n and p respectively. Let
Jk(N, P ) denote the k-jet space of the manifolds N and P with the projections πk

N and
πk

P onto N and P mapping a jet onto its source and target respectively. Let Jk(n, p)
denote the k-jet space of C∞-map germs (Rn, 0) → (Rp, 0). Let K denote the contact
group defined in [MaIII]. Let O(N, P ) denote an open subbundle of Jk(N, P ) associated
to a given K -invariant open subset O(n, p) of Jk(n, p). In this paper a smooth map
f : N → P is called an O-regular map if jkf(N) ⊂ O(N, P ).

We will study a homotopy theoretic condition for finding an O-regular map in a
given homotopy class. Let C∞O (N, P ) denote the space consisting of all O-regular maps
equipped with the C∞-topology. Let ΓO(N, P ) denote the space consisting of all con-
tinuous sections of the fiber bundle πk

N |O(N, P ) : O(N, P ) → N equipped with the
compact-open topology. Then there exists a continuous map

jO : C∞O (N, P ) −→ ΓO(N, P )

defined by jO(f) = jkf . If any section s in ΓO(N, P ) has an O-regular map f such that s

and jkf are homotopic as sections in ΓO(N, P ), then we say that the homotopy principle
holds for O-regular maps. The terminology “homotopy principle” has been used in [G2].
It follows from the well-known theorem due to Gromov [G1] that if N is a connected open
manifold, then jO is a weak homotopy equivalence. If N is a closed manifold, then the
homotopy principle is a hard problem. As the primary investigation preceding [G1], we
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must refer to the Smale-Hirsch Immersion Theorem ([Sm], [H]), the k-mersion Theorem
due to Feit [F], the Phillips Submersion Theorem for open manifolds ([P]). In [E1]
and [E2], Èliašberg has proved the well-known homotopy principle on the 1-jet level for
fold-maps. Succeedingly there have appeared the homotopy principles for maps with the
extensibility condition in [duP2], for maps without certain Thom-Boardman singularities
in [duP1] (see [T], [B] and [L] for Thom-Boardman singularities) and for maps with K -
simple singularities in [duP3]. Although these du Plessis’s homotopy principles are
parametric and useful, one can not apply them in many cases, in particular, in the
dimensions n ≥ p. We refer to the relative homotopy principle for maps with prescribed
Thom-Boardman singularities in [An6], which is available in the dimensions n ≥ p ≥ 2.

In this paper we will study a general condition on O(n, p) for the relative homotopy
principle on the existence level. We say that a nonempty K -invariant open subset
O(n, p) is admissible if O(n, p) consists of all regular jets and a finite number of disjoint
K -invariant submanifolds V i(n, p) of codimension ρi (1 ≤ i ≤ ι) such that the following
properties (H-i to v) are satisfied.

(H-i) V i(n, p) consists of singular k-jets of rank ri, namely, V i(n, p) ⊂ Σn−ri(n, p).
(H-ii) For each i, the set O(n, p)\{⋃ι

j=i V j(n, p)} is an open subset.
(H-iii) For each i with ρi ≤ n, there exists a K -invariant submanifold V i(n, p)(k−1) of

Jk−1(n, p) such that V i(n, p) is open in (πk
k−1)

−1(V i(n, p)(k−1)). Here, πk
k−1 : Jk(n, p) →

Jk−1(n, p) is the canonical projection.
(H-iv) If n ≥ p, then p ≥ 2 and V 1(n, p) = Σn−p+1,0(n, p).

Here, Σn−p+1,0(n, p) denotes the Thom-Boardman manifold in Jk(n, p), which consists
of K -orbits of fold jets. Let d : (πk

N )∗(TN) −→ (πk
k−1)

∗(T (Jk−1(N, P ))) denote the
bundle homomorphism defined by d(z, v) = (z, dx(jk−1f)(v)) where z = jk

xf ∈ Jk(N, P )
and dx(jk−1f) : TxN → Tπk

k−1(z)(Jk−1(N, P )) is the differential. Let V i(N, P ) denote
the subbundle of Jk(N, P ) associated to V i(n, p). Let K(V i) be the kernel bundle in
(πk

N )∗(TN)|V i(N,P ) defined by K(V i)z = (z, Ker(dxf)).
(H-v) For each i with ρi ≤ n and any z ∈ V i(N, P ), we have

d
(
K(V i)z

) ∩ (
πk

k−1|V i(N, P )
)∗(

T (V i(N, P )(k−1))
)
z

= {0}.

For example, let Osim(n, p) be an nonempty open subset in Jk(n, p) which consists
of a finite number of K -k-simple K -orbits, and of Σn−p+1,0(n, p) in addition in the case
n ≥ p. Then if k ≥ p + 2, then we will prove in Section 7 that Osim(n, p) is admissible.

We will prove the following relative homotopy principle on the existence level for
O-regular maps.

Theorem 0.1. Let k be an integer with k ≥ 3. Let O(n, p) denote a nonempty
admissible open subspace of Jk(n, p). We assume that if n ≥ p, then p ≥ 2 and O(n, p)
contains Σn−p+1,0(n, p) at least. Let N and P be connected manifolds of dimensions n

and p respectively with ∂N = ∅. Let C be a closed subset of N . Let s be a section in
ΓO(N, P ) which has an O-regular map g defined on a neighborhood of C to P , where
jkg = s.

Then there exists an O-regular map f : N → P such that jkf is homotopic to s

relative to a neighborhood of C by a homotopy sλ in ΓO(N, P ) with s0 = s and s1 = jkf .
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In particular, we have f = g on a neighborhood of C.

In the proof of Theorem 0.1 the relative homotopy principles on the existence level
for fold-maps in [An3, Theorem 4.1] and [An4, Theorem 0.5] in the case n ≥ p ≥ 2 and
the Smale-Hirsch Immersion Theorem in the case n < p together with [G1] will play
important roles.

The relative homotopy principle on the existence level for maps and singular folia-
tions having only what are called A, D and E singularities has been given in [An1]–[An5].
Recently it turns out that this kind of homotopy principle has many applications. First
of all, Theorem 0.1 is very important even for fold-maps in proving the relations between
fold-maps, surgery theory and stable homotopy groups of spheres in [An3, Corollary 2,
Theorems 3 and 4] and [An7]. In [Sady] Sadykov has applied [An1, Theorem 1] to the
elimination of higher Ar singularities (r ≥ 3) for Morin maps when n − p is odd. This
result is a strengthened version of the Chess conjecture proposed in [C]. In [An8] it has
been proved that the cobordism group of O-regular maps to a given connected manifold
P is isomorphic to the stable homotopy group of a certain space related to O(n, p).

In Section 1 we will explain the notations which are used in this paper. In Section
2 we will review the definitions and the fundamental properties of K -orbits, from which
we deduce several further results. In Section 3 we will announce a special form of a
homotopy principle in Theorem 3.2 and reduce the proof of Theorem 0.1 to the proof
of Theorem 3.2 by induction. Furthermore, we will introduce a certain rotation of the
tangent spaces defined around the singularities of a given type in N for a preliminary
deformation of the section s. In Section 4 we will prepare two lemmas which are used to
deform the section s in a nice position. In Section 5 we will construct an O-regular map
around the singularities of a given type in N . We will prove Theorem 3.2 in Section 6.
In Section 7 we will apply Theorem 0.1 to maps with K -k-simple singularities of given
class.

1. Notations.

Throughout the paper all manifolds are Hausdorff, paracompact and smooth of class
C∞. Maps are basically continuous, but may be smooth (of class C∞) if necessary. Given
a fiber bundle π : E → X and a subset C in X, we denote π−1(C) by EC or E|C . Let
π′ : F → Y be another fiber bundle. A map b̃ : E → F is called a fiber map over a
map b : X → Y if π′ ◦ b̃ = b ◦ π holds. The restriction b̃|(E|C) : E|C → F (or F |b(C)) is
denoted by b̃C or b̃|C . We denote, by bF , the induced fiber map b∗(F ) → F covering b. A
fiberwise homomorphism E → F is simply called a homomorphism. For a vector bundle
E with a metric and a positive function δ on X, let Dδ(E) be the associated disk bundle
of E with radius δ. If there is a canonical isomorphism between two vector bundles E

and F over X = Y, then we write E ∼= F .
When E and F are smooth vector bundles over X = Y , Hom(E, F ) denotes the

smooth vector bundle over X with fiber Hom(Ex, Fx), x ∈ X which consists of all
homomorphisms Ex → Fx.

Let Jk(N, P ) denote the k-jet space of manifolds N and P . The map πk
N × πk

P :
Jk(N, P ) → N × P induces a structure of a fiber bundle with structure group Lk(p) ×
Lk(n), where Lk(m) denotes the group of all k-jets of local diffeomorphisms of (Rm, 0).
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The fiber (πk
N × πk

P )−1(x, y) is denoted by Jk
x,y(N, P ).

Let πN and πP be the projections of N × P onto N and P respectively. We set

Jk(TN, TP ) =
k⊕

i=1

Hom
(
Si(π∗N (TN)), π∗P (TP )

)
(1.1)

over N × P . Here, for a vector bundle E over X, let Si(E) be the vector bundle⋃
x∈X Si(Ex) over X, where Si(Ex) denotes the i-fold symmetric product of Ex. If

we provide N and P with Riemannian metrics, then the Levi-Civita connections induce
the exponential maps expN,x : TxN → N and expP,y : TyP → P . In dealing with expo-
nential maps we always consider convex neighborhoods ([K-N]). We define the smooth
bundle map

Jk(N, P ) −→ Jk(TN, TP ) over N × P (1.2)

by sending z = jk
xf ∈ Jk

x,y(N, P ) to the k-jet of (expP,y)−1◦f ◦expN,x at 0 ∈ TxN , which
is regarded as an element of Jk(TxN, TyP )(= Jk

x,y(TN, TP )) (see [K-N, Proposition 8.1]
for the smoothness of exponential maps). More strictly, (1.2) gives a smooth equivalence
of the fiber bundles under the structure group Lk(p)×Lk(n). Namely, it gives a smooth
reduction of the structure group Lk(p)×Lk(n) of Jk(N, P ) to O(p)×O(n), which is the
structure group of Jk(TN, TP ).

Under the projection πk
N × πk

P : Jk(N, P ) → N × P , let T f(Jk(N, P )) denote the
tangent bundle along the fiber of Jk(N, P ), whose fiber over (x, y) is T (Jk

x,y(N, P )). By
using the Levi-Civita connections we can define the projection

T (Jk(N, P )) −→ T f(Jk(N, P )) (1.3)

as follows. Let U and V be the convex neighborhoods of x and y. Let `(x, x′) (respectively
`(y′, y)) denote the parallel translation of U (respectively V ) mapping x to x′ (respectively
y′ to y). Define the trivialization

tx,y : Jk(U, V ) −→ Jk
x,y(U, V )

by tx,y(zx′,y′) = `(y′, y) ◦ zx′,y′ ◦ `(x, x′), where zx′,y′ ∈ Jk
x′,y′(U, V ) and `(x, x′) and

`(y′, y) are identified with their k-jets. We define the projection in (1.3) by

d(tx,y)z : Tz(Jk(U, V )) −→ Tz

(
Jk

x,y(U, V )
)

at z ∈ Jk
x,y(U, V ), where we should note Tz(Jk

x,y(U, V )) = T f
z(Jk(N, P )).

Let (x1, . . . , xn) and (y1, . . . , yp) be the normal coordinates on the convex neighbor-
hoods of (N, x) and (P, y) associated to orthonormal bases of TxN and TyP respectively.
Then a jet z ∈ Jk

x,y(N, P ) is often identified with the germ of the polynomial map of
degree k with variables x1, . . . , xn.
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2. Singularities of K -invariant class.

Let us begin by recalling the results in [MaIII], [MaIV] and [MaV]. Let Cx and
Cy denote the rings of smooth function germs on (N, x) and (P, y) respectively. Let mx

and my denote the maximal ideals of Cx and Cy respectively. Let f : (N, x) → (P, y)
be a germ of a smooth map. Let f∗ : Cy → Cx denote the homomorphism defined by
f∗(a) = a ◦ f . Let θ(N)x denote the Cx module of all germs at x of smooth vector
fields on N . Let θ(f)x denote the Cx module of germs at x of smooth vector fields along
f , namely which consists of all germs ς : (N, x) → TP such that pP ◦ ς = f . Here,
pP : TP → P is the canonical projection. Then we have the homomorphism

tf : θ(N)x −→ θ(f)x (2.1)

defined by tf(uN ) = df ◦ uN for uN ∈ θ(N)x.
Let us review the K -equivalence of two smooth map germs f, g : (N, x) → (P, y),

which has been introduced in [MaIII, (2.6)], by following [Mar1, II, 1]. The above two
map germs f and g are K -equivalent if there exists a smooth map germ h1 : (N, x) →
GL(Rp) and a local diffeomorphism h2 : (N, x) → (N, x) such that f(x) = h1(x)g(h2(x)).
In this paper we also say that jk

xf and jk
xg are K -equivalent in this case. It is known

that this K -equivalence is nothing but the contact equivalence introduced in [MaIII].
The contact group K is defined as a some subgroup of the group of germs of local
diffeomorphisms (N, x) × (P, y). Let K z denote the orbit submanifold of Jk

x,y(N, P )
consisting of all k-jets w which are K -equivalent to z. This fact is also observed from
the above definition.

In the case n ≥ p let Σn−p+1,0(n, p) denote the Thom-Boardman submanifold in
Jk(n, p) consisting of all fold jets. The union Ωn−p+1,0(n, p) of all regular jets and
Σn−p+1,0(n, p) is open (see, for example, [duP1]).

We define the bundle homomorphism

d1 :
(
πk

N

)∗(TN) −→ (
πk

P

)∗(TP ). (2.2)

Let z = jk
xf . We set (d1)z(z, v) = (z, df(v)). Let V i(n, p) be a K -invariant smooth sub-

manifold of Jk(n, p) which consists of singular jets with given rank r (0 ≤ r ≤ min(n, p)).
Namely, we have V i(n, p) ⊂ Σn−r(n, p). Let V i(N, P ) denote the subbundle of Jk(N, P )
associated to V i(n, p). We define the kernel bundle K(V i) in (πk

N |V i(n, p))∗(TN) and
the cokernel bundle Q(V i) of (πk

P |V i(n, p))∗(TP ) by, for z ∈ V i(N, P ),

K(V i)z = (z, Ker(dxf)) and Q(V i)z = (z,Coker(dxf))

respectively. The dimension of K(V i), as a vector bundle, is n− r.
Let O(n, p) be an admissible open subset in Jk(n, p) defined in Introduction whose

singularities are decomposed into a finite number of disjoint K -invariant submanifolds
V i(n, p) of codimension ρi (1 ≤ i ≤ ι) satisfying (H-i to v). We note that V i(n, p) may
not be connected and that even if i < j, then ρi is not necessarily smaller than ρj . We
denote, by Oi(n, p), the open subset O(n, p)\{⋃ι

j=i+1 V j(n, p)} and, by Oi(N, P ), the
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open subbundle of Jk(N, P ) associated to Oi(n, p) for each i (0 ≤ i ≤ ι).
Let z = jk

xf ∈ Jk
x,y(N, P ) be of rank r and w = πk

k−1(z). Let K w(N, P ) denote
the subbundle of Jk−1(N, P ) associated to the K -orbit K w. We call K w(N, P ) the
K -orbit bundle of w in this paper. The fiber of K w(N, P ) over (x, y) is denoted by
K w

x,y(n, p). Let us recall the description of the tangent space of K w
x,y(N, P ) in [MaIII,

(7.3)]. There have been defined the isomorphism, expressed in this paper by πk−1
θ,T ,

Tw

(
Jk−1

x,y (N, P )
) −→ mxθ(f)x/mk

xθ(f)x. (2.3)

We do not give the definition. According to [MaIII, (7.4)], Tw(K w
x,y(N, P )) corresponds

by πk−1
θ,T to

(
tf(mxθ(N)x) + f∗(my)θ(f)x + mk

xθ(f)x

)
/mk

xθ(f)x, (2.4)

which we denote by I(w) for simplicity.
We choose Riemannian metrics on N and P . Let Qy denote Ty(P )/Im(dxf).

We always identify Ty(P )/Im(dxf) with the orthogonal complement of Im(dxf) in
Ty(P ). In the convex neighborhoods of x and y where f is defined, let e(Kx) and
e(Qy) denote expN,x(Ker(dxf)) and expP,y(Ty(P )/Im(dxf)) with the normal coordi-
nates x• = (xr+1, . . . , xn) and y• = (yr+1, . . . , yp) associated to the orthonormal bases of
Kx and Qy respectively. Let (y1, . . . , yr) be the normal coordinates of expP,y(Im(dxf))
associated to the orthonormal basis of Im(dxf). Setting xi = yi ◦f for 1 ≤ i ≤ r, we have
the coordinates (x1, . . . , xn) and (y1, . . . , yp) of (N, x) and (P, y) respectively. Let pQy

:
(P, y) → (e(Qy), y) be the germ of the orthogonal projection. Let f• : e(Kx) → e(Qy)
be the map defined by f• = pQy

◦ f |e(Kx). In the module mx•θ(f•)x•/mk
x•θ(f

•)x• , let
I•(w) denote the submodule of

(
tf•(mx•θ(e(Kx))x•) + (f•)∗(my•)θ(f•)x• + mk

x•θ(f
•)x•

)
/mk

x•θ(f
•)x• .

In this situation, since f•(x•) = (yr+1 ◦ f(x•), . . . , yp ◦ f(x•)), the submodule I•(w) is
generated by





mx•

p∑

i=r+1

∂yi ◦ f•

∂xj

(
∂

∂yi
◦ f•

)
for r < j ≤ n,

〈yr+1 ◦ f•, . . . , yp ◦ f•〉 ∂

∂yi
◦ f• for r < i ≤ p,

(2.5)

where ∂/∂yi is the vector field on (P, y) and the notation 〈∗〉 refers to an ideal.
If z = jk

xf ∈ V i
x,y(N, P ), then w ∈ K w

x,y(N, P ) ⊂ V i
x,y(N, P )(k−1) by (H-iii) and

Tw(K w
x,y(N, P )) ⊂ Tw(V i

x,y(N, P )(k−1)). Under the above local coordinates (x1, . . . , xn)
and (y1, . . . , yp), let M (V i)(k−1) and M (V i)•(k−1) denote the vector bundles over
V i(N, P ) with fibers

mxθ(f)x/mk
xθ(f)x and mx•θ(f•)x•/mk

x•θ(f
•)x•
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over z respectively. These vector bundles are well defined as far as the Riemannian
metrics on N and P are chosen and fixed. We use the same notation πk−1

θ,T for the bundle
isomorphism over V i(N, P ) as follows.

πk−1
θ,T :

(
πk

k−1

)∗(
T f(Jk−1(N, P ))

)|V i(N,P ) −→ M (V i)(k−1).

Furthermore, we define the canonical projection

pM• : M (V i)(k−1) −→ M (V i)•(k−1) (2.6)

by

(pM•)z

( r∑

i=1

hitf

(
∂

∂xi

)
+

p∑

i=r+1

ki

(
∂

∂yi
◦ f

))
=

p∑

i=r+1

k•i

(
∂

∂yi
◦ f•

)
.

This definition is the global version of the homomorphism defined in [MaIV, Section 1].
We canonically identify ν(V i(N, P )) = (πk

k−1|V i(N, P ))∗(ν(V i(N, P )(k−1))). It is
not difficult to see that (pM•)z induces the isomorphism of ν(K w(N, P ))w onto the
vector spaces of dimension ρ

mxθ(f)x/
(
I(w) + mk

xθ(f)x

) ≈ mx•θ(f•)x•/
(
I•(w) + mk

x•θ(f
•)x•

)
. (2.7)

The epimorphism ν(K w(N, P ))w → ν(V i(N, P ))(k−1)
w canonically induces the epimor-

phism

pM
ν : M (V i)•(k−1) −→ ν(V i(N, P )) (2.8)

over V i(N, P ).
Let

Πk
f : T (Jk(N, P )) → (

πk
k−1

)∗(
T (Jk−1(N, P ))

) → (
πk

k−1

)∗(
T f(Jk−1(N, P ))

)

denote the composite of canonical projections and let

pν(V i) : T (Jk(N, P ))|V i(N,P ) −→ ν(V i(N, P ))

denote the canonical projection.

Lemma 2.1. Let z ∈ V i
x,y(N, P ). Under the above notation the epimorphism

pν(V i)|z coincides with the composite pM
ν ◦ pM• ◦ πk−1

θ,T ◦ (Πk
f )z :

Tz(Jk(N, P )) → M (V i)(k−1)
z → M (V i)•(k−1)

z → ν(V i(N, P ))z. (2.9)

Recall the homomorphism d in Introduction. Let us study the composite
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πf ◦ d :
(
πk

N

)∗(TN)|V i(N,P ) −→
(
πk

k−1

)∗(
T f(Jk−1(N, P ))

)|V i(N,P )

and the isomorphism in (2.3). For z = jk
xf ∈ V i(N, P ) and v ∈ TxU , let v(t) =

expN,x(tv) be the geodesic curve. Then the composite tx,y ◦ jk−1f ◦ v : I → Jk−1
x,y (N, P )

yields that

(
d(tx,y ◦ jkf ◦ v)|t=0

)
(d/dt) =

(
(d(tx,y) ◦ d(jkf) ◦ dv)|t=0

)
(d/dt)

= d(tx,y) ◦ d(jkf)(v)

= d(tx,y) ◦ d(v)

= πf ◦ d(v), (2.10)

where πf ◦ d(v) is regarded as an element of Jk−1
x,y (N, P ). Let F : U × [0, 1] → P be the

following map

F (x′, t) = `(f(v(t)), f(x)) ◦ f ◦ `(x, v(t))(x′)

= `(f(v(t)), f(x)) ◦ f(x′ + v(t)− x)

= f(x′ + v(t)− x) + f(x)− f(v(t)).

In particular, we have F (x, t) = f(x) = y. Let Fx′(t) = Ft(x′) = F (x′, t) and G(t) =
f(x′ + v(t)− x).

Remark 2.2. It follows that πk−1
θ,T ◦ πf ◦ d(v) is represented by the vector fields

ζz
v : (N, x) → TP defined by ζz

v(x′) = (dFx′ |t=0)(d/dt). Let us briefly prove this fact.
We note that

jk−1
x Ft = `(f(v(t)), f(x)) ◦ jk−1

v(t),f(v(t))f ◦ `(x, v(t)) ∈ Jk−1
x,y (N, P ).

By (2.10) we have πf◦d(v) = (d(jk−1
x Ft)|t=0)(d/dt). By the definition of the isomorphism

πk−1
θ,T in (2.3) in [MaIII, (7.3)] we obtain the assertion.

In Remark 2.2 ζz
v = (dFx′ |t=0)(d/dt) is equal to

(dG|t=0)(d/dt)− (d(f ◦ v)|t=0)(d/dt)

=
([

· · · ,

p∑

`=1

(
∂y` ◦G(t)

∂xj
− ∂y` ◦ f

∂xj
(v(t))

)
∂

∂y`
, · · ·

]

t=0

)
• v (2.11)

where “•” refers to the inner product. If v =
∑n

j=1 aj∂/∂xj ∈ K(V i)z, then
(d(f ◦ v)|t=0)(d/dt) = df(v) = 0 and

ζz
v(x′) =

p∑

`=1

( p∑

j=1

aj
∂y` ◦ f

∂xj
(x′)

)
∂

∂y`
(2.12)
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and ζz
v(x) = 0. Therefore, if v ∈ K(V i)z, then ζz

v lies in mxθ(f)x.
Under the trivialization TU = U × TxU , there is the vector field vU on U defined

by vU (x′) = (x′,v). Therefore, we have the following lemma.

Lemma 2.3. Let z = jk
xf ∈ V i

x,y(N, P ). Let v ∈ K(V i)z. Under the above
notation, πk−1

θ,T ◦ πf ◦ d(v) is represented by ζz
v = tf(vU ).

3. Primary obstruction.

Let s ∈ ΓO(N, P ) be smooth around s−1(V i(N, P )) and transverse to V i(N, P ). We
set

SV i

(s) = s−1(V i(N, P )), Sn−p+1,0(s) = s−1(Σn−p+1,0(N, P )),
(
s|SV i

(s)
)∗(K(V i)) = K

(
SV i

(s)
)
,

(
s|SV i

(s)
)∗

Q(V i) = Q
(
SV i

(s)
)
.

We often write SV i

(s) as SV i

if there is no confusion.
Let Γtr

O (N, P ) denote the subspace of ΓO(N, P ) consisting of all smooth sec-
tions of πk

N |O(N, P ) : O(N, P ) → N which are transverse to V j(N, P ) for every
j. Let C be a closed subset of N . For s ∈ Γtr

O (N, P ) let Ci+1 refer to the union
C ∪ s−1(O(n, p)\Oi(n, p)) (Cι+1 = C).

The following theorem has been proved in [An3, Theorem 4.1] and [An4, Theorem
0.5] in which [E1, 2.2 Theorem] and [E2, 4.7 Theorem] have played important roles.

Theorem 3.1. Let n ≥ p ≥ 2. Let O(n, p) denote Ω(n−p+1,0)(n, p). Let N and
P be connected manifolds of dimensions n and p respectively with ∂N = ∅. Let C be
a closed subset of N . Let s be a section of ΓO(N, P ) such that there exists a fold-map
g defined on a neighborhood of C into P , where j2g = s. Then there exists a fold-map
f : N → P such that j2f is homotopic to s relative to C by a homotopy sλ in ΓO(N, P )
with s0 = s and s1 = j2f . In particular, f = g on a neighborhood of C.

We show in this section that it is enough for the proof of Theorem 0.1 to prove the
following theorem together with Theorem 3.1.

Theorem 3.2. Let k ≥ 3. Let N and P be connected manifolds of dimensions
n and p respectively with ∂N = ∅. We assume the same assumption for O(n, p) as
in Theorem 0.1. Let Ci+1 and V i(n, p) be as above for 1 ≤ i ≤ ι. We assume that if
n ≥ p ≥ 2, then V i(n, p) 6= Σn−p+1,0(n, p) (i > 1). Let s be a section in Γtr

O (N, P )
which has an O-regular map gi+1 (gι+1 = g) defined on a neighborhood of Ci+1 to P ,
where jkgi+1 = s. Then there exists a homotopy sλ ∈ ΓO(N, P ) of s0 = s relative to a
neighborhood of Ci+1 with the following properties.

(3.2.1) s1 ∈ Γtr
O (N, P ) and s1(N\Ci+1) ⊂ O(N, P )i.

(3.2.2) SV i

(sλ) = SV i

(s) for any λ.
(3.2.3) There exists an O-regular map gi defined on a neighborhood of Ci, where

jkgi = s1 holds. In particular, gi = gi+1 on a neighborhood of Ci+1.

Proof of Theorem 0.1. We first deform s to be transverse outside a small
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neighborhood of C. By the downward induction on i using Theorem 3.2 we next deform
s keeping g near C to the jet extension of an O-regular map defined around

⋃ι
j=1 SV j

(s)

for n < p and around
⋃ι

j=2 SV j

(s) for n ≥ p ≥ 2. In the final step we apply the Smale-
Hirsch Immersion Theorem ([H, Theorem 5.7]) for n < p and Theorem 3.1 for n ≥ p ≥ 2
to obtain the required O-regular map f .

Take a closed neighborhood U(C) of C where the given O-regular map g is defined.
Let Uj(C) (j = 1, 2, 3, 4) be closed neighborhoods of C such that U4(C) ⊂IntU(C)
and Uj(C) ⊂IntUj+1(C) (j = 1, 2, 3). By [G-G, Ch. II, Corollary 4.11] there exists a
homotopy of O-regular maps gλ : U(C) → P relative to U1(C) such that g0 = g and
jkg1|U(C)\IntU2(C) is transverse to V j(N, P ) for all j. By applying the homotopy
extension property we obtain a homotopy µλ in ΓO(N, P ) such that µ0 = s, µλ|U4(C) =
jkgλ|U4(C) and µ1|(N\U2(C)) ∈ Γtr

O (N\U2(C), P ). Let S(µ1) denote the subspace of all
points x ∈ N such that µ1(x) are singular jets.

Let N ′ = N\U2(C), C ′ = U3(C) ∩ N ′ and g′ = g1|(U4(C)\U2(C)). Let us choose
the largest integer i such that SV i

(µ1)\C ′ 6=∅. We first apply Theorem 3.2 to the case
of µ1|N ′, C ′, g′ and O(N ′, P ) in Jk(N ′, P ). There exist a homotopy s′λ in ΓO(N ′, P )
of s′0 = µ1|N ′ relative to a neighborhood of C ′ and an O-regular map g′i defined on a
neighborhood of C ′i in N ′ satisfying the properties (3.2.1) to (3.2.3) for N ′, C ′, g′, g′i and
s′λ.

Then we can prove by downward induction on integers i that there exists a ho-
motopy s′′λ of s′′0 = s′1 in Γtr

O (N ′, P ) relative to U3(C) and an O-regular map f ′

defined on a neighborhood of (U3(C) ∪ S(µ1))\U2(C) for n < p and of (U3(C) ∪
(S(µ1)\S(n−p+1,0)(µ1)))\U2(C) for n ≥ p ≥ 2, such that

(i) s′′1 ∈ Γtr
O (N ′, P ),

(ii) s′′1(N\C1) ⊂ O0(N, P ) for n < p and s′′1(N\C2) ⊂ O1(N, P ) for n ≥ p ≥ 2,
(iii) SV j

(s′′λ) = SV j

(s) except for j = 1 in the case n ≥ p ≥ 2.

Let

N ′′ =

{
N ′/S(µ1) for the case n < p,

(N ′/S(µ1)) ∪ S(n−p+1,0)(µ1) for the case n ≥ p ≥ 2.

It follows from the Smale-Hirsch Immersion Theorem for the case n < p that there
exist an immersion f ′′ : N ′′ → P and a homotopy uλ ∈ ΓO(N ′′, P ) relative to the
neighborhood of U(C ∪ S(µ1)) ∩ N ′′ such that u0 = s′′1 |N ′′ and u1 = jkf ′′. It follows
from Theorem 3.2 for the case n ≥ p ≥ 2 that there exist an Ω(n−p+1,0)-regular map
f ′′ : N ′′ → P and a homotopy uλ ∈ ΓO(N ′′, P ) relative to a neighborhood of

{
(U(C ∪ S(µ1))\S(µ1)) ∪ S(n−p+1,0)(µ1)

} ∩N ′′

such that u0 = s′′1 |N ′′ and u1 = jkf ′′. Define s′′′λ ∈ ΓO(N ′, P ) by s′′′λ |N ′′ = uλ and
s′′′λ |(N ′\N ′′) = s′′1 |(N ′\N ′′).

Now we have the homotopy µλ in ΓO(N, P ) defined by
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µλ|N ′ =





s′3λ (0 ≤ λ ≤ 1/3),

s′′3λ−1 (1/3 ≤ λ ≤ 2/3),

s′′′3λ−2 (2/3 ≤ λ ≤ 1)

and µλ|U3(C) = jkg1|U3(C). Thus we obtain the required homotopy sλ in Theorem 0.1
by pasting µλ and µλ. ¤

We begin by preparing several notions and results, which are necessary for the proof
of Theorem 3.2. For the map gi+1, we take a closed neighborhood U(Ci+1)′ of Ci+1

around which gi+1 is defined and jkgi+1 = s. Without loss of generality we may assume
that N \ U(Ci+1)′ is nonempty. Let us take a closed neighborhood U(Ci+1) of Ci+1 in
IntU(Ci+1)′ such that U(Ci+1) is a submanifold of dimension n with boundary ∂U(Ci+1).
By virtue of Gromov’s theorem ([G1, Theorem 4.1.1]), it suffices to consider the special
case where

(C1) N \ IntU(Ci+1) is compact, connected and nonempty,
(C2) s ∈ Γtr

O (N, P ) and SV i

(s)\IntU(Ci+1) 6=∅,
(C3) SV i

(s) is transverse to ∂U(Ci+1).
For a manifold X and its submanifold Y let ν(Y ) denote the normal bundle

(TX|Y )/TY of Y . In what follows we set r = ri and ρ = ρi for simplicity. Let
ν(V i(N, P )) be the normal bundle of dimension ρ ≤ n. Then pν(V i) ◦ d|K(V i) :
K(V i) → ν(V i(N, P )) is a monomorphism over V i(N, P ) by (H-v) under the identi-
fication ν(V i(N, P ))z = (z, ν(V i(N, P )(k−1))πk

k−1(z)). The composite

pν(V i) ◦ d|K(V i) ◦ (
s|SV i)K(V i) : K

(
SV i

(s)
) → K(V i) → ν(V i(N, P ))

is also a monomorphism. Let s ∈ ΓO(N, P ) be the given section in Theorem 3.2. Let us
provide N with a Riemannian metric. Let n(s, V i) be the orthogonal normal bundle of
SV i

(s) in N . We have the bundle map

ds|n(s, V i) : n(s, V i) −→ ν(V i(N, P ))

covering s|SV i

: SV i

(s) → V i(N, P ). Let in(s,V i) : n(s, V i) ⊂ TN |SV i denote the
inclusion. We define Ψ(s, V i) : K(SV i

(s)) → n(s, V i) ⊂ TN |SV i to be the composite

in(s,V i) ◦
(
(s|SV i

)∗(ds|n(s, V i))
)−1 ◦ (

(s|SV i

)∗
(
pν(V i) ◦ d|K(V i) ◦ (s|SV i

)K(V i)
))

: K
(
SV i

(s)
) → (s|SV i

)∗ν(V i(N, P )) → n(s, V i) → TN |SV i . (3.1)

Let iK(SV i (s)) : K(SV i

(s)) → TN |SV i be the inclusion.

Remark 3.3. If f is an O-regular map such that jkf is transverse to V i(N, P ),
then it follows from the definition of d that iK(SV i (jkf)) = Ψ(jkf, V i) if we choose a

Riemannian metric such that K(SV i

(jkf)) is orthogonal to SV i

(jkf).
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Here we give an outline of the proof of Theorem 3.2. We first deform the given section
s in Theorem 3.2 so that K(SV i

(s)) is normal to SV i

(s) and iK(SV i (s)) = Ψ(s, V i)

(Lemma 4.1). Next we deform the section so that πP ◦ s|SV i

(s) is an immersion by
applying the Smale-Hirsch Immersion Theorem (Lemma 4.2). In Section 5, using the
transversality of the deformed section we construct an Oi-regular map q defined around
SV i

(s) by applying the versal unfolding developed in [MaIV] and modify q around Ci+1

to be compatible with gi+1. This is the required O-regular map gi. In section 6 we finally
extend the homotopy between s and jkgi defined around SV i

(s) to the homotopy defined
on the whole space N and obtain a required section.

In what follows let M = SV i

(s) \ Int(U(Ci+1)). Let

Mono
(
K(SV i

(s))|M , TN |M
)

denote the subset of Hom(K(SV i

(s))|M , TN |M ) which consists of all monomor-
phisms K(SV i

(s))c → TcN , c ∈ M . We denote the bundle of local coefficients
B(πj(Mono(K(SV i

(s))c, TcN))), c ∈ M , by B(πj), which is a covering space over M

with fiber πj(Mono(K(SV i

(s))c, TcN)) defined in [Ste, 30.1]. By the obstruction theory
due to [Ste, 36.3], the obstructions for iK(SV i (s))|M and Ψ(s, V i)|M to be homotopic
relative to ∂M are the primary differences d(iK(SV i (s))|M ,Ψ(s, V i)|M ), which are de-
fined in Hj(M, ∂M ;B(πj)) with local coefficients. We show that unless n ≥ p ≥ 2 and
V i(n, p) = Σn−p+1,0(n, p), all of them vanish by [Ste, 38.2]. In fact, if n ≥ p ≥ 2 and
V i(n, p) 6= Σn−p+1,0(n, p), then we have

dimM < n− codimΣn−p+1 = n− (n− r) = r, for r = p− 1,

dimM ≤ n− codimΣn−r = n− (n− r)(p− r) < r, for r < p− 1.

If n < p, then

dimM ≤ n− codimΣn−r = n− (n− r)(p− r) ≤ n− 2(n− r) < r.

Since Mono(Rn−r,Rn) is identified with GL(n)/GL(r), it follows from [Ste, 25.6] that
πj(Mono(Rn−r,Rn)) ∼= {0} for j < r. Hence, there exists a homotopy ψM (s, V i)λ :
K(SV i

(s))|M → TN |M relative to M ∩ U(Ci+1)′ in Mono(K(SV i

(s))|M , TN |M ) such
that

ψM (s, V i)0 = iK(SV i (s))|M and ψM (s, V i)1 = Ψ(s, V i)|M .

Let Iso(TN |M , TN |M ) denote the subspace of Hom(TN |M , TN |M ) which consists of all
isomorphisms of TcN , c ∈ M . The restriction map

rM : Iso(TN |M , TN |M ) −→ Mono
(
K(SV i

(s))|M , TN |M
)

defined by rM (h) = h|(K(SV i

(s))c), for h ∈ Iso(TcN, TcN), induces a structure of a fiber



Singularities of given K -invariant class 569

bundle with fiber Iso(Rr,Rr) × Hom(Rr,Rn−r). By applying the covering homotopy
property of the fiber bundle rM to the sections idTN |M and the homotopy ψM (s, V i)λ,
we obtain a homotopy Ψ(s, V i)λ : TN |SV i → TN |SV i such that Ψ(s, V i)0 = idTN |

SV i
,

Ψ(s, V i)λ|c = idTcN for all c ∈ SV i ∩ U(Ci+1) and rM ◦ Ψ(s, V i)λ|(K(SV i

(s))|M ) =
ψM (s, V i)λ. We define Φ(s, V i)λ : TN |SV i → TN |SV i by Φ(s, V i)λ = (Ψ(s, V i)λ)−1.

4. Lemmas.

The section s given in Theorem 3.2 may not satisfy iK(SV i (s)) = Ψ(SV i

(s)) and

K(SV i

(s)) may not even transverse to SV i

(s) either. Therefore, we first have to deform
the section s so that K(SV i

(s)) is normal to SV i

(s) and iK(SV i (s)) = Ψ(SV i

(s)). We

next deform s so that πP ◦ s|SV i

(s) is an immersion by the Smale-Hirsch Immersion
Theorem. The arguments of these two steps are quite similar to those in [An6, Lemmas
5.1 and 5.2]. So we only show important steps in the proofs.

In the proof of the following lemma, Φ(s, V i)λ|c (c ∈ SV i

) is regarded as a lin-
ear isomorphism of TcN . We set d1(s, V i) = (s|SV i

(s))∗(d1). Let us take closed
neighborhoods W (Ci+1)j (j = 1, 2) of U(Ci+1) in U(Ci+1)′ such that W (Ci+1)1 ⊂
IntW (Ci+1)2, W (Ci+1)j are submanifolds of dimension n with boundary ∂W (Ci+1)j

and that ∂W (Ci+1)j meet transversely with SV i

(s).

Lemma 4.1. Let s ∈ Γtr
O (N, P ) be a section satisfying the hypotheses of Theorem

3.2. Assume that if n ≥ p ≥ 2, then V i(n, p) 6= Σn−p+1,0(n, p). Then there exists a
homotopy sλ relative to W (Ci+1)1 in Γtr

O (N, P ) with s0 = s satisfying
(4.1.1) for any λ, SV i

(sλ) = SV i

(s) and πk
P ◦ sλ|SV i

(sλ) = πk
P ◦ s|SV i

(s),
(4.1.2) we have iK(SV i (s1))

= Ψ(s1, V
i), and in particular, K(SV i

(s1))c ⊂ n(s, V i)c

for any point c ∈ SV i

(s1).

Proof. We write an element of n(σ, V i)c as vc. There exists a small positive
number δ such that the map

e : Dδ(n(σ, V i))|M −→ N

defined by e(vc) = expN,c(vc) is an embedding, where c ∈ M . Let ρ : [0,∞) → R be a
decreasing smooth function such that 0 ≤ a(t) ≤ 1, a(t) = 1 if t ≤ δ/10 and a(t) = 0 if
t ≥ δ.

Let `(v) denote the parallel translation defined by `(v)(a) = a + v. If we represent
a jet of Jk(N, P ) by jk

xιx for a germ ιx : (N, x) → (P, y), then we define the homotopy
bλ : Jk(N, P ) → Jk(N, P ) (0 ≤ λ ≤ 1) of the bundle maps over N × P as follows.

(i) If x = e(vc), c ∈ M and ‖vc‖ ≤ δ, then

bλ

(
jk
xιx

)
= jk

x

(
ιx ◦ expN,c ◦`(vc) ◦ Φ(s, V i)a(‖vc‖)λ|c ◦ `(−vc) ◦ exp−1

N,c

)
.

(ii) If x /∈ Im(e), then bλ(jk
xιx) = jk

xιx.
If δ is sufficiently small, then we may suppose that
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e
(
Dδ(n(σ, V i))|M

) ∩W (Ci+1)1 ⊂ e
(
Dδ(n(σ, V i))|M∩W (Ci+1)2

)
.

If c ∈ SV i ∩ U(Ci+1) or if ‖vc‖ ≥ δ, then Φ(s, V i)λ|c or Φ(s, V i)a(‖vc‖)λ|c is equal to
Φ(s, V i)0|c = idTcN respectively. Hence, bλ is well defined. We define the homotopy sλ

of Γtr
O (N, P ) using bλ by sλ(x) = bλ ◦ s(x). By (i) and (ii) we have (4.1.1).
We have that n(s, V i)c ⊃ K(SV i

(s1))c and iK(SV i (s1))
= Ψ(s1, V

i) for c ∈ SV i

(s).

Indeed, let Ψ(s, V i)c(v) = w with v ∈ K(SV i

(s))c and w ∈ n(s, V i)c. Setting s(c) = jk
c ιc

we have by (i) and (ii) that

s1(c) = s(c) ◦ jk
c

(
expN,c ◦Φ(s, V i)1|c ◦ exp−1

N,c

)
.

Since d1(s1, V
i)c = d1(s, V i)c ◦ Φ(s, V i)1|c vanishes on Ψ(s, V i)(K(SV i

(s))c), we have
Ψ(s, V i)(K(SV i

(s))c) = K(SV i

(s1))c. By (3.1), we have Ψ(s1, V
i)(w) = w. ¤

Lemma 4.2. Let s be a section in Γtr
O (N, P ) satisfying the property (4.1.2) for s

(in place of s1) of Lemma 4.1 and V i(n, p) be given in Theorem 3.2. Then there exists a
homotopy αλ relative to W (Ci+1)1 in ΓO(N, P ) with α0 = s such that

(4.2.1) αλ is transverse to V i(N, P ) and SV i

(αλ) = SV i

(s) for any λ,
(4.2.2) we have iK(SV i (α1))

= Ψ(α1, V
i), and in particular, K(SV i

(α1))c ⊂ n(s, V i)c

for any point c ∈ SV i

(α1),
(4.2.3) πk

P ◦ α1|SV i

(α1) is an immersion to P such that

d
(
πk

P ◦ α1|SV i

(α1)
)

=
(
πk

P ◦ α1

)TP ◦ d1(α1, V
i)|T (SV i

(α1)) : T
(
SV i

(α1)
) → TP,

where (πk
P ◦ α1)TP : (πk

P ◦ α1)∗(TP ) → TP is the canonical induced bundle map,
(4.2.4) αλ(N\(SV i

(s) ∪ IntW (Ci+1)1)) ⊂ Oi−1(N, P ).

Proof. In the proof we set SV i

= SV i

(s). We choose a Riemannian metric
of P and identify Q(SV i

) with the orthogonal complement of Im(d1(s, V i)) in (πk
P ◦

s|SV i

)∗(TP ). Since K(SV i

)∩T (SV i

) = {0}, it follows that (πk
P ◦s)TP ◦d1(s, V i)|T (SV i

)
is a monomorphism. By the Smale-Hirsch Immersion Theorem there exists a smooth
homotopy of monomorphisms m′

λ : T (SV i

) → TP covering a homotopy mλ : SV i → P

relative to W (Ci+1)1 such that m′
0 = (πk

P ◦s)TP ◦d1(s, V i)|T (SV i

) and m1 is an immersion
with d(m1) = m′

1. Then we can extend m′
λ to a smooth homotopy m̃′

λ : TN |SV i → TP

of homomorphisms of constant rank r relative to SV i ∩W (Ci+1)1 so that m̃′
0 = (πk

P ◦
s)TP ◦ d1(s, V i).

Recall the submanifold Σn−r(N, P )(1) of J1(N, P ) = J1(TN, TP ), which consists of
all jets of rank r. Then

πk
1 |V i(N, P ) : V i(N, P ) −→ Σn−r(N, P )(1)

becomes a fiber bundle. We regard m̃′
λ as a homotopy SV i → Σn−r(N, P )(1). By the

covering homotopy property to s|SV i

and m̃′
λ, we obtain a smooth homotopy αΣ

λ : SV i →
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V i(N, P ) covering m̃′
λ relative to W (Ci+1)1 such that αΣ

0 = s|SV i

.
We have a smooth metric of n(s, V i) over SV i

. For a sufficiently small positive
function ε : SV i → R, let E(SV i

) denote expN Dε(n(s, V i)). By using the transversality
of s and the homotopy extension property of bundle maps for s|E(SV i

) and αΣ
λ , we first

extend αΣ
λ to a smooth homotopy βλ of E(SV i

) to a tubular neighborhood of V i(N, P ),
say UV i , covering αΣ

λ relative to E(SV i

) ∩W (Ci+1)1 such that β0 = s|E(SV i

) and βλ is
transverse to V i(N, P ). Next extend βλ to a homotopy αλ ∈ ΓO(N, P ) so that α0 = s,
αλ|E(SV i

) = βλ, αλ|W (Ci+1)1 = s|W (Ci+1)1 and that

αλ

(
N\Int(E(SV i

) ∪W (Ci+1)1)
) ⊂ Oi−1(N, P ). (4.1)

This is the required homotopy αλ. ¤

5. Oi-regular map around singularities.

In what follows we denote, by σ, the section α1 ∈ ΓO(N, P ) in Lemma 4.2 which
satisfies (4.2.1) to (4.2.4). In this section we construct an Oi-regular map q(σ, V i) defined
around SV i

(σ) by applying the versal unfolding developed in [MaIV]. Next we prepare
lemmas which are used in Section 6 in the deformation of q(σ, V i) to an O-regular map
compatible with gi+1.

We take a Riemannian metric on P , which induces the Riemannian metric on SV i

(σ).
Let us choose a Riemannian metric on N which induces a metric of the normal bundle
n(σ, V i) over SV i

(σ) such that

(i) SV i

(σ) is a Riemannian submanifold,
(ii) K(SV i

(σ)) is orthogonal to SV i

(σ) in N .

For the section σ ∈ Γtr
O (N, P ), we set M (SV i

(σ)) = (σ|SV i

(σ))∗(M (V i)(k−1)) and
M (SV i

(σ))• = (σ|SV i

(σ))∗(M (V i)•(k−1)). Let c ∈ SV i

(σ), σ(c) = jk
c f and πk

P (σ(c)) =
y(c). Then an element of M (SV i

(σ))•c is expressed as

ar+1(x•)∂/∂yr+1 + · · ·+ ap(x•)∂/∂yp (5.1)

where ai(x•) ∈ mx•/mk
x• .

Let K and Q refer to K(SV i

(σ)) and Q(SV i

(σ)) respectively. Let n(σ, V i)/K refer
to the orthogonal complement of K in n(σ, V i). We write n(σ, V i) = (n(σ, V i)/K)⊕K.
Let E(SV i

) denote expN Dε(n(σ, V i)).
Let us first define the smooth fiber map

q(σ, V i)(1) : E(SV i

) −→ Im(d1(σ, V i)|n(σ, V i)) over SV i

(σ)

by q(σ, V i)(1) = d1(σ, V i) ◦ (expN )−1|E(SV i

). Note that d1(σ, V i) vanishes on K and
gives an isomorphism of n(σ, V i)/K onto Im(d1(σ, V i)|n(σ, V i)).

For a point c ∈ SV i

(σ) let x# = (xn−ρ+1, . . . , xn) denote the normal coordinates
of E(SV i

)c such that {∂/∂xi} for n − ρ + 1 ≤ i ≤ r and {∂/∂xi} for r + 1 ≤ i ≤ n
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constitute the orthonormal bases of n(σ, V i)c/Kc and Kc respectively. Let e(Qc) denote
expP,y(Qc) and let (yr+1, . . . , yp) be the normal coordinates of e(Qc) such that {∂/∂yi}
constitute the orthonormal basis of Qc.

Let Dσ denote the composite

(
σ|SV i

(σ)
)∗(

pM• ◦ πk−1
θ,T ◦Πk

f ◦ dσ|n(σ, V i)
)

: n(σ, V i) −→ M
(
SV i

(σ)
)•

which is a monomorphism over SV i

(σ) by the transversality of σ to V i(N, P ).
Then we define q(σ, V i)(2) : E(SV i

) → Q over SV i

(σ) by

q(σ, V i)(2)c (x#) = jkf•c (x•) +
r∑

j=n−ρ+1

xjDσ

(
∂

∂xj

)

c

(x•). (5.2)

We have defined q(σ, V i)(2) by using the orthonormal bases of n(σ, V i) and Qc. However,
the coordinate changes of n(σ, V i) and Qc are linear and so, q(σ, V i)(2) is a well defined
smooth fiber map. Let us consider the direct sum decomposition (πk

P ◦ σ|SV i

)∗(TP ) =
T (SV i

) ⊕ d1(σ, V i)(n(σ, V i)) ⊕ Q. Define the smooth fiber map q(σ, V i) : E(SV i

) →
d1(σ, V i)(n(σ, V i))⊕Q(SV i

(σ)) by

q(σ, V i) = q(σ, V i)(1) + q(σ, V i)(2) over SV i

(σ). (5.3)

We define the smooth map q(σ, V i) : E(SV i

) → P by

q(σ, V i)c(x#) = expP,c ◦
(
πk

P ◦ σ|SV i)TP ◦ q(σ, V i)(x#). (5.4)

Lemma 5.1. Let ε : SV i

(σ) → R be a sufficiently small positive function. Let
V i(n, p) be given as in Theorem 3.2. Under the above notation, the map q(σ, V i) is
an Oi-regular map such that jkq(σ, V i) is transverse to V i(E(SV i

), P ) and SV i

(σ) =
SV i

(jkq(σ, V i)).

Proof. In the proof we write q for q(σ, V i). Let us compare the local ring Qk(σ(c))
and Qk(jk

c q). By the definition of f•, Qk(jk
c f) and Qk(jk

c q) are isomorphic to Qk(jk
c f•).

Hence, Qk(jk
c f) and Qk(jk

c q) are isomorphic. It follows from [MaIV, Theorem 2.1] that
q(c) ∈ K σ(c)(E(SV i

), P ) ⊂ V i(E(SV i

), P ) for any point c ∈ SV i

. Since O(n, p) is open,
it follows that if ε is sufficiently small, then q(E(SV i

)) ⊂ Oi(N, P ).
It is enough for the transversality of jkq(σ, V i) to show that for n− ρ + 1 ≤ j ≤ n,

(
jkq|SV i

(jkq)
)∗(

pν(V i) ◦ d(jkq)
)
(∂/∂xj) =

(
σ|SV i

(σ)
)∗(pν(V i) ◦ dσ)(∂/∂xj)

(jkq|V i(N, P ) and σ|V i(N, P ) are different in general). By Lemmas 2.1, 2.3 and (2.12)
this follows from the following. For r + 1 ≤ j ≤ n, we have that
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Dσc

(
∂

∂xj

)
(x•) =

(
σ|SV i

(σ)
)∗(

pM• ◦ πk−1
θ,T ◦Πk

f ◦ dσ

(
∂

∂xj

))
(x•)

=
(
σ|SV i

(σ)
)∗(

pM• ◦ πk−1
θ,T ◦ πf ◦ d

(
σ(c),

∂

∂xj

))
(x•)

=
(
σ|SV i

(σ)
)∗(

pM• ◦ tf

(
∂

∂xj

))
(x•)

= tf•
(

∂

∂xj

)
(x•)

=
p∑

`=r+1

(
∂y` ◦ f•(x•)

∂xj

)
∂

∂y`

= D(jkq)c

(
∂

∂xj

)
(x•).

For n− ρ + 1 ≤ j ≤ r, we have by (5.2) that

D(jkq)c

(
∂

∂xj

)
(x•) =

∂

∂xj

(
xjDσc

(
∂

∂xj

)
(x•)

)
= Dσc

(
∂

∂xj

)
(x•). ¤

Here we give a lemma necessary in the process of modifying q(σ, V i) to be compatible
with gi+1. Let πE : E(SVi) → SVi be the canonical projection.

Lemma 5.2. Let fj : E(SVi) → P (j = 1, 2) be Oi-regular maps such that, for any
c ∈ SVi ,

(i) f1|SVi = f2|SVi , which are immersions and (df1)c = (df2)c,
(ii) jkfj is transverse to V i(E(SVi), P ) and SVi = SV i

(jkf1) = SV i

(jkf2),
(iii) K(SV i

(jkf1))c = K(SV i

(jkf2))c, which are tangent to π−1
E (c),

(iv) Q(SV i

(jkf1))c = Q(SV i

(jkf2))c,
(v) jk

c f•1 (x•) = jk
c f•2 (x•),

(vi) the two homomorphisms

D
(
jkfj

)
: n(σ, V i) −→ M

(
SV i

(jkfj)
)•

for j = 1, 2 coincide with each other.

Let η : SVi → [0, 1] be any smooth function. Let ε : SVi → R in the definition of
E(SVi) be a sufficiently small positive smooth function. We define fη : E(SVi) → P by

fη(xc) = expP,f1(c)

(
(1− η(c)) exp−1

P,f1(c)
(f1(xc)) + η(c) exp−1

P,f2(c)
(f2(xc))

)

for any xc ∈ π−1
E (c) with ‖xc‖ ≤ ε(c). Then the map fη is a well-defined Oi-regular map

such that for j = 1, 2, and for any c ∈ SVi ,



574 Y. Ando

(5.2.1) fη|SVi = fj |SVi and (dfη)c = (dfi)c,
(5.2.2) jkfη is transverse to V i(E(SVi), P ) and SVi = SV i

(jkfη),
(5.2.3) K(SV i

(jkfη))c = K(SV i

(jkfj))c, which is tangent to π−1
E (c),

(5.2.4) Q(SV i

(jkfη))c = Q(SV i

(jkfj))c,
(5.2.5) jk

c (fη)•(x•) = jk
c f•j (x•),

(5.2.6) the homomorphism

D(jkfη) : n(σ, V i) −→ M
(
SV i

(jkfη)
)•

coincides with the homomorphisms D(jkfj |SVi) (j = 1, 2) in (vi).

Proof. The local coordinates of

expE(SVi ),c

(
K(SV i

(jkfj)c)
)

and expP,fj(c)

(
Q(SV i

(jkfj)c)
)

are independent of coordinates of SVi , where Q(SV i

(jkfj)c) is regarded as the orthogonal
complement of Im(d1(jkfj , V

i)c) in Tfj(c)P . For vc ∈ n(σ, V i)c, dfη(vc) is equal to

d(expP,f1(c)) ◦
(
(1− η(c))d(exp−1

P,f1(c)
◦f1) + η(c)d(exp−1

P,f2(c)
◦f2)

)
(vc)

=
(
(1− η(c))df1 + η(c)df2

)
(vc)

= (1− η(c))df1(vc) + η(c)df2(vc)

= dfj(vc).

Hence, we have (5.2.1), (5.2.3) and (5.2.4). From (v), (5.2.5) is evident.
We have the normal coordinates (x1, . . . , xn−ρ) and x# = (xn−ρ+1, . . . , xn) of

(SVi , c) and (E(SVi)c, c) respectively. Let (x1, . . . , xr, yr+1, . . . , yp) be the normal co-
ordinates of (P, c) as before. Let 0n and 0p be the coordinates of c and y(c) respectively.
Let v(t) be the geodesic curve of vc in E(SVi)c such that (dv|t=0)(d/dt) = vc ∈ E(SVi)c

and v(0) = c. For a map germ g : (E(SVi), c) → (P, fj(c)), set

F g
t (x) = `(g(v(t)),0p) ◦ g ◦ `(0n, v(t))(x) = g(x + v(t))− g(v(t)).

Since F g
t (0n) = 0p, F g

t defines the map germs (E(SVi), c) → (P, y(c)) with the pa-
rameter t and F g

x : ((−1, 1), 0) → P defined by F g
x (t) = F g

t (x). Then we have
jk−1
c F g : ((−1, 1), 0) → Jk−1

c,fj(c)
(N, P ) defined by jk−1

c F g(t) = jk−1
c F g

t .
By the definition of πf we have that

πf
jk−1fη(c)

◦ dc(jk−1fη)(vc) =
(
d(jk−1

c F fη

)|t=0

)
(d/dt).

Furthermore, πk−1
θ,T ◦ πf

jk−1fη(c)
◦ dc(jk−1fη)(vc) is represented by the germ

(
dF fη

x |t=0

)
(d/dt) : (N, c) −→ TP
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covering fη as in Remark 2.2. The germ (dF fη

x |t=0)(d/dt) is equal to

(
d(fη(x + v(t))− fη(v(t)))

)
(dv(t)/dt)|t=0

=
(
(1− η(c))df1(x + v(t))|t=0 + η(c)df2(x + v(t))|t=0

)
(vc)

− (
(1− η(c))df1(v(t))|t=0 + η(c)df2(v(t))|t=0

)
(vc)

= (1− η(c))
(
(df1(x + v(t))− df1(v(t)))|t=0

)
(vc)

+ η(c)
(
(df2(x + v(t))− df2(v(t)))|t=0

)
(vc)

= (1− η(c))
(
dF f1

x |t=0

)
(d/dt)|t=0 + η(c)

(
dF f2

x |t=0

)
(d/dt).

Then pM• ◦ πk−1
θ,T ◦ πf

jk−1fη(c)
◦ dc(jk−1fη)(vc) is represented by

(
d(pQc ◦ F fη

x |E(SVi)c)|t=0

)
(d/dt)

=
(
(1− η(c))d

(
pQc

◦ F f1
x |E(SVi)c

)|t=0 + η(c)d
(
pQc

◦ F f2
x |E(SVi)c

)|t=0

)
(d/dt).

By the definition of pM• ◦ πk−1
θ,T ◦ πf, we have

D(jkfη) = (1− η(c))D
(
jkf1

)
+ η(c)D

(
jkf2

)
= D

(
jkfj

)

for j = 1, 2. This implies (5.2.2) and (5.2.6). This completes the proof. ¤

Let q denote q(σ, V i) : E(SV i

) → P in (5.4). Now we modify q to be compatible
with gi+1. Let η : SV i → R be a smooth function such that

(i) 0 ≤ η(c) ≤ 1 for c ∈ SV i

,
(ii) η(c) = 0 for c in a small neighborhood of SV i ∩W (Ci+1)1 within SV i \W (Ci+1)2,
(iii) η(c) = 1 for c ∈ SV i \W (Ci+1)2.

Then define the map G : E(SV i

) ∪W (Ci+1)1 → P by

• if x ∈ W (Ci+1)1, then G(x) = gi+1(x),
• if xc ∈ E(SV i

)|SV i\Int(W (Ci+1)2)
, then G(xc) = q(xc),

• if xc ∈ E(SV i

)|SV i∩W (Ci+1)2
, then G(xc) is equal to

expP,q(c)

(
(1− η(c)) exp−1

P,q(c)(gi+1(xc)) + η(c) exp−1
P,q(c)(q(xc))

)
,

where δ is so small that G(x) is well-defined and that E(SV i

) ∩W (Ci+1)1 ⊂ π−1
E (SV i ∩

W (Ci+1)2) holds.
By Lemmas 5.1 and 5.2 we have the following corollary.

Corollary 5.3. The above map G is an O-regular map defined on E(SV i

) ∪
W (Ci+1)1 such that
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(5.3.1) jkG is transverse to V i(N, P ) and (G|E(SV i

))−1(V i(N, P )) = SV i

,
(5.3.2) G|SV i

= q|SV i

= πk
P ◦ σ|SV i

and (dG)c = (dq)c,
(5.3.3) G|E(SV i

) is Oi-regular,
(5.3.4) K(SV i

(jkG)) = K(SV i

(jkq)) = K, Q(SV i

(jkG)) = Q(SV i

(jkq)) = Q,
(5.3.5) if we write σ(c) = jk

c (fσ(c)), then

(
jk
c f•σ(c)

)
(x•) = jk

c q•(x•) = jk
c G•(x•),

(5.3.6) the following three homomorphisms coincide with each other.

D(jkG) = D(jkq) = Dσ : n(σ, V i) → M (SV i

(σ))•.

Let us recall the additive structure of Jk(N, P ) in (1.2). Then we define the homo-
topy κλ : SV i → Jk(N, P ) by

κλ(c) = (1− λ)σ(c) + λjkG(c) covering πk
P ◦ σ|SV i

: SV i → P,

where πk
P ◦ σ|SV i

is the immersion.

Lemma 5.4. The homotopy κλ is a map of SV i

to V i(N, P ).

Proof. It follows from Corollary 5.3, (5.3.1) to (5.3.6) that K(SV i

(κλ)) = K and
Q(SV i

(κλ)) = Q and that if we write κλ(c) = jk
c (fλ), then (jk

c f•λ)(x•) = (jk
c f•σ(c))(x

•) =
jk
c G•(x•). By the definition of local rings we have Qk(jk

c f) ≈ Qk(jk
c f•), Qk(jk

c fλ) ≈
Qk(jk

c f•λ) and Qk(jk
c G) ≈ Qk(jk

c G•).
Since V i(N, P ) is K -invariant, it follows from [MaIV, Theorem 2.1] that κλ(c) lies

in V i
c,y(c)(N, P ) for any λ and any c ∈ SV i

, where y(c) = πk
P ◦ σ(c). ¤

The proof of the following lemma is elementary, and so is left to the reader.

Lemma 5.5. Let (Ω,Σ) be a pair consisting of a manifold and its submanifold of
codimension ρ. Let ε : SVi → R be a sufficiently small positive smooth function. Let
h : E(SVi) → (Ω,Σ) be a smooth map such that SVi = h−1(Σ) and that h is transverse
to Σ. Then there exists a smooth homotopy hλ : (E(SVi), SVi) → (Ω,Σ) between h and
expΩ ◦dh ◦ (expN |n(σ, V i))−1|E(SVi) such that

(5.4.1) hλ|SVi = h0|SVi , SVi = h−1
λ (Σ) = h−1

0 (Σ) for any λ,
(5.4.2) hλ is smooth and is transverse to Σ for any λ,
(5.4.3) h0 = h and h1(xc) = expΩ,h(c) ◦dh ◦ (expN |n(σ, V i))−1(xc) for c ∈ SVi and

xc ∈ E(SVi)c.

6. Proof of Theorem 3.2.

In this section we deform q(σ, V i) to an O-regular map G compatible with gi+1.
By the definition of the deformation we can construct a homotopy between σ and jkG

around SV i

(σ), which is extendable to a required homotopy to the whole space N .
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Let us take closed neighborhoods U(Ci+1)j (j = 1, 2) of U(Ci+1) in the interior
of W (Ci+1)1 with U(Ci+1)1 ⊂ IntU(Ci+1)2 such that U(Ci+1)j are submanifolds of
dimension n with boundary ∂U(Ci+1)j meeting transversely with SV i

(σ).

Proof of Theorem 3.2. Deform s ∈ Γtr
O (N, P ) in Theorem 3.2 as before to a

section σ ∈ ΓO(N, P ) as in Lemma 4.2 which satisfies (4.2.1), (4.2.2) and (4.2.3) where
α1 is replaced by σ. Set SV i

= SV i

(σ), K = K(SV i

(σ)) and Q = Q(SV i

(σ)). Let
E(SVi) = expN (Dδ◦σ(n(σ, V i))), where δ : V i(N, P ) → R is a sufficiently small positive
function which is constant on σ(SV i

(σ)\IntU(Ci+1)).
It suffices for the proof of Theorem 3.2 to prove the following assertion (A). In fact,

we obtain a required homotopy sλ in Theorem 3.2 by pasting the homotopies αλ in
Lemma 4.2 and Hλ in (A).

(A) There exists a homotopy Hλ relative to U(Ci+1)1 in ΓO(N, P ) with H0 = σ

and H1 ∈ Γtr
O (N, P ) satisfying the following (1), (2) and (3).

(1) Hλ is transverse to V i(N, P ) and SV i

(Hλ) = SV i

for any λ.
(2) We have an O-regular map G which is defined on a neighborhood of E(SV i

) ∪
U(Ci+1)1 to P such that jkG = H1 on E(SV i

) ∪ U(Ci+1)1 and that G(E(SV i

)) ⊂
Oi(N, P ).

(3) Hλ(N\Int(E(SV i

) ∪ U(Ci+1)1)) ⊂ Oi−1(N, P ).
Let us prove (A). We use the Riemannian metrics which are chosen in the beginning

of Section 5. The map expP ◦(πk
P ◦ σ|SV i

)TP |Dγ(Q) is an immersion for some small
positive function γ. We express a point of E(SV i

) as xc, where c ∈ SV i

and ‖xc‖ ≤
δ(σ(c)).

It follows from Corollary 5.3 that G is an O-regular map defined on E(SV i

) ∪
W (Ci+1)1. It is known that the Riemannian metrics on N and P induce the Riemannian
metric on Jk(N, P ) by using (1.2) (see, for example, [An6, Section 3]). Let h1

1 and h3
0

be the maps (E(SV i

), SV i

) → (Oi(N, P ), V i(N, P )) defined by

h1
1(xc) = expO(N,P ),σ(c) ◦dcσ ◦ (expN,c)

−1(xc),

h3
0(xc) = expO(N,P ),jkG(c) ◦dc(jkG) ◦ (expN,c)

−1(xc). (6.1)

By applying Lemma 5.5 to the sections σ and h1
1 (respectively h3

0 and jkG) we first
obtain a homotopy h1

λ (respectively h3
λ) ∈ ΓOi(E(SV i

), P ) between h1
0 = σ and h1

1 on
E(SV i

) (respectively between h3
0 and h3

1 = jkG) satisfying the properties (5.5.1), (5.5.2)
and (5.5.3) of Lemma 5.5.

Next we construct a homotopy of bundle maps E(SV i

) → ν(V i(N, P )) cover-
ing κλ : SV i → V i(N, P ) in Lemma 5.4 using a homotopy between dσ|n(σ, V i) and
d(jkG)|n(σ, V i). By the equalities of the homomorphisms in Corollary 5.3, (5.3.6), we
obtain a homotopy of bundle maps

κE,M
λ : n(σ, V i) → M

(
SV i

(σ)
)• (κλ)M(V i)•(k−1)

−−−−−−−−−−−−→M (V i)•(k−1)

covering κλ as the composite (κλ)M (V i)•(k−1) ◦ Dσ. Let κ̃λ denote the composite pM
ν ◦
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κE,M
λ , where pM

ν is the projection in (2.9). Then κ̃λ is a bundle map between the ρ-
dimensional vector bundles covering κλ. Since the composite pM

ν ◦ pM• ◦ πk−1
θ,T ◦ πf is

equal to the canonical projection pν(V i) by Lemma 2.1, we have

κ̃0 = pM
ν ◦ (

σ|SV i)M (V i)•(k−1)

◦Dσ

= pM
ν ◦ pM• ◦ πk−1

θ,T ◦Πk
f ◦ dσ|n(σ, V i)

= pν(V i) ◦ dσ|n(σ, V i)

and κ̃1 = pν(V i) ◦ d(jkG)|n(σ, V i) similarly.
We define a homotopy h2

λ : (E(SV i

), SV i

) → (Oi(N, P ), V i(N, P )) covering κλ by

h2
λ(xc) = expO(N,P ),σ(c) ◦κ̃λ ◦ (expN,c)

−1(xc),

where h2
0(xc) = h1

1(xc), h2
1(xc) = h3

0(xc) on E(SV i

). Since h1
0(xc) = h3

1(xc) = σ(xc)
for xc ∈ W (Ci+1)1, we may assume in the construction of h1

λ, h2
λ and h3

λ that if xc ∈
W (Ci+1)1, then

h2
λ(xc) = h2

0(xc) = h2
1(xc) and h1

λ(xc) = h3
1−λ(xc) for any λ. (6.2)

Let h′λ ∈ ΓOi(E(SV i

), P ) be the homotopy which is obtained by pasting h1
λ, h2

λ and h3
λ.

The homotopies h1
λ and h3

λ are not homotopies relative to E(SV i

)∩W (Ci+1)1 in general.
By using the above properties and (6.2) about h1

λ, h2
λ and h3

λ, we can modify h′λ to a
smooth homotopy hλ ∈ ΓOi(E(SV i

), P ) with πk
P ◦ hλ(c) = πk

P ◦ σ(c) such that
(4) hλ(xc) = h0(xc) = σ(xc) for any λ and xc ∈ E(SV i

) ∩ U(Ci+1)2,
(5) h0(xc) = σ(xc) for any xc ∈ E(SV i

),
(6) h1(xc) = jkG(xc) for any xc ∈ E(SV i

),
(7) hλ is transverse to V i(N, P ) and h−1

λ (V i(N, P )) = SV i

.
Since G(E(SV i

)∪W (Ci+1)1\Ci+1) ⊂ Oi(N, P ) and jkG is transverse to V i(N, P ), it
follows from [G-G, Ch. II, Corollary 4.11] that there exists a homotopy Gλ of O-regular
maps E(SV i

) ∪ U(Ci+1)2 → P relative to U(Ci+1)2 with G0 = G such that

jkG−1
λ (O(N, P )\Oi(N, P )) ⊂ Int

(
expN (D(1/2)δ◦σ(n(σ, V i))) ∪ U(Ci+1)2

)
,

that jkGλ is transverse to V i(N, P ) for any λ and that jkG1 is transverse to V j(N, P )
for all j.

By using (4)–(7), we can extend hλ to the homotopy H ′
λ ∈ ΓO(E(SV i

)∪U(Ci+1)2, P )
defined by

H ′
λ|E(SV i

) = h2λ (0 ≤ λ ≤ 1/2),

H ′
λ|

(
E(SV i

) ∪ U(Ci+1)2
)

= jkG2λ−1 (1/2 ≤ λ ≤ 1),

H ′
λ|U(Ci+1)2 = σ|U(Ci+1)2 (0 ≤ λ ≤ 1),
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such that H ′
λ(∂(E(SV i

) ∪ U(Ci+1)2)) ⊂ Oi−1(N, P ). Furthermore, we slightly modify
H ′

λ to be smooth.
By the transversalities of H ′

λ to V i(N, P ) and of H ′
1 to V j(N, P ) for all j and the

homotopy extension property to σ and H ′
λ, we can extend H ′

λ to a homotopy

Hλ : (N, SV i

) −→ (O(N, P ), V i(N, P ))

relative to U(Ci+1)1 such that H0 = σ, H1 ∈ Γtr
O (N, P ) and H1(N\Int(E(SV i

) ∪
U(Ci+1)2)) ⊂ Oi−1(N, P ). Then Hλ is the required homotopy in ΓO(N, P ) in the asser-
tion (A). ¤

7. K -simple singularities.

Let z be a jet of Jk(n, p). We say that z is K -k-simple if there exists an open
neighborhood U of z in Jk(n, p) such that only a finite number of K -orbits intersect
with U . A K -orbit K z of a K -k-simple k-jet z is also called K -k-simple.

Let Wj denote the subset consisting of all z ∈ Jk(n, p) such that the codimensions
of K z in Jk(n, p) are not less than j. Let W ∗

j denote the union of all irreducible
components of Wj whose codimensions in Jk(n, p) is less than j. The following lemma
has been observed in [MaV, Section 7 and Proof of Theorem 8.1].

Lemma 7.1.

(i) Wj is a closed algebraic subset of Jk(n, p).
(ii) If we set W ′

j = Wj\(W ∗
j ∪ Wj+1), then W ′

j is a Zariski locally closed subset of
Jk(n, p) of codimension j.

(iii) For any jet z ∈ W ′
j, K z is open in W ′

j.
(iv) W ′

j consists of a finite number of K -orbits.

We define K -k-simplicity for a jet in Jk
x,y(N, P ) similarly as in Jk(n, p). A smooth

map germ f : (N, x) → (P, y) is called K -`-determined if any smooth map germ g :
(N, x) → (P, y) such that j`

xf = j`
xg is K -equivalent to f . If f is K -`-determined, then

j`
xf is also called K -`-determined.

Proposition 7.2. Let k ≥ p+1 and z ∈ Jk
x,y(N, P ). If z is a singular K -k-simple

jet and codimK z ≤ |n− p|+ k − 2, then z is K -(k − 1)-determined.

Proof. For 1 ≤ ` ≤ k, let πk
` : Jk

x,y(N, P ) → J`
x,y(N, P ) denote the canonical

projection. Let c`(z) denote the codimension of the K -orbit of πk
` (z) in J`

x,y(N, P ).
Since πk

` (z) is of rank r < min(n, p) and codimΣn−r(n, p) = (n − r)(p − r), we have
c1 ≥ (n− r)(p− r). Since c1 ≤ c2 ≤ · · · ≤ ck, we have

|n− p|+ 1 ≤ c1 ≤ · · · ≤ ck ≤ |n− p|+ k − 2.

There exists a number ` with 1 ≤ ` ≤ k − 2 such that c` = c`+1. By applying [MaIII,
Proposition 7.4] to the tangent spaces of K (πk

` (z)) and K (πk
`+1(z)), we have that
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tf(mxθ(N)x) + f∗(my)θ(f)x + m`+1
x θ(f)x

= tf(mxθ(N)x) + f∗(my)θ(f)x + m`+2
x θ(f)x.

From the Nakayama Lemma it follows that

tf(mxθ(N)x) + f∗(my)θ(f)x ⊃ m`+1
x θ(f)x.

Therefore, z is K -(` + 1)-determined and so, K -(k − 1)-determined by [W, Theorem
1.2]. ¤

Corollary 7.3. Let k ≥ p + 2. Let z be a singular K -k-simple jet and
codimK z ≤ n. Then z is K -(k − 1)-determined and we have K z = (πk

k−1)
−1

(K (πk
k−1(z))).

Now we have the following Theorem.

Theorem 7.4. Let k ≥ p + 2. Let z = jk
xf ∈ Jk

x,y(N, P ) be K -(k− 1)-determined
and w = πk

k−1(z). Then we have

d(K(K z(N, P ))z) ∩
(
πk

k−1|K z(N, P )
)∗(

T (K w(N, P ))
)
z

= {0}.

Proof. For a vector v 6= 0 let ζz
v be the vector field in Lemma 2.3. Suppose

that πf ◦ d(v) ∈ Tw(K w
x,y(N, P )). Then it follows from (2.4) and Corollary 7.3 that

tf(vU ) ∈ tf(mxθ(N)x) + f∗(my)θ(f)x. It has been proved in the proof of [MaIV,
Theorem 2.5] that vU ∈ mxθ(N)x. This is a contradiction. ¤

The following theorem follows from Corollary 7.3, and Theorems 0.1 and 7.4.

Theorem 7.5. Let k be an integer with k ≥ p + 2. Let O(n, p) be a nonempty
open subset in Jk(n, p) which consists of a finite number of K -k-simple K -orbits, and
of Σn−p+1,0(n, p) in addition in the case n ≥ p. Then O(n, p) is an admissible open
subset. In particular, Theorem 0.1 holds for O(n, p).

Remark 7.6. In Theorem 7.5, if f is transverse to all singular K -orbits, then the
germ f : (N, c) → (P, f(c)) is C∞-stable in the sense of [MaIV]. This fact follows from
[Mar2, Ch. XV, 5, Theorem].

Finally we give examples of open sets O(n, p) in Jk(n, p) in Theorem 7.5. Let
k À n, p.

(1) Let Am, Dm and Em denote the types of the singularities of function germs
studied in [Mo] and [Ar]. We say that a smooth map germ f : (Rn,0) → (Rp,0)
has a singularity of type Am, Dm or Em, when f is K -equivalent to one of the versal
unfoldings (Rn,0) → (Rp,0) of the following genotypes with respective singularities,
where n > p ≥ 2 in the case of types Dm and Em.
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(Am) ±um+1 ± x2
p ± · · · ± x2

n−1 (m ≥ 1),

(Dm) u2`± `m−1 ± x2
p ± · · · ± x2

n−2 (m ≥ 4),

(E6) u3 ± `4 ± x2
p ± · · · ± x2

n−2,

(E7) u3 + u`3 ± x2
p ± · · · ± x2

n−2,

(E8) u3 + `5 ± x2
p ± · · · ± x2

n−2.

Let am, dmand em denote the k-jets of the germs of types Am, Dm and Em of
codimension n − p + m ≤ n in Jk(n, p). Let O(n, p) be a subset which consists of all
regular jets and a number of K -orbits K ai, K dj and K eh of codimensions ≤ n. This
subset O(n, p) is an open subset of Jk(n, p) if and only if the following three conditions
are satisfied.

(i) If K ai ⊂ O(n, p), then K a` ⊂ O(n, p) for all ` with 1 ≤ ` < i.
(ii) If K di ⊂ O(n, p), then K a` (1 ≤ ` < i) and K d` (4 ≤ ` < i) are all contained in

O(n, p).
(iii) If K ei ⊂ O(n, p), then K a` (1 ≤ ` < i), K d` (4 ≤ ` < i) and K e` (6 ≤ ` < i)

are all contained in O(n, p).

One can prove this assertion by the adjacency relation among the singularities of
types A, D and E due to [Ar] (see, for example, the detailed proof in [An5]).

(2) Let O(n, p) denote the open subset in Jk(n, p) which consists of all regular jets
and K -k-simple orbits.

(3) Let n = p. Let O(n, p) be the open subset in Jk(n, p) which consists of all regular
jets, the K -orbits K am and the K -orbits of the following types of codimensions ≤ n

in [MaVI, Section 7].

Ia,b : R[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2,

IIa,b : R[[x, y]]/(xy, xa − yb), b ≥ a ≥ 2,

IIIa : R[[x, y]]/(x2 + y2, xa), a ≥ 3.
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[E2] J. M. Èliašberg, Surgery of singularities of smooth mappings, Math. USSR. Izv., 6 (1972),

1302–1326.

[F] S. Feit, k-mersions of manifolds, Acta Math., 122 (1969), 173–195.

[G1] M. Gromov, Stable mappings of foliations into manifolds, Math. USSR. Izv., 3 (1969), 671–

694.

[G2] M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, Heidelberg, 1986.

[G-G] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag,

Berlin, Heidelberg, 1973.

[H] M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242–276.

[K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 1, Interscience Publishers,

New York, 1963.

[L] H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, I,

Springer Lecture Notes in Math., 192, Springer-Verlag, Berlin, 1971, pp. 1–85.
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