The homotopy principle for maps with singularities of given \mathscr{K}-invariant class

By Yoshifumi Ando
(Received Nov. 28, 2005)
(Revised May 25, 2006)

Abstract

Let N and P be smooth manifolds of dimensions n and p respectively such that $n \geq p \geq 2$ or $n<p$. Let $\mathscr{O}(N, P)$ denote an open subspace of $J^{\infty}(N, P)$ which consists of all regular jets and singular jets of certain given \mathscr{K} invariant class (including fold jets if $n \geq p$). An \mathscr{O}-regular map $f: N \rightarrow P$ refers to a smooth map such that $j^{\infty} f(N) \subset \mathscr{O}(N, P)$. We will prove that a continuous section s of $\mathscr{O}(N, P)$ over N has an \mathscr{O}-regular map f such that s and $j^{\infty} f$ are homotopic as sections. As an application we will prove this homotopy principle for maps with \mathscr{K}-simple singularities of given class.

Introduction.

Let N and P be smooth $\left(C^{\infty}\right)$ manifolds of dimensions n and p respectively. Let $J^{k}(N, P)$ denote the k-jet space of the manifolds N and P with the projections π_{N}^{k} and π_{P}^{k} onto N and P mapping a jet onto its source and target respectively. Let $J^{k}(n, p)$ denote the k-jet space of C^{∞}-map germs $\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$. Let \mathscr{K} denote the contact group defined in [MaIII]. Let $\mathscr{O}(N, P)$ denote an open subbundle of $J^{k}(N, P)$ associated to a given \mathscr{K}-invariant open subset $\mathscr{O}(n, p)$ of $J^{k}(n, p)$. In this paper a smooth map $f: N \rightarrow P$ is called an \mathscr{O}-regular map if $j^{k} f(N) \subset \mathscr{O}(N, P)$.

We will study a homotopy theoretic condition for finding an \mathscr{O}-regular map in a given homotopy class. Let $C_{\mathscr{O}}^{\infty}(N, P)$ denote the space consisting of all \mathscr{O}-regular maps equipped with the C^{∞}-topology. Let $\Gamma_{\mathscr{O}}(N, P)$ denote the space consisting of all continuous sections of the fiber bundle $\pi_{N}^{k} \mid \mathscr{O}(N, P): \mathscr{O}(N, P) \rightarrow N$ equipped with the compact-open topology. Then there exists a continuous map

$$
j_{\mathscr{O}}: C_{\mathscr{O}}^{\infty}(N, P) \longrightarrow \Gamma_{\mathscr{O}}(N, P)
$$

defined by $j_{\mathscr{O}}(f)=j^{k} f$. If any section s in $\Gamma_{\mathscr{O}}(N, P)$ has an \mathscr{O}-regular map f such that s and $j^{k} f$ are homotopic as sections in $\Gamma_{\mathscr{O}}(N, P)$, then we say that the homotopy principle holds for \mathscr{O}-regular maps. The terminology "homotopy principle" has been used in $[\mathbf{G 2} \mathbf{2}]$. It follows from the well-known theorem due to Gromov [G1] that if N is a connected open manifold, then $j_{\mathscr{O}}$ is a weak homotopy equivalence. If N is a closed manifold, then the homotopy principle is a hard problem. As the primary investigation preceding [G1], we

[^0]must refer to the Smale-Hirsch Immersion Theorem ($[\mathbf{S m}],[\mathbf{H}]$), the k-mersion Theorem due to Feit $[\mathbf{F}]$, the Phillips Submersion Theorem for open manifolds ([P]). In $[\mathbf{E 1}]$ and [E2], Eliašberg has proved the well-known homotopy principle on the 1-jet level for fold-maps. Succeedingly there have appeared the homotopy principles for maps with the extensibility condition in [duP2], for maps without certain Thom-Boardman singularities in $[\mathbf{d u P} 1]$ (see $[\mathbf{T}],[\mathbf{B}]$ and $[\mathbf{L}]$ for Thom-Boardman singularities) and for maps with \mathscr{K} simple singularities in [duP3]. Although these du Plessis's homotopy principles are parametric and useful, one can not apply them in many cases, in particular, in the dimensions $n \geq p$. We refer to the relative homotopy principle for maps with prescribed Thom-Boardman singularities in [An6], which is available in the dimensions $n \geq p \geq 2$.

In this paper we will study a general condition on $\mathscr{O}(n, p)$ for the relative homotopy principle on the existence level. We say that a nonempty \mathscr{K}-invariant open subset $\mathscr{O}(n, p)$ is $a d m i s s i b l e$ if $\mathscr{O}(n, p)$ consists of all regular jets and a finite number of disjoint \mathscr{K}-invariant submanifolds $V^{i}(n, p)$ of codimension $\rho_{i}(1 \leq i \leq \iota)$ such that the following properties ($\mathrm{H}-\mathrm{i}$ to v) are satisfied.
$(\mathrm{H}-\mathrm{i}) V^{i}(n, p)$ consists of singular k-jets of rank r_{i}, namely, $V^{i}(n, p) \subset \Sigma^{n-r_{i}}(n, p)$.
(H-ii) For each i, the set $\mathscr{O}(n, p) \backslash\left\{\bigcup_{j=i}^{\iota} V^{j}(n, p)\right\}$ is an open subset.
(H-iii) For each i with $\rho_{i} \leq n$, there exists a \mathscr{K}-invariant submanifold $V^{i}(n, p)^{(k-1)}$ of $J^{k-1}(n, p)$ such that $V^{i}(n, p)$ is open in $\left(\pi_{k-1}^{k}\right)^{-1}\left(V^{i}(n, p)^{(k-1)}\right)$. Here, $\pi_{k-1}^{k}: J^{k}(n, p) \rightarrow$ $J^{k-1}(n, p)$ is the canonical projection.
(H-iv) If $n \geq p$, then $p \geq 2$ and $V^{1}(n, p)=\Sigma^{n-p+1,0}(n, p)$.
Here, $\Sigma^{n-p+1,0}(n, p)$ denotes the Thom-Boardman manifold in $J^{k}(n, p)$, which consists of \mathscr{K}-orbits of fold jets. Let $\boldsymbol{d}:\left(\pi_{N}^{k}\right)^{*}(T N) \longrightarrow\left(\pi_{k-1}^{k}\right)^{*}\left(T\left(J^{k-1}(N, P)\right)\right)$ denote the bundle homomorphism defined by $\boldsymbol{d}(z, \boldsymbol{v})=\left(z, d_{x}\left(j^{k-1} f\right)(\boldsymbol{v})\right)$ where $z=j_{x}^{k} f \in J^{k}(N, P)$ and $d_{x}\left(j^{k-1} f\right): T_{x} N \rightarrow T_{\pi_{k-1}^{k}(z)}\left(J^{k-1}(N, P)\right)$ is the differential. Let $V^{i}(N, P)$ denote the subbundle of $J^{k}(N, P)$ associated to $V^{i}(n, p)$. Let $\boldsymbol{K}\left(V^{i}\right)$ be the kernel bundle in $\left.\left(\pi_{N}^{k}\right)^{*}(T N)\right|_{V^{i}(N, P)}$ defined by $\boldsymbol{K}\left(V^{i}\right)_{z}=\left(z, \operatorname{Ker}\left(d_{x} f\right)\right)$.
(H-v) For each i with $\rho_{i} \leq n$ and any $z \in V^{i}(N, P)$, we have

$$
\boldsymbol{d}\left(\boldsymbol{K}\left(V^{i}\right)_{z}\right) \cap\left(\pi_{k-1}^{k} \mid V^{i}(N, P)\right)^{*}\left(T\left(V^{i}(N, P)^{(k-1)}\right)\right)_{z}=\{0\}
$$

For example, let $\mathscr{O}^{s i m}(n, p)$ be an nonempty open subset in $J^{k}(n, p)$ which consists of a finite number of \mathscr{K} - k-simple \mathscr{K}-orbits, and of $\Sigma^{n-p+1,0}(n, p)$ in addition in the case $n \geq p$. Then if $k \geq p+2$, then we will prove in Section 7 that $\mathscr{O}^{\operatorname{sim}}(n, p)$ is admissible.

We will prove the following relative homotopy principle on the existence level for \mathscr{O}-regular maps.

THEOREM 0.1. Let k be an integer with $k \geq 3$. Let $\mathscr{O}(n, p)$ denote a nonempty admissible open subspace of $J^{k}(n, p)$. We assume that if $n \geq p$, then $p \geq 2$ and $\mathscr{O}(n, p)$ contains $\Sigma^{n-p+1,0}(n, p)$ at least. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N=\varnothing$. Let C be a closed subset of N. Let s be a section in $\Gamma_{\mathscr{O}}(N, P)$ which has an \mathscr{O}-regular map g defined on a neighborhood of C to P, where $j^{k} g=s$.

Then there exists an \mathscr{O}-regular map $f: N \rightarrow P$ such that $j^{k} f$ is homotopic to s relative to a neighborhood of C by a homotopy s_{λ} in $\Gamma_{\mathscr{O}}(N, P)$ with $s_{0}=s$ and $s_{1}=j^{k} f$.

In particular, we have $f=g$ on a neighborhood of C.
In the proof of Theorem 0.1 the relative homotopy principles on the existence level for fold-maps in [An3, Theorem 4.1] and [An4, Theorem 0.5] in the case $n \geq p \geq 2$ and the Smale-Hirsch Immersion Theorem in the case $n<p$ together with [G1] will play important roles.

The relative homotopy principle on the existence level for maps and singular foliations having only what are called A, D and E singularities has been given in [An1]-[An5]. Recently it turns out that this kind of homotopy principle has many applications. First of all, Theorem 0.1 is very important even for fold-maps in proving the relations between fold-maps, surgery theory and stable homotopy groups of spheres in [An3, Corollary 2, Theorems 3 and 4] and [An7]. In [Sady] Sadykov has applied [An1, Theorem 1] to the elimination of higher A_{r} singularities $(r \geq 3)$ for Morin maps when $n-p$ is odd. This result is a strengthened version of the Chess conjecture proposed in [C]. In [An8] it has been proved that the cobordism group of \mathscr{O}-regular maps to a given connected manifold P is isomorphic to the stable homotopy group of a certain space related to $\mathscr{O}(n, p)$.

In Section 1 we will explain the notations which are used in this paper. In Section 2 we will review the definitions and the fundamental properties of \mathscr{K}-orbits, from which we deduce several further results. In Section 3 we will announce a special form of a homotopy principle in Theorem 3.2 and reduce the proof of Theorem 0.1 to the proof of Theorem 3.2 by induction. Furthermore, we will introduce a certain rotation of the tangent spaces defined around the singularities of a given type in N for a preliminary deformation of the section s. In Section 4 we will prepare two lemmas which are used to deform the section s in a nice position. In Section 5 we will construct an \mathscr{O}-regular map around the singularities of a given type in N. We will prove Theorem 3.2 in Section 6. In Section 7 we will apply Theorem 0.1 to maps with \mathscr{K} - k-simple singularities of given class.

1. Notations.

Throughout the paper all manifolds are Hausdorff, paracompact and smooth of class C^{∞}. Maps are basically continuous, but may be smooth (of class C^{∞}) if necessary. Given a fiber bundle $\pi: E \rightarrow X$ and a subset C in X, we denote $\pi^{-1}(C)$ by E_{C} or $\left.E\right|_{C}$. Let $\pi^{\prime}: F \rightarrow Y$ be another fiber bundle. A map $\tilde{b}: E \rightarrow F$ is called a fiber map over a map $b: X \rightarrow Y$ if $\pi^{\prime} \circ \tilde{b}=b \circ \pi$ holds. The restriction $\tilde{b}\left|\left(\left.E\right|_{C}\right): E\right|_{C} \rightarrow F\left(\right.$ or $\left.\left.F\right|_{b(C)}\right)$ is denoted by \tilde{b}_{C} or $\left.\tilde{b}\right|_{C}$. We denote, by b^{F}, the induced fiber map $b^{*}(F) \rightarrow F$ covering b. A fiberwise homomorphism $E \rightarrow F$ is simply called a homomorphism. For a vector bundle E with a metric and a positive function δ on X, let $D_{\delta}(E)$ be the associated disk bundle of E with radius δ. If there is a canonical isomorphism between two vector bundles E and F over $X=Y$, then we write $E \cong F$.

When E and F are smooth vector bundles over $X=Y, \operatorname{Hom}(E, F)$ denotes the smooth vector bundle over X with fiber $\operatorname{Hom}\left(E_{x}, F_{x}\right), x \in X$ which consists of all homomorphisms $E_{x} \rightarrow F_{x}$.

Let $J^{k}(N, P)$ denote the k-jet space of manifolds N and P. The map $\pi_{N}^{k} \times \pi_{P}^{k}$: $J^{k}(N, P) \rightarrow N \times P$ induces a structure of a fiber bundle with structure group $L^{k}(p) \times$ $L^{k}(n)$, where $L^{k}(m)$ denotes the group of all k-jets of local diffeomorphisms of $\left(\boldsymbol{R}^{m}, 0\right)$.

The fiber $\left(\pi_{N}^{k} \times \pi_{P}^{k}\right)^{-1}(x, y)$ is denoted by $J_{x, y}^{k}(N, P)$.
Let π_{N} and π_{P} be the projections of $N \times P$ onto N and P respectively. We set

$$
\begin{equation*}
J^{k}(T N, T P)=\bigoplus_{i=1}^{k} \operatorname{Hom}\left(S^{i}\left(\pi_{N}^{*}(T N)\right), \pi_{P}^{*}(T P)\right) \tag{1.1}
\end{equation*}
$$

over $N \times P$. Here, for a vector bundle E over X, let $S^{i}(E)$ be the vector bundle $\bigcup_{x \in X} S^{i}\left(E_{x}\right)$ over X, where $S^{i}\left(E_{x}\right)$ denotes the i-fold symmetric product of E_{x}. If we provide N and P with Riemannian metrics, then the Levi-Civita connections induce the exponential maps $\exp _{N, x}: T_{x} N \rightarrow N$ and $\exp _{P, y}: T_{y} P \rightarrow P$. In dealing with exponential maps we always consider convex neighborhoods ($[\mathbf{K}-\mathbf{N}]$). We define the smooth bundle map

$$
\begin{equation*}
J^{k}(N, P) \longrightarrow J^{k}(T N, T P) \quad \text { over } N \times P \tag{1.2}
\end{equation*}
$$

by sending $z=j_{x}^{k} f \in J_{x, y}^{k}(N, P)$ to the k-jet of $\left(\exp _{P, y}\right)^{-1} \circ f \circ \exp _{N, x}$ at $\mathbf{0} \in T_{x} N$, which is regarded as an element of $J^{k}\left(T_{x} N, T_{y} P\right)\left(=J_{x, y}^{k}(T N, T P)\right)$ (see [K-N, Proposition 8.1] for the smoothness of exponential maps). More strictly, (1.2) gives a smooth equivalence of the fiber bundles under the structure group $L^{k}(p) \times L^{k}(n)$. Namely, it gives a smooth reduction of the structure group $L^{k}(p) \times L^{k}(n)$ of $J^{k}(N, P)$ to $O(p) \times O(n)$, which is the structure group of $J^{k}(T N, T P)$.

Under the projection $\pi_{N}^{k} \times \pi_{P}^{k}: J^{k}(N, P) \rightarrow N \times P$, let $T^{\mathfrak{f}}\left(J^{k}(N, P)\right)$ denote the tangent bundle along the fiber of $J^{k}(N, P)$, whose fiber over (x, y) is $T\left(J_{x, y}^{k}(N, P)\right)$. By using the Levi-Civita connections we can define the projection

$$
\begin{equation*}
T\left(J^{k}(N, P)\right) \longrightarrow T^{\mathfrak{f}}\left(J^{k}(N, P)\right) \tag{1.3}
\end{equation*}
$$

as follows. Let U and V be the convex neighborhoods of x and y. Let $\ell\left(x, x^{\prime}\right)$ (respectively $\ell\left(y^{\prime}, y\right)$) denote the parallel translation of U (respectively V) mapping x to x^{\prime} (respectively y^{\prime} to y). Define the trivialization

$$
t_{x, y}: J^{k}(U, V) \longrightarrow J_{x, y}^{k}(U, V)
$$

by $t_{x, y}\left(z_{x^{\prime}, y^{\prime}}\right)=\ell\left(y^{\prime}, y\right) \circ z_{x^{\prime}, y^{\prime}} \circ \ell\left(x, x^{\prime}\right)$, where $z_{x^{\prime}, y^{\prime}} \in J_{x^{\prime}, y^{\prime}}^{k}(U, V)$ and $\ell\left(x, x^{\prime}\right)$ and $\ell\left(y^{\prime}, y\right)$ are identified with their k-jets. We define the projection in (1.3) by

$$
d\left(t_{x, y}\right)_{z}: T_{z}\left(J^{k}(U, V)\right) \longrightarrow T_{z}\left(J_{x, y}^{k}(U, V)\right)
$$

at $z \in J_{x, y}^{k}(U, V)$, where we should note $T_{z}\left(J_{x, y}^{k}(U, V)\right)=T_{z}^{\mathfrak{f}}\left(J^{k}(N, P)\right)$.
Let $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{p}\right)$ be the normal coordinates on the convex neighborhoods of (N, x) and (P, y) associated to orthonormal bases of $T_{x} N$ and $T_{y} P$ respectively. Then a jet $z \in J_{x, y}^{k}(N, P)$ is often identified with the germ of the polynomial map of degree k with variables x_{1}, \ldots, x_{n}.

2. Singularities of \mathscr{K}-invariant class.

Let us begin by recalling the results in $[\mathbf{M a I I I}],[\mathbf{M a I V}]$ and $[\mathbf{M a V}]$. Let C_{x} and C_{y} denote the rings of smooth function germs on (N, x) and (P, y) respectively. Let \mathfrak{m}_{x} and \mathfrak{m}_{y} denote the maximal ideals of C_{x} and C_{y} respectively. Let $f:(N, x) \rightarrow(P, y)$ be a germ of a smooth map. Let $f^{*}: C_{y} \rightarrow C_{x}$ denote the homomorphism defined by $f^{*}(a)=a \circ f$. Let $\theta(N)_{x}$ denote the C_{x} module of all germs at x of smooth vector fields on N. Let $\theta(f)_{x}$ denote the C_{x} module of germs at x of smooth vector fields along f, namely which consists of all germs $\varsigma:(N, x) \rightarrow T P$ such that $p_{P} \circ \varsigma=f$. Here, $p_{P}: T P \rightarrow P$ is the canonical projection. Then we have the homomorphism

$$
\begin{equation*}
t f: \theta(N)_{x} \longrightarrow \theta(f)_{x} \tag{2.1}
\end{equation*}
$$

defined by $t f\left(u_{N}\right)=d f \circ u_{N}$ for $u_{N} \in \theta(N)_{x}$.
Let us review the \mathscr{K}-equivalence of two smooth map germs $f, g:(N, x) \rightarrow(P, y)$, which has been introduced in [MaIII, (2.6)], by following [Mar1, II, 1]. The above two map germs f and g are \mathscr{K}-equivalent if there exists a smooth map germ $h_{1}:(N, x) \rightarrow$ $G L\left(\boldsymbol{R}^{p}\right)$ and a local diffeomorphism $h_{2}:(N, x) \rightarrow(N, x)$ such that $f(x)=h_{1}(x) g\left(h_{2}(x)\right)$. In this paper we also say that $j_{x}^{k} f$ and $j_{x}^{k} g$ are \mathscr{K}-equivalent in this case. It is known that this \mathscr{K}-equivalence is nothing but the contact equivalence introduced in [MaIII]. The contact group \mathscr{K} is defined as a some subgroup of the group of germs of local diffeomorphisms $(N, x) \times(P, y)$. Let $\mathscr{K} z$ denote the orbit submanifold of $J_{x, y}^{k}(N, P)$ consisting of all k-jets w which are \mathscr{K}-equivalent to z. This fact is also observed from the above definition.

In the case $n \geq p$ let $\Sigma^{n-p+1,0}(n, p)$ denote the Thom-Boardman submanifold in $J^{k}(n, p)$ consisting of all fold jets. The union $\Omega^{n-p+1,0}(n, p)$ of all regular jets and $\Sigma^{n-p+1,0}(n, p)$ is open (see, for example, [duP1]).

We define the bundle homomorphism

$$
\begin{equation*}
\boldsymbol{d}_{1}:\left(\pi_{N}^{k}\right)^{*}(T N) \longrightarrow\left(\pi_{P}^{k}\right)^{*}(T P) \tag{2.2}
\end{equation*}
$$

Let $z=j_{x}^{k} f$. We set $\left(\boldsymbol{d}_{1}\right)_{z}(z, \boldsymbol{v})=(z, d f(\boldsymbol{v}))$. Let $V^{i}(n, p)$ be a \mathscr{K}-invariant smooth submanifold of $J^{k}(n, p)$ which consists of singular jets with given rank $r(0 \leq r \leq \min (n, p))$. Namely, we have $V^{i}(n, p) \subset \Sigma^{n-r}(n, p)$. Let $V^{i}(N, P)$ denote the subbundle of $J^{k}(N, P)$ associated to $V^{i}(n, p)$. We define the kernel bundle $\boldsymbol{K}\left(V^{i}\right)$ in $\left(\pi_{N}^{k} \mid V^{i}(n, p)\right)^{*}(T N)$ and the cokernel bundle $\boldsymbol{Q}\left(V^{i}\right)$ of $\left(\pi_{P}^{k} \mid V^{i}(n, p)\right)^{*}(T P)$ by, for $z \in V^{i}(N, P)$,

$$
\boldsymbol{K}\left(V^{i}\right)_{z}=\left(z, \operatorname{Ker}\left(d_{x} f\right)\right) \quad \text { and } \quad \boldsymbol{Q}\left(V^{i}\right)_{z}=\left(z, \operatorname{Coker}\left(d_{x} f\right)\right)
$$

respectively. The dimension of $\boldsymbol{K}\left(V^{i}\right)$, as a vector bundle, is $n-r$.
Let $\mathscr{O}(n, p)$ be an admissible open subset in $J^{k}(n, p)$ defined in Introduction whose singularities are decomposed into a finite number of disjoint \mathscr{K}-invariant submanifolds $V^{i}(n, p)$ of codimension $\rho_{i}(1 \leq i \leq \iota)$ satisfying (H-i to v). We note that $V^{i}(n, p)$ may not be connected and that even if $i<j$, then ρ_{i} is not necessarily smaller than ρ_{j}. We denote, by $\mathscr{O}^{i}(n, p)$, the open subset $\mathscr{O}(n, p) \backslash\left\{\bigcup_{j=i+1}^{L} V^{j}(n, p)\right\}$ and, by $\mathscr{O}^{i}(N, P)$, the
open subbundle of $J^{k}(N, P)$ associated to $\mathscr{O}^{i}(n, p)$ for each $i(0 \leq i \leq \iota)$.
Let $z=j_{x}^{k} f \in J_{x, y}^{k}(N, P)$ be of rank r and $w=\pi_{k-1}^{k}(z)$. Let $\mathscr{K}^{w}(N, P)$ denote the subbundle of $J^{k-1}(N, P)$ associated to the \mathscr{K}-orbit $\mathscr{K} w$. We call $\mathscr{K}^{w}(N, P)$ the \mathscr{K}-orbit bundle of w in this paper. The fiber of $\mathscr{K}^{w}(N, P)$ over (x, y) is denoted by $\mathscr{K}_{x, y}^{w}(n, p)$. Let us recall the description of the tangent space of $\mathscr{K}_{x, y}^{w}(N, P)$ in [MaIII, (7.3)]. There have been defined the isomorphism, expressed in this paper by $\pi_{\theta, T}^{k-1}$,

$$
\begin{equation*}
T_{w}\left(J_{x, y}^{k-1}(N, P)\right) \longrightarrow \mathfrak{m}_{x} \theta(f)_{x} / \mathfrak{m}_{x}^{k} \theta(f)_{x} \tag{2.3}
\end{equation*}
$$

We do not give the definition. According to [MaIII, (7.4)], $T_{w}\left(\mathscr{K}_{x, y}^{w}(N, P)\right)$ corresponds by $\pi_{\theta, T}^{k-1}$ to

$$
\begin{equation*}
\left(t f\left(\mathfrak{m}_{x} \theta(N)_{x}\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)_{x}+\mathfrak{m}_{x}^{k} \theta(f)_{x}\right) / \mathfrak{m}_{x}^{k} \theta(f)_{x} \tag{2.4}
\end{equation*}
$$

which we denote by $I(w)$ for simplicity.
We choose Riemannian metrics on N and P. Let Q_{y} denote $T_{y}(P) / \operatorname{Im}\left(d_{x} f\right)$. We always identify $T_{y}(P) / \operatorname{Im}\left(d_{x} f\right)$ with the orthogonal complement of $\operatorname{Im}\left(d_{x} f\right)$ in $T_{y}(P)$. In the convex neighborhoods of x and y where f is defined, let $e\left(K_{x}\right)$ and $e\left(Q_{y}\right)$ denote $\exp _{N, x}\left(\operatorname{Ker}\left(d_{x} f\right)\right)$ and $\exp _{P, y}\left(T_{y}(P) / \operatorname{Im}\left(d_{x} f\right)\right)$ with the normal coordinates $x^{\bullet}=\left(x_{r+1}, \ldots, x_{n}\right)$ and $y^{\bullet}=\left(y_{r+1}, \ldots, y_{p}\right)$ associated to the orthonormal bases of K_{x} and Q_{y} respectively. Let $\left(y_{1}, \ldots, y_{r}\right)$ be the normal coordinates of $\exp _{P, y}\left(\operatorname{Im}\left(d_{x} f\right)\right)$ associated to the orthonormal basis of $\operatorname{Im}\left(d_{x} f\right)$. Setting $x_{i}=y_{i} \circ f$ for $1 \leq i \leq r$, we have the coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{p}\right)$ of (N, x) and (P, y) respectively. Let $p_{Q_{y}}$: $(P, y) \rightarrow\left(e\left(Q_{y}\right), y\right)$ be the germ of the orthogonal projection. Let $f^{\bullet}: e\left(K_{x}\right) \rightarrow e\left(Q_{y}\right)$ be the map defined by $f^{\bullet}=p_{Q_{y}} \circ f \mid e\left(K_{x}\right)$. In the module $\mathfrak{m}_{x} \bullet \theta\left(f^{\bullet}\right)_{x} \bullet / \mathfrak{m}_{x}^{k} \bullet \theta\left(f^{\bullet}\right)_{x^{\bullet}}$, let $I^{\bullet}(w)$ denote the submodule of

$$
\left(t f^{\bullet}\left(\mathfrak{m}_{x} \bullet \theta\left(e\left(K_{x}\right)\right)_{x} \bullet\right)+\left(f^{\bullet}\right)^{*}\left(\mathfrak{m}_{y} \bullet\right) \theta\left(f^{\bullet}\right)_{x} \bullet+\mathfrak{m}_{x}^{k} \theta\left(f^{\bullet}\right)_{x} \bullet\right) / \mathfrak{m}_{x}^{k} \cdot \theta\left(f^{\bullet}\right)_{x^{\bullet}}
$$

In this situation, since $f^{\bullet}\left(x^{\bullet}\right)=\left(y_{r+1} \circ f\left(x^{\bullet}\right), \ldots, y_{p} \circ f\left(x^{\bullet}\right)\right)$, the submodule $I^{\bullet}(w)$ is generated by

$$
\begin{cases}\mathfrak{m}_{x} \cdot \sum_{i=r+1}^{p} \frac{\partial y_{i} \circ f^{\bullet}}{\partial x_{j}}\left(\frac{\partial}{\partial y_{i}} \circ f^{\bullet}\right) & \text { for } r<j \leq n \tag{2.5}\\ \left\langle y_{r+1} \circ f^{\bullet}, \ldots, y_{p} \circ f^{\bullet}\right\rangle \frac{\partial}{\partial y_{i}} \circ f^{\bullet} & \text { for } r<i \leq p\end{cases}
$$

where $\partial / \partial y_{i}$ is the vector field on (P, y) and the notation $\langle *\rangle$ refers to an ideal.
If $z=j_{x}^{k} f \in V_{x, y}^{i}(N, P)$, then $w \in \mathscr{K}_{x, y}^{w}(N, P) \subset V_{x, y}^{i}(N, P)^{(k-1)}$ by (H-iii) and $T_{w}\left(\mathscr{K}_{x, y}^{w}(N, P)\right) \subset T_{w}\left(V_{x, y}^{i}(N, P)^{(k-1)}\right)$. Under the above local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{p}\right)$, let $\mathscr{M}\left(V^{i}\right)^{(k-1)}$ and $\mathscr{M}\left(V^{i}\right)^{\bullet(k-1)}$ denote the vector bundles over $V^{i}(N, P)$ with fibers

$$
\mathfrak{m}_{x} \theta(f)_{x} / \mathfrak{m}_{x}^{k} \theta(f)_{x} \quad \text { and } \quad \mathfrak{m}_{x} \bullet \theta\left(f^{\bullet}\right)_{x} \bullet / \mathfrak{m}_{x}^{k} \cdot \theta\left(f^{\bullet}\right)_{x} \bullet
$$

over z respectively. These vector bundles are well defined as far as the Riemannian metrics on N and P are chosen and fixed. We use the same notation $\pi_{\theta, T}^{k-1}$ for the bundle isomorphism over $V^{i}(N, P)$ as follows.

$$
\pi_{\theta, T}^{k-1}:\left.\left(\pi_{k-1}^{k}\right)^{*}\left(T^{\mathfrak{f}}\left(J^{k-1}(N, P)\right)\right)\right|_{V^{i}(N, P)} \longrightarrow \mathscr{M}\left(V^{i}\right)^{(k-1)}
$$

Furthermore, we define the canonical projection

$$
\begin{equation*}
p_{\mathscr{M}} \bullet: \mathscr{M}\left(V^{i}\right)^{(k-1)} \longrightarrow \mathscr{M}\left(V^{i}\right)^{\bullet(k-1)} \tag{2.6}
\end{equation*}
$$

by

$$
\left(p_{\mathscr{M}} \bullet\right)_{z}\left(\sum_{i=1}^{r} h_{i} t f\left(\frac{\partial}{\partial x_{i}}\right)+\sum_{i=r+1}^{p} k_{i}\left(\frac{\partial}{\partial y_{i}} \circ f\right)\right)=\sum_{i=r+1}^{p} k_{i}^{\bullet}\left(\frac{\partial}{\partial y_{i}} \circ f^{\bullet}\right) .
$$

This definition is the global version of the homomorphism defined in [MaIV, Section 1].
We canonically identify $\nu\left(V^{i}(N, P)\right)=\left(\pi_{k-1}^{k} \mid V^{i}(N, P)\right)^{*}\left(\nu\left(V^{i}(N, P)^{(k-1)}\right)\right)$. It is not difficult to see that $\left(p_{\mathscr{M}} \bullet\right)_{z}$ induces the isomorphism of $\nu\left(\mathscr{K}^{w}(N, P)\right)_{w}$ onto the vector spaces of dimension ρ

$$
\begin{equation*}
\mathfrak{m}_{x} \theta(f)_{x} /\left(I(w)+\mathfrak{m}_{x}^{k} \theta(f)_{x}\right) \approx \mathfrak{m}_{x} \bullet \theta\left(f^{\bullet}\right)_{x} \bullet /\left(I^{\bullet}(w)+\mathfrak{m}_{x}^{k} \bullet \theta\left(f^{\bullet}\right)_{x} \bullet\right) \tag{2.7}
\end{equation*}
$$

The epimorphism $\nu\left(\mathscr{K}^{w}(N, P)\right)_{w} \rightarrow \nu\left(V^{i}(N, P)\right)_{w}^{(k-1)}$ canonically induces the epimorphism

$$
\begin{equation*}
p_{\nu}^{\mathscr{M}}: \mathscr{M}\left(V^{i}\right)^{\bullet(k-1)} \longrightarrow \nu\left(V^{i}(N, P)\right) \tag{2.8}
\end{equation*}
$$

over $V^{i}(N, P)$.
Let

$$
\Pi_{\mathfrak{f}}^{k}: T\left(J^{k}(N, P)\right) \rightarrow\left(\pi_{k-1}^{k}\right)^{*}\left(T\left(J^{k-1}(N, P)\right)\right) \rightarrow\left(\pi_{k-1}^{k}\right)^{*}\left(T^{\mathfrak{f}}\left(J^{k-1}(N, P)\right)\right)
$$

denote the composite of canonical projections and let

$$
p_{\nu\left(V^{i}\right)}:\left.T\left(J^{k}(N, P)\right)\right|_{V^{i}(N, P)} \longrightarrow \nu\left(V^{i}(N, P)\right)
$$

denote the canonical projection.
Lemma 2.1. Let $z \in V_{x, y}^{i}(N, P)$. Under the above notation the epimorphism $\left.p_{\nu\left(V^{i}\right)}\right|_{z}$ coincides with the composite $p_{\nu}^{\mu} \circ p_{\mathscr{M}} \bullet \circ \pi_{\theta, T}^{k-1} \circ\left(\Pi_{\mathfrak{f}}^{k}\right)_{z}$:

$$
\begin{equation*}
T_{z}\left(J^{k}(N, P)\right) \rightarrow \mathscr{M}\left(V^{i}\right)_{z}^{(k-1)} \rightarrow \mathscr{M}\left(V^{i}\right)_{z}^{\bullet(k-1)} \rightarrow \nu\left(V^{i}(N, P)\right)_{z} . \tag{2.9}
\end{equation*}
$$

Recall the homomorphism \boldsymbol{d} in Introduction. Let us study the composite

$$
\pi^{\mathfrak{f}} \circ \boldsymbol{d}:\left.\left.\left(\pi_{N}^{k}\right)^{*}(T N)\right|_{V^{i}(N, P)} \longrightarrow\left(\pi_{k-1}^{k}\right)^{*}\left(T^{\mathfrak{f}}\left(J^{k-1}(N, P)\right)\right)\right|_{V^{i}(N, P)}
$$

and the isomorphism in (2.3). For $z=j_{x}^{k} f \in V^{i}(N, P)$ and $\boldsymbol{v} \in T_{x} U$, let $v(t)=$ $\exp _{N, x}(t \boldsymbol{v})$ be the geodesic curve. Then the composite $t_{x, y} \circ j^{k-1} f \circ v: I \rightarrow J_{x, y}^{k-1}(N, P)$ yields that

$$
\begin{align*}
\left(\left.d\left(t_{x, y} \circ j^{k} f \circ v\right)\right|_{t=0}\right)(d / d t) & =\left(\left.\left(d\left(t_{x, y}\right) \circ d\left(j^{k} f\right) \circ d v\right)\right|_{t=0}\right)(d / d t) \\
& =d\left(t_{x, y}\right) \circ d\left(j^{k} f\right)(\boldsymbol{v}) \\
& =d\left(t_{x, y}\right) \circ \boldsymbol{d}(\boldsymbol{v}) \\
& =\pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v}), \tag{2.10}
\end{align*}
$$

where $\pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v})$ is regarded as an element of $J_{x, y}^{k-1}(N, P)$. Let $F: U \times[0,1] \rightarrow P$ be the following map

$$
\begin{aligned}
F\left(x^{\prime}, t\right) & =\ell(f(v(t)), f(x)) \circ f \circ \ell(x, v(t))\left(x^{\prime}\right) \\
& =\ell(f(v(t)), f(x)) \circ f\left(x^{\prime}+v(t)-x\right) \\
& =f\left(x^{\prime}+v(t)-x\right)+f(x)-f(v(t)) .
\end{aligned}
$$

In particular, we have $F(x, t)=f(x)=y$. Let $F_{x^{\prime}}(t)=F_{t}\left(x^{\prime}\right)=F\left(x^{\prime}, t\right)$ and $G(t)=$ $f\left(x^{\prime}+v(t)-x\right)$.

Remark 2.2. It follows that $\pi_{\theta, T}^{k-1} \circ \pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v})$ is represented by the vector fields $\zeta_{\boldsymbol{v}}^{z}:(N, x) \rightarrow T P$ defined by $\zeta_{\boldsymbol{v}}^{z}\left(x^{\prime}\right)=\left(\left.d F_{x^{\prime}}\right|_{t=0}\right)(d / d t)$. Let us briefly prove this fact. We note that

$$
j_{x}^{k-1} F_{t}=\ell(f(v(t)), f(x)) \circ j_{v(t), f(v(t))}^{k-1} f \circ \ell(x, v(t)) \in J_{x, y}^{k-1}(N, P)
$$

By (2.10) we have $\pi^{f} \circ \boldsymbol{d}(\boldsymbol{v})=\left(\left.d\left(j_{x}^{k-1} F_{t}\right)\right|_{t=0}\right)(d / d t)$. By the definition of the isomorphism $\pi_{\theta, T}^{k-1}$ in (2.3) in [MaIII, (7.3)] we obtain the assertion.

In Remark $2.2 \zeta_{\boldsymbol{v}}^{z}=\left(\left.d F_{x^{\prime}}\right|_{t=0}\right)(d / d t)$ is equal to

$$
\begin{align*}
& \left(\left.d G\right|_{t=0}\right)(d / d t)-\left(\left.d(f \circ v)\right|_{t=0}\right)(d / d t) \\
& \quad=\left(\left[\cdots, \sum_{\ell=1}^{p}\left(\frac{\partial y_{\ell} \circ G(t)}{\partial x_{j}}-\frac{\partial y_{\ell} \circ f}{\partial x_{j}}(v(t))\right) \frac{\partial}{\partial y_{\ell}}, \cdots\right]_{t=0}\right) \bullet \boldsymbol{v} \tag{2.11}
\end{align*}
$$

where "•" refers to the inner product. If $\boldsymbol{v}=\sum_{j=1}^{n} a_{j} \partial / \partial x_{j} \in \boldsymbol{K}\left(V^{i}\right)_{z}$, then $\left(\left.d(f \circ v)\right|_{t=0}\right)(d / d t)=d f(\boldsymbol{v})=0$ and

$$
\begin{equation*}
\zeta_{\boldsymbol{v}}^{z}\left(x^{\prime}\right)=\sum_{\ell=1}^{p}\left(\sum_{j=1}^{p} a_{j} \frac{\partial y_{\ell} \circ f}{\partial x_{j}}\left(x^{\prime}\right)\right) \frac{\partial}{\partial y_{\ell}} \tag{2.12}
\end{equation*}
$$

and $\zeta_{\boldsymbol{v}}^{z}(x)=\mathbf{0}$. Therefore, if $\boldsymbol{v} \in \boldsymbol{K}\left(V^{i}\right)_{z}$, then $\zeta_{\boldsymbol{v}}^{z}$ lies in $\mathfrak{m}_{x} \theta(f)_{x}$.
Under the trivialization $T U=U \times T_{x} U$, there is the vector field \boldsymbol{v}_{U} on U defined by $\boldsymbol{v}_{U}\left(x^{\prime}\right)=\left(x^{\prime}, \boldsymbol{v}\right)$. Therefore, we have the following lemma.

Lemma 2.3. Let $z=j_{x}^{k} f \in V_{x, y}^{i}(N, P)$. Let $\boldsymbol{v} \in \boldsymbol{K}\left(V^{i}\right)_{z}$. Under the above notation, $\pi_{\theta, T}^{k-1} \circ \pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v})$ is represented by $\zeta_{\boldsymbol{v}}^{z}=t f\left(\boldsymbol{v}_{U}\right)$.

3. Primary obstruction.

Let $\mathfrak{s} \in \Gamma_{\mathscr{O}}(N, P)$ be smooth around $\mathfrak{s}^{-1}\left(V^{i}(N, P)\right)$ and transverse to $V^{i}(N, P)$. We set

$$
\begin{array}{ll}
S^{V^{i}}(\mathfrak{s})=\mathfrak{s}^{-1}\left(V^{i}(N, P)\right), & S^{n-p+1,0}(\mathfrak{s})=\mathfrak{s}^{-1}\left(\Sigma^{n-p+1,0}(N, P)\right), \\
\left(\mathfrak{s} \mid S^{V^{i}}(\mathfrak{s})\right)^{*}\left(\boldsymbol{K}\left(V^{i}\right)\right)=K\left(S^{\left.V^{i}(\mathfrak{s})\right),}\right. & \left(\mathfrak{s} \mid S^{V^{i}}(\mathfrak{s})\right)^{*} \boldsymbol{Q}\left(V^{i}\right)=Q\left(S^{\left.V^{i}(\mathfrak{s})\right)} .\right.
\end{array}
$$

We often write $S^{V^{i}}(\mathfrak{s})$ as $S^{V^{i}}$ if there is no confusion.
Let $\Gamma_{\mathscr{O}}^{t r}(N, P)$ denote the subspace of $\Gamma_{\mathscr{O}}(N, P)$ consisting of all smooth sections of $\pi_{N}^{k} \mid \mathscr{O}(N, P): \mathscr{O}(N, P) \rightarrow N$ which are transverse to $V^{j}(N, P)$ for every j. Let C be a closed subset of N. For $s \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ let C_{i+1} refer to the union $C \cup s^{-1}\left(\mathscr{O}(n, p) \backslash \mathscr{O}^{i}(n, p)\right)\left(C_{\iota+1}=C\right)$.

The following theorem has been proved in [An3, Theorem 4.1] and [An4, Theorem $0.5]$ in which $[\mathbf{E 1}, 2.2$ Theorem] and $[\mathbf{E 2}, 4.7$ Theorem] have played important roles.

Theorem 3.1. Let $n \geq p \geq 2$. Let $\mathscr{O}(n, p)$ denote $\Omega^{(n-p+1,0)}(n, p)$. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N=\varnothing$. Let C be a closed subset of N. Let s be a section of $\Gamma_{\mathscr{O}}(N, P)$ such that there exists a fold-map g defined on a neighborhood of C into P, where $j^{2} g=s$. Then there exists a fold-map $f: N \rightarrow P$ such that $j^{2} f$ is homotopic to s relative to C by a homotopy s_{λ} in $\Gamma_{\mathscr{O}}(N, P)$ with $s_{0}=s$ and $s_{1}=j^{2} f$. In particular, $f=g$ on a neighborhood of C.

We show in this section that it is enough for the proof of Theorem 0.1 to prove the following theorem together with Theorem 3.1.

Theorem 3.2. Let $k \geq 3$. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N=\varnothing$. We assume the same assumption for $\mathscr{O}(n, p)$ as in Theorem 0.1. Let C_{i+1} and $V^{i}(n, p)$ be as above for $1 \leq i \leq \iota$. We assume that if $n \geq p \geq 2$, then $V^{i}(n, p) \neq \Sigma^{n-p+1,0}(n, p)(i>1)$. Let s be a section in $\Gamma_{\mathscr{O}}^{t r}(N, P)$ which has an \mathscr{O}-regular map $g_{i+1}\left(g_{\iota+1}=g\right)$ defined on a neighborhood of C_{i+1} to P, where $j^{k} g_{i+1}=s$. Then there exists a homotopy $s_{\lambda} \in \Gamma_{\mathscr{O}}(N, P)$ of $s_{0}=s$ relative to a neighborhood of C_{i+1} with the following properties.
(3.2.1) $s_{1} \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ and $s_{1}\left(N \backslash C_{i+1}\right) \subset \mathscr{O}(N, P)^{i}$.
(3.2.2) $S^{V^{i}}\left(s_{\lambda}\right)=S^{V^{i}}(s)$ for any λ.
(3.2.3) There exists an \mathscr{O}-regular map g_{i} defined on a neighborhood of C_{i}, where $j^{k} g_{i}=s_{1}$ holds. In particular, $g_{i}=g_{i+1}$ on a neighborhood of C_{i+1}.

Proof of Theorem 0.1. We first deform s to be transverse outside a small
neighborhood of C. By the downward induction on i using Theorem 3.2 we next deform s keeping g near C to the jet extension of an \mathscr{O}-regular map defined around $\bigcup_{j=1}^{L} S^{V^{j}}(s)$ for $n<p$ and around $\bigcup_{j=2}^{\ell} S^{V^{j}}(s)$ for $n \geq p \geq 2$. In the final step we apply the SmaleHirsch Immersion Theorem ([H, Theorem 5.7]) for $n<p$ and Theorem 3.1 for $n \geq p \geq 2$ to obtain the required \mathscr{O}-regular map f.

Take a closed neighborhood $U(C)$ of C where the given \mathscr{O}-regular map g is defined. Let $U_{j}(C)(j=1,2,3,4)$ be closed neighborhoods of C such that $U_{4}(C) \subset \operatorname{Int} U(C)$ and $U_{j}(C) \subset \operatorname{Int} U_{j+1}(C)(j=1,2,3)$. By [G-G, Ch. II, Corollary 4.11] there exists a homotopy of \mathscr{O}-regular maps $g_{\lambda}: U(C) \rightarrow P$ relative to $U_{1}(C)$ such that $g_{0}=g$ and $j^{k} g_{1} \mid U(C) \backslash \operatorname{Int} U_{2}(C)$ is transverse to $V^{j}(N, P)$ for all j. By applying the homotopy extension property we obtain a homotopy μ_{λ} in $\Gamma_{\mathscr{O}}(N, P)$ such that $\mu_{0}=s, \mu_{\lambda} \mid U_{4}(C)=$ $j^{k} g_{\lambda} \mid U_{4}(C)$ and $\mu_{1} \mid\left(N \backslash U_{2}(C)\right) \in \Gamma_{\mathscr{O}}^{t r}\left(N \backslash U_{2}(C), P\right)$. Let $S\left(\mu_{1}\right)$ denote the subspace of all points $x \in N$ such that $\mu_{1}(x)$ are singular jets.

Let $N^{\prime}=N \backslash U_{2}(C), C^{\prime}=U_{3}(C) \cap N^{\prime}$ and $g^{\prime}=g_{1} \mid\left(U_{4}(C) \backslash U_{2}(C)\right)$. Let us choose the largest integer i such that $S^{V^{i}}\left(\mu_{1}\right) \backslash C^{\prime} \neq \varnothing$. We first apply Theorem 3.2 to the case of $\mu_{1} \mid N^{\prime}, C^{\prime}, g^{\prime}$ and $\mathscr{O}\left(N^{\prime}, P\right)$ in $J^{k}\left(N^{\prime}, P\right)$. There exist a homotopy s_{λ}^{\prime} in $\Gamma_{\mathscr{O}}\left(N^{\prime}, P\right)$ of $s_{0}^{\prime}=\mu_{1} \mid N^{\prime}$ relative to a neighborhood of C^{\prime} and an \mathscr{O}-regular map g_{i}^{\prime} defined on a neighborhood of C_{i}^{\prime} in N^{\prime} satisfying the properties (3.2.1) to (3.2.3) for $N^{\prime}, C^{\prime}, g^{\prime}, g_{i}^{\prime}$ and s_{λ}^{\prime}.

Then we can prove by downward induction on integers i that there exists a homotopy $s_{\lambda}^{\prime \prime}$ of $s_{0}^{\prime \prime}=s_{1}^{\prime}$ in $\Gamma_{\mathscr{O}}^{t r}\left(N^{\prime}, P\right)$ relative to $U_{3}(C)$ and an \mathscr{O}-regular map f^{\prime} defined on a neighborhood of $\left(U_{3}(C) \cup S\left(\mu_{1}\right)\right) \backslash U_{2}(C)$ for $n<p$ and of $\left(U_{3}(C) \cup\right.$ $\left.\left(S\left(\mu_{1}\right) \backslash S^{(n-p+1,0)}\left(\mu_{1}\right)\right)\right) \backslash U_{2}(C)$ for $n \geq p \geq 2$, such that
(i) $s_{1}^{\prime \prime} \in \Gamma_{\mathscr{O}}^{t r}\left(N^{\prime}, P\right)$,
(ii) $s_{1}^{\prime \prime}\left(N \backslash C_{1}\right) \subset \mathscr{O}^{0}(N, P)$ for $n<p$ and $s_{1}^{\prime \prime}\left(N \backslash C_{2}\right) \subset \mathscr{O}^{1}(N, P)$ for $n \geq p \geq 2$,
(iii) $S^{V^{j}}\left(s_{\lambda}^{\prime \prime}\right)=S^{V^{j}}(s)$ except for $j=1$ in the case $n \geq p \geq 2$.

Let

$$
N^{\prime \prime}= \begin{cases}N^{\prime} / S\left(\mu_{1}\right) & \text { for the case } n<p \\ \left(N^{\prime} / S\left(\mu_{1}\right)\right) \cup S^{(n-p+1,0)}\left(\mu_{1}\right) & \text { for the case } n \geq p \geq 2\end{cases}
$$

It follows from the Smale-Hirsch Immersion Theorem for the case $n<p$ that there exist an immersion $f^{\prime \prime}: N^{\prime \prime} \rightarrow P$ and a homotopy $u_{\lambda} \in \Gamma_{\mathscr{O}}\left(N^{\prime \prime}, P\right)$ relative to the neighborhood of $U\left(C \cup S\left(\mu_{1}\right)\right) \cap N^{\prime \prime}$ such that $u_{0}=s_{1}^{\prime \prime} \mid N^{\prime \prime}$ and $u_{1}=j^{k} f^{\prime \prime}$. It follows from Theorem 3.2 for the case $n \geq p \geq 2$ that there exist an $\Omega^{(n-p+1,0)}$-regular map $f^{\prime \prime}: N^{\prime \prime} \rightarrow P$ and a homotopy $u_{\lambda} \in \Gamma_{\mathscr{O}}\left(N^{\prime \prime}, P\right)$ relative to a neighborhood of

$$
\left\{\left(U\left(C \cup S\left(\mu_{1}\right)\right) \backslash S\left(\mu_{1}\right)\right) \cup S^{(n-p+1,0)}\left(\mu_{1}\right)\right\} \cap N^{\prime \prime}
$$

such that $u_{0}=s_{1}^{\prime \prime} \mid N^{\prime \prime}$ and $u_{1}=j^{k} f^{\prime \prime}$. Define $s_{\lambda}^{\prime \prime \prime} \in \Gamma_{\mathscr{O}}\left(N^{\prime}, P\right)$ by $s_{\lambda}^{\prime \prime \prime} \mid N^{\prime \prime}=u_{\lambda}$ and $s_{\lambda}^{\prime \prime \prime}\left|\left(N^{\prime} \backslash N^{\prime \prime}\right)=s_{1}^{\prime \prime}\right|\left(N^{\prime} \backslash N^{\prime \prime}\right)$.

Now we have the homotopy $\bar{\mu}_{\lambda}$ in $\Gamma_{\mathscr{O}}(N, P)$ defined by

$$
\bar{\mu}_{\lambda} \left\lvert\, N^{\prime}= \begin{cases}s_{3 \lambda}^{\prime} & (0 \leq \lambda \leq 1 / 3) \\ s_{3 \lambda-1}^{\prime \prime} & (1 / 3 \leq \lambda \leq 2 / 3) \\ s_{3 \lambda-2}^{\prime \prime \prime} & (2 / 3 \leq \lambda \leq 1)\end{cases}\right.
$$

and $\bar{\mu}_{\lambda}\left|U_{3}(C)=j^{k} g_{1}\right| U_{3}(C)$. Thus we obtain the required homotopy s_{λ} in Theorem 0.1 by pasting μ_{λ} and $\bar{\mu}_{\lambda}$.

We begin by preparing several notions and results, which are necessary for the proof of Theorem 3.2. For the map g_{i+1}, we take a closed neighborhood $U\left(C_{i+1}\right)^{\prime}$ of C_{i+1} around which g_{i+1} is defined and $j^{k} g_{i+1}=s$. Without loss of generality we may assume that $N \backslash U\left(C_{i+1}\right)^{\prime}$ is nonempty. Let us take a closed neighborhood $U\left(C_{i+1}\right)$ of C_{i+1} in $\operatorname{Int} U\left(C_{i+1}\right)^{\prime}$ such that $U\left(C_{i+1}\right)$ is a submanifold of dimension n with boundary $\partial U\left(C_{i+1}\right)$. By virtue of Gromov's theorem ([G1, Theorem 4.1.1]), it suffices to consider the special case where
(C1) $N \backslash \operatorname{Int} U\left(C_{i+1}\right)$ is compact, connected and nonempty,
(C2) $s \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ and $S^{V^{i}}(s) \backslash \operatorname{Int} U\left(C_{i+1}\right) \neq \varnothing$,
(C3) $S^{V^{i}}(s)$ is transverse to $\partial U\left(C_{i+1}\right)$.
For a manifold X and its submanifold Y let $\nu(Y)$ denote the normal bundle $\left(\left.T X\right|_{Y}\right) / T Y$ of Y. In what follows we set $r=r_{i}$ and $\rho=\rho_{i}$ for simplicity. Let $\nu\left(V^{i}(N, P)\right.$) be the normal bundle of dimension $\rho \leq n$. Then $p_{\nu\left(V^{i}\right)} \circ \boldsymbol{d} \mid \boldsymbol{K}\left(V^{i}\right)$: $\boldsymbol{K}\left(V^{i}\right) \rightarrow \nu\left(V^{i}(N, P)\right)$ is a monomorphism over $V^{i}(N, P)$ by (H-v) under the identification $\nu\left(V^{i}(N, P)\right)_{z}=\left(z, \nu\left(V^{i}(N, P)^{(k-1)}\right)_{\pi_{k-1}^{k}(z)}\right)$. The composite

$$
p_{\nu\left(V^{i}\right)} \circ \boldsymbol{d} \mid \boldsymbol{K}\left(V^{i}\right) \circ\left(s \mid S^{V^{i}}\right)^{\boldsymbol{K}\left(V^{i}\right)}: K\left(S^{V^{i}}(s)\right) \rightarrow \boldsymbol{K}\left(V^{i}\right) \rightarrow \nu\left(V^{i}(N, P)\right)
$$

is also a monomorphism. Let $s \in \Gamma_{\mathscr{O}}(N, P)$ be the given section in Theorem 3.2. Let us provide N with a Riemannian metric. Let $\mathfrak{n}\left(s, V^{i}\right)$ be the orthogonal normal bundle of $S^{V^{i}}(s)$ in N. We have the bundle map

$$
d s \mid \mathfrak{n}\left(s, V^{i}\right): \mathfrak{n}\left(s, V^{i}\right) \longrightarrow \nu\left(V^{i}(N, P)\right)
$$

covering $s \mid S^{V^{i}}: S^{V^{i}}(s) \rightarrow V^{i}(N, P)$. Let $\boldsymbol{i}_{\mathfrak{n}\left(s, V^{i}\right)}:\left.\mathfrak{n}\left(s, V^{i}\right) \subset T N\right|_{S^{V^{i}}}$ denote the inclusion. We define $\Psi\left(s, V^{i}\right):\left.K\left(S^{V^{i}}(s)\right) \rightarrow \mathfrak{n}\left(s, V^{i}\right) \subset T N\right|_{S^{V^{i}}}$ to be the composite

$$
\begin{align*}
& \boldsymbol{i}_{\mathfrak{n}\left(s, V^{i}\right)} \circ\left(\left(s \mid S^{V^{i}}\right)^{*}\left(d s \mid \mathfrak{n}\left(s, V^{i}\right)\right)\right)^{-1} \circ\left(\left(s \mid S^{V^{i}}\right)^{*}\left(p_{\nu\left(V^{i}\right)} \circ \boldsymbol{d} \mid \boldsymbol{K}\left(V^{i}\right) \circ\left(s \mid S^{V^{i}}\right)^{\boldsymbol{K}\left(V^{i}\right)}\right)\right) \\
& \quad:\left.K\left(S^{V^{i}}(s)\right) \rightarrow\left(s \mid S^{V^{i}}\right)^{*} \nu\left(V^{i}(N, P)\right) \rightarrow \mathfrak{n}\left(s, V^{i}\right) \rightarrow T N\right|_{S^{V}} . \tag{3.1}
\end{align*}
$$

Let $i_{K\left(S^{V^{i}}(s)\right)}:\left.K\left(S^{V^{i}}(s)\right) \rightarrow T N\right|_{S^{V^{i}}}$ be the inclusion.
Remark 3.3. If f is an \mathscr{O}-regular map such that $j^{k} f$ is transverse to $V^{i}(N, P)$, then it follows from the definition of \boldsymbol{d} that $i_{K\left(S^{V^{i}}\left(j^{k} f\right)\right)}=\Psi\left(j^{k} f, V^{i}\right)$ if we choose a Riemannian metric such that $K\left(S^{V^{i}}\left(j^{k} f\right)\right)$ is orthogonal to $S^{V^{i}}\left(j^{k} f\right)$.

Here we give an outline of the proof of Theorem 3.2. We first deform the given section s in Theorem 3.2 so that $K\left(S^{V^{i}}(s)\right)$ is normal to $S^{V^{i}}(s)$ and $i_{K\left(S^{V^{i}}(s)\right)}=\Psi\left(s, V^{i}\right)$ (Lemma 4.1). Next we deform the section so that $\pi_{P} \circ s \mid S^{V^{i}}(s)$ is an immersion by applying the Smale-Hirsch Immersion Theorem (Lemma 4.2). In Section 5, using the transversality of the deformed section we construct an \mathscr{O}^{i}-regular map \boldsymbol{q} defined around $S^{V^{i}}(s)$ by applying the versal unfolding developed in $[\mathbf{M a I V}]$ and modify \boldsymbol{q} around C_{i+1} to be compatible with g_{i+1}. This is the required \mathscr{O}-regular map g_{i}. In section 6 we finally extend the homotopy between s and $j^{k} g_{i}$ defined around $S^{V^{i}}(s)$ to the homotopy defined on the whole space N and obtain a required section.

In what follows let $M=S^{V^{i}}(s) \backslash \operatorname{Int}\left(U\left(C_{i+1}\right)\right)$. Let

$$
\operatorname{Mono}\left(\left.K\left(S^{V^{i}}(s)\right)\right|_{M},\left.T N\right|_{M}\right)
$$

denote the subset of $\operatorname{Hom}\left(\left.K\left(S^{V^{i}}(s)\right)\right|_{M},\left.T N\right|_{M}\right)$ which consists of all monomorphisms $K\left(S^{V^{i}}(s)\right)_{c} \rightarrow T_{c} N, c \in M$. We denote the bundle of local coefficients $\mathscr{B}\left(\pi_{j}\left(\operatorname{Mono}\left(K\left(S^{V^{i}}(s)\right)_{c}, T_{c} N\right)\right)\right), c \in M$, by $\mathscr{B}\left(\pi_{j}\right)$, which is a covering space over M with fiber $\pi_{j}\left(\operatorname{Mono}\left(K\left(S^{V^{i}}(s)\right)_{c}, T_{c} N\right)\right)$ defined in [Ste, 30.1]. By the obstruction theory due to [Ste, 36.3], the obstructions for $\left.i_{K\left(S^{\left.V^{i}(s)\right)}\right.}\right|_{M}$ and $\left.\Psi\left(s, V^{i}\right)\right|_{M}$ to be homotopic relative to ∂M are the primary differences $d\left(\left.i_{K\left(S^{V^{i}}(s)\right)}\right|_{M},\left.\Psi\left(s, V^{i}\right)\right|_{M}\right)$, which are defined in $H^{j}\left(M, \partial M ; \mathscr{B}\left(\pi_{j}\right)\right)$ with local coefficients. We show that unless $n \geq p \geq 2$ and $V^{i}(n, p)=\Sigma^{n-p+1,0}(n, p)$, all of them vanish by [Ste, 38.2]. In fact, if $n \geq p \geq 2$ and $V^{i}(n, p) \neq \Sigma^{n-p+1,0}(n, p)$, then we have

$$
\begin{array}{ll}
\operatorname{dim} M<n-\operatorname{codim} \Sigma^{n-p+1}=n-(n-r)=r, & \text { for } r=p-1, \\
\operatorname{dim} M \leq n-\operatorname{codim} \Sigma^{n-r}=n-(n-r)(p-r)<r, & \text { for } r<p-1 .
\end{array}
$$

If $n<p$, then

$$
\operatorname{dim} M \leq n-\operatorname{codim} \Sigma^{n-r}=n-(n-r)(p-r) \leq n-2(n-r)<r .
$$

Since $\operatorname{Mono}\left(\boldsymbol{R}^{n-r}, \boldsymbol{R}^{n}\right)$ is identified with $G L(n) / G L(r)$, it follows from [Ste, 25.6] that $\pi_{j}\left(\operatorname{Mono}\left(\boldsymbol{R}^{n-r}, \boldsymbol{R}^{n}\right)\right) \cong\{\mathbf{0}\}$ for $j<r$. Hence, there exists a homotopy $\psi^{M}\left(s, V^{i}\right)_{\lambda}$: $\left.\left.K\left(S^{V^{i}}(s)\right)\right|_{M} \rightarrow T N\right|_{M}$ relative to $M \cap U\left(C_{i+1}\right)^{\prime}$ in $\operatorname{Mono}\left(\left.K\left(S^{V^{i}}(s)\right)\right|_{M},\left.T N\right|_{M}\right)$ such that

$$
\psi^{M}\left(s, V^{i}\right)_{0}=\left.i_{K\left(S^{V}(s)\right)}\right|_{M} \text { and } \psi^{M}\left(s, V^{i}\right)_{1}=\left.\Psi\left(s, V^{i}\right)\right|_{M} .
$$

Let $\operatorname{Iso}\left(\left.T N\right|_{M},\left.T N\right|_{M}\right)$ denote the subspace of $\operatorname{Hom}\left(\left.T N\right|_{M},\left.T N\right|_{M}\right)$ which consists of all isomorphisms of $T_{c} N, c \in M$. The restriction map

$$
r_{M}: \operatorname{Iso}\left(\left.T N\right|_{M},\left.T N\right|_{M}\right) \longrightarrow \operatorname{Mono}\left(\left.K\left(S^{V^{i}}(s)\right)\right|_{M},\left.T N\right|_{M}\right)
$$

defined by $r_{M}(h)=h \mid\left(K\left(S^{V^{i}}(s)\right)_{c}\right)$, for $h \in \operatorname{Iso}\left(T_{c} N, T_{c} N\right)$, induces a structure of a fiber
bundle with fiber $\operatorname{Iso}\left(\boldsymbol{R}^{r}, \boldsymbol{R}^{r}\right) \times \operatorname{Hom}\left(\boldsymbol{R}^{r}, \boldsymbol{R}^{n-r}\right)$. By applying the covering homotopy property of the fiber bundle r_{M} to the sections $i d_{\left.T N\right|_{M}}$ and the homotopy $\psi^{M}\left(s, V^{i}\right)_{\lambda}$, we obtain a homotopy $\Psi\left(s, V^{i}\right)_{\lambda}:\left.\left.T N\right|_{S^{V^{i}}} \rightarrow T N\right|_{S^{V^{i}}}$ such that $\Psi\left(s, V^{i}\right)_{0}=i d_{\left.T N\right|_{S V^{i}}}$, $\left.\Psi\left(s, V^{i}\right)_{\lambda}\right|_{c}=i d_{T_{c} N}$ for all $c \in S^{V^{i}} \cap U\left(C_{i+1}\right)$ and $r_{M} \circ \Psi\left(s, V^{i}\right)_{\lambda} \mid\left(\left.K\left(S^{V^{i}}(s)\right)\right|_{M}\right)=$ $\psi^{M}\left(s, V^{i}\right)_{\lambda}$. We define $\Phi\left(s, V^{i}\right)_{\lambda}:\left.\left.T N\right|_{S^{i}} \rightarrow T N\right|_{S^{V^{i}}}$ by $\Phi\left(s, V^{i}\right)_{\lambda}=\left(\Psi\left(s, V^{i}\right)_{\lambda}\right)^{-1}$.

4. Lemmas.

The section s given in Theorem 3.2 may not satisfy $i_{K\left(S^{V^{i}}(s)\right)}=\Psi\left(S^{V^{i}}(s)\right)$ and $K\left(S^{V^{i}}(s)\right)$ may not even transverse to $S^{V^{i}}(s)$ either. Therefore, we first have to deform the section s so that $K\left(S^{V^{i}}(s)\right)$ is normal to $S^{V^{i}}(s)$ and $i_{K\left(S^{V^{i}}(s)\right)}=\Psi\left(S^{V^{i}}(s)\right)$. We next deform s so that $\pi_{P} \circ s \mid S^{V^{i}}(s)$ is an immersion by the Smale-Hirsch Immersion Theorem. The arguments of these two steps are quite similar to those in [An6, Lemmas 5.1 and 5.2 . So we only show important steps in the proofs.

In the proof of the following lemma, $\left.\Phi\left(s, V^{i}\right)_{\lambda}\right|_{c}\left(c \in S^{V^{i}}\right)$ is regarded as a linear isomorphism of $T_{c} N$. We set $d_{1}\left(s, V^{i}\right)=\left(s \mid S^{V^{i}}(s)\right)^{*}\left(\boldsymbol{d}_{1}\right)$. Let us take closed neighborhoods $W\left(C_{i+1}\right)_{j}(j=1,2)$ of $U\left(C_{i+1}\right)$ in $U\left(C_{i+1}\right)^{\prime}$ such that $W\left(C_{i+1}\right)_{1} \subset$ $\operatorname{Int} W\left(C_{i+1}\right)_{2}, W\left(C_{i+1}\right)_{j}$ are submanifolds of dimension n with boundary $\partial W\left(C_{i+1}\right)_{j}$ and that $\partial W\left(C_{i+1}\right)_{j}$ meet transversely with $S^{V^{i}}(s)$.

Lemma 4.1. Let $s \in \Gamma_{\mathscr{O}}^{\operatorname{tr}}(N, P)$ be a section satisfying the hypotheses of Theorem 3.2. Assume that if $n \geq p \geq 2$, then $V^{i}(n, p) \neq \Sigma^{n-p+1,0}(n, p)$. Then there exists a homotopy s_{λ} relative to $W\left(C_{i+1}\right)_{1}$ in $\Gamma_{\mathscr{O}}^{t r}(N, P)$ with $s_{0}=s$ satisfying
(4.1.1) for any $\lambda, S^{V^{i}}\left(s_{\lambda}\right)=S^{V^{i}}(s)$ and $\pi_{P}^{k} \circ s_{\lambda}\left|S^{V^{i}}\left(s_{\lambda}\right)=\pi_{P}^{k} \circ s\right| S^{V^{i}}(s)$,
(4.1.2) we have $i_{K\left(S^{V^{i}}\left(s_{1}\right)\right)}=\Psi\left(s_{1}, V^{i}\right)$, and in particular, $K\left(S^{V^{i}}\left(s_{1}\right)\right)_{c} \subset \mathfrak{n}\left(s, V^{i}\right)_{c}$ for any point $c \in S^{V^{i}}\left(s_{1}\right)$.

Proof. We write an element of $\mathfrak{n}\left(\sigma, V^{i}\right)_{c}$ as \boldsymbol{v}_{c}. There exists a small positive number δ such that the map

$$
e:\left.D_{\delta}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)\right|_{M} \longrightarrow N
$$

defined by $e\left(\boldsymbol{v}_{c}\right)=\exp _{N, c}\left(\boldsymbol{v}_{c}\right)$ is an embedding, where $c \in M$. Let $\rho:[0, \infty) \rightarrow \boldsymbol{R}$ be a decreasing smooth function such that $0 \leq a(t) \leq 1, a(t)=1$ if $t \leq \delta / 10$ and $a(t)=0$ if $t \geq \delta$.

Let $\ell(\boldsymbol{v})$ denote the parallel translation defined by $\ell(\boldsymbol{v})(\boldsymbol{a})=\boldsymbol{a}+\boldsymbol{v}$. If we represent a jet of $J^{k}(N, P)$ by $j_{x}^{k} \iota_{x}$ for a germ $\iota_{x}:(N, x) \rightarrow(P, y)$, then we define the homotopy $b_{\lambda}: J^{k}(N, P) \rightarrow J^{k}(N, P)(0 \leq \lambda \leq 1)$ of the bundle maps over $N \times P$ as follows.
(i) If $x=e\left(\boldsymbol{v}_{c}\right), c \in M$ and $\left\|\boldsymbol{v}_{c}\right\| \leq \delta$, then

$$
b_{\lambda}\left(j_{x}^{k} \iota_{x}\right)=j_{x}^{k}\left(\left.\iota_{x} \circ \exp _{N, c} \circ \ell\left(\boldsymbol{v}_{c}\right) \circ \Phi\left(s, V^{i}\right)_{a\left(\left\|\boldsymbol{v}_{c}\right\|\right) \lambda}\right|_{c} \circ \ell\left(-\boldsymbol{v}_{c}\right) \circ \exp _{N, c}^{-1}\right) .
$$

(ii) If $x \notin \operatorname{Im}(e)$, then $b_{\lambda}\left(j_{x}^{k} \iota_{x}\right)=j_{x}^{k} \iota_{x}$.

If δ is sufficiently small, then we may suppose that

$$
e\left(\left.D_{\delta}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)\right|_{M}\right) \cap W\left(C_{i+1}\right)_{1} \subset e\left(\left.D_{\delta}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)\right|_{M \cap W\left(C_{i+1}\right)_{2}}\right) .
$$

If $c \in S^{V^{i}} \cap U\left(C_{i+1}\right)$ or if $\left\|\boldsymbol{v}_{c}\right\| \geq \delta$, then $\left.\Phi\left(s, V^{i}\right)_{\lambda}\right|_{c}$ or $\left.\Phi\left(s, V^{i}\right)_{a\left(\left\|\boldsymbol{v}_{c}\right\|\right) \lambda}\right|_{c}$ is equal to $\left.\Phi\left(s, V^{i}\right)_{0}\right|_{c}=i d_{T_{c} N}$ respectively. Hence, b_{λ} is well defined. We define the homotopy s_{λ} of $\Gamma_{\mathscr{O}}^{t r}(N, P)$ using b_{λ} by $s_{\lambda}(x)=b_{\lambda} \circ s(x)$. By (i) and (ii) we have (4.1.1).

We have that $\mathfrak{n}\left(s, V^{i}\right)_{c} \supset K\left(S^{V^{i}}\left(s_{1}\right)\right)_{c}$ and $i_{K\left(S^{V^{i}}\left(s_{1}\right)\right)}=\Psi\left(s_{1}, V^{i}\right)$ for $c \in S^{V^{i}}(s)$. Indeed, let $\Psi\left(s, V^{i}\right)_{c}(\boldsymbol{v})=\boldsymbol{w}$ with $\boldsymbol{v} \in K\left(S^{V^{i}}(s)\right)_{c}$ and $\boldsymbol{w} \in \mathfrak{n}\left(s, V^{i}\right)_{c}$. Setting $s(c)=j_{c}^{k} \iota_{c}$ we have by (i) and (ii) that

$$
s_{1}(c)=s(c) \circ j_{c}^{k}\left(\left.\exp _{N, c} \circ \Phi\left(s, V^{i}\right)_{1}\right|_{c} \circ \exp _{N, c}^{-1}\right)
$$

Since $d_{1}\left(s_{1}, V^{i}\right)_{c}=\left.d_{1}\left(s, V^{i}\right)_{c} \circ \Phi\left(s, V^{i}\right)_{1}\right|_{c}$ vanishes on $\Psi\left(s, V^{i}\right)\left(K\left(S^{V^{i}}(s)\right)_{c}\right)$, we have $\Psi\left(s, V^{i}\right)\left(K\left(S^{V^{i}}(s)\right)_{c}\right)=K\left(S^{V^{i}}\left(s_{1}\right)\right)_{c}$. By (3.1), we have $\Psi\left(s_{1}, V^{i}\right)(\boldsymbol{w})=\boldsymbol{w}$.

Lemma 4.2. Let s be a section in $\Gamma_{\mathscr{O}}^{t r}(N, P)$ satisfying the property (4.1.2) for s (in place of s_{1}) of Lemma 4.1 and $V^{i}(n, p)$ be given in Theorem 3.2. Then there exists a homotopy α_{λ} relative to $W\left(C_{i+1}\right)_{1}$ in $\Gamma_{\mathscr{O}}(N, P)$ with $\alpha_{0}=s$ such that
(4.2.1) α_{λ} is transverse to $V^{i}(N, P)$ and $S^{V^{i}}\left(\alpha_{\lambda}\right)=S^{V^{i}}(s)$ for any λ,
(4.2.2) we have $i_{K\left(S^{V^{i}}\left(\alpha_{1}\right)\right)}=\Psi\left(\alpha_{1}, V^{i}\right)$, and in particular, $K\left(S^{V^{i}}\left(\alpha_{1}\right)\right)_{c} \subset \mathfrak{n}\left(s, V^{i}\right)_{c}$ for any point $c \in S^{V^{i}}\left(\alpha_{1}\right)$,
(4.2.3) $\pi_{P}^{k} \circ \alpha_{1} \mid S^{V^{i}}\left(\alpha_{1}\right)$ is an immersion to P such that

$$
d\left(\pi_{P}^{k} \circ \alpha_{1} \mid S^{V^{i}}\left(\alpha_{1}\right)\right)=\left(\pi_{P}^{k} \circ \alpha_{1}\right)^{T P} \circ d_{1}\left(\alpha_{1}, V^{i}\right) \mid T\left(S^{V^{i}}\left(\alpha_{1}\right)\right): T\left(S^{V^{i}}\left(\alpha_{1}\right)\right) \rightarrow T P
$$

where $\left(\pi_{P}^{k} \circ \alpha_{1}\right)^{T P}:\left(\pi_{P}^{k} \circ \alpha_{1}\right)^{*}(T P) \rightarrow T P$ is the canonical induced bundle map,
(4.2.4) $\alpha_{\lambda}\left(N \backslash\left(S^{V^{i}}(s) \cup \operatorname{Int} W\left(C_{i+1}\right)_{1}\right)\right) \subset \mathscr{O}^{i-1}(N, P)$.

Proof. In the proof we set $S^{V^{i}}=S^{V^{i}}(s)$. We choose a Riemannian metric of P and identify $Q\left(S^{V^{i}}\right)$ with the orthogonal complement of $\operatorname{Im}\left(d_{1}\left(s, V^{i}\right)\right)$ in $\left(\pi_{P}^{k} \circ\right.$ $\left.s \mid S^{V^{i}}\right)^{*}(T P)$. Since $K\left(S^{V^{i}}\right) \cap T\left(S^{V^{i}}\right)=\{\mathbf{0}\}$, it follows that $\left(\pi_{P}^{k} \circ s\right)^{T P} \circ d_{1}\left(s, V^{i}\right) \mid T\left(S^{V^{i}}\right)$ is a monomorphism. By the Smale-Hirsch Immersion Theorem there exists a smooth homotopy of monomorphisms $m_{\lambda}^{\prime}: T\left(S^{V^{i}}\right) \rightarrow T P$ covering a homotopy $m_{\lambda}: S^{V^{i}} \rightarrow P$ relative to $W\left(C_{i+1}\right)_{1}$ such that $m_{0}^{\prime}=\left(\pi_{P}^{k} \circ s\right)^{T P} \circ d_{1}\left(s, V^{i}\right) \mid T\left(S^{V^{i}}\right)$ and m_{1} is an immersion with $d\left(m_{1}\right)=m_{1}^{\prime}$. Then we can extend m_{λ}^{\prime} to a smooth homotopy $\widetilde{m_{\lambda}^{\prime}}:\left.T N\right|_{S^{V^{i}}} \rightarrow T P$ of homomorphisms of constant rank r relative to $S^{V^{i}} \cap W\left(C_{i+1}\right)_{1}$ so that $\widetilde{m_{0}^{\prime}}=\left(\pi_{P}^{k} \circ\right.$ $s)^{T P} \circ d_{1}\left(s, V^{i}\right)$.

Recall the submanifold $\Sigma^{n-r}(N, P)^{(1)}$ of $J^{1}(N, P)=J^{1}(T N, T P)$, which consists of all jets of rank r. Then

$$
\pi_{1}^{k} \mid V^{i}(N, P): V^{i}(N, P) \longrightarrow \Sigma^{n-r}(N, P)^{(1)}
$$

becomes a fiber bundle. We regard $\widetilde{m_{\lambda}^{\prime}}$ as a homotopy $S^{V^{i}} \rightarrow \Sigma^{n-r}(N, P)^{(1)}$. By the covering homotopy property to $s \mid S^{V^{i}}$ and $\widetilde{m_{\lambda}^{\prime}}$, we obtain a smooth homotopy $\alpha_{\lambda}^{\Sigma}: S^{V^{i}} \rightarrow$
$V^{i}(N, P)$ covering $\widetilde{m_{\lambda}^{\prime}}$ relative to $W\left(C_{i+1}\right)_{1}$ such that $\alpha_{0}^{\Sigma}=s \mid S^{V^{i}}$.
We have a smooth metric of $\mathfrak{n}\left(s, V^{i}\right)$ over $S^{V^{i}}$. For a sufficiently small positive function $\varepsilon: S^{V^{i}} \rightarrow \boldsymbol{R}$, let $E\left(S^{V^{i}}\right)$ denote $\exp _{N} D_{\varepsilon}\left(\mathfrak{n}\left(s, V^{i}\right)\right)$. By using the transversality of s and the homotopy extension property of bundle maps for $s \mid E\left(S^{V^{i}}\right)$ and $\alpha_{\lambda}^{\Sigma}$, we first extend $\alpha_{\lambda}^{\Sigma}$ to a smooth homotopy β_{λ} of $E\left(S^{V^{i}}\right)$ to a tubular neighborhood of $V^{i}(N, P)$, say $U_{V^{i}}$, covering $\alpha_{\lambda}^{\Sigma}$ relative to $E\left(S^{V^{i}}\right) \cap W\left(C_{i+1}\right)_{1}$ such that $\beta_{0}=s \mid E\left(S^{V^{i}}\right)$ and β_{λ} is transverse to $V^{i}(N, P)$. Next extend β_{λ} to a homotopy $\alpha_{\lambda} \in \Gamma_{\mathscr{O}}(N, P)$ so that $\alpha_{0}=s$, $\alpha_{\lambda}\left|E\left(S^{V^{i}}\right)=\beta_{\lambda}, \alpha_{\lambda}\right| W\left(C_{i+1}\right)_{1}=s \mid W\left(C_{i+1}\right)_{1}$ and that

$$
\begin{equation*}
\alpha_{\lambda}\left(N \backslash \operatorname{Int}\left(E\left(S^{V^{i}}\right) \cup W\left(C_{i+1}\right)_{1}\right)\right) \subset \mathscr{O}^{i-1}(N, P) . \tag{4.1}
\end{equation*}
$$

This is the required homotopy α_{λ}.

5. \mathscr{O}^{i}-regular map around singularities.

In what follows we denote, by σ, the section $\alpha_{1} \in \Gamma_{\mathscr{O}}(N, P)$ in Lemma 4.2 which satisfies (4.2.1) to (4.2.4). In this section we construct an \mathscr{O}^{i}-regular map $\mathfrak{q}\left(\sigma, V^{i}\right)$ defined around $S^{V^{i}}(\sigma)$ by applying the versal unfolding developed in [MaIV]. Next we prepare lemmas which are used in Section 6 in the deformation of $\mathfrak{q}\left(\sigma, V^{i}\right)$ to an \mathscr{O}-regular map compatible with g_{i+1}.

We take a Riemannian metric on P, which induces the Riemannian metric on $S^{V^{i}}(\sigma)$. Let us choose a Riemannian metric on N which induces a metric of the normal bundle $\mathfrak{n}\left(\sigma, V^{i}\right)$ over $S^{V^{i}}(\sigma)$ such that
(i) $S^{V^{i}}(\sigma)$ is a Riemannian submanifold,
(ii) $K\left(S^{V^{i}}(\sigma)\right)$ is orthogonal to $S^{V^{i}}(\sigma)$ in N.

For the section $\sigma \in \Gamma_{\mathscr{O}}^{t r}(N, P)$, we set $\mathscr{M}\left(S^{V^{i}}(\sigma)\right)=\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(\mathscr{M}\left(V^{i}\right)^{(k-1)}\right)$ and $\mathscr{M}\left(S^{V^{i}}(\sigma)\right)^{\bullet}=\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(\mathscr{M}\left(V^{i}\right)^{\bullet(k-1)}\right)$. Let $c \in S^{V^{i}}(\sigma), \sigma(c)=j_{c}^{k} f$ and $\pi_{P}^{k}(\sigma(c))=$ $y(c)$. Then an element of $\mathscr{M}\left(S^{V^{i}}(\sigma)\right)_{c}^{\bullet}$ is expressed as

$$
\begin{equation*}
a_{r+1}\left(x^{\bullet}\right) \partial / \partial y_{r+1}+\cdots+a_{p}\left(x^{\bullet}\right) \partial / \partial y_{p} \tag{5.1}
\end{equation*}
$$

where $a_{i}\left(x^{\bullet}\right) \in \mathfrak{m}_{x} \bullet / \mathfrak{m}_{x}^{k}$.
Let K and Q refer to $K\left(S^{V^{i}}(\sigma)\right)$ and $Q\left(S^{V^{i}}(\sigma)\right)$ respectively. Let $\mathfrak{n}\left(\sigma, V^{i}\right) / K$ refer to the orthogonal complement of K in $\mathfrak{n}\left(\sigma, V^{i}\right)$. We write $\mathfrak{n}\left(\sigma, V^{i}\right)=\left(\mathfrak{n}\left(\sigma, V^{i}\right) / K\right) \oplus K$. Let $E\left(S^{V^{i}}\right)$ denote $\exp _{N} D_{\varepsilon}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)$.

Let us first define the smooth fiber map

$$
q\left(\sigma, V^{i}\right)^{(1)}: E\left(S^{V^{i}}\right) \longrightarrow \operatorname{Im}\left(d_{1}\left(\sigma, V^{i}\right) \mid \mathfrak{n}\left(\sigma, V^{i}\right)\right) \quad \text { over } S^{V^{i}}(\sigma)
$$

by $q\left(\sigma, V^{i}\right)^{(1)}=d_{1}\left(\sigma, V^{i}\right) \circ\left(\exp _{N}\right)^{-1} \mid E\left(S^{V^{i}}\right)$. Note that $d_{1}\left(\sigma, V^{i}\right)$ vanishes on K and gives an isomorphism of $\mathfrak{n}\left(\sigma, V^{i}\right) / K$ onto $\operatorname{Im}\left(d_{1}\left(\sigma, V^{i}\right) \mid \mathfrak{n}\left(\sigma, V^{i}\right)\right)$.

For a point $c \in S^{V^{i}}(\sigma)$ let $x^{\#}=\left(x_{n-\rho+1}, \ldots, x_{n}\right)$ denote the normal coordinates of $E\left(S^{V^{i}}\right)_{c}$ such that $\left\{\partial / \partial x_{i}\right\}$ for $n-\rho+1 \leq i \leq r$ and $\left\{\partial / \partial x_{i}\right\}$ for $r+1 \leq i \leq n$
constitute the orthonormal bases of $\mathfrak{n}\left(\sigma, V^{i}\right)_{c} / K_{c}$ and K_{c} respectively. Let $e\left(Q_{c}\right)$ denote $\exp _{P, y}\left(Q_{c}\right)$ and let $\left(y_{r+1}, \ldots, y_{p}\right)$ be the normal coordinates of $e\left(Q_{c}\right)$ such that $\left\{\partial / \partial y_{i}\right\}$ constitute the orthonormal basis of Q_{c}.

Let $\mathscr{D} \sigma$ denote the composite

$$
\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(p_{\mathscr{M}} \bullet \circ \pi_{\theta, T}^{k-1} \circ \Pi_{\mathfrak{f}}^{k} \circ d \sigma \mid \mathfrak{n}\left(\sigma, V^{i}\right)\right): \mathfrak{n}\left(\sigma, V^{i}\right) \longrightarrow \mathscr{M}\left(S^{V^{i}}(\sigma)\right)^{\bullet}
$$

which is a monomorphism over $S^{V^{i}}(\sigma)$ by the transversality of σ to $V^{i}(N, P)$.
Then we define $q\left(\sigma, V^{i}\right)^{(2)}: E\left(S^{V^{i}}\right) \rightarrow Q$ over $S^{V^{i}}(\sigma)$ by

$$
\begin{equation*}
q\left(\sigma, V^{i}\right)_{c}^{(2)}\left(x^{\#}\right)=j^{k} f_{c}^{\bullet}\left(x^{\bullet}\right)+\sum_{j=n-\rho+1}^{r} x_{j} \mathscr{D} \sigma\left(\frac{\partial}{\partial x_{j}}\right)_{c}\left(x^{\bullet}\right) \tag{5.2}
\end{equation*}
$$

We have defined $q\left(\sigma, V^{i}\right)^{(2)}$ by using the orthonormal bases of $\mathfrak{n}\left(\sigma, V^{i}\right)$ and Q_{c}. However, the coordinate changes of $\mathfrak{n}\left(\sigma, V^{i}\right)$ and Q_{c} are linear and so, $q\left(\sigma, V^{i}\right)^{(2)}$ is a well defined smooth fiber map. Let us consider the direct sum decomposition $\left(\pi_{P}^{k} \circ \sigma \mid S^{V^{i}}\right)^{*}(T P)=$ $T\left(S^{V^{i}}\right) \oplus d_{1}\left(\sigma, V^{i}\right)\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right) \oplus Q$. Define the smooth fiber map $q\left(\sigma, V^{i}\right): E\left(S^{V^{i}}\right) \rightarrow$ $d_{1}\left(\sigma, V^{i}\right)\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right) \oplus Q\left(S^{V^{i}}(\sigma)\right)$ by

$$
\begin{equation*}
q\left(\sigma, V^{i}\right)=q\left(\sigma, V^{i}\right)^{(1)}+q\left(\sigma, V^{i}\right)^{(2)} \quad \text { over } S^{V^{i}}(\sigma) \tag{5.3}
\end{equation*}
$$

We define the smooth map $\mathfrak{q}\left(\sigma, V^{i}\right): E\left(S^{V^{i}}\right) \rightarrow P$ by

$$
\begin{equation*}
\mathfrak{q}\left(\sigma, V^{i}\right)_{c}\left(x^{\#}\right)=\exp _{P, c} \circ\left(\pi_{P}^{k} \circ \sigma \mid S^{V^{i}}\right)^{T P} \circ q\left(\sigma, V^{i}\right)\left(x^{\#}\right) \tag{5.4}
\end{equation*}
$$

Lemma 5.1. Let $\varepsilon: S^{V^{i}}(\sigma) \rightarrow \boldsymbol{R}$ be a sufficiently small positive function. Let $V^{i}(n, p)$ be given as in Theorem 3.2. Under the above notation, the map $\mathfrak{q}\left(\sigma, V^{i}\right)$ is an \mathscr{O}^{i}-regular map such that $j^{k} \mathfrak{q}\left(\sigma, V^{i}\right)$ is transverse to $V^{i}\left(E\left(S^{V^{i}}\right), P\right)$ and $S^{V^{i}}(\sigma)=$ $S^{V^{i}}\left(j^{k} \mathfrak{q}\left(\sigma, V^{i}\right)\right)$.

Proof. In the proof we write \mathfrak{q} for $\mathfrak{q}\left(\sigma, V^{i}\right)$. Let us compare the local ring $Q_{k}(\sigma(c))$ and $Q_{k}\left(j_{c}^{k} \mathfrak{q}\right)$. By the definition of $f^{\bullet}, Q_{k}\left(j_{c}^{k} f\right)$ and $Q_{k}\left(j_{c}^{k} \mathfrak{q}\right)$ are isomorphic to $Q_{k}\left(j_{c}^{k} f^{\bullet}\right)$. Hence, $Q_{k}\left(j_{c}^{k} f\right)$ and $Q_{k}\left(j_{c}^{k} \mathfrak{q}\right)$ are isomorphic. It follows from [MaIV, Theorem 2.1] that $\mathfrak{q}(c) \in \mathscr{K}^{\sigma(c)}\left(E\left(S^{V^{i}}\right), P\right) \subset V^{i}\left(E\left(S^{V^{i}}\right), P\right)$ for any point $c \in S^{V^{i}}$. Since $\mathscr{O}(n, p)$ is open, it follows that if ε is sufficiently small, then $\mathfrak{q}\left(E\left(S^{V^{i}}\right)\right) \subset \mathscr{O}^{i}(N, P)$.

It is enough for the transversality of $j^{k} \mathfrak{q}\left(\sigma, V^{i}\right)$ to show that for $n-\rho+1 \leq j \leq n$,

$$
\left(j^{k} \mathfrak{q} \mid S^{V^{i}}\left(j^{k} \mathfrak{q}\right)\right)^{*}\left(p_{\nu\left(V^{i}\right)} \circ d\left(j^{k} \mathfrak{q}\right)\right)\left(\partial / \partial x_{j}\right)=\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(p_{\nu\left(V^{i}\right)} \circ d \sigma\right)\left(\partial / \partial x_{j}\right)
$$

$\left(j^{k} \mathfrak{q} \mid V^{i}(N, P)\right.$ and $\sigma \mid V^{i}(N, P)$ are different in general). By Lemmas 2.1, 2.3 and (2.12) this follows from the following. For $r+1 \leq j \leq n$, we have that

$$
\begin{aligned}
\mathscr{D} \sigma_{c}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right) & =\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(p_{\mathscr{M}} \circ \pi_{\theta, T}^{k-1} \circ \Pi_{\mathfrak{f}}^{k} \circ d \sigma\left(\frac{\partial}{\partial x_{j}}\right)\right)\left(x^{\bullet}\right) \\
& =\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(p_{\mathscr{M} \bullet} \circ \pi_{\theta, T}^{k-1} \circ \pi^{\mathfrak{f}} \circ \boldsymbol{d}\left(\sigma(c), \frac{\partial}{\partial x_{j}}\right)\right)\left(x^{\bullet}\right) \\
& =\left(\sigma \mid S^{V^{i}}(\sigma)\right)^{*}\left(p_{\mathscr{M} \bullet} \circ t f\left(\frac{\partial}{\partial x_{j}}\right)\right)\left(x^{\bullet}\right) \\
& =t f^{\bullet}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right) \\
& =\sum_{\ell=r+1}^{p}\left(\frac{\partial y_{\ell} \circ f^{\bullet}\left(x^{\bullet}\right)}{\partial x_{j}}\right) \frac{\partial}{\partial y_{\ell}} \\
& =\mathscr{D}\left(j^{k} \mathfrak{q}\right)_{c}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right) .
\end{aligned}
$$

For $n-\rho+1 \leq j \leq r$, we have by (5.2) that

$$
\mathscr{D}\left(j^{k} \mathfrak{q}\right)_{c}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right)=\frac{\partial}{\partial x_{j}}\left(x_{j} \mathscr{D} \sigma_{c}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right)\right)=\mathscr{D} \sigma_{c}\left(\frac{\partial}{\partial x_{j}}\right)\left(x^{\bullet}\right) .
$$

Here we give a lemma necessary in the process of modifying $\mathfrak{q}\left(\sigma, V^{i}\right)$ to be compatible with g_{i+1}. Let $\pi_{E}: E\left(S^{V_{i}}\right) \rightarrow S^{V_{i}}$ be the canonical projection.

Lemma 5.2. Let $f_{j}: E\left(S^{V_{i}}\right) \rightarrow P(j=1,2)$ be \mathscr{O}^{i}-regular maps such that, for any $c \in S^{V_{i}}$,
(i) $f_{1}\left|S^{V_{i}}=f_{2}\right| S^{V_{i}}$, which are immersions and $\left(d f_{1}\right)_{c}=\left(d f_{2}\right)_{c}$,
(ii) $j^{k} f_{j}$ is transverse to $V^{i}\left(E\left(S^{V_{i}}\right), P\right)$ and $S^{V_{i}}=S^{V^{i}}\left(j^{k} f_{1}\right)=S^{V^{i}}\left(j^{k} f_{2}\right)$,
(iii) $K\left(S^{V^{i}}\left(j^{k} f_{1}\right)\right)_{c}=K\left(S^{V^{i}}\left(j^{k} f_{2}\right)\right)_{c}$, which are tangent to $\pi_{E}^{-1}(c)$,
(iv) $Q\left(S^{V^{i}}\left(j^{k} f_{1}\right)\right)_{c}=Q\left(S^{V^{i}}\left(j^{k} f_{2}\right)\right)_{c}$,
(v) $j_{c}^{k} f_{1}^{\bullet}\left(x^{\bullet}\right)=j_{c}^{k} f_{2}^{\bullet}\left(x^{\bullet}\right)$,
(vi) the two homomorphisms

$$
\mathscr{D}\left(j^{k} f_{j}\right): \mathfrak{n}\left(\sigma, V^{i}\right) \longrightarrow \mathscr{M}\left(S^{V^{i}}\left(j^{k} f_{j}\right)\right)^{\bullet}
$$

for $j=1,2$ coincide with each other.
Let $\eta: S^{V_{i}} \rightarrow[0,1]$ be any smooth function. Let $\varepsilon: S^{V_{i}} \rightarrow \boldsymbol{R}$ in the definition of $E\left(S^{V_{i}}\right)$ be a sufficiently small positive smooth function. We define $\boldsymbol{f}^{\eta}: E\left(S^{V_{i}}\right) \rightarrow P$ by

$$
\boldsymbol{f}^{\eta}\left(x_{c}\right)=\exp _{P, f_{1}(c)}\left((1-\eta(c)) \exp _{P, f_{1}(c)}^{-1}\left(f_{1}\left(x_{c}\right)\right)+\eta(c) \exp _{P, f_{2}(c)}^{-1}\left(f_{2}\left(x_{c}\right)\right)\right)
$$

for any $x_{c} \in \pi_{E}^{-1}(c)$ with $\left\|x_{c}\right\| \leq \varepsilon(c)$. Then the map \boldsymbol{f}^{η} is a well-defined \mathscr{O}^{i}-regular map such that for $j=1,2$, and for any $c \in S^{V_{i}}$,
(5.2.1) $\boldsymbol{f}^{\eta}\left|S^{V_{i}}=f_{j}\right| S^{V_{i}}$ and $\left(d \boldsymbol{f}^{\eta}\right)_{c}=\left(d f_{i}\right)_{c}$,
(5.2.2) $j^{k} \boldsymbol{f}^{\eta}$ is transverse to $V^{i}\left(E\left(S^{V_{i}}\right), P\right)$ and $S^{V_{i}}=S^{V^{i}}\left(j^{k} \boldsymbol{f}^{\eta}\right)$,
(5.2.3) $K\left(S^{V^{i}}\left(j^{k} \boldsymbol{f}^{\eta}\right)\right)_{c}=K\left(S^{V^{i}}\left(j^{k} f_{j}\right)\right)_{c}$, which is tangent to $\pi_{E}^{-1}(c)$,
(5.2.4) $Q\left(S^{V^{i}}\left(j^{k} \boldsymbol{f}^{\eta}\right)\right)_{c}=Q\left(S^{V^{i}}\left(j^{k} f_{j}\right)\right)_{c}$,
(5.2.5) $j_{c}^{k}\left(\boldsymbol{f}^{\eta}\right)^{\bullet}\left(x^{\bullet}\right)=j_{c}^{k} f_{j}^{\bullet}\left(x^{\bullet}\right)$,
(5.2.6) the homomorphism

$$
\mathscr{D}\left(j^{k} \boldsymbol{f}^{\eta}\right): \mathfrak{n}\left(\sigma, V^{i}\right) \longrightarrow \mathscr{M}\left(S^{V^{i}}\left(j^{k} \boldsymbol{f}^{\eta}\right)\right)^{\bullet}
$$

coincides with the homomorphisms $\mathscr{D}\left(j^{k} f_{j} \mid S^{V_{i}}\right)(j=1,2)$ in (vi).
Proof. The local coordinates of

$$
\exp _{E\left(S^{V_{i}}\right), c}\left(K\left(S^{V^{i}}\left(j^{k} f_{j}\right)_{c}\right)\right) \quad \text { and } \quad \exp _{P, f_{j}(c)}\left(Q\left(S^{V^{i}}\left(j^{k} f_{j}\right)_{c}\right)\right)
$$

are independent of coordinates of $S^{V_{i}}$, where $Q\left(S^{V^{i}}\left(j^{k} f_{j}\right)_{c}\right)$ is regarded as the orthogonal complement of $\operatorname{Im}\left(d_{1}\left(j^{k} f_{j}, V^{i}\right)_{c}\right)$ in $T_{f_{j}(c)} P$. For $\boldsymbol{v}_{c} \in \mathfrak{n}\left(\sigma, V^{i}\right)_{c}, d \boldsymbol{f}^{\eta}\left(\boldsymbol{v}_{c}\right)$ is equal to

$$
\begin{aligned}
& d\left(\exp _{P, f_{1}(c)}\right) \circ\left((1-\eta(c)) d\left(\exp _{P, f_{1}(c)}^{-1} \circ f_{1}\right)+\eta(c) d\left(\exp _{P, f_{2}(c)}^{-1} \circ f_{2}\right)\right)\left(\boldsymbol{v}_{c}\right) \\
& \quad=\left((1-\eta(c)) d f_{1}+\eta(c) d f_{2}\right)\left(\boldsymbol{v}_{c}\right) \\
& \quad=(1-\eta(c)) d f_{1}\left(\boldsymbol{v}_{c}\right)+\eta(c) d f_{2}\left(\boldsymbol{v}_{c}\right) \\
& \quad=d f_{j}\left(\boldsymbol{v}_{c}\right) .
\end{aligned}
$$

Hence, we have (5.2.1), (5.2.3) and (5.2.4). From (v), (5.2.5) is evident.
We have the normal coordinates $\left(x_{1}, \ldots, x_{n-\rho}\right)$ and $x^{\#}=\left(x_{n-\rho+1}, \ldots, x_{n}\right)$ of $\left(S^{V_{i}}, c\right)$ and $\left(E\left(S^{V_{i}}\right)_{c}, c\right)$ respectively. Let $\left(x_{1}, \ldots, x_{r}, y_{r+1}, \ldots, y_{p}\right)$ be the normal coordinates of (P, c) as before. Let $\mathbf{0}_{n}$ and $\mathbf{0}_{p}$ be the coordinates of c and $y(c)$ respectively. Let $v(t)$ be the geodesic curve of \boldsymbol{v}_{c} in $E\left(S^{V_{i}}\right)_{c}$ such that $\left(\left.d v\right|_{t=0}\right)(d / d t)=\boldsymbol{v}_{c} \in E\left(S^{V_{i}}\right)_{c}$ and $v(0)=c$. For a map germ $g:\left(E\left(S^{V_{i}}\right), c\right) \rightarrow\left(P, f_{j}(c)\right)$, set

$$
F_{t}^{g}(x)=\ell\left(g(v(t)), \mathbf{0}_{p}\right) \circ g \circ \ell\left(\mathbf{0}_{n}, v(t)\right)(x)=g(x+v(t))-g(v(t)) .
$$

Since $F_{t}^{g}\left(\mathbf{0}_{n}\right)=\mathbf{0}_{p}, F_{t}^{g}$ defines the map germs $\left(E\left(S^{V_{i}}\right), c\right) \rightarrow(P, y(c))$ with the parameter t and $F_{x}^{g}:((-1,1), 0) \rightarrow P$ defined by $F_{x}^{g}(t)=F_{t}^{g}(x)$. Then we have $j_{c}^{k-1} F^{g}:((-1,1), 0) \rightarrow J_{c, f_{j}(c)}^{k-1}(N, P)$ defined by $j_{c}^{k-1} F^{g}(t)=j_{c}^{k-1} F_{t}^{g}$.

By the definition of $\pi^{\mathfrak{f}}$ we have that

$$
\pi_{j^{k-1} \boldsymbol{f}^{\eta}(c)}^{\dagger} \circ d_{c}\left(j^{k-1} \boldsymbol{f}^{\eta}\right)\left(\boldsymbol{v}_{c}\right)=\left(\left.d\left(j_{c}^{k-1} F^{\boldsymbol{f}^{\eta}}\right)\right|_{t=0}\right)(d / d t)
$$

Furthermore, $\pi_{\theta, T}^{k-1} \circ \pi_{j^{k-1} \boldsymbol{f}^{\eta}(c)}^{\mathfrak{f}} \circ d_{c}\left(j^{k-1} \boldsymbol{f}^{\eta}\right)\left(\boldsymbol{v}_{c}\right)$ is represented by the germ

$$
\left(\left.d F_{x}^{\boldsymbol{f}^{\eta}}\right|_{t=0}\right)(d / d t):(N, c) \longrightarrow T P
$$

covering \boldsymbol{f}^{η} as in Remark 2.2. The germ $\left(\left.d F_{x}^{\boldsymbol{f}^{\eta}}\right|_{t=0}\right)(d / d t)$ is equal to

$$
\begin{aligned}
&\left.\left(d\left(\boldsymbol{f}^{\eta}(x+v(t))-\boldsymbol{f}^{\eta}(v(t))\right)\right)(d v(t) / d t)\right|_{t=0} \\
&=\left(\left.(1-\eta(c)) d f_{1}(x+v(t))\right|_{t=0}+\left.\eta(c) d f_{2}(x+v(t))\right|_{t=0}\right)\left(\boldsymbol{v}_{c}\right) \\
& \quad-\left(\left.(1-\eta(c)) d f_{1}(v(t))\right|_{t=0}+\left.\eta(c) d f_{2}(v(t))\right|_{t=0}\right)\left(\boldsymbol{v}_{c}\right) \\
&=(1-\eta(c))\left(\left.\left(d f_{1}(x+v(t))-d f_{1}(v(t))\right)\right|_{t=0}\right)\left(\boldsymbol{v}_{c}\right) \\
&+\eta(c)\left(\left.\left(d f_{2}(x+v(t))-d f_{2}(v(t))\right)\right|_{t=0}\right)\left(\boldsymbol{v}_{c}\right) \\
&=\left.(1-\eta(c))\left(\left.d F_{x}^{f_{1}}\right|_{t=0}\right)(d / d t)\right|_{t=0}+\eta(c)\left(\left.d F_{x}^{f_{2}}\right|_{t=0}\right)(d / d t) .
\end{aligned}
$$

Then $p_{\mathscr{M}} \bullet \pi_{\theta, T}^{k-1} \circ \pi_{j^{k-1} \boldsymbol{f}^{\eta}(c)}^{\mathfrak{c}} \circ d_{c}\left(j^{k-1} \boldsymbol{f}^{\eta}\right)\left(\boldsymbol{v}_{c}\right)$ is represented by

$$
\begin{aligned}
& \left(\left.d\left(p_{Q_{c}} \circ F_{x}^{f^{\eta}} \mid E\left(S^{V_{i}}\right)_{c}\right)\right|_{t=0}\right)(d / d t) \\
& \quad=\left(\left.(1-\eta(c)) d\left(p_{Q_{c}} \circ F_{x}^{f_{1}} \mid E\left(S^{V_{i}}\right)_{c}\right)\right|_{t=0}+\left.\eta(c) d\left(p_{Q_{c}} \circ F_{x}^{f_{2}} \mid E\left(S^{V_{i}}\right)_{c}\right)\right|_{t=0}\right)(d / d t) .
\end{aligned}
$$

By the definition of $p_{\mathscr{M}} \bullet \pi_{\theta, T}^{k-1} \circ \pi^{\mathfrak{f}}$, we have

$$
\mathscr{D}\left(j^{k} \boldsymbol{f}^{\eta}\right)=(1-\eta(c)) \mathscr{D}\left(j^{k} f_{1}\right)+\eta(c) \mathscr{D}\left(j^{k} f_{2}\right)=\mathscr{D}\left(j^{k} f_{j}\right)
$$

for $j=1,2$. This implies (5.2.2) and (5.2.6). This completes the proof.
Let \mathfrak{q} denote $\mathfrak{q}\left(\sigma, V^{i}\right): E\left(S^{V^{i}}\right) \rightarrow P$ in (5.4). Now we modify \mathfrak{q} to be compatible with g_{i+1}. Let $\eta: S^{V^{i}} \rightarrow \boldsymbol{R}$ be a smooth function such that
(i) $0 \leq \eta(c) \leq 1$ for $c \in S^{V^{i}}$,
(ii) $\eta(c)=0$ for c in a small neighborhood of $S^{V^{i}} \cap W\left(C_{i+1}\right)_{1}$ within $S^{V^{i}} \backslash W\left(C_{i+1}\right)_{2}$,
(iii) $\eta(c)=1$ for $c \in S^{V^{i}} \backslash W\left(C_{i+1}\right)_{2}$.

Then define the map $G: E\left(S^{V^{i}}\right) \cup W\left(C_{i+1}\right)_{1} \rightarrow P$ by

- if $x \in W\left(C_{i+1}\right)_{1}$, then $G(x)=g_{i+1}(x)$,
- if $\left.x_{c} \in E\left(S^{V^{i}}\right)\right|_{S^{V^{i}} \backslash \operatorname{Int}\left(W\left(C_{i+1}\right)_{2}\right)}$, then $G\left(x_{c}\right)=\mathfrak{q}\left(x_{c}\right)$,
- if $\left.x_{c} \in E\left(S^{V^{i}}\right)\right|_{S^{V^{i}} \cap W\left(C_{i+1}\right)_{2}}$, then $G\left(x_{c}\right)$ is equal to

$$
\exp _{P, \mathfrak{q}(c)}\left((1-\eta(c)) \exp _{P, \mathbf{q}(c)}^{-1}\left(g_{i+1}\left(x_{c}\right)\right)+\eta(c) \exp _{P, \mathfrak{q}(c)}^{-1}\left(\mathfrak{q}\left(x_{c}\right)\right)\right)
$$

where δ is so small that $G(x)$ is well-defined and that $E\left(S^{V^{i}}\right) \cap W\left(C_{i+1}\right)_{1} \subset \pi_{E}^{-1}\left(S^{V^{i}} \cap\right.$ $\left.W\left(C_{i+1}\right)_{2}\right)$ holds.

By Lemmas 5.1 and 5.2 we have the following corollary.
Corollary 5.3. The above map G is an \mathfrak{O}-regular map defined on $E\left(S^{V^{i}}\right) \cup$ $W\left(C_{i+1}\right)_{1}$ such that
(5.3.1) $j^{k} G$ is transverse to $V^{i}(N, P)$ and $\left(G \mid E\left(S^{V^{i}}\right)\right)^{-1}\left(V^{i}(N, P)\right)=S^{V^{i}}$,
(5.3.2) $G\left|S^{V^{i}}=\mathfrak{q}\right| S^{V^{i}}=\pi_{P}^{k} \circ \sigma \mid S^{V^{i}}$ and $(d G)_{c}=(d \mathfrak{q})_{c}$,
(5.3.3) $G \mid E\left(S^{V^{i}}\right)$ is \mathscr{O}^{i}-regular,
(5.3.4) $K\left(S^{V^{i}}\left(j^{k} G\right)\right)=K\left(S^{V^{i}}\left(j^{k} \mathfrak{q}\right)\right)=K, Q\left(S^{V^{i}}\left(j^{k} G\right)\right)=Q\left(S^{V^{i}}\left(j^{k} \mathfrak{q}\right)\right)=Q$,
(5.3.5) if we write $\sigma(c)=j_{c}^{k}\left(f_{\sigma(c)}\right)$, then

$$
\left(j_{c}^{k} f_{\sigma(c)}^{\bullet}\right)\left(x^{\bullet}\right)=j_{c}^{k} \mathfrak{q}^{\bullet}\left(x^{\bullet}\right)=j_{c}^{k} G^{\bullet}\left(x^{\bullet}\right)
$$

(5.3.6) the following three homomorphisms coincide with each other.

$$
\mathscr{D}\left(j^{k} G\right)=\mathscr{D}\left(j^{k} \mathfrak{q}\right)=\mathscr{D} \sigma: \mathfrak{n}\left(\sigma, V^{i}\right) \rightarrow \mathscr{M}\left(S^{V^{i}}(\sigma)\right)^{\bullet}
$$

Let us recall the additive structure of $J^{k}(N, P)$ in (1.2). Then we define the homotopy $\kappa_{\lambda}: S^{V^{i}} \rightarrow J^{k}(N, P)$ by

$$
\kappa_{\lambda}(c)=(1-\lambda) \sigma(c)+\lambda j^{k} G(c) \quad \text { covering } \pi_{P}^{k} \circ \sigma \mid S^{V^{i}}: S^{V^{i}} \rightarrow P
$$

where $\pi_{P}^{k} \circ \sigma \mid S^{V^{i}}$ is the immersion.
Lemma 5.4. The homotopy κ_{λ} is a map of $S^{V^{i}}$ to $V^{i}(N, P)$.
Proof. It follows from Corollary $5.3,(5.3 .1)$ to (5.3.6) that $K\left(S^{V^{i}}\left(\kappa_{\lambda}\right)\right)=K$ and $Q\left(S^{V^{i}}\left(\kappa_{\lambda}\right)\right)=Q$ and that if we write $\kappa_{\lambda}(c)=j_{c}^{k}\left(f_{\lambda}\right)$, then $\left(j_{c}^{k} f_{\lambda}^{\bullet}\right)\left(x^{\bullet}\right)=\left(j_{c}^{k} f_{\sigma(c)}^{\bullet}\right)\left(x^{\bullet}\right)=$ $j_{c}^{k} G^{\bullet}\left(x^{\bullet}\right)$. By the definition of local rings we have $Q_{k}\left(j_{c}^{k} f\right) \approx Q_{k}\left(j_{c}^{k} f^{\bullet}\right), Q_{k}\left(j_{c}^{k} f_{\lambda}\right) \approx$ $Q_{k}\left(j_{c}^{k} f_{\lambda}^{\bullet}\right)$ and $Q_{k}\left(j_{c}^{k} G\right) \approx Q_{k}\left(j_{c}^{k} G^{\bullet}\right)$.

Since $V^{i}(N, P)$ is \mathscr{K}-invariant, it follows from [MaIV, Theorem 2.1] that $\kappa_{\lambda}(c)$ lies in $V_{c, y(c)}^{i}(N, P)$ for any λ and any $c \in S^{V^{i}}$, where $y(c)=\pi_{P}^{k} \circ \sigma(c)$.

The proof of the following lemma is elementary, and so is left to the reader.
LEMMA 5.5. Let (Ω, Σ) be a pair consisting of a manifold and its submanifold of codimension ρ. Let $\varepsilon: S^{V_{i}} \rightarrow \boldsymbol{R}$ be a sufficiently small positive smooth function. Let $h: E\left(S^{V_{i}}\right) \rightarrow(\Omega, \Sigma)$ be a smooth map such that $S^{V_{i}}=h^{-1}(\Sigma)$ and that h is transverse to Σ. Then there exists a smooth homotopy $h_{\lambda}:\left(E\left(S^{V_{i}}\right), S^{V_{i}}\right) \rightarrow(\Omega, \Sigma)$ between h and $\exp _{\Omega} \circ d h \circ\left(\exp _{N} \mid \mathfrak{n}\left(\sigma, V^{i}\right)\right)^{-1} \mid E\left(S^{V_{i}}\right)$ such that
(5.4.1) $h_{\lambda}\left|S^{V_{i}}=h_{0}\right| S^{V_{i}}, S^{V_{i}}=h_{\lambda}^{-1}(\Sigma)=h_{0}^{-1}(\Sigma)$ for any λ,
(5.4.2) h_{λ} is smooth and is transverse to Σ for any λ,
(5.4.3) $h_{0}=h$ and $h_{1}\left(x_{c}\right)=\exp _{\Omega, h(c)} \circ d h \circ\left(\exp _{N} \mid \mathfrak{n}\left(\sigma, V^{i}\right)\right)^{-1}\left(x_{c}\right)$ for $c \in S^{V_{i}}$ and $x_{c} \in E\left(S^{V_{i}}\right)_{c}$.

6. Proof of Theorem 3.2.

In this section we deform $\mathfrak{q}\left(\sigma, V^{i}\right)$ to an \mathscr{O}-regular map G compatible with g_{i+1}. By the definition of the deformation we can construct a homotopy between σ and $j^{k} G$ around $S^{V^{i}}(\sigma)$, which is extendable to a required homotopy to the whole space N.

Let us take closed neighborhoods $U\left(C_{i+1}\right)_{j}(j=1,2)$ of $U\left(C_{i+1}\right)$ in the interior of $W\left(C_{i+1}\right)_{1}$ with $U\left(C_{i+1}\right)_{1} \subset \operatorname{Int} U\left(C_{i+1}\right)_{2}$ such that $U\left(C_{i+1}\right)_{j}$ are submanifolds of dimension n with boundary $\partial U\left(C_{i+1}\right)_{j}$ meeting transversely with $S^{V^{i}}(\sigma)$.

Proof of Theorem 3.2. Deform $s \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ in Theorem 3.2 as before to a section $\sigma \in \Gamma_{\mathscr{O}}(N, P)$ as in Lemma 4.2 which satisfies (4.2.1), (4.2.2) and (4.2.3) where α_{1} is replaced by σ. Set $S^{V^{i}}=S^{V^{i}}(\sigma), K=K\left(S^{V^{i}}(\sigma)\right)$ and $Q=Q\left(S^{V^{i}}(\sigma)\right)$. Let $E\left(S^{V_{i}}\right)=\exp _{N}\left(D_{\delta \circ \sigma}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)\right)$, where $\delta: V^{i}(N, P) \rightarrow \boldsymbol{R}$ is a sufficiently small positive function which is constant on $\sigma\left(S^{V^{i}}(\sigma) \backslash \operatorname{Int} U\left(C_{i+1}\right)\right)$.

It suffices for the proof of Theorem 3.2 to prove the following assertion (A). In fact, we obtain a required homotopy s_{λ} in Theorem 3.2 by pasting the homotopies α_{λ} in Lemma 4.2 and H_{λ} in (A).
(A) There exists a homotopy H_{λ} relative to $U\left(C_{i+1}\right)_{1}$ in $\Gamma_{\mathscr{O}}(N, P)$ with $H_{0}=\sigma$ and $H_{1} \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ satisfying the following (1), (2) and (3).
(1) H_{λ} is transverse to $V^{i}(N, P)$ and $S^{V^{i}}\left(H_{\lambda}\right)=S^{V^{i}}$ for any λ.
(2) We have an \mathscr{O}-regular map G which is defined on a neighborhood of $E\left(S^{V^{i}}\right) \cup$ $U\left(C_{i+1}\right)_{1}$ to P such that $j^{k} G=H_{1}$ on $E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{1}$ and that $G\left(E\left(S^{V^{i}}\right)\right) \subset$ $\mathscr{O}^{i}(N, P)$.
(3) $H_{\lambda}\left(N \backslash \operatorname{Int}\left(E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{1}\right)\right) \subset \mathscr{O}^{i-1}(N, P)$.

Let us prove (A). We use the Riemannian metrics which are chosen in the beginning of Section 5. The map $\exp _{P} \circ\left(\pi_{P}^{k} \circ \sigma \mid S^{V^{i}}\right)^{T P} \mid D_{\gamma}(Q)$ is an immersion for some small positive function γ. We express a point of $E\left(S^{V^{i}}\right)$ as x_{c}, where $c \in S^{V^{i}}$ and $\left\|x_{c}\right\| \leq$ $\delta(\sigma(c))$.

It follows from Corollary 5.3 that G is an \mathscr{O}-regular map defined on $E\left(S^{V^{i}}\right) \cup$ $W\left(C_{i+1}\right)_{1}$. It is known that the Riemannian metrics on N and P induce the Riemannian metric on $J^{k}(N, P)$ by using (1.2) (see, for example, [An6, Section 3]). Let h_{1}^{1} and h_{0}^{3} be the maps $\left(E\left(S^{V^{i}}\right), S^{V^{i}}\right) \rightarrow\left(\mathscr{O}^{i}(N, P), V^{i}(N, P)\right)$ defined by

$$
\begin{align*}
h_{1}^{1}\left(x_{c}\right) & =\exp _{\mathscr{O}(N, P), \sigma(c)} \circ d_{c} \sigma \circ\left(\exp _{N, c}\right)^{-1}\left(x_{c}\right), \\
h_{0}^{3}\left(x_{c}\right) & =\exp _{\mathscr{O}(N, P), j^{k} G(c)} \circ d_{c}\left(j^{k} G\right) \circ\left(\exp _{N, c}\right)^{-1}\left(x_{c}\right) . \tag{6.1}
\end{align*}
$$

By applying Lemma 5.5 to the sections σ and h_{1}^{1} (respectively h_{0}^{3} and $j^{k} G$) we first obtain a homotopy h_{λ}^{1} (respectively $\left.h_{\lambda}^{3}\right) \in \Gamma_{\mathscr{O}^{i}}\left(E\left(S^{V^{i}}\right), P\right)$ between $h_{0}^{1}=\sigma$ and h_{1}^{1} on $E\left(S^{V^{i}}\right)$ (respectively between h_{0}^{3} and $h_{1}^{3}=j^{k} G$) satisfying the properties (5.5.1), (5.5.2) and (5.5.3) of Lemma 5.5.

Next we construct a homotopy of bundle maps $E\left(S^{V^{i}}\right) \rightarrow \nu\left(V^{i}(N, P)\right)$ covering $\kappa_{\lambda}: S^{V^{i}} \rightarrow V^{i}(N, P)$ in Lemma 5.4 using a homotopy between $d \sigma \mid \mathfrak{n}\left(\sigma, V^{i}\right)$ and $d\left(j^{k} G\right) \mid \mathfrak{n}\left(\sigma, V^{i}\right)$. By the equalities of the homomorphisms in Corollary 5.3, (5.3.6), we obtain a homotopy of bundle maps

$$
\kappa_{\lambda}^{E, \mathscr{M}}: \mathfrak{n}\left(\sigma, V^{i}\right) \rightarrow \mathscr{M}\left(S^{V^{i}}(\sigma)\right)^{\bullet} \xrightarrow{\left(\kappa_{\lambda}\right)^{\mathscr{M}\left(V^{i}\right)} \bullet(k-1)} \mathscr{M}\left(V^{i}\right)^{\bullet(k-1)}
$$

covering κ_{λ} as the composite $\left(\kappa_{\lambda}\right)^{\mathscr{M}\left(V^{i}\right)^{\bullet(k-1)}} \circ \mathscr{D} \sigma$. Let $\widetilde{\kappa_{\lambda}}$ denote the composite $p_{\nu}^{\mathscr{M}} \circ$
$\kappa_{\lambda}^{E, \mathscr{M}}$, where $p_{\nu}^{\mathscr{M}}$ is the projection in (2.9). Then $\widetilde{\kappa_{\lambda}}$ is a bundle map between the ρ dimensional vector bundles covering κ_{λ}. Since the composite $p_{\nu}^{\mathscr{M}} \circ p_{\mathscr{M}} \circ \circ \pi_{\theta, T}^{k-1} \circ \pi^{\mathfrak{f}}$ is equal to the canonical projection $p_{\nu\left(V^{i}\right)}$ by Lemma 2.1, we have

$$
\begin{aligned}
\widetilde{\kappa_{0}} & =p_{\nu}^{\mathscr{M}} \circ\left(\sigma \mid S^{V^{i}}\right)^{\mathscr{M}\left(V^{i}\right)^{(k-1)}} \circ \mathscr{D} \sigma \\
& =p_{\nu}^{\mathscr{M}} \circ p_{\mathscr{M}} \circ \pi_{\theta, T}^{k-1} \circ \Pi_{\mathfrak{f}}^{k} \circ d \sigma \mid \mathfrak{n}\left(\sigma, V^{i}\right) \\
& =p_{\nu\left(V^{i}\right)} \circ d \sigma \mid \mathfrak{n}\left(\sigma, V^{i}\right)
\end{aligned}
$$

and $\widetilde{\kappa_{1}}=p_{\nu\left(V^{i}\right)} \circ d\left(j^{k} G\right) \mid \mathfrak{n}\left(\sigma, V^{i}\right)$ similarly.
We define a homotopy $h_{\lambda}^{2}:\left(E\left(S^{V^{i}}\right), S^{V^{i}}\right) \rightarrow\left(\mathscr{O}^{i}(N, P), V^{i}(N, P)\right)$ covering κ_{λ} by

$$
h_{\lambda}^{2}\left(x_{c}\right)=\exp _{\mathscr{O}(N, P), \sigma(c)} \circ \widetilde{\kappa_{\lambda}} \circ\left(\exp _{N, c}\right)^{-1}\left(x_{c}\right),
$$

where $h_{0}^{2}\left(x_{c}\right)=h_{1}^{1}\left(x_{c}\right), h_{1}^{2}\left(x_{c}\right)=h_{0}^{3}\left(x_{c}\right)$ on $E\left(S^{V^{i}}\right)$. Since $h_{0}^{1}\left(x_{c}\right)=h_{1}^{3}\left(x_{c}\right)=\sigma\left(x_{c}\right)$ for $x_{c} \in W\left(C_{i+1}\right)_{1}$, we may assume in the construction of $h_{\lambda}^{1}, h_{\lambda}^{2}$ and h_{λ}^{3} that if $x_{c} \in$ $W\left(C_{i+1}\right)_{1}$, then

$$
\begin{equation*}
h_{\lambda}^{2}\left(x_{c}\right)=h_{0}^{2}\left(x_{c}\right)=h_{1}^{2}\left(x_{c}\right) \text { and } h_{\lambda}^{1}\left(x_{c}\right)=h_{1-\lambda}^{3}\left(x_{c}\right) \text { for any } \lambda . \tag{6.2}
\end{equation*}
$$

Let $h_{\lambda}^{\prime} \in \Gamma_{\mathscr{O}^{i}}\left(E\left(S^{V^{i}}\right), P\right)$ be the homotopy which is obtained by pasting $h_{\lambda}^{1}, h_{\lambda}^{2}$ and h_{λ}^{3}. The homotopies h_{λ}^{1} and h_{λ}^{3} are not homotopies relative to $E\left(S^{V^{i}}\right) \cap W\left(C_{i+1}\right)_{1}$ in general. By using the above properties and (6.2) about $h_{\lambda}^{1}, h_{\lambda}^{2}$ and h_{λ}^{3}, we can modify h_{λ}^{\prime} to a smooth homotopy $h_{\lambda} \in \Gamma_{\mathscr{O}^{i}}\left(E\left(S^{V^{i}}\right), P\right)$ with $\pi_{P}^{k} \circ h_{\lambda}(c)=\pi_{P}^{k} \circ \sigma(c)$ such that
(4) $h_{\lambda}\left(x_{c}\right)=h_{0}\left(x_{c}\right)=\sigma\left(x_{c}\right)$ for any λ and $x_{c} \in E\left(S^{V^{i}}\right) \cap U\left(C_{i+1}\right)_{2}$,
(5) $h_{0}\left(x_{c}\right)=\sigma\left(x_{c}\right)$ for any $x_{c} \in E\left(S^{V^{i}}\right)$,
(6) $h_{1}\left(x_{c}\right)=j^{k} G\left(x_{c}\right)$ for any $x_{c} \in E\left(S^{V^{i}}\right)$,
(7) h_{λ} is transverse to $V^{i}(N, P)$ and $h_{\lambda}^{-1}\left(V^{i}(N, P)\right)=S^{V^{i}}$.

Since $G\left(E\left(S^{V^{i}}\right) \cup W\left(C_{i+1}\right)_{1} \backslash C_{i+1}\right) \subset \mathscr{O}^{i}(N, P)$ and $j^{k} G$ is transverse to $V^{i}(N, P)$, it follows from [G-G, Ch.II, Corollary 4.11] that there exists a homotopy G_{λ} of \mathscr{O}-regular maps $E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{2} \rightarrow P$ relative to $U\left(C_{i+1}\right)_{2}$ with $G_{0}=G$ such that

$$
j^{k} G_{\lambda}^{-1}\left(\mathscr{O}(N, P) \backslash \mathscr{O}^{i}(N, P)\right) \subset \operatorname{Int}\left(\exp _{N}\left(D_{(1 / 2) \delta \circ \sigma}\left(\mathfrak{n}\left(\sigma, V^{i}\right)\right)\right) \cup U\left(C_{i+1}\right)_{2}\right),
$$

that $j^{k} G_{\lambda}$ is transverse to $V^{i}(N, P)$ for any λ and that $j^{k} G_{1}$ is transverse to $V^{j}(N, P)$ for all j.

By using (4)-(7), we can extend h_{λ} to the homotopy $H_{\lambda}^{\prime} \in \Gamma_{\mathscr{O}}\left(E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{2}, P\right)$ defined by

$$
\begin{array}{ll}
H_{\lambda}^{\prime} \mid E\left(S^{V^{i}}\right)=h_{2 \lambda} & (0 \leq \lambda \leq 1 / 2) \\
H_{\lambda}^{\prime} \mid\left(E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{2}\right)=j^{k} G_{2 \lambda-1} & (1 / 2 \leq \lambda \leq 1) \\
H_{\lambda}^{\prime}\left|U\left(C_{i+1}\right)_{2}=\sigma\right| U\left(C_{i+1}\right)_{2} & (0 \leq \lambda \leq 1)
\end{array}
$$

such that $H_{\lambda}^{\prime}\left(\partial\left(E\left(S^{V^{i}}\right) \cup U\left(C_{i+1}\right)_{2}\right)\right) \subset \mathscr{O}^{i-1}(N, P)$. Furthermore, we slightly modify H_{λ}^{\prime} to be smooth.

By the transversalities of H_{λ}^{\prime} to $V^{i}(N, P)$ and of H_{1}^{\prime} to $V^{j}(N, P)$ for all j and the homotopy extension property to σ and H_{λ}^{\prime}, we can extend H_{λ}^{\prime} to a homotopy

$$
H_{\lambda}:\left(N, S^{V^{i}}\right) \longrightarrow\left(\mathscr{O}(N, P), V^{i}(N, P)\right)
$$

relative to $U\left(C_{i+1}\right)_{1}$ such that $H_{0}=\sigma, H_{1} \in \Gamma_{\mathscr{O}}^{t r}(N, P)$ and $H_{1}\left(N \backslash \operatorname{Int}\left(E\left(S^{V^{i}}\right) \cup\right.\right.$ $\left.\left.U\left(C_{i+1}\right)_{2}\right)\right) \subset \mathscr{O}^{i-1}(N, P)$. Then H_{λ} is the required homotopy in $\Gamma_{\mathscr{O}}(N, P)$ in the assertion (A).

7. \mathscr{K}-simple singularities.

Let z be a jet of $J^{k}(n, p)$. We say that z is \mathscr{K} - k-simple if there exists an open neighborhood U of z in $J^{k}(n, p)$ such that only a finite number of \mathscr{K}-orbits intersect with U. A \mathscr{K}-orbit $\mathscr{K} z$ of a \mathscr{K} - k-simple k-jet z is also called \mathscr{K}-k-simple.

Let W_{j} denote the subset consisting of all $z \in J^{k}(n, p)$ such that the codimensions of $\mathscr{K} z$ in $J^{k}(n, p)$ are not less than j. Let W_{j}^{*} denote the union of all irreducible components of W_{j} whose codimensions in $J^{k}(n, p)$ is less than j. The following lemma has been observed in [MaV, Section 7 and Proof of Theorem 8.1].

Lemma 7.1.

(i) W_{j} is a closed algebraic subset of $J^{k}(n, p)$.
(ii) If we set $W_{j}^{\prime}=W_{j} \backslash\left(W_{j}^{*} \cup W_{j+1}\right)$, then W_{j}^{\prime} is a Zariski locally closed subset of $J^{k}(n, p)$ of codimension j.
(iii) For any jet $z \in W_{j}^{\prime}, \mathscr{K} z$ is open in W_{j}^{\prime}.
(iv) W_{j}^{\prime} consists of a finite number of \mathscr{K}-orbits.

We define \mathscr{K} - k-simplicity for a jet in $J_{x, y}^{k}(N, P)$ similarly as in $J^{k}(n, p)$. A smooth map germ $f:(N, x) \rightarrow(P, y)$ is called \mathscr{K} - ℓ-determined if any smooth map germ g : $(N, x) \rightarrow(P, y)$ such that $j_{x}^{\ell} f=j_{x}^{\ell} g$ is \mathscr{K}-equivalent to f. If f is \mathscr{K} - ℓ-determined, then $j_{x}^{\ell} f$ is also called \mathscr{K} - ℓ-determined.

Proposition 7.2. Let $k \geq p+1$ and $z \in J_{x, y}^{k}(N, P)$. If z is a singular \mathscr{K} - k-simple jet and $\operatorname{codim} \mathscr{K} z \leq|n-p|+k-2$, then z is $\mathscr{K}-(k-1)$-determined.

Proof. For $1 \leq \ell \leq k$, let $\pi_{\ell}^{k}: J_{x, y}^{k}(N, P) \rightarrow J_{x, y}^{\ell}(N, P)$ denote the canonical projection. Let $c_{\ell}(z)$ denote the codimension of the \mathscr{K}-orbit of $\pi_{\ell}^{k}(z)$ in $J_{x, y}^{\ell}(N, P)$. Since $\pi_{\ell}^{k}(z)$ is of rank $r<\min (n, p)$ and $\operatorname{codim} \Sigma^{n-r}(n, p)=(n-r)(p-r)$, we have $c_{1} \geq(n-r)(p-r)$. Since $c_{1} \leq c_{2} \leq \cdots \leq c_{k}$, we have

$$
|n-p|+1 \leq c_{1} \leq \cdots \leq c_{k} \leq|n-p|+k-2 .
$$

There exists a number ℓ with $1 \leq \ell \leq k-2$ such that $c_{\ell}=c_{\ell+1}$. By applying [MaIII, Proposition 7.4] to the tangent spaces of $\mathscr{K}\left(\pi_{\ell}^{k}(z)\right)$ and $\mathscr{K}\left(\pi_{\ell+1}^{k}(z)\right)$, we have that

$$
\begin{aligned}
& t f\left(\mathfrak{m}_{x} \theta(N)_{x}\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)_{x}+\mathfrak{m}_{x}^{\ell+1} \theta(f)_{x} \\
& \quad=t f\left(\mathfrak{m}_{x} \theta(N)_{x}\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)_{x}+\mathfrak{m}_{x}^{\ell+2} \theta(f)_{x}
\end{aligned}
$$

From the Nakayama Lemma it follows that

$$
t f\left(\mathfrak{m}_{x} \theta(N)_{x}\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)_{x} \supset \mathfrak{m}_{x}^{\ell+1} \theta(f)_{x} .
$$

Therefore, z is $\mathscr{K}-(\ell+1)$-determined and so, $\mathscr{K}-(k-1)$-determined by $[\mathbf{W}$, Theorem 1.2].

Corollary 7.3. Let $k \geq p+2$. Let z be a singular \mathscr{K} - k-simple jet and $\operatorname{codim} \mathscr{K} z \leq n$. Then z is $\mathscr{K}-(k-1)$-determined and we have $\mathscr{K} z=\left(\pi_{k-1}^{k}\right)^{-1}$ $\left(\mathscr{K}\left(\pi_{k-1}^{k}(z)\right)\right)$.

Now we have the following Theorem.
Theorem 7.4. Let $k \geq p+2$. Let $z=j_{x}^{k} f \in J_{x, y}^{k}(N, P)$ be $\mathscr{K}-(k-1)$-determined and $w=\pi_{k-1}^{k}(z)$. Then we have

$$
\boldsymbol{d}\left(\boldsymbol{K}\left(\mathscr{K}^{z}(N, P)\right)_{z}\right) \cap\left(\pi_{k-1}^{k} \mid \mathscr{K}^{z}(N, P)\right)^{*}\left(T\left(\mathscr{K}^{w}(N, P)\right)\right)_{z}=\{0\} .
$$

Proof. For a vector $\boldsymbol{v} \neq \mathbf{0}$ let $\zeta_{\boldsymbol{v}}^{z}$ be the vector field in Lemma 2.3. Suppose that $\pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v}) \in T_{w}\left(\mathscr{K}_{x, y}^{w}(N, P)\right)$. Then it follows from (2.4) and Corollary 7.3 that $t f\left(\boldsymbol{v}_{U}\right) \in t f\left(\mathfrak{m}_{x} \theta(N)_{x}\right)+f^{*}\left(\mathfrak{m}_{y}\right) \theta(f)_{x}$. It has been proved in the proof of [MaIV, Theorem 2.5] that $\boldsymbol{v}_{U} \in \mathfrak{m}_{x} \theta(N)_{x}$. This is a contradiction.

The following theorem follows from Corollary 7.3, and Theorems 0.1 and 7.4.
Theorem 7.5. Let k be an integer with $k \geq p+2$. Let $\mathscr{O}(n, p)$ be a nonempty open subset in $J^{k}(n, p)$ which consists of a finite number of \mathscr{K} - k-simple \mathscr{K}-orbits, and of $\Sigma^{n-p+1,0}(n, p)$ in addition in the case $n \geq p$. Then $\mathscr{O}(n, p)$ is an admissible open subset. In particular, Theorem 0.1 holds for $\mathscr{O}(n, p)$.

Remark 7.6. In Theorem 7.5, if f is transverse to all singular \mathscr{K}-orbits, then the germ $f:(N, c) \rightarrow(P, f(c))$ is C^{∞}-stable in the sense of [MaIV]. This fact follows from [Mar2, Ch. XV, 5, Theorem].

Finally we give examples of open sets $\mathscr{O}(n, p)$ in $J^{k}(n, p)$ in Theorem 7.5. Let $k \gg n, p$.
(1) Let A_{m}, D_{m} and E_{m} denote the types of the singularities of function germs studied in $[\mathbf{M o}]$ and $[\mathbf{A r}]$. We say that a smooth map germ $f:\left(\boldsymbol{R}^{n}, \mathbf{0}\right) \rightarrow\left(\boldsymbol{R}^{p}, \mathbf{0}\right)$ has a singularity of type A_{m}, D_{m} or E_{m}, when f is \mathscr{K}-equivalent to one of the versal unfoldings $\left(\boldsymbol{R}^{n}, \mathbf{0}\right) \rightarrow\left(\boldsymbol{R}^{p}, \mathbf{0}\right)$ of the following genotypes with respective singularities, where $n>p \geq 2$ in the case of types D_{m} and E_{m}.

$$
\begin{array}{ll}
\left(A_{m}\right) & \pm u^{m+1} \pm x_{p}^{2} \pm \cdots \pm x_{n-1}^{2}(m \geq 1) \\
\left(D_{m}\right) & u^{2} \ell \pm \ell^{m-1} \pm x_{p}^{2} \pm \cdots \pm x_{n-2}^{2}(m \geq 4) \\
\left(E_{6}\right) & u^{3} \pm \ell^{4} \pm x_{p}^{2} \pm \cdots \pm x_{n-2}^{2} \\
\left(E_{7}\right) & u^{3}+u \ell^{3} \pm x_{p}^{2} \pm \cdots \pm x_{n-2}^{2} \\
\left(E_{8}\right) & u^{3}+\ell^{5} \pm x_{p}^{2} \pm \cdots \pm x_{n-2}^{2}
\end{array}
$$

Let $\mathfrak{a}_{m}, \mathfrak{d}_{m}$ and \mathfrak{e}_{m} denote the k-jets of the germs of types A_{m}, D_{m} and E_{m} of codimension $n-p+m \leq n$ in $J^{k}(n, p)$. Let $O(n, p)$ be a subset which consists of all regular jets and a number of \mathscr{K}-orbits $\mathscr{K} \mathfrak{a}_{i}, \mathscr{K} \mathfrak{d}_{j}$ and $\mathscr{K} \mathfrak{e}_{h}$ of codimensions $\leq n$. This subset $O(n, p)$ is an open subset of $J^{k}(n, p)$ if and only if the following three conditions are satisfied.
(i) If $\mathscr{K} \mathfrak{a}_{i} \subset \mathscr{O}(n, p)$, then $\mathscr{K} \mathfrak{a}_{\ell} \subset \mathscr{O}(n, p)$ for all ℓ with $1 \leq \ell<i$.
(ii) If $\mathscr{K} \mathfrak{a}_{i} \subset \mathscr{O}(n, p)$, then $\mathscr{K} \mathfrak{a}_{\ell}(1 \leq \ell<i)$ and $\mathscr{K} \mathfrak{d}_{\ell}(4 \leq \ell<i)$ are all contained in $\mathscr{O}(n, p)$.
(iii) If $\mathscr{K} \mathfrak{e}_{i} \subset \mathscr{O}(n, p)$, then $\mathscr{K} \mathfrak{a}_{\ell}(1 \leq \ell<i), \mathscr{K} \mathfrak{D}_{\ell}(4 \leq \ell<i)$ and $\mathscr{K} \mathfrak{e}_{\ell}(6 \leq \ell<i)$ are all contained in $\mathscr{O}(n, p)$.

One can prove this assertion by the adjacency relation among the singularities of types A, D and E due to $[\mathbf{A r}]$ (see, for example, the detailed proof in $[\mathbf{A n 5}]$).
(2) Let $\mathscr{O}(n, p)$ denote the open subset in $J^{k}(n, p)$ which consists of all regular jets and \mathscr{K} - k-simple orbits.
(3) Let $n=p$. Let $\mathscr{O}(n, p)$ be the open subset in $J^{k}(n, p)$ which consists of all regular jets, the \mathscr{K}-orbits $\mathscr{K} \mathfrak{a}_{m}$ and the \mathscr{K}-orbits of the following types of codimensions $\leq n$ in [MaVI, Section 7].

$$
\begin{array}{ll}
\mathrm{I}_{a, b}: \boldsymbol{R}[[x, y]] /\left(x y, x^{a}+y^{b}\right), & b \geq a \geq 2, \\
\mathrm{I}_{a, b}: \boldsymbol{R}[[x, y]] /\left(x y, x^{a}-y^{b}\right), & b \geq a \geq 2, \\
\mathrm{III}_{a}: \boldsymbol{R}[[x, y]] /\left(x^{2}+y^{2}, x^{a}\right), & a \geq 3 .
\end{array}
$$

References

[An1] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471-487.
[An2] Y. Ando, An existence theorem of foliations with singularities A_{k}, D_{k} and E_{k}, Hokkaido Math. J., 19 (1991), 571-578.
[An3] Y. Ando, Fold-maps and the space of base point preserving maps of spheres, J. Math. Kyoto Univ., 41 (2002), 691-735.
[An4] Y. Ando, Existence theorems of fold-maps, Japanese J. Math., 30 (2004), 29-73.
[An5] Y. Ando, The homotopy principle in the existence level for maps with only singularities of types A, D and E, http://front.math.ucdavis.edu/math.GT/0411399.
[An6] Y. Ando, A homotopy principle for maps with prescribed Thom-Boardman singularities, Trans. Amer. Math. Soc., 359 (2007), 480-515.
[An7] Y. Ando, Stable homotopy groups of spheres and higher singularities, J. Math, Kyoto Univ., 46 (2006), 147-165.
[An8] Y. Ando, Cobordisms of maps with singularities of given \mathscr{K}-invariant class, preprint.
[Ar] V. I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups A_{k}, D_{k}, E_{k} and Lagrangian singularities, Funct. Anal. Appl., 6 (1972), 254-272.
[B] J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33 (1967), 21-57.
[C] D. Chess, A note on the class $\left[S_{1}^{k}(f)\right]$, In: Proceedings of Symposia in Pure Math., 40, Part 1, AMS., 1983, pp. 221-224.
[duP1] A. du Plessis, Maps without certain singularities, Comment. Math. Helv., 50 (1975), 363-382.
[duP2] A. du Plessis, Homotopy classification of regular sections, Compos. Math., 32 (1976), 301-333.
[duP3] A. du Plessis, Contact invariant regularity conditions, 535, Springer Lecture Notes, 1976, pp. 205-236.
[E1] J. M. Èliašberg, On singularities of folding type, Math. USSR. Izv., 4 (1970), 1119-1134.
[E2] J. M. Èliašberg, Surgery of singularities of smooth mappings, Math. USSR. Izv., 6 (1972), 1302-1326.
[F] S. Feit, k-mersions of manifolds, Acta Math., 122 (1969), 173-195.
[G1] M. Gromov, Stable mappings of foliations into manifolds, Math. USSR. Izv., 3 (1969), 671694.
[G2] M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, Heidelberg, 1986.
[G-G] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, Berlin, Heidelberg, 1973.
[H] M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
[K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 1, Interscience Publishers, New York, 1963.
[L] H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, I, Springer Lecture Notes in Math., 192, Springer-Verlag, Berlin, 1971, pp. 1-85.
[Mar1] J. Martinet, Déploiements versels des applications différentiables et classification des applications stables, Springer Lecture Notes in Math., 535, Springer-Verlag, Berlin, 1976, pp. 1-44.
[Mar2] J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, London, 1982.
[MaIII] J. N. Mather, Stability of C^{∞} mappings, III: Finitely determined map-germs, Publ. Math. Inst. Hautes Étud. Sci., 35 (1968), 127-156.
[MaIV] J. N. Mather, Stability of C^{∞} mappings, IV: Classification of stable germs by \boldsymbol{R}-algebra, Publ. Math. Inst. Hautes Étud. Sci., 37 (1970), 223-248.
[MaV] J. N. Mather, Stability of C^{∞} mappings, V: Transversality, Adv. Math., 4 (1970), 301-336.
[MaVI] J. N. Mather, Stability of C^{∞} mappings: VI, The nice dimensions, Springer Lecture Notes in Math., 192, Springer-Verlag, Berlin, 1971, pp. 207-253.
[Mo] B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sci. Paris, 260 (1960), 6503-6506.
[P] A. Phillips, Submersions of open manifolds, Topology, 6 (1967), 171-206.
[Sady] R. Sadykov, The Chess conjecture, Algebr. Geom. Topol., 3 (2003), 777-789.
[Sm] S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. Math., 69 (1969), 327-344.
[Ste] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951.
[T] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1955-56), 43-87.
[W] C. T. C. Wall, Finite determinacy of smooth map germs, Bull. London Math. Soc., 13 (1981), 481-539.

Yoshifumi Ando

Department of Mathematical Sciences
Faculty of Science
Yamaguchi University
Yamaguchi 753-8512, Japan
E-mail: andoy@yamaguchi-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 58K30; Secondary 57R45, 58A20.
 Key Words and Phrases. singularity, homotopy principle, \mathscr{K}-simple.
 This research was supported by Grant-in-Aid for Scientific Research (No. 16540072 (C)(2)), Japan Society for the Promotion of Science.

