The homotopy principle for maps with singularities of given \mathcal{K} -invariant class

By Yoshifumi ANDO

(Received Nov. 28, 2005) (Revised May 25, 2006)

Abstract. Let N and P be smooth manifolds of dimensions n and p respectively such that $n \ge p \ge 2$ or n < p. Let $\mathcal{O}(N, P)$ denote an open subspace of $J^{\infty}(N, P)$ which consists of all regular jets and singular jets of certain given \mathscr{K} -invariant class (including fold jets if $n \ge p$). An \mathcal{O} -regular map $f: N \to P$ refers to a smooth map such that $j^{\infty}f(N) \subset \mathcal{O}(N, P)$. We will prove that a continuous section s of $\mathcal{O}(N, P)$ over N has an \mathcal{O} -regular map f such that s and $j^{\infty}f$ are homotopic as sections. As an application we will prove this homotopy principle for maps with \mathscr{K} -simple singularities of given class.

Introduction.

Let N and P be smooth (C^{∞}) manifolds of dimensions n and p respectively. Let $J^k(N, P)$ denote the k-jet space of the manifolds N and P with the projections π_N^k and π_P^k onto N and P mapping a jet onto its source and target respectively. Let $J^k(n, p)$ denote the k-jet space of C^{∞} -map germs $(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$. Let \mathscr{K} denote the contact group defined in [MaIII]. Let $\mathscr{O}(N, P)$ denote an open subbundle of $J^k(N, P)$ associated to a given \mathscr{K} -invariant open subset $\mathscr{O}(n, p)$ of $J^k(n, p)$. In this paper a smooth map $f: N \to P$ is called an \mathscr{O} -regular map if $j^k f(N) \subset \mathscr{O}(N, P)$.

We will study a homotopy theoretic condition for finding an \mathscr{O} -regular map in a given homotopy class. Let $C^{\infty}_{\mathscr{O}}(N, P)$ denote the space consisting of all \mathscr{O} -regular maps equipped with the C^{∞} -topology. Let $\Gamma_{\mathscr{O}}(N, P)$ denote the space consisting of all continuous sections of the fiber bundle $\pi^k_N | \mathscr{O}(N, P) : \mathscr{O}(N, P) \to N$ equipped with the compact-open topology. Then there exists a continuous map

$$j_{\mathscr{O}}: C^{\infty}_{\mathscr{O}}(N, P) \longrightarrow \Gamma_{\mathscr{O}}(N, P)$$

defined by $j_{\mathscr{O}}(f) = j^k f$. If any section s in $\Gamma_{\mathscr{O}}(N, P)$ has an \mathscr{O} -regular map f such that s and $j^k f$ are homotopic as sections in $\Gamma_{\mathscr{O}}(N, P)$, then we say that the homotopy principle holds for \mathscr{O} -regular maps. The terminology "homotopy principle" has been used in [**G2**]. It follows from the well-known theorem due to Gromov [**G1**] that if N is a connected open manifold, then $j_{\mathscr{O}}$ is a weak homotopy equivalence. If N is a closed manifold, then the homotopy principle is a hard problem. As the primary investigation preceding [**G1**], we

²⁰⁰⁰ Mathematics Subject Classification. Primary 58K30; Secondary 57R45, 58A20.

Key Words and Phrases. singularity, homotopy principle, $\mathscr K\text{-simple.}$

This research was supported by Grant-in-Aid for Scientific Research (No. 16540072 (C)(2)), Japan Society for the Promotion of Science.

must refer to the Smale-Hirsch Immersion Theorem ([Sm], [H]), the k-mersion Theorem due to Feit [F], the Phillips Submersion Theorem for open manifolds ([P]). In [E1] and [E2], Èliašberg has proved the well-known homotopy principle on the 1-jet level for fold-maps. Succeedingly there have appeared the homotopy principles for maps with the extensibility condition in [duP2], for maps without certain Thom-Boardman singularities in [duP1] (see [T], [B] and [L] for Thom-Boardman singularities) and for maps with \mathcal{K} simple singularities in [duP3]. Although these du Plessis's homotopy principles are parametric and useful, one can not apply them in many cases, in particular, in the dimensions $n \geq p$. We refer to the relative homotopy principle for maps with prescribed Thom-Boardman singularities in [An6], which is available in the dimensions $n \geq p \geq 2$.

In this paper we will study a general condition on $\mathscr{O}(n,p)$ for the relative homotopy principle on the existence level. We say that a nonempty \mathscr{K} -invariant open subset $\mathscr{O}(n,p)$ is *admissible* if $\mathscr{O}(n,p)$ consists of all regular jets and a finite number of disjoint \mathscr{K} -invariant submanifolds $V^i(n,p)$ of codimension ρ_i $(1 \le i \le \iota)$ such that the following properties (H-i to v) are satisfied.

(H-i) $V^i(n,p)$ consists of singular k-jets of rank r_i , namely, $V^i(n,p) \subset \Sigma^{n-r_i}(n,p)$.

(H-ii) For each *i*, the set $\mathscr{O}(n,p) \setminus \{\bigcup_{j=i}^{l} V^{j}(n,p)\}$ is an open subset.

(H-iii) For each *i* with $\rho_i \leq n$, there exists a \mathscr{K} -invariant submanifold $V^i(n, p)^{(k-1)}$ of $J^{k-1}(n, p)$ such that $V^i(n, p)$ is open in $(\pi_{k-1}^k)^{-1}(V^i(n, p)^{(k-1)})$. Here, $\pi_{k-1}^k : J^k(n, p) \to J^{k-1}(n, p)$ is the canonical projection.

(H-iv) If $n \ge p$, then $p \ge 2$ and $V^1(n,p) = \Sigma^{n-p+1,0}(n,p)$.

Here, $\Sigma^{n-p+1,0}(n,p)$ denotes the Thom-Boardman manifold in $J^k(n,p)$, which consists of \mathscr{K} -orbits of fold jets. Let $\boldsymbol{d} : (\pi_N^k)^*(TN) \longrightarrow (\pi_{k-1}^k)^*(T(J^{k-1}(N,P)))$ denote the bundle homomorphism defined by $\boldsymbol{d}(z,\boldsymbol{v}) = (z,d_x(j^{k-1}f)(\boldsymbol{v}))$ where $z = j_x^k f \in J^k(N,P)$ and $d_x(j^{k-1}f) : T_xN \to T_{\pi_{k-1}^k(z)}(J^{k-1}(N,P))$ is the differential. Let $V^i(N,P)$ denote the subbundle of $J^k(N,P)$ associated to $V^i(n,p)$. Let $\boldsymbol{K}(V^i)$ be the kernel bundle in $(\pi_N^k)^*(TN)|_{V^i(N,P)}$ defined by $\boldsymbol{K}(V^i)_z = (z,\operatorname{Ker}(d_xf)).$

(H-v) For each *i* with $\rho_i \leq n$ and any $z \in V^i(N, P)$, we have

$$d\big(K(V^i)_z\big) \cap \big(\pi_{k-1}^k | V^i(N,P)\big)^* \big(T(V^i(N,P)^{(k-1)})\big)_z = \{0\}.$$

For example, let $\mathscr{O}^{sim}(n,p)$ be an nonempty open subset in $J^k(n,p)$ which consists of a finite number of \mathscr{K} -k-simple \mathscr{K} -orbits, and of $\Sigma^{n-p+1,0}(n,p)$ in addition in the case $n \geq p$. Then if $k \geq p+2$, then we will prove in Section 7 that $\mathscr{O}^{sim}(n,p)$ is admissible.

We will prove the following relative homotopy principle on the existence level for \mathscr{O} -regular maps.

THEOREM 0.1. Let k be an integer with $k \geq 3$. Let $\mathcal{O}(n,p)$ denote a nonempty admissible open subspace of $J^k(n,p)$. We assume that if $n \geq p$, then $p \geq 2$ and $\mathcal{O}(n,p)$ contains $\Sigma^{n-p+1,0}(n,p)$ at least. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N = \emptyset$. Let C be a closed subset of N. Let s be a section in $\Gamma_{\mathcal{O}}(N,P)$ which has an \mathcal{O} -regular map g defined on a neighborhood of C to P, where $j^k g = s$.

Then there exists an \mathcal{O} -regular map $f: N \to P$ such that $j^k f$ is homotopic to s relative to a neighborhood of C by a homotopy s_{λ} in $\Gamma_{\mathcal{O}}(N, P)$ with $s_0 = s$ and $s_1 = j^k f$.

In particular, we have f = g on a neighborhood of C.

In the proof of Theorem 0.1 the relative homotopy principles on the existence level for fold-maps in [An3, Theorem 4.1] and [An4, Theorem 0.5] in the case $n \ge p \ge 2$ and the Smale-Hirsch Immersion Theorem in the case n < p together with [G1] will play important roles.

The relative homotopy principle on the existence level for maps and singular foliations having only what are called A, D and E singularities has been given in [An1]-[An5]. Recently it turns out that this kind of homotopy principle has many applications. First of all, Theorem 0.1 is very important even for fold-maps in proving the relations between fold-maps, surgery theory and stable homotopy groups of spheres in [An3, Corollary 2,Theorems 3 and 4] and [An7]. In [Sady] Sadykov has applied [An1, Theorem 1] to the elimination of higher A_r singularities $(r \ge 3)$ for Morin maps when n - p is odd. This result is a strengthened version of the Chess conjecture proposed in [C]. In [An8] it has been proved that the cobordism group of \mathcal{O} -regular maps to a given connected manifold P is isomorphic to the stable homotopy group of a certain space related to $\mathcal{O}(n, p)$.

In Section 1 we will explain the notations which are used in this paper. In Section 2 we will review the definitions and the fundamental properties of \mathscr{K} -orbits, from which we deduce several further results. In Section 3 we will announce a special form of a homotopy principle in Theorem 3.2 and reduce the proof of Theorem 0.1 to the proof of Theorem 3.2 by induction. Furthermore, we will introduce a certain rotation of the tangent spaces defined around the singularities of a given type in N for a preliminary deformation of the section s. In Section 4 we will prepare two lemmas which are used to deform the section s in a nice position. In Section 5 we will construct an \mathscr{O} -regular map around the singularities of a given type in N. We will prove Theorem 3.2 in Section 6. In Section 7 we will apply Theorem 0.1 to maps with \mathscr{K} -k-simple singularities of given class.

1. Notations.

Throughout the paper all manifolds are Hausdorff, paracompact and smooth of class C^{∞} . Maps are basically continuous, but may be smooth (of class C^{∞}) if necessary. Given a fiber bundle $\pi : E \to X$ and a subset C in X, we denote $\pi^{-1}(C)$ by E_C or $E|_C$. Let $\pi' : F \to Y$ be another fiber bundle. A map $\tilde{b} : E \to F$ is called a fiber map over a map $b : X \to Y$ if $\pi' \circ \tilde{b} = b \circ \pi$ holds. The restriction $\tilde{b}|(E|_C) : E|_C \to F$ (or $F|_{b(C)}$) is denoted by \tilde{b}_C or $\tilde{b}|_C$. We denote, by b^F , the induced fiber map $b^*(F) \to F$ covering b. A fiberwise homomorphism $E \to F$ is simply called a homomorphism. For a vector bundle E with a metric and a positive function δ on X, let $D_{\delta}(E)$ be the associated disk bundle of E with radius δ . If there is a canonical isomorphism between two vector bundles Eand F over X = Y, then we write $E \cong F$.

When E and F are smooth vector bundles over X = Y, $\operatorname{Hom}(E, F)$ denotes the smooth vector bundle over X with fiber $\operatorname{Hom}(E_x, F_x)$, $x \in X$ which consists of all homomorphisms $E_x \to F_x$.

Let $J^k(N, P)$ denote the k-jet space of manifolds N and P. The map $\pi_N^k \times \pi_P^k$: $J^k(N, P) \to N \times P$ induces a structure of a fiber bundle with structure group $L^k(p) \times L^k(n)$, where $L^k(m)$ denotes the group of all k-jets of local diffeomorphisms of $(\mathbf{R}^m, 0)$.

The fiber $(\pi_N^k \times \pi_P^k)^{-1}(x, y)$ is denoted by $J_{x,y}^k(N, P)$.

Let π_N and π_P be the projections of $N \times P$ onto N and P respectively. We set

$$J^{k}(TN,TP) = \bigoplus_{i=1}^{k} \operatorname{Hom}\left(S^{i}(\pi_{N}^{*}(TN)), \pi_{P}^{*}(TP)\right)$$
(1.1)

over $N \times P$. Here, for a vector bundle E over X, let $S^i(E)$ be the vector bundle $\bigcup_{x \in X} S^i(E_x)$ over X, where $S^i(E_x)$ denotes the *i*-fold symmetric product of E_x . If we provide N and P with Riemannian metrics, then the Levi-Civita connections induce the exponential maps $\exp_{N,x} : T_x N \to N$ and $\exp_{P,y} : T_y P \to P$. In dealing with exponential maps we always consider convex neighborhoods ([**K-N**]). We define the smooth bundle map

$$J^k(N, P) \longrightarrow J^k(TN, TP) \quad \text{over } N \times P$$
 (1.2)

by sending $z = j_x^k f \in J_{x,y}^k(N, P)$ to the k-jet of $(\exp_{P,y})^{-1} \circ f \circ \exp_{N,x}$ at $\mathbf{0} \in T_x N$, which is regarded as an element of $J^k(T_x N, T_y P) (= J_{x,y}^k(TN, TP))$ (see [K-N, Proposition 8.1] for the smoothness of exponential maps). More strictly, (1.2) gives a smooth equivalence of the fiber bundles under the structure group $L^k(p) \times L^k(n)$. Namely, it gives a smooth reduction of the structure group $L^k(p) \times L^k(n)$ of $J^k(N, P)$ to $O(p) \times O(n)$, which is the structure group of $J^k(TN, TP)$.

Under the projection $\pi_N^k \times \pi_P^k : J^k(N, P) \to N \times P$, let $T^{\dagger}(J^k(N, P))$ denote the tangent bundle along the fiber of $J^k(N, P)$, whose fiber over (x, y) is $T(J_{x,y}^k(N, P))$. By using the Levi-Civita connections we can define the projection

$$T(J^k(N,P)) \longrightarrow T^{\dagger}(J^k(N,P)) \tag{1.3}$$

as follows. Let U and V be the convex neighborhoods of x and y. Let $\ell(x, x')$ (respectively $\ell(y', y)$) denote the parallel translation of U (respectively V) mapping x to x' (respectively y' to y). Define the trivialization

$$t_{x,y}: J^k(U,V) \longrightarrow J^k_{x,y}(U,V)$$

by $t_{x,y}(z_{x',y'}) = \ell(y',y) \circ z_{x',y'} \circ \ell(x,x')$, where $z_{x',y'} \in J_{x',y'}^k(U,V)$ and $\ell(x,x')$ and $\ell(y',y)$ are identified with their k-jets. We define the projection in (1.3) by

$$d(t_{x,y})_z: T_z(J^k(U,V)) \longrightarrow T_z(J^k_{x,y}(U,V))$$

at $z \in J_{x,y}^k(U,V)$, where we should note $T_z(J_{x,y}^k(U,V)) = T_z^{\mathfrak{f}}(J^k(N,P)).$

Let (x_1, \ldots, x_n) and (y_1, \ldots, y_p) be the normal coordinates on the convex neighborhoods of (N, x) and (P, y) associated to orthonormal bases of $T_x N$ and $T_y P$ respectively. Then a jet $z \in J_{x,y}^k(N, P)$ is often identified with the germ of the polynomial map of degree k with variables x_1, \ldots, x_n .

2. Singularities of \mathscr{K} -invariant class.

Let us begin by recalling the results in [MaIII], [MaIV] and [MaV]. Let C_x and C_y denote the rings of smooth function germs on (N, x) and (P, y) respectively. Let \mathfrak{m}_x and \mathfrak{m}_y denote the maximal ideals of C_x and C_y respectively. Let $f : (N, x) \to (P, y)$ be a germ of a smooth map. Let $f^* : C_y \to C_x$ denote the homomorphism defined by $f^*(a) = a \circ f$. Let $\theta(N)_x$ denote the C_x module of all germs at x of smooth vector fields along f, namely which consists of all germs $\varsigma : (N, x) \to TP$ such that $p_P \circ \varsigma = f$. Here, $p_P : TP \to P$ is the canonical projection. Then we have the homomorphism

$$tf: \theta(N)_x \longrightarrow \theta(f)_x \tag{2.1}$$

defined by $tf(u_N) = df \circ u_N$ for $u_N \in \theta(N)_x$.

Let us review the \mathscr{K} -equivalence of two smooth map germs $f, g: (N, x) \to (P, y)$, which has been introduced in [MaIII, (2.6)], by following [Mar1, II, 1]. The above two map germs f and g are \mathscr{K} -equivalent if there exists a smooth map germ $h_1: (N, x) \to$ $GL(\mathbb{R}^p)$ and a local diffeomorphism $h_2: (N, x) \to (N, x)$ such that $f(x) = h_1(x)g(h_2(x))$. In this paper we also say that $j_x^k f$ and $j_x^k g$ are \mathscr{K} -equivalent in this case. It is known that this \mathscr{K} -equivalence is nothing but the contact equivalence introduced in [MaIII]. The contact group \mathscr{K} is defined as a some subgroup of the group of germs of local diffeomorphisms $(N, x) \times (P, y)$. Let $\mathscr{K}z$ denote the orbit submanifold of $J_{x,y}^k(N, P)$ consisting of all k-jets w which are \mathscr{K} -equivalent to z. This fact is also observed from the above definition.

In the case $n \ge p$ let $\Sigma^{n-p+1,0}(n,p)$ denote the Thom-Boardman submanifold in $J^k(n,p)$ consisting of all fold jets. The union $\Omega^{n-p+1,0}(n,p)$ of all regular jets and $\Sigma^{n-p+1,0}(n,p)$ is open (see, for example, [**duP1**]).

We define the bundle homomorphism

$$\boldsymbol{d}_1: \left(\pi_N^k\right)^*(TN) \longrightarrow \left(\pi_P^k\right)^*(TP). \tag{2.2}$$

Let $z = j_x^k f$. We set $(\mathbf{d}_1)_z(z, \mathbf{v}) = (z, df(\mathbf{v}))$. Let $V^i(n, p)$ be a \mathscr{K} -invariant smooth submanifold of $J^k(n, p)$ which consists of singular jets with given rank r $(0 \le r \le \min(n, p))$. Namely, we have $V^i(n, p) \subset \Sigma^{n-r}(n, p)$. Let $V^i(N, P)$ denote the subbundle of $J^k(N, P)$ associated to $V^i(n, p)$. We define the kernel bundle $\mathbf{K}(V^i)$ in $(\pi_N^k | V^i(n, p))^*(TN)$ and the cokernel bundle $\mathbf{Q}(V^i)$ of $(\pi_P^k | V^i(n, p))^*(TP)$ by, for $z \in V^i(N, P)$,

$$\boldsymbol{K}(V^i)_z = (z, \operatorname{Ker}(d_x f)) \text{ and } \boldsymbol{Q}(V^i)_z = (z, \operatorname{Coker}(d_x f))$$

respectively. The dimension of $\mathbf{K}(V^i)$, as a vector bundle, is n-r.

Let $\mathscr{O}(n,p)$ be an admissible open subset in $J^k(n,p)$ defined in Introduction whose singularities are decomposed into a finite number of disjoint \mathscr{H} -invariant submanifolds $V^i(n,p)$ of codimension ρ_i $(1 \leq i \leq \iota)$ satisfying (H-i to v). We note that $V^i(n,p)$ may not be connected and that even if i < j, then ρ_i is not necessarily smaller than ρ_j . We denote, by $\mathscr{O}^i(n,p)$, the open subset $\mathscr{O}(n,p) \setminus \{\bigcup_{i=i+1}^{\iota} V^j(n,p)\}$ and, by $\mathscr{O}^i(N,P)$, the

open subbundle of $J^k(N, P)$ associated to $\mathscr{O}^i(n, p)$ for each $i \ (0 \le i \le \iota)$.

Let $z = j_x^k f \in J_{x,y}^k(N, P)$ be of rank r and $w = \pi_{k-1}^k(z)$. Let $\mathscr{K}^w(N, P)$ denote the subbundle of $J^{k-1}(N, P)$ associated to the \mathscr{K} -orbit $\mathscr{K}w$. We call $\mathscr{K}^w(N, P)$ the \mathscr{K} -orbit bundle of w in this paper. The fiber of $\mathscr{K}^w(N, P)$ over (x, y) is denoted by $\mathscr{K}_{x,y}^w(n, p)$. Let us recall the description of the tangent space of $\mathscr{K}_{x,y}^w(N, P)$ in [MaIII, (7.3)]. There have been defined the isomorphism, expressed in this paper by $\pi_{\theta,T}^{k-1}$,

$$T_w(J_{x,y}^{k-1}(N,P)) \longrightarrow \mathfrak{m}_x \theta(f)_x / \mathfrak{m}_x^k \theta(f)_x.$$
(2.3)

We do not give the definition. According to [MaIII, (7.4)], $T_w(\mathscr{K}^w_{x,y}(N, P))$ corresponds by $\pi^{k-1}_{\theta,T}$ to

$$\left(tf(\mathfrak{m}_x\theta(N)_x) + f^*(\mathfrak{m}_y)\theta(f)_x + \mathfrak{m}_x^k\theta(f)_x\right)/\mathfrak{m}_x^k\theta(f)_x,\tag{2.4}$$

which we denote by I(w) for simplicity.

We choose Riemannian metrics on N and P. Let Q_y denote $T_y(P)/\operatorname{Im}(d_x f)$. We always identify $T_y(P)/\operatorname{Im}(d_x f)$ with the orthogonal complement of $\operatorname{Im}(d_x f)$ in $T_y(P)$. In the convex neighborhoods of x and y where f is defined, let $e(K_x)$ and $e(Q_y)$ denote $\exp_{N,x}(\operatorname{Ker}(d_x f))$ and $\exp_{P,y}(T_y(P)/\operatorname{Im}(d_x f))$ with the normal coordinates $x^{\bullet} = (x_{r+1}, \ldots, x_n)$ and $y^{\bullet} = (y_{r+1}, \ldots, y_p)$ associated to the orthonormal bases of K_x and Q_y respectively. Let (y_1, \ldots, y_r) be the normal coordinates of $\exp_{P,y}(\operatorname{Im}(d_x f))$ associated to the orthonormal basis of $\operatorname{Im}(d_x f)$. Setting $x_i = y_i \circ f$ for $1 \leq i \leq r$, we have the coordinates (x_1, \ldots, x_n) and (y_1, \ldots, y_p) of (N, x) and (P, y) respectively. Let p_{Q_y} : $(P, y) \to (e(Q_y), y)$ be the germ of the orthogonal projection. Let $f^{\bullet} : e(K_x) \to e(Q_y)$ be the map defined by $f^{\bullet} = p_{Q_y} \circ f | e(K_x)$. In the module $\mathfrak{m}_x \cdot \theta(f^{\bullet})_x \cdot /\mathfrak{m}_x^k \cdot \theta(f^{\bullet})_x \cdot$, let $I^{\bullet}(w)$ denote the submodule of

$$\left(tf^{\bullet}(\mathfrak{m}_{x}\bullet\theta(e(K_{x}))_{x}\bullet)+(f^{\bullet})^{*}(\mathfrak{m}_{y}\bullet)\theta(f^{\bullet})_{x}\bullet+\mathfrak{m}_{x}^{k}\bullet\theta(f^{\bullet})_{x}\bullet\right)/\mathfrak{m}_{x}^{k}\bullet\theta(f^{\bullet})_{x}\bullet.$$

In this situation, since $f^{\bullet}(x^{\bullet}) = (y_{r+1} \circ f(x^{\bullet}), \dots, y_p \circ f(x^{\bullet}))$, the submodule $I^{\bullet}(w)$ is generated by

$$\begin{cases} \mathfrak{m}_{x} \bullet \sum_{i=r+1}^{p} \frac{\partial y_{i} \circ f^{\bullet}}{\partial x_{j}} \left(\frac{\partial}{\partial y_{i}} \circ f^{\bullet} \right) & \text{for } r < j \le n, \\ \langle y_{r+1} \circ f^{\bullet}, \dots, y_{p} \circ f^{\bullet} \rangle \frac{\partial}{\partial y_{i}} \circ f^{\bullet} & \text{for } r < i \le p, \end{cases}$$

$$(2.5)$$

where $\partial/\partial y_i$ is the vector field on (P, y) and the notation $\langle * \rangle$ refers to an ideal.

If $z = j_x^k f \in V_{x,y}^i(N, P)$, then $w \in \mathscr{K}_{x,y}^w(N, P) \subset V_{x,y}^i(N, P)^{(k-1)}$ by (H-iii) and $T_w(\mathscr{K}_{x,y}^w(N, P)) \subset T_w(V_{x,y}^i(N, P)^{(k-1)})$. Under the above local coordinates (x_1, \ldots, x_n) and (y_1, \ldots, y_p) , let $\mathscr{M}(V^i)^{(k-1)}$ and $\mathscr{M}(V^i)^{\bullet(k-1)}$ denote the vector bundles over $V^i(N, P)$ with fibers

$$\mathfrak{m}_x \theta(f)_x / \mathfrak{m}_x^k \theta(f)_x$$
 and $\mathfrak{m}_x \cdot \theta(f^{\bullet})_x \cdot / \mathfrak{m}_x^k \cdot \theta(f^{\bullet})_x \cdot$

over z respectively. These vector bundles are well defined as far as the Riemannian metrics on N and P are chosen and fixed. We use the same notation $\pi_{\theta,T}^{k-1}$ for the bundle isomorphism over $V^i(N, P)$ as follows.

$$\pi_{\theta,T}^{k-1}: (\pi_{k-1}^k)^* (T^{\mathfrak{f}}(J^{k-1}(N,P)))|_{V^i(N,P)} \longrightarrow \mathscr{M}(V^i)^{(k-1)}.$$

Furthermore, we define the canonical projection

$$p_{\mathscr{M}^{\bullet}} : \mathscr{M}(V^{i})^{(k-1)} \longrightarrow \mathscr{M}(V^{i})^{\bullet(k-1)}$$
(2.6)

by

$$(p_{\mathscr{M}^{\bullet}})_{z}\left(\sum_{i=1}^{r}h_{i}tf\left(\frac{\partial}{\partial x_{i}}\right)+\sum_{i=r+1}^{p}k_{i}\left(\frac{\partial}{\partial y_{i}}\circ f\right)\right)=\sum_{i=r+1}^{p}k_{i}^{\bullet}\left(\frac{\partial}{\partial y_{i}}\circ f^{\bullet}\right).$$

This definition is the global version of the homomorphism defined in [MaIV, Section 1].

We canonically identify $\nu(V^i(N, P)) = (\pi_{k-1}^k | V^i(N, P))^* (\nu(V^i(N, P)^{(k-1)}))$. It is not difficult to see that $(p_{\mathscr{M}} \bullet)_z$ induces the isomorphism of $\nu(\mathscr{K}^w(N, P))_w$ onto the vector spaces of dimension ρ

$$\mathfrak{m}_x\theta(f)_x/\big(I(w)+\mathfrak{m}_x^k\theta(f)_x\big)\approx\mathfrak{m}_x\bullet\theta(f^\bullet)_x\bullet/\big(I^\bullet(w)+\mathfrak{m}_x^k\bullet\theta(f^\bullet)_x\bullet\big).$$
(2.7)

The epimorphism $\nu(\mathscr{K}^w(N,P))_w \to \nu(V^i(N,P))_w^{(k-1)}$ canonically induces the epimorphism

$$p_{\nu}^{\mathscr{M}} : \mathscr{M}(V^{i})^{\bullet(k-1)} \longrightarrow \nu(V^{i}(N, P))$$
(2.8)

over $V^i(N, P)$.

Let

$$\Pi_{\mathfrak{f}}^{k}: T(J^{k}(N,P)) \to \left(\pi_{k-1}^{k}\right)^{*} \left(T(J^{k-1}(N,P))\right) \to \left(\pi_{k-1}^{k}\right)^{*} \left(T^{\mathfrak{f}}(J^{k-1}(N,P))\right)$$

denote the composite of canonical projections and let

$$p_{\nu(V^i)}: T(J^k(N,P))|_{V^i(N,P)} \longrightarrow \nu(V^i(N,P))$$

denote the canonical projection.

LEMMA 2.1. Let $z \in V^i_{x,y}(N, P)$. Under the above notation the epimorphism $p_{\nu(V^i)}|_z$ coincides with the composite $p^{\mathcal{M}}_{\nu} \circ p_{\mathcal{M}} \circ \sigma \pi^{k-1}_{\theta,T} \circ (\Pi^k_{\mathfrak{f}})_z$:

$$T_z(J^k(N,P)) \to \mathscr{M}(V^i)_z^{(k-1)} \to \mathscr{M}(V^i)_z^{\bullet(k-1)} \to \nu(V^i(N,P))_z.$$
(2.9)

Recall the homomorphism d in Introduction. Let us study the composite

$$\pi^{\mathfrak{f}} \circ \boldsymbol{d} : \left(\pi_{N}^{k}\right)^{*}(TN)|_{V^{i}(N,P)} \longrightarrow \left(\pi_{k-1}^{k}\right)^{*}\left(T^{\mathfrak{f}}(J^{k-1}(N,P))\right)|_{V^{i}(N,P)}$$

and the isomorphism in (2.3). For $z = j_x^k f \in V^i(N, P)$ and $v \in T_x U$, let $v(t) = \exp_{N,x}(tv)$ be the geodesic curve. Then the composite $t_{x,y} \circ j^{k-1} f \circ v : I \to J_{x,y}^{k-1}(N, P)$ yields that

$$(d(t_{x,y} \circ j^k f \circ v)|_{t=0})(d/dt) = ((d(t_{x,y}) \circ d(j^k f) \circ dv)|_{t=0})(d/dt)$$

$$= d(t_{x,y}) \circ d(j^k f)(v)$$

$$= d(t_{x,y}) \circ d(v)$$

$$= \pi^{\dagger} \circ d(v),$$

$$(2.10)$$

where $\pi^{\dagger} \circ d(v)$ is regarded as an element of $J_{x,y}^{k-1}(N, P)$. Let $F: U \times [0,1] \to P$ be the following map

$$F(x',t) = \ell(f(v(t)), f(x)) \circ f \circ \ell(x, v(t))(x')$$

= $\ell(f(v(t)), f(x)) \circ f(x' + v(t) - x)$
= $f(x' + v(t) - x) + f(x) - f(v(t)).$

In particular, we have F(x,t) = f(x) = y. Let $F_{x'}(t) = F_t(x') = F(x',t)$ and G(t) = f(x'+v(t)-x).

REMARK 2.2. It follows that $\pi_{\theta,T}^{k-1} \circ \pi^{\mathfrak{f}} \circ d(\boldsymbol{v})$ is represented by the vector fields $\zeta_{\boldsymbol{v}}^{z}: (N, x) \to TP$ defined by $\zeta_{\boldsymbol{v}}^{z}(x') = (dF_{x'}|_{t=0})(d/dt)$. Let us briefly prove this fact. We note that

$$j_x^{k-1}F_t = \ell(f(v(t)), f(x)) \circ j_{v(t), f(v(t))}^{k-1} f \circ \ell(x, v(t)) \in J_{x, y}^{k-1}(N, P).$$

By (2.10) we have $\pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v}) = (d(j_x^{k-1}F_t)|_{t=0})(d/dt)$. By the definition of the isomorphism $\pi_{\theta,T}^{k-1}$ in (2.3) in [**MaIII**, (7.3)] we obtain the assertion.

In Remark 2.2 $\zeta_{\boldsymbol{v}}^{z} = (dF_{x'}|_{t=0})(d/dt)$ is equal to

1

$$(dG|_{t=0})(d/dt) - (d(f \circ v)|_{t=0})(d/dt) = \left(\left[\cdots, \sum_{\ell=1}^{p} \left(\frac{\partial y_{\ell} \circ G(t)}{\partial x_{j}} - \frac{\partial y_{\ell} \circ f}{\partial x_{j}}(v(t)) \right) \frac{\partial}{\partial y_{\ell}}, \cdots \right]_{t=0} \right) \bullet \boldsymbol{v}$$
(2.11)

where "•" refers to the inner product. If $\boldsymbol{v} = \sum_{j=1}^{n} a_j \partial / \partial x_j \in \boldsymbol{K}(V^i)_z$, then $(d(f \circ v)|_{t=0})(d/dt) = df(\boldsymbol{v}) = 0$ and

$$\zeta_{\boldsymbol{v}}^{z}(x') = \sum_{\ell=1}^{p} \left(\sum_{j=1}^{p} a_{j} \frac{\partial y_{\ell} \circ f}{\partial x_{j}}(x') \right) \frac{\partial}{\partial y_{\ell}}$$
(2.12)

and $\zeta_{\boldsymbol{v}}^{z}(x) = \mathbf{0}$. Therefore, if $\boldsymbol{v} \in \boldsymbol{K}(V^{i})_{z}$, then $\zeta_{\boldsymbol{v}}^{z}$ lies in $\mathfrak{m}_{x}\theta(f)_{x}$.

Under the trivialization $TU = U \times T_x U$, there is the vector field \boldsymbol{v}_U on U defined by $\boldsymbol{v}_U(x') = (x', \boldsymbol{v})$. Therefore, we have the following lemma.

LEMMA 2.3. Let $z = j_x^k f \in V_{x,y}^i(N, P)$. Let $\boldsymbol{v} \in \boldsymbol{K}(V^i)_z$. Under the above notation, $\pi_{\theta,T}^{k-1} \circ \pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v})$ is represented by $\zeta_{\boldsymbol{v}}^z = tf(\boldsymbol{v}_U)$.

3. Primary obstruction.

Let $\mathfrak{s} \in \Gamma_{\mathscr{O}}(N, P)$ be smooth around $\mathfrak{s}^{-1}(V^i(N, P))$ and transverse to $V^i(N, P)$. We set

$$\begin{split} S^{V^{i}}(\mathfrak{s}) &= \mathfrak{s}^{-1}(V^{i}(N,P)), \qquad S^{n-p+1,0}(\mathfrak{s}) = \mathfrak{s}^{-1}(\Sigma^{n-p+1,0}(N,P)), \\ \left(\mathfrak{s}|S^{V^{i}}(\mathfrak{s})\right)^{*}(\boldsymbol{K}(V^{i})) &= K\left(S^{V^{i}}(\mathfrak{s})\right), \quad \left(\mathfrak{s}|S^{V^{i}}(\mathfrak{s})\right)^{*}\boldsymbol{Q}(V^{i}) = Q\left(S^{V^{i}}(\mathfrak{s})\right). \end{split}$$

We often write $S^{V^i}(\mathfrak{s})$ as S^{V^i} if there is no confusion.

Let $\Gamma_{\mathscr{O}}^{tr}(N,P)$ denote the subspace of $\Gamma_{\mathscr{O}}(N,P)$ consisting of all smooth sections of $\pi_N^k | \mathscr{O}(N,P) : \mathscr{O}(N,P) \to N$ which are transverse to $V^j(N,P)$ for every j. Let C be a closed subset of N. For $s \in \Gamma_{\mathscr{O}}^{tr}(N,P)$ let C_{i+1} refer to the union $C \cup s^{-1}(\mathscr{O}(n,p)) \setminus \mathscr{O}^i(n,p))$ $(C_{\iota+1} = C)$.

The following theorem has been proved in [An3, Theorem 4.1] and [An4, Theorem 0.5] in which [E1, 2.2 Theorem] and [E2, 4.7 Theorem] have played important roles.

THEOREM 3.1. Let $n \ge p \ge 2$. Let $\mathscr{O}(n,p)$ denote $\Omega^{(n-p+1,0)}(n,p)$. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N = \emptyset$. Let C be a closed subset of N. Let s be a section of $\Gamma_{\mathscr{O}}(N,P)$ such that there exists a fold-map g defined on a neighborhood of C into P, where $j^2g = s$. Then there exists a fold-map $f: N \to P$ such that j^2f is homotopic to s relative to C by a homotopy s_{λ} in $\Gamma_{\mathscr{O}}(N,P)$ with $s_0 = s$ and $s_1 = j^2f$. In particular, f = g on a neighborhood of C.

We show in this section that it is enough for the proof of Theorem 0.1 to prove the following theorem together with Theorem 3.1.

THEOREM 3.2. Let $k \geq 3$. Let N and P be connected manifolds of dimensions n and p respectively with $\partial N = \emptyset$. We assume the same assumption for $\mathcal{O}(n,p)$ as in Theorem 0.1. Let C_{i+1} and $V^i(n,p)$ be as above for $1 \leq i \leq \iota$. We assume that if $n \geq p \geq 2$, then $V^i(n,p) \neq \Sigma^{n-p+1,0}(n,p)$ (i > 1). Let s be a section in $\Gamma_{\mathcal{O}}^{tr}(N,P)$ which has an \mathcal{O} -regular map g_{i+1} $(g_{\iota+1} = g)$ defined on a neighborhood of C_{i+1} to P, where $j^k g_{i+1} = s$. Then there exists a homotopy $s_{\lambda} \in \Gamma_{\mathcal{O}}(N,P)$ of $s_0 = s$ relative to a neighborhood of C_{i+1} with the following properties.

(3.2.1) $s_1 \in \Gamma^{tr}_{\mathscr{O}}(N, P)$ and $s_1(N \setminus C_{i+1}) \subset \mathscr{O}(N, P)^i$.

(3.2.2) $S^{V^{i}}(s_{\lambda}) = S^{V^{i}}(s)$ for any λ .

(3.2.3) There exists an \mathcal{O} -regular map g_i defined on a neighborhood of C_i , where $j^k g_i = s_1$ holds. In particular, $g_i = g_{i+1}$ on a neighborhood of C_{i+1} .

PROOF OF THEOREM 0.1. We first deform s to be transverse outside a small

neighborhood of C. By the downward induction on i using Theorem 3.2 we next deform s keeping g near C to the jet extension of an \mathscr{O} -regular map defined around $\bigcup_{j=1}^{\iota} S^{V^{j}}(s)$ for n < p and around $\bigcup_{j=2}^{\iota} S^{V^{j}}(s)$ for $n \ge p \ge 2$. In the final step we apply the Smale-Hirsch Immersion Theorem ([**H**, Theorem 5.7]) for n < p and Theorem 3.1 for $n \ge p \ge 2$ to obtain the required \mathscr{O} -regular map f.

Take a closed neighborhood U(C) of C where the given \mathscr{O} -regular map g is defined. Let $U_j(C)$ (j = 1, 2, 3, 4) be closed neighborhoods of C such that $U_4(C) \subset \operatorname{Int} U(C)$ and $U_j(C) \subset \operatorname{Int} U_{j+1}(C)$ (j = 1, 2, 3). By [**G-G**, Ch. II, Corollary 4.11] there exists a homotopy of \mathscr{O} -regular maps $g_{\lambda} : U(C) \to P$ relative to $U_1(C)$ such that $g_0 = g$ and $j^k g_1 | U(C) \setminus \operatorname{Int} U_2(C)$ is transverse to $V^j(N, P)$ for all j. By applying the homotopy extension property we obtain a homotopy μ_{λ} in $\Gamma_{\mathscr{O}}(N, P)$ such that $\mu_0 = s$, $\mu_{\lambda} | U_4(C) =$ $j^k g_{\lambda} | U_4(C)$ and $\mu_1 | (N \setminus U_2(C)) \in \Gamma_{\mathscr{O}}^{tr}(N \setminus U_2(C), P)$. Let $S(\mu_1)$ denote the subspace of all points $x \in N$ such that $\mu_1(x)$ are singular jets.

Let $N' = N \setminus U_2(C)$, $C' = U_3(C) \cap N'$ and $g' = g_1 | (U_4(C) \setminus U_2(C))$. Let us choose the largest integer *i* such that $S^{V^i}(\mu_1) \setminus C' \neq \emptyset$. We first apply Theorem 3.2 to the case of $\mu_1 | N', C', g'$ and $\mathscr{O}(N', P)$ in $J^k(N', P)$. There exist a homotopy s'_{λ} in $\Gamma_{\mathscr{O}}(N', P)$ of $s'_0 = \mu_1 | N'$ relative to a neighborhood of C' and an \mathscr{O} -regular map g'_i defined on a neighborhood of C'_i in N' satisfying the properties (3.2.1) to (3.2.3) for N', C', g', g'_i and s'_{λ} .

Then we can prove by downward induction on integers *i* that there exists a homotopy s''_{λ} of $s''_0 = s'_1$ in $\Gamma^{tr}_{\mathscr{O}}(N', P)$ relative to $U_3(C)$ and an \mathscr{O} -regular map f'defined on a neighborhood of $(U_3(C) \cup S(\mu_1)) \setminus U_2(C)$ for n < p and of $(U_3(C) \cup (S(\mu_1)) \setminus S^{(n-p+1,0)}(\mu_1))) \setminus U_2(C)$ for $n \ge p \ge 2$, such that

(i) $s_1'' \in \Gamma^{tr}_{\mathscr{O}}(N', P),$

- (ii) $s_1''(N \setminus C_1) \subset \mathscr{O}^0(N, P)$ for n < p and $s_1''(N \setminus C_2) \subset \mathscr{O}^1(N, P)$ for $n \ge p \ge 2$,
- (iii) $S^{V^j}(s_{\lambda}'') = S^{V^j}(s)$ except for j = 1 in the case $n \ge p \ge 2$.

Let

$$N'' = \begin{cases} N'/S(\mu_1) & \text{for the case } n < p, \\ (N'/S(\mu_1)) \cup S^{(n-p+1,0)}(\mu_1) & \text{for the case } n \ge p \ge 2. \end{cases}$$

It follows from the Smale-Hirsch Immersion Theorem for the case n < p that there exist an immersion $f'': N'' \to P$ and a homotopy $u_{\lambda} \in \Gamma_{\mathscr{O}}(N'', P)$ relative to the neighborhood of $U(C \cup S(\mu_1)) \cap N''$ such that $u_0 = s_1''|N''$ and $u_1 = j^k f''$. It follows from Theorem 3.2 for the case $n \ge p \ge 2$ that there exist an $\Omega^{(n-p+1,0)}$ -regular map $f'': N'' \to P$ and a homotopy $u_{\lambda} \in \Gamma_{\mathscr{O}}(N'', P)$ relative to a neighborhood of

$$\{(U(C \cup S(\mu_1)) \setminus S(\mu_1)) \cup S^{(n-p+1,0)}(\mu_1)\} \cap N''$$

such that $u_0 = s_1''|N''$ and $u_1 = j^k f''$. Define $s_{\lambda}''' \in \Gamma_{\mathscr{O}}(N', P)$ by $s_{\lambda}'''|N'' = u_{\lambda}$ and $s_{\lambda}'''|(N' \setminus N'') = s_1''|(N' \setminus N'')$.

Now we have the homotopy $\overline{\mu}_{\lambda}$ in $\Gamma_{\mathscr{O}}(N, P)$ defined by

$$\overline{\mu}_{\lambda}|N' = \begin{cases} s'_{3\lambda} & (0 \le \lambda \le 1/3), \\ s''_{3\lambda-1} & (1/3 \le \lambda \le 2/3), \\ s'''_{3\lambda-2} & (2/3 \le \lambda \le 1) \end{cases}$$

and $\overline{\mu}_{\lambda}|U_3(C) = j^k g_1|U_3(C)$. Thus we obtain the required homotopy s_{λ} in Theorem 0.1 by pasting μ_{λ} and $\overline{\mu}_{\lambda}$.

We begin by preparing several notions and results, which are necessary for the proof of Theorem 3.2. For the map g_{i+1} , we take a closed neighborhood $U(C_{i+1})'$ of C_{i+1} around which g_{i+1} is defined and $j^k g_{i+1} = s$. Without loss of generality we may assume that $N \setminus U(C_{i+1})'$ is nonempty. Let us take a closed neighborhood $U(C_{i+1})$ of C_{i+1} in $\operatorname{Int} U(C_{i+1})'$ such that $U(C_{i+1})$ is a submanifold of dimension n with boundary $\partial U(C_{i+1})$. By virtue of Gromov's theorem ([**G1**, Theorem 4.1.1]), it suffices to consider the special case where

- (C1) $N \setminus \text{Int}U(C_{i+1})$ is compact, connected and nonempty,
- (C2) $s \in \Gamma^{tr}_{\mathscr{O}}(N, P)$ and $S^{V^i}(s) \setminus \operatorname{Int} U(C_{i+1}) \neq \emptyset$,
- (C3) $S^{V^i}(s)$ is transverse to $\partial U(C_{i+1})$.

For a manifold X and its submanifold Y let $\nu(Y)$ denote the normal bundle $(TX|_Y)/TY$ of Y. In what follows we set $r = r_i$ and $\rho = \rho_i$ for simplicity. Let $\nu(V^i(N, P))$ be the normal bundle of dimension $\rho \leq n$. Then $p_{\nu(V^i)} \circ \boldsymbol{d} | \boldsymbol{K}(V^i) : \boldsymbol{K}(V^i) \to \nu(V^i(N, P))$ is a monomorphism over $V^i(N, P)$ by (H-v) under the identification $\nu(V^i(N, P))_z = (z, \nu(V^i(N, P))_{\pi_{k-1}^k(z)})$. The composite

$$p_{\nu(V^i)} \circ \boldsymbol{d} | \boldsymbol{K}(V^i) \circ \left(s | S^{V^i} \right)^{\boldsymbol{K}(V^i)} : K \left(S^{V^i}(s) \right) \to \boldsymbol{K}(V^i) \to \nu(V^i(N, P))$$

is also a monomorphism. Let $s \in \Gamma_{\mathscr{O}}(N, P)$ be the given section in Theorem 3.2. Let us provide N with a Riemannian metric. Let $\mathfrak{n}(s, V^i)$ be the orthogonal normal bundle of $S^{V^i}(s)$ in N. We have the bundle map

$$ds|\mathfrak{n}(s,V^i):\mathfrak{n}(s,V^i)\longrightarrow \nu(V^i(N,P))$$

covering $s|S^{V^i}: S^{V^i}(s) \to V^i(N, P)$. Let $\mathbf{i}_{\mathfrak{n}(s, V^i)}: \mathfrak{n}(s, V^i) \subset TN|_{S^{V^i}}$ denote the inclusion. We define $\Psi(s, V^i): K(S^{V^i}(s)) \to \mathfrak{n}(s, V^i) \subset TN|_{S^{V^i}}$ to be the composite

$$\begin{aligned} \boldsymbol{i}_{\mathfrak{n}(s,V^{i})} &\circ \left((s|S^{V^{i}})^{*}(ds|\mathfrak{n}(s,V^{i})) \right)^{-1} \circ \left((s|S^{V^{i}})^{*} \left(p_{\nu(V^{i})} \circ \boldsymbol{d} | \boldsymbol{K}(V^{i}) \circ (s|S^{V^{i}})^{\boldsymbol{K}(V^{i})} \right) \right) \\ &: K \left(S^{V^{i}}(s) \right) \to (s|S^{V^{i}})^{*} \nu(V^{i}(N,P)) \to \mathfrak{n}(s,V^{i}) \to TN|_{S^{V^{i}}}. \end{aligned}$$

$$(3.1)$$

Let $i_{K(S^{V^i}(s))}:K(S^{V^i}(s))\to TN|_{S^{V^i}}$ be the inclusion.

REMARK 3.3. If f is an \mathcal{O} -regular map such that $j^k f$ is transverse to $V^i(N, P)$, then it follows from the definition of d that $i_{K(S^{V^i}(j^k f))} = \Psi(j^k f, V^i)$ if we choose a Riemannian metric such that $K(S^{V^i}(j^k f))$ is orthogonal to $S^{V^i}(j^k f)$.

Here we give an outline of the proof of Theorem 3.2. We first deform the given section s in Theorem 3.2 so that $K(S^{V^i}(s))$ is normal to $S^{V^i}(s)$ and $i_{K(S^{V^i}(s))} = \Psi(s, V^i)$ (Lemma 4.1). Next we deform the section so that $\pi_P \circ s | S^{V^i}(s)$ is an immersion by applying the Smale-Hirsch Immersion Theorem (Lemma 4.2). In Section 5, using the transversality of the deformed section we construct an \mathcal{O}^i -regular map \boldsymbol{q} defined around $S^{V^i}(s)$ by applying the versal unfolding developed in [MaIV] and modify \boldsymbol{q} around C_{i+1} to be compatible with g_{i+1} . This is the required \mathcal{O} -regular map g_i . In section 6 we finally extend the homotopy between s and $j^k g_i$ defined around $S^{V^i}(s)$ to the homotopy defined on the whole space N and obtain a required section.

In what follows let $M = S^{V^i}(s) \setminus \text{Int}(U(C_{i+1}))$. Let

$$\operatorname{Mono}(K(S^{V^{i}}(s))|_{M}, TN|_{M})$$

denote the subset of $\operatorname{Hom}(K(S^{V^i}(s))|_M, TN|_M)$ which consists of all monomorphisms $K(S^{V^i}(s))_c \to T_c N, \ c \in M$. We denote the bundle of local coefficients $\mathscr{B}(\pi_j(\operatorname{Mono}(K(S^{V^i}(s))_c, T_c N))), \ c \in M$, by $\mathscr{B}(\pi_j)$, which is a covering space over M with fiber $\pi_j(\operatorname{Mono}(K(S^{V^i}(s))_c, T_c N))$ defined in [Ste, 30.1]. By the obstruction theory due to [Ste, 36.3], the obstructions for $i_{K(S^{V^i}(s))}|_M$ and $\Psi(s, V^i)|_M$ to be homotopic relative to ∂M are the primary differences $d(i_{K(S^{V^i}(s))}|_M, \Psi(s, V^i)|_M)$, which are defined in $H^j(M, \partial M; \mathscr{B}(\pi_j))$ with local coefficients. We show that unless $n \geq p \geq 2$ and $V^i(n, p) = \Sigma^{n-p+1,0}(n, p)$, all of them vanish by [Ste, 38.2]. In fact, if $n \geq p \geq 2$ and $V^i(n, p) \neq \Sigma^{n-p+1,0}(n, p)$, then we have

$$\dim M < n - \operatorname{codim} \Sigma^{n-p+1} = n - (n-r) = r, \quad \text{for } r = p - 1,$$
$$\dim M \le n - \operatorname{codim} \Sigma^{n-r} = n - (n-r)(p-r) < r, \quad \text{for } r < p - 1.$$

If n < p, then

$$\dim M \le n - \operatorname{codim} \Sigma^{n-r} = n - (n-r)(p-r) \le n - 2(n-r) < r.$$

Since Mono($\mathbf{R}^{n-r}, \mathbf{R}^n$) is identified with GL(n)/GL(r), it follows from [Ste, 25.6] that $\pi_j(\text{Mono}(\mathbf{R}^{n-r}, \mathbf{R}^n)) \cong \{\mathbf{0}\}$ for j < r. Hence, there exists a homotopy $\psi^M(s, V^i)_{\lambda}$: $K(S^{V^i}(s))|_M \to TN|_M$ relative to $M \cap U(C_{i+1})'$ in $\text{Mono}(K(S^{V^i}(s))|_M, TN|_M)$ such that

$$\psi^{M}(s, V^{i})_{0} = i_{K(S^{V^{i}}(s))}|_{M}$$
 and $\psi^{M}(s, V^{i})_{1} = \Psi(s, V^{i})|_{M}$.

Let $\text{Iso}(TN|_M, TN|_M)$ denote the subspace of $\text{Hom}(TN|_M, TN|_M)$ which consists of all isomorphisms of $T_cN, c \in M$. The restriction map

$$r_M : \operatorname{Iso}(TN|_M, TN|_M) \longrightarrow \operatorname{Mono}(K(S^{V^i}(s))|_M, TN|_M)$$

defined by $r_M(h) = h|(K(S^{V^i}(s))_c))$, for $h \in \text{Iso}(T_cN, T_cN)$, induces a structure of a fiber

bundle with fiber Iso $(\mathbf{R}^r, \mathbf{R}^r) \times \operatorname{Hom}(\mathbf{R}^r, \mathbf{R}^{n-r})$. By applying the covering homotopy property of the fiber bundle r_M to the sections $id_{TN|_M}$ and the homotopy $\psi^M(s, V^i)_{\lambda}$, we obtain a homotopy $\Psi(s, V^i)_{\lambda} : TN|_{S^{V^i}} \to TN|_{S^{V^i}}$ such that $\Psi(s, V^i)_0 = id_{TN|_{S^{V^i}}}$, $\Psi(s, V^i)_{\lambda|_c} = id_{T_cN}$ for all $c \in S^{V^i} \cap U(C_{i+1})$ and $r_M \circ \Psi(s, V^i)_{\lambda}|(K(S^{V^i}(s))|_M) =$ $\psi^M(s, V^i)_{\lambda}$. We define $\Phi(s, V^i)_{\lambda} : TN|_{S^{V^i}} \to TN|_{S^{V^i}}$ by $\Phi(s, V^i)_{\lambda} = (\Psi(s, V^i)_{\lambda})^{-1}$.

4. Lemmas.

The section s given in Theorem 3.2 may not satisfy $i_{K(S^{V^i}(s))} = \Psi(S^{V^i}(s))$ and $K(S^{V^i}(s))$ may not even transverse to $S^{V^i}(s)$ either. Therefore, we first have to deform the section s so that $K(S^{V^i}(s))$ is normal to $S^{V^i}(s)$ and $i_{K(S^{V^i}(s))} = \Psi(S^{V^i}(s))$. We next deform s so that $\pi_P \circ s | S^{V^i}(s)$ is an immersion by the Smale-Hirsch Immersion Theorem. The arguments of these two steps are quite similar to those in [An6, Lemmas 5.1 and 5.2]. So we only show important steps in the proofs.

In the proof of the following lemma, $\Phi(s, V^i)_{\lambda|c}$ $(c \in S^{V^i})$ is regarded as a linear isomorphism of T_cN . We set $d_1(s, V^i) = (s|S^{V^i}(s))^*(d_1)$. Let us take closed neighborhoods $W(C_{i+1})_j$ (j = 1, 2) of $U(C_{i+1})$ in $U(C_{i+1})'$ such that $W(C_{i+1})_1 \subset$ $\operatorname{Int} W(C_{i+1})_2$, $W(C_{i+1})_j$ are submanifolds of dimension n with boundary $\partial W(C_{i+1})_j$ and that $\partial W(C_{i+1})_j$ meet transversely with $S^{V^i}(s)$.

LEMMA 4.1. Let $s \in \Gamma_{\mathscr{O}}^{tr}(N, P)$ be a section satisfying the hypotheses of Theorem 3.2. Assume that if $n \geq p \geq 2$, then $V^i(n,p) \neq \Sigma^{n-p+1,0}(n,p)$. Then there exists a homotopy s_{λ} relative to $W(C_{i+1})_1$ in $\Gamma_{\mathscr{O}}^{tr}(N, P)$ with $s_0 = s$ satisfying

(4.1.1) for any λ , $S^{V^i}(s_{\lambda}) = S^{V^i}(s)$ and $\pi_P^k \circ s_{\lambda} | S^{V^i}(s_{\lambda}) = \pi_P^k \circ s | S^{V^i}(s)$,

(4.1.2) we have $i_{K(S^{V^i}(s_1))} = \Psi(s_1, V^i)$, and in particular, $K(S^{V^i}(s_1))_c \subset \mathfrak{n}(s, V^i)_c$ for any point $c \in S^{V^i}(s_1)$.

PROOF. We write an element of $\mathfrak{n}(\sigma, V^i)_c$ as v_c . There exists a small positive number δ such that the map

$$e: D_{\delta}(\mathfrak{n}(\sigma, V^i))|_M \longrightarrow N$$

defined by $e(\mathbf{v}_c) = \exp_{N,c}(\mathbf{v}_c)$ is an embedding, where $c \in M$. Let $\rho : [0, \infty) \to \mathbf{R}$ be a decreasing smooth function such that $0 \le a(t) \le 1$, a(t) = 1 if $t \le \delta/10$ and a(t) = 0 if $t \ge \delta$.

Let $\ell(\boldsymbol{v})$ denote the parallel translation defined by $\ell(\boldsymbol{v})(\boldsymbol{a}) = \boldsymbol{a} + \boldsymbol{v}$. If we represent a jet of $J^k(N, P)$ by $j_x^k \iota_x$ for a germ $\iota_x : (N, x) \to (P, y)$, then we define the homotopy $b_\lambda : J^k(N, P) \to J^k(N, P) \ (0 \le \lambda \le 1)$ of the bundle maps over $N \times P$ as follows. (i) If $x = e(\boldsymbol{v}_c), c \in M$ and $\|\boldsymbol{v}_c\| \le \delta$, then

$$b_{\lambda}(j_{x}^{k}\iota_{x}) = j_{x}^{k}(\iota_{x} \circ \exp_{N,c} \circ \ell(\boldsymbol{v}_{c}) \circ \Phi(s, V^{i})_{a(\|\boldsymbol{v}_{c}\|)\lambda}|_{c} \circ \ell(-\boldsymbol{v}_{c}) \circ \exp_{N,c}^{-1}).$$

(ii) If $x \notin \text{Im}(e)$, then $b_{\lambda}(j_x^k \iota_x) = j_x^k \iota_x$. If δ is sufficiently small, then we may suppose that

$$e(D_{\delta}(\mathfrak{n}(\sigma, V^{i}))|_{M}) \cap W(C_{i+1})_{1} \subset e(D_{\delta}(\mathfrak{n}(\sigma, V^{i}))|_{M \cap W(C_{i+1})_{2}}).$$

If $c \in S^{V^i} \cap U(C_{i+1})$ or if $\|\boldsymbol{v}_c\| \geq \delta$, then $\Phi(s, V^i)_{\lambda|c}$ or $\Phi(s, V^i)_{a(\|\boldsymbol{v}_c\|)\lambda|c}$ is equal to $\Phi(s, V^i)_0|_c = id_{T_cN}$ respectively. Hence, b_{λ} is well defined. We define the homotopy s_{λ} of $\Gamma^{tr}_{\mathcal{O}}(N, P)$ using b_{λ} by $s_{\lambda}(x) = b_{\lambda} \circ s(x)$. By (i) and (ii) we have (4.1.1).

We have that $\mathfrak{n}(s, V^i)_c \supset K(S^{V^i}(s_1))_c$ and $i_{K(S^{V^i}(s_1))} = \Psi(s_1, V^i)$ for $c \in S^{V^i}(s)$. Indeed, let $\Psi(s, V^i)_c(\boldsymbol{v}) = \boldsymbol{w}$ with $\boldsymbol{v} \in K(S^{V^i}(s))_c$ and $\boldsymbol{w} \in \mathfrak{n}(s, V^i)_c$. Setting $s(c) = j_c^k \iota_c$ we have by (i) and (ii) that

$$s_1(c) = s(c) \circ j_c^k \left(\exp_{N,c} \circ \Phi(s, V^i)_1 |_c \circ \exp_{N,c}^{-1} \right).$$

Since $d_1(s_1, V^i)_c = d_1(s, V^i)_c \circ \Phi(s, V^i)_1|_c$ vanishes on $\Psi(s, V^i)(K(S^{V^i}(s))_c)$, we have $\Psi(s, V^i)(K(S^{V^i}(s))_c) = K(S^{V^i}(s_1))_c$. By (3.1), we have $\Psi(s_1, V^i)(\boldsymbol{w}) = \boldsymbol{w}$. \Box

LEMMA 4.2. Let s be a section in $\Gamma^{tr}_{\mathscr{O}}(N, P)$ satisfying the property (4.1.2) for s (in place of s_1) of Lemma 4.1 and $V^i(n, p)$ be given in Theorem 3.2. Then there exists a homotopy α_{λ} relative to $W(C_{i+1})_1$ in $\Gamma_{\mathscr{O}}(N, P)$ with $\alpha_0 = s$ such that

(4.2.1) α_{λ} is transverse to $V^{i}(N, P)$ and $S^{V^{i}}(\alpha_{\lambda}) = S^{V^{i}}(s)$ for any λ ,

(4.2.2) we have $i_{K(S^{V^{i}}(\alpha_{1}))} = \Psi(\alpha_{1}, V^{i})$, and in particular, $K(S^{V^{i}}(\alpha_{1}))_{c} \subset \mathfrak{n}(s, V^{i})_{c}$ for any point $c \in S^{V^{i}}(\alpha_{1})$,

(4.2.3) $\pi_P^k \circ \alpha_1 | S^{V^i}(\alpha_1)$ is an immersion to P such that

$$d(\pi_P^k \circ \alpha_1 | S^{V^i}(\alpha_1)) = (\pi_P^k \circ \alpha_1)^{TP} \circ d_1(\alpha_1, V^i) | T(S^{V^i}(\alpha_1)) : T(S^{V^i}(\alpha_1)) \to TP,$$

where $(\pi_P^k \circ \alpha_1)^{TP} : (\pi_P^k \circ \alpha_1)^*(TP) \to TP$ is the canonical induced bundle map, (4.2.4) $\alpha_\lambda(N \setminus (S^{V^i}(s) \cup \operatorname{Int} W(C_{i+1})_1)) \subset \mathscr{O}^{i-1}(N, P).$

PROOF. In the proof we set $S^{V^i} = S^{V^i}(s)$. We choose a Riemannian metric of P and identify $Q(S^{V^i})$ with the orthogonal complement of $\operatorname{Im}(d_1(s, V^i))$ in $(\pi_P^k \circ s|S^{V^i})^*(TP)$. Since $K(S^{V^i}) \cap T(S^{V^i}) = \{\mathbf{0}\}$, it follows that $(\pi_P^k \circ s)^{TP} \circ d_1(s, V^i)|T(S^{V^i})$ is a monomorphism. By the Smale-Hirsch Immersion Theorem there exists a smooth homotopy of monomorphisms $m'_{\lambda}: T(S^{V^i}) \to TP$ covering a homotopy $m_{\lambda}: S^{V^i} \to P$ relative to $W(C_{i+1})_1$ such that $m'_0 = (\pi_P^k \circ s)^{TP} \circ d_1(s, V^i)|T(S^{V^i})$ and m_1 is an immersion with $d(m_1) = m'_1$. Then we can extend m'_{λ} to a smooth homotopy $\widetilde{m'_{\lambda}}: TN|_{S^{V^i}} \to TP$ of homomorphisms of constant rank r relative to $S^{V^i} \cap W(C_{i+1})_1$ so that $\widetilde{m'_0} = (\pi_P^k \circ s)^{TP} \circ d_1(s, V^i)$.

Recall the submanifold $\Sigma^{n-r}(N, P)^{(1)}$ of $J^1(N, P) = J^1(TN, TP)$, which consists of all jets of rank r. Then

$$\pi_1^k | V^i(N, P) : V^i(N, P) \longrightarrow \Sigma^{n-r}(N, P)^{(1)}$$

becomes a fiber bundle. We regard $\widetilde{m'_{\lambda}}$ as a homotopy $S^{V^i} \to \Sigma^{n-r}(N, P)^{(1)}$. By the covering homotopy property to $s|S^{V^i}$ and $\widetilde{m'_{\lambda}}$, we obtain a smooth homotopy $\alpha_{\lambda}^{\Sigma}: S^{V^i} \to$

 $V^i(N,P)$ covering $\widetilde{m'_{\lambda}}$ relative to $W(C_{i+1})_1$ such that $\alpha_0^{\Sigma} = s | S^{V^i}$.

We have a smooth metric of $\mathfrak{n}(s, V^i)$ over S^{V^i} . For a sufficiently small positive function $\varepsilon : S^{V^i} \to \mathbf{R}$, let $E(S^{V^i})$ denote $\exp_N D_{\varepsilon}(\mathfrak{n}(s, V^i))$. By using the transversality of s and the homotopy extension property of bundle maps for $s|E(S^{V^i})$ and $\alpha_{\lambda}^{\Sigma}$, we first extend $\alpha_{\lambda}^{\Sigma}$ to a smooth homotopy β_{λ} of $E(S^{V^i})$ to a tubular neighborhood of $V^i(N, P)$, say U_{V^i} , covering $\alpha_{\lambda}^{\Sigma}$ relative to $E(S^{V^i}) \cap W(C_{i+1})_1$ such that $\beta_0 = s|E(S^{V^i})$ and β_{λ} is transverse to $V^i(N, P)$. Next extend β_{λ} to a homotopy $\alpha_{\lambda} \in \Gamma_{\mathscr{O}}(N, P)$ so that $\alpha_0 = s$, $\alpha_{\lambda}|E(S^{V^i}) = \beta_{\lambda}, \alpha_{\lambda}|W(C_{i+1})_1 = s|W(C_{i+1})_1$ and that

$$\alpha_{\lambda} \left(N \setminus \operatorname{Int}(E(S^{V^{i}}) \cup W(C_{i+1})_{1}) \right) \subset \mathscr{O}^{i-1}(N, P).$$

$$(4.1)$$

This is the required homotopy α_{λ} .

5. \mathcal{O}^i -regular map around singularities.

In what follows we denote, by σ , the section $\alpha_1 \in \Gamma_{\mathscr{O}}(N, P)$ in Lemma 4.2 which satisfies (4.2.1) to (4.2.4). In this section we construct an \mathscr{O}^i -regular map $\mathfrak{q}(\sigma, V^i)$ defined around $S^{V^i}(\sigma)$ by applying the versal unfolding developed in [**MaIV**]. Next we prepare lemmas which are used in Section 6 in the deformation of $\mathfrak{q}(\sigma, V^i)$ to an \mathscr{O} -regular map compatible with g_{i+1} .

We take a Riemannian metric on P, which induces the Riemannian metric on $S^{V^i}(\sigma)$. Let us choose a Riemannian metric on N which induces a metric of the normal bundle $\mathfrak{n}(\sigma, V^i)$ over $S^{V^i}(\sigma)$ such that

- (i) $S^{V^i}(\sigma)$ is a Riemannian submanifold,
- (ii) $K(S^{V^i}(\sigma))$ is orthogonal to $S^{V^i}(\sigma)$ in N.

For the section $\sigma \in \Gamma_{\mathscr{O}}^{tr}(N, P)$, we set $\mathscr{M}(S^{V^{i}}(\sigma)) = (\sigma|S^{V^{i}}(\sigma))^{*}(\mathscr{M}(V^{i})^{(k-1)})$ and $\mathscr{M}(S^{V^{i}}(\sigma))^{\bullet} = (\sigma|S^{V^{i}}(\sigma))^{*}(\mathscr{M}(V^{i})^{\bullet(k-1)})$. Let $c \in S^{V^{i}}(\sigma), \sigma(c) = j_{c}^{k}f$ and $\pi_{P}^{k}(\sigma(c)) = y(c)$. Then an element of $\mathscr{M}(S^{V^{i}}(\sigma))_{c}^{\bullet}$ is expressed as

$$a_{r+1}(x^{\bullet})\partial/\partial y_{r+1} + \dots + a_p(x^{\bullet})\partial/\partial y_p$$
 (5.1)

where $a_i(x^{\bullet}) \in \mathfrak{m}_{x^{\bullet}}/\mathfrak{m}_{x^{\bullet}}^k$.

Let K and Q refer to $K(S^{V^i}(\sigma))$ and $Q(S^{V^i}(\sigma))$ respectively. Let $\mathfrak{n}(\sigma, V^i)/K$ refer to the orthogonal complement of K in $\mathfrak{n}(\sigma, V^i)$. We write $\mathfrak{n}(\sigma, V^i) = (\mathfrak{n}(\sigma, V^i)/K) \oplus K$. Let $E(S^{V^i})$ denote $\exp_N D_{\varepsilon}(\mathfrak{n}(\sigma, V^i))$.

Let us first define the smooth fiber map

$$q(\sigma, V^i)^{(1)} : E(S^{V^i}) \longrightarrow \operatorname{Im}(d_1(\sigma, V^i)|\mathfrak{n}(\sigma, V^i)) \quad \text{over } S^{V^i}(\sigma)$$

by $q(\sigma, V^i)^{(1)} = d_1(\sigma, V^i) \circ (\exp_N)^{-1} | E(S^{V^i})$. Note that $d_1(\sigma, V^i)$ vanishes on K and gives an isomorphism of $\mathfrak{n}(\sigma, V^i)/K$ onto $\operatorname{Im}(d_1(\sigma, V^i)|\mathfrak{n}(\sigma, V^i))$.

For a point $c \in S^{V^i}(\sigma)$ let $x^{\#} = (x_{n-\rho+1}, \ldots, x_n)$ denote the normal coordinates of $E(S^{V^i})_c$ such that $\{\partial/\partial x_i\}$ for $n-\rho+1 \leq i \leq r$ and $\{\partial/\partial x_i\}$ for $r+1 \leq i \leq n$

constitute the orthonormal bases of $\mathfrak{n}(\sigma, V^i)_c/K_c$ and K_c respectively. Let $e(Q_c)$ denote $\exp_{P,y}(Q_c)$ and let (y_{r+1}, \ldots, y_p) be the normal coordinates of $e(Q_c)$ such that $\{\partial/\partial y_i\}$ constitute the orthonormal basis of Q_c .

Let $\mathscr{D}\sigma$ denote the composite

$$(\sigma|S^{V^{i}}(\sigma))^{*} (p_{\mathcal{M}^{\bullet}} \circ \pi^{k-1}_{\theta,T} \circ \Pi^{k}_{\mathfrak{f}} \circ d\sigma|\mathfrak{n}(\sigma,V^{i})) : \mathfrak{n}(\sigma,V^{i}) \longrightarrow \mathscr{M} (S^{V^{i}}(\sigma))^{\bullet}$$

which is a monomorphism over $S^{V^i}(\sigma)$ by the transversality of σ to $V^i(N, P)$.

Then we define $q(\sigma, V^i)^{(2)} : E(S^{V^i}) \to Q$ over $S^{V^i}(\sigma)$ by

$$q(\sigma, V^i)_c^{(2)}(x^{\#}) = j^k f_c^{\bullet}(x^{\bullet}) + \sum_{j=n-\rho+1}^r x_j \mathscr{D}\sigma\left(\frac{\partial}{\partial x_j}\right)_c(x^{\bullet}).$$
(5.2)

We have defined $q(\sigma, V^i)^{(2)}$ by using the orthonormal bases of $\mathfrak{n}(\sigma, V^i)$ and Q_c . However, the coordinate changes of $\mathfrak{n}(\sigma, V^i)$ and Q_c are linear and so, $q(\sigma, V^i)^{(2)}$ is a well defined smooth fiber map. Let us consider the direct sum decomposition $(\pi_P^k \circ \sigma | S^{V^i})^*(TP) =$ $T(S^{V^i}) \oplus d_1(\sigma, V^i)(\mathfrak{n}(\sigma, V^i)) \oplus Q$. Define the smooth fiber map $q(\sigma, V^i) : E(S^{V^i}) \to$ $d_1(\sigma, V^i)(\mathfrak{n}(\sigma, V^i)) \oplus Q(S^{V^i}(\sigma))$ by

$$q(\sigma, V^{i}) = q(\sigma, V^{i})^{(1)} + q(\sigma, V^{i})^{(2)} \quad \text{over } S^{V^{i}}(\sigma).$$
(5.3)

We define the smooth map $\mathfrak{q}(\sigma,V^i):E(S^{V^i})\to P$ by

$$\mathfrak{q}(\sigma, V^i)_c(x^{\#}) = \exp_{P,c} \circ \left(\pi_P^k \circ \sigma | S^{V^i} \right)^{TP} \circ q(\sigma, V^i)(x^{\#}).$$

$$(5.4)$$

LEMMA 5.1. Let $\varepsilon : S^{V^i}(\sigma) \to \mathbf{R}$ be a sufficiently small positive function. Let $V^i(n,p)$ be given as in Theorem 3.2. Under the above notation, the map $\mathfrak{q}(\sigma,V^i)$ is an \mathscr{O}^i -regular map such that $j^k\mathfrak{q}(\sigma,V^i)$ is transverse to $V^i(E(S^{V^i}),P)$ and $S^{V^i}(\sigma) = S^{V^i}(j^k\mathfrak{q}(\sigma,V^i))$.

PROOF. In the proof we write \mathfrak{q} for $\mathfrak{q}(\sigma, V^i)$. Let us compare the local ring $Q_k(\sigma(c))$ and $Q_k(j_c^k\mathfrak{q})$. By the definition of f^{\bullet} , $Q_k(j_c^k f)$ and $Q_k(j_c^k\mathfrak{q})$ are isomorphic to $Q_k(j_c^k f^{\bullet})$. Hence, $Q_k(j_c^k f)$ and $Q_k(j_c^k\mathfrak{q})$ are isomorphic. It follows from [MaIV, Theorem 2.1] that $\mathfrak{q}(c) \in \mathscr{K}^{\sigma(c)}(E(S^{V^i}), P) \subset V^i(E(S^{V^i}), P)$ for any point $c \in S^{V^i}$. Since $\mathscr{O}(n, p)$ is open, it follows that if ε is sufficiently small, then $\mathfrak{q}(E(S^{V^i})) \subset \mathscr{O}^i(N, P)$.

It is enough for the transversality of $j^k \mathfrak{q}(\sigma, V^i)$ to show that for $n - \rho + 1 \le j \le n$,

$$\left(j^{k}\mathfrak{q}|S^{V^{i}}(j^{k}\mathfrak{q})\right)^{*}\left(p_{\nu(V^{i})}\circ d(j^{k}\mathfrak{q})\right)\left(\partial/\partial x_{j}\right) = \left(\sigma|S^{V^{i}}(\sigma)\right)^{*}\left(p_{\nu(V^{i})}\circ d\sigma\right)\left(\partial/\partial x_{j}\right)$$

 $(j^k \mathfrak{q}|V^i(N, P) \text{ and } \sigma|V^i(N, P) \text{ are different in general})$. By Lemmas 2.1, 2.3 and (2.12) this follows from the following. For $r+1 \leq j \leq n$, we have that

$$\begin{split} \mathscr{D}\sigma_{c}\bigg(\frac{\partial}{\partial x_{j}}\bigg)(x^{\bullet}) &= \big(\sigma|S^{V^{i}}(\sigma)\big)^{*}\bigg(p_{\mathscr{M}^{\bullet}}\circ\pi_{\theta,T}^{k-1}\circ\Pi_{\mathfrak{f}}^{k}\circ d\sigma\bigg(\frac{\partial}{\partial x_{j}}\bigg)\bigg)(x^{\bullet})\\ &= \big(\sigma|S^{V^{i}}(\sigma)\big)^{*}\bigg(p_{\mathscr{M}^{\bullet}}\circ\pi_{\theta,T}^{k-1}\circ\pi^{\mathfrak{f}}\circ d\bigg(\sigma(c),\frac{\partial}{\partial x_{j}}\bigg)\bigg)(x^{\bullet})\\ &= \big(\sigma|S^{V^{i}}(\sigma)\big)^{*}\bigg(p_{\mathscr{M}^{\bullet}}\circ tf\bigg(\frac{\partial}{\partial x_{j}}\bigg)\bigg)(x^{\bullet})\\ &= tf^{\bullet}\bigg(\frac{\partial}{\partial x_{j}}\bigg)(x^{\bullet})\\ &= \sum_{\ell=r+1}^{p}\bigg(\frac{\partial y_{\ell}\circ f^{\bullet}(x^{\bullet})}{\partial x_{j}}\bigg)\frac{\partial}{\partial y_{\ell}}\\ &= \mathscr{D}(j^{k}\mathfrak{q})_{c}\bigg(\frac{\partial}{\partial x_{j}}\bigg)(x^{\bullet}). \end{split}$$

For $n - \rho + 1 \leq j \leq r$, we have by (5.2) that

$$\mathscr{D}(j^k\mathfrak{q})_c\left(\frac{\partial}{\partial x_j}\right)(x^{\bullet}) = \frac{\partial}{\partial x_j}\left(x_j\mathscr{D}\sigma_c\left(\frac{\partial}{\partial x_j}\right)(x^{\bullet})\right) = \mathscr{D}\sigma_c\left(\frac{\partial}{\partial x_j}\right)(x^{\bullet}).$$

Here we give a lemma necessary in the process of modifying $\mathfrak{q}(\sigma, V^i)$ to be compatible with g_{i+1} . Let $\pi_E : E(S^{V_i}) \to S^{V_i}$ be the canonical projection.

LEMMA 5.2. Let $f_j: E(S^{V_i}) \to P$ (j = 1, 2) be \mathcal{O}^i -regular maps such that, for any $c \in S^{V_i}$,

- (i) $f_1|S^{V_i} = f_2|S^{V_i}$, which are immersions and $(df_1)_c = (df_2)_c$,
- (ii) $j^k f_j$ is transverse to $V^i(E(S^{V_i}), P)$ and $S^{V_i} = S^{V^i}(j^k f_1) = S^{V^i}(j^k f_2)$,
- (iii) $K(S^{V^i}(j^k f_1))_c = K(S^{V^i}(j^k f_2))_c$, which are tangent to $\pi_E^{-1}(c)$,
- (iv) $Q(S^{V^i}(j^k f_1))_c = Q(S^{V^i}(j^k f_2))_c$,
- (v) $j_c^k f_1^{\bullet}(x^{\bullet}) = j_c^k f_2^{\bullet}(x^{\bullet}),$
- (vi) the two homomorphisms

$$\mathscr{D}(j^k f_j) : \mathfrak{n}(\sigma, V^i) \longrightarrow \mathscr{M}(S^{V^i}(j^k f_j))^{\bullet}$$

for j = 1, 2 coincide with each other.

Let $\eta: S^{V_i} \to [0,1]$ be any smooth function. Let $\varepsilon: S^{V_i} \to \mathbf{R}$ in the definition of $E(S^{V_i})$ be a sufficiently small positive smooth function. We define $\mathbf{f}^{\eta}: E(S^{V_i}) \to P$ by

$$\boldsymbol{f}^{\eta}(x_{c}) = \exp_{P,f_{1}(c)} \left((1 - \eta(c)) \exp_{P,f_{1}(c)}^{-1} (f_{1}(x_{c})) + \eta(c) \exp_{P,f_{2}(c)}^{-1} (f_{2}(x_{c})) \right)$$

for any $x_c \in \pi_E^{-1}(c)$ with $||x_c|| \leq \varepsilon(c)$. Then the map \mathbf{f}^{η} is a well-defined \mathcal{O}^i -regular map such that for j = 1, 2, and for any $c \in S^{V_i}$,

(5.2.1) $f^{\eta}|S^{V_i} = f_j|S^{V_i}$ and $(df^{\eta})_c = (df_i)_c$, (5.2.2) $j^k f^{\eta}$ is transverse to $V^i(E(S^{V_i}), P)$ and $S^{V_i} = S^{V^i}(j^k f^{\eta})$, (5.2.3) $K(S^{V^i}(j^k f^{\eta}))_c = K(S^{V^i}(j^k f_j))_c$, which is tangent to $\pi_E^{-1}(c)$, (5.2.4) $Q(S^{V^i}(j^k f^{\eta}))_c = Q(S^{V^i}(j^k f_j))_c$, (5.2.5) $j^k_c(f^{\eta})^{\bullet}(x^{\bullet}) = j^k_c f^{\bullet}_j(x^{\bullet})$, (5.2.6) the homomorphism

$$\mathscr{D}(j^k \boldsymbol{f}^{\eta}): \mathfrak{n}(\sigma, V^i) \longrightarrow \mathscr{M}\left(S^{V^i}(j^k \boldsymbol{f}^{\eta})\right)^{\bullet}$$

coincides with the homomorphisms $\mathscr{D}(j^k f_j | S^{V_i})$ (j = 1, 2) in (vi).

PROOF. The local coordinates of

$$\exp_{E(S^{V_i}),c}\left(K(S^{V^i}(j^k f_j)_c)\right) \quad \text{and} \quad \exp_{P,f_j(c)}\left(Q(S^{V^i}(j^k f_j)_c)\right)$$

are independent of coordinates of S^{V_i} , where $Q(S^{V^i}(j^k f_j)_c)$ is regarded as the orthogonal complement of $\operatorname{Im}(d_1(j^k f_j, V^i)_c)$ in $T_{f_i(c)}P$. For $\boldsymbol{v}_c \in \mathfrak{n}(\sigma, V^i)_c$, $d\boldsymbol{f}^{\eta}(\boldsymbol{v}_c)$ is equal to

$$\begin{aligned} d(\exp_{P,f_1(c)}) &\circ \left((1-\eta(c))d(\exp_{P,f_1(c)}^{-1} \circ f_1) + \eta(c)d(\exp_{P,f_2(c)}^{-1} \circ f_2) \right)(\boldsymbol{v}_c) \\ &= \left((1-\eta(c))df_1 + \eta(c)df_2 \right)(\boldsymbol{v}_c) \\ &= (1-\eta(c))df_1(\boldsymbol{v}_c) + \eta(c)df_2(\boldsymbol{v}_c) \\ &= df_j(\boldsymbol{v}_c). \end{aligned}$$

Hence, we have (5.2.1), (5.2.3) and (5.2.4). From (v), (5.2.5) is evident.

We have the normal coordinates $(x_1, \ldots, x_{n-\rho})$ and $x^{\#} = (x_{n-\rho+1}, \ldots, x_n)$ of (S^{V_i}, c) and $(E(S^{V_i})_c, c)$ respectively. Let $(x_1, \ldots, x_r, y_{r+1}, \ldots, y_p)$ be the normal coordinates of (P, c) as before. Let $\mathbf{0}_n$ and $\mathbf{0}_p$ be the coordinates of c and y(c) respectively. Let v(t) be the geodesic curve of \mathbf{v}_c in $E(S^{V_i})_c$ such that $(dv|_{t=0})(d/dt) = \mathbf{v}_c \in E(S^{V_i})_c$ and v(0) = c. For a map germ $g: (E(S^{V_i}), c) \to (P, f_j(c))$, set

$$F_t^g(x) = \ell(g(v(t)), \mathbf{0}_p) \circ g \circ \ell(\mathbf{0}_n, v(t))(x) = g(x + v(t)) - g(v(t)).$$

Since $F_t^g(\mathbf{0}_n) = \mathbf{0}_p$, F_t^g defines the map germs $(E(S^{V_i}), c) \to (P, y(c))$ with the parameter t and F_x^g : $((-1, 1), 0) \to P$ defined by $F_x^g(t) = F_t^g(x)$. Then we have $j_c^{k-1}F^g: ((-1, 1), 0) \to J_{c, f_j(c)}^{k-1}(N, P)$ defined by $j_c^{k-1}F^g(t) = j_c^{k-1}F_t^g$.

By the definition of π^{\dagger} we have that

$$\pi_{j^{k-1}\boldsymbol{f}^{\eta}(c)}^{\boldsymbol{f}} \circ d_{c}(j^{k-1}\boldsymbol{f}^{\eta})(\boldsymbol{v}_{c}) = \left(d(j_{c}^{k-1}F^{\boldsymbol{f}^{\eta}})|_{t=0}\right)(d/dt).$$

Furthermore, $\pi_{\theta,T}^{k-1} \circ \pi_{j^{k-1} \boldsymbol{f}^{\eta}(c)}^{\mathfrak{f}} \circ d_c(j^{k-1} \boldsymbol{f}^{\eta})(\boldsymbol{v}_c)$ is represented by the germ

$$\left(dF_x^{\boldsymbol{f}^{\eta}}|_{t=0}\right)\left(d/dt\right):(N,c)\longrightarrow TP$$

covering f^{η} as in Remark 2.2. The germ $(dF_x^{f^{\eta}}|_{t=0})(d/dt)$ is equal to

$$\begin{aligned} \left(d(\boldsymbol{f}^{\eta}(x+v(t)) - \boldsymbol{f}^{\eta}(v(t))) \right) (dv(t)/dt)|_{t=0} \\ &= \left((1-\eta(c)) df_1(x+v(t))|_{t=0} + \eta(c) df_2(x+v(t))|_{t=0} \right) (\boldsymbol{v}_c) \\ &- \left((1-\eta(c)) df_1(v(t))|_{t=0} + \eta(c) df_2(v(t))|_{t=0} \right) (\boldsymbol{v}_c) \\ &= (1-\eta(c)) \left((df_1(x+v(t)) - df_1(v(t)))|_{t=0} \right) (\boldsymbol{v}_c) \\ &+ \eta(c) \left((df_2(x+v(t)) - df_2(v(t)))|_{t=0} \right) (\boldsymbol{v}_c) \\ &= (1-\eta(c)) \left(dF_x^{f_1}|_{t=0} \right) (d/dt)|_{t=0} + \eta(c) \left(dF_x^{f_2}|_{t=0} \right) (d/dt). \end{aligned}$$

Then $p_{\mathscr{M}^{\bullet}} \circ \pi_{\theta,T}^{k-1} \circ \pi_{j^{k-1} \boldsymbol{f}^{\eta}(c)}^{\mathfrak{f}} \circ d_c(j^{k-1} \boldsymbol{f}^{\eta})(\boldsymbol{v}_c)$ is represented by

$$\begin{aligned} & \left(d(p_{Q_c} \circ F_x^{f^{\eta}} | E(S^{V_i})_c) |_{t=0} \right) (d/dt) \\ &= \left((1 - \eta(c)) d \left(p_{Q_c} \circ F_x^{f_1} | E(S^{V_i})_c \right) |_{t=0} + \eta(c) d \left(p_{Q_c} \circ F_x^{f_2} | E(S^{V_i})_c \right) |_{t=0} \right) (d/dt). \end{aligned}$$

By the definition of $p_{\mathscr{M}^{\bullet}} \circ \pi_{\theta,T}^{k-1} \circ \pi^{\mathfrak{f}}$, we have

$$\mathscr{D}(j^k \boldsymbol{f}^{\eta}) = (1 - \eta(c))\mathscr{D}(j^k f_1) + \eta(c)\mathscr{D}(j^k f_2) = \mathscr{D}(j^k f_j)$$

for j = 1, 2. This implies (5.2.2) and (5.2.6). This completes the proof.

Let \mathfrak{q} denote $\mathfrak{q}(\sigma, V^i) : E(S^{V^i}) \to P$ in (5.4). Now we modify \mathfrak{q} to be compatible with g_{i+1} . Let $\eta: S^{V^i} \to \mathbf{R}$ be a smooth function such that

- (i) $0 \le \eta(c) \le 1$ for $c \in S^{V^i}$,
- (ii) $\eta(c) = 0$ for c in a small neighborhood of $S^{V^i} \cap W(C_{i+1})_1$ within $S^{V^i} \setminus W(C_{i+1})_2$,
- (iii) $\eta(c) = 1$ for $c \in S^{V^i} \setminus W(C_{i+1})_2$.

Then define the map $G: E(S^{V^i}) \cup W(C_{i+1})_1 \to P$ by

- if $x \in W(C_{i+1})_1$, then $G(x) = g_{i+1}(x)$,
- if $x_c \in E(S^{V^i})|_{S^{V^i} \setminus \operatorname{Int}(W(C_{i+1})_2)}$, then $G(x_c) = \mathfrak{q}(x_c)$,
- if $x_c \in E(S^{V^i})|_{S^{V^i} \cap W(C_{i+1})_2}$, then $G(x_c)$ is equal to

$$\exp_{P,\mathfrak{q}(c)}\left((1-\eta(c))\exp_{P,\mathfrak{q}(c)}^{-1}(g_{i+1}(x_c))+\eta(c)\exp_{P,\mathfrak{q}(c)}^{-1}(\mathfrak{q}(x_c))\right),\$$

where δ is so small that G(x) is well-defined and that $E(S^{V^i}) \cap W(C_{i+1})_1 \subset \pi_E^{-1}(S^{V^i} \cap W(C_{i+1})_2)$ holds.

By Lemmas 5.1 and 5.2 we have the following corollary.

COROLLARY 5.3. The above map G is an \mathcal{O} -regular map defined on $E(S^{V^i}) \cup W(C_{i+1})_1$ such that

(5.3.1) $j^k G$ is transverse to $V^i(N, P)$ and $(G|E(S^{V^i}))^{-1}(V^i(N, P)) = S^{V^i}$, (5.3.2) $G|S^{V^i} = \mathfrak{q}|S^{V^i} = \pi_P^k \circ \sigma|S^{V^i}$ and $(dG)_c = (d\mathfrak{q})_c$, (5.3.3) $G|E(S^{V^i})$ is \mathcal{O}^i -regular, (5.3.4) $K(S^{V^i}(j^k G)) = K(S^{V^i}(j^k \mathfrak{q})) = K, \ Q(S^{V^i}(j^k G)) = Q(S^{V^i}(j^k \mathfrak{q})) = Q$, (5.3.5) if we write $\sigma(c) = j_c^k(f_{\sigma(c)})$, then

$$\left(j_c^k f^{\bullet}_{\sigma(c)}\right)(x^{\bullet}) = j_c^k \mathfrak{q}^{\bullet}(x^{\bullet}) = j_c^k G^{\bullet}(x^{\bullet}),$$

(5.3.6) the following three homomorphisms coincide with each other.

$$\mathscr{D}(j^k G) = \mathscr{D}(j^k \mathfrak{q}) = \mathscr{D}\sigma : \mathfrak{n}(\sigma, V^i) \to \mathscr{M}(S^{V^i}(\sigma))^{\bullet}.$$

Let us recall the additive structure of $J^k(N, P)$ in (1.2). Then we define the homotopy $\kappa_{\lambda}: S^{V^i} \to J^k(N, P)$ by

$$\kappa_{\lambda}(c) = (1 - \lambda)\sigma(c) + \lambda j^{k}G(c) \quad \text{covering } \pi_{P}^{k} \circ \sigma | S^{V^{i}} : S^{V^{i}} \to P,$$

where $\pi_P^k \circ \sigma | S^{V^i}$ is the immersion.

LEMMA 5.4. The homotopy κ_{λ} is a map of S^{V^i} to $V^i(N, P)$.

PROOF. It follows from Corollary 5.3, (5.3.1) to (5.3.6) that $K(S^{V^i}(\kappa_{\lambda})) = K$ and $Q(S^{V^i}(\kappa_{\lambda})) = Q$ and that if we write $\kappa_{\lambda}(c) = j_c^k(f_{\lambda})$, then $(j_c^k f_{\lambda}^{\bullet})(x^{\bullet}) = (j_c^k f_{\sigma(c)}^{\bullet})(x^{\bullet}) = j_c^k G^{\bullet}(x^{\bullet})$. By the definition of local rings we have $Q_k(j_c^k f) \approx Q_k(j_c^k f^{\bullet})$, $Q_k(j_c^k f_{\lambda}) \approx Q_k(j_c^k f_{\lambda}^{\bullet})$ and $Q_k(j_c^k G) \approx Q_k(j_c^k G^{\bullet})$.

Since $V^i(N, P)$ is \mathscr{K} -invariant, it follows from [**MaIV**, Theorem 2.1] that $\kappa_{\lambda}(c)$ lies in $V^i_{c,y(c)}(N, P)$ for any λ and any $c \in S^{V^i}$, where $y(c) = \pi_P^k \circ \sigma(c)$.

The proof of the following lemma is elementary, and so is left to the reader.

LEMMA 5.5. Let (Ω, Σ) be a pair consisting of a manifold and its submanifold of codimension ρ . Let $\varepsilon : S^{V_i} \to \mathbf{R}$ be a sufficiently small positive smooth function. Let $h : E(S^{V_i}) \to (\Omega, \Sigma)$ be a smooth map such that $S^{V_i} = h^{-1}(\Sigma)$ and that h is transverse to Σ . Then there exists a smooth homotopy $h_{\lambda} : (E(S^{V_i}), S^{V_i}) \to (\Omega, \Sigma)$ between h and $\exp_{\Omega} \circ dh \circ (\exp_N |\mathbf{n}(\sigma, V^i))^{-1}| E(S^{V_i})$ such that

(5.4.1) $h_{\lambda}|S^{V_i} = h_0|S^{V_i}, S^{V_i} = h_{\lambda}^{-1}(\Sigma) = h_0^{-1}(\Sigma)$ for any λ ,

(5.4.2) h_{λ} is smooth and is transverse to Σ for any λ ,

(5.4.3) $h_0 = h$ and $h_1(x_c) = \exp_{\Omega, h(c)} \circ dh \circ (\exp_N |\mathfrak{n}(\sigma, V^i))^{-1}(x_c)$ for $c \in S^{V_i}$ and $x_c \in E(S^{V_i})_c$.

6. Proof of Theorem 3.2.

In this section we deform $\mathfrak{q}(\sigma, V^i)$ to an \mathscr{O} -regular map G compatible with g_{i+1} . By the definition of the deformation we can construct a homotopy between σ and $j^k G$ around $S^{V^i}(\sigma)$, which is extendable to a required homotopy to the whole space N.

Let us take closed neighborhoods $U(C_{i+1})_j$ (j = 1, 2) of $U(C_{i+1})$ in the interior of $W(C_{i+1})_1$ with $U(C_{i+1})_1 \subset \operatorname{Int} U(C_{i+1})_2$ such that $U(C_{i+1})_j$ are submanifolds of dimension *n* with boundary $\partial U(C_{i+1})_j$ meeting transversely with $S^{V^i}(\sigma)$.

PROOF OF THEOREM 3.2. Deform $s \in \Gamma_{\mathscr{O}}^{tr}(N, P)$ in Theorem 3.2 as before to a section $\sigma \in \Gamma_{\mathscr{O}}(N, P)$ as in Lemma 4.2 which satisfies (4.2.1), (4.2.2) and (4.2.3) where α_1 is replaced by σ . Set $S^{V^i} = S^{V^i}(\sigma)$, $K = K(S^{V^i}(\sigma))$ and $Q = Q(S^{V^i}(\sigma))$. Let $E(S^{V_i}) = \exp_N(D_{\delta \circ \sigma}(\mathfrak{n}(\sigma, V^i)))$, where $\delta : V^i(N, P) \to \mathbf{R}$ is a sufficiently small positive function which is constant on $\sigma(S^{V^i}(\sigma) \setminus \operatorname{Int} U(C_{i+1}))$.

It suffices for the proof of Theorem 3.2 to prove the following assertion (**A**). In fact, we obtain a required homotopy s_{λ} in Theorem 3.2 by pasting the homotopies α_{λ} in Lemma 4.2 and H_{λ} in (**A**).

(A) There exists a homotopy H_{λ} relative to $U(C_{i+1})_1$ in $\Gamma_{\mathscr{O}}(N, P)$ with $H_0 = \sigma$ and $H_1 \in \Gamma_{\mathscr{O}}^{tr}(N, P)$ satisfying the following (1), (2) and (3).

(1) H_{λ} is transverse to $V^{i}(N, P)$ and $S^{V^{i}}(H_{\lambda}) = S^{V^{i}}$ for any λ .

(2) We have an \mathscr{O} -regular map G which is defined on a neighborhood of $E(S^{V^i}) \cup U(C_{i+1})_1$ to P such that $j^k G = H_1$ on $E(S^{V^i}) \cup U(C_{i+1})_1$ and that $G(E(S^{V^i})) \subset \mathscr{O}^i(N, P)$.

(3) $H_{\lambda}(N \setminus \operatorname{Int}(E(S^{V^{i}}) \cup U(C_{i+1})_{1})) \subset \mathscr{O}^{i-1}(N, P).$

Let us prove (**A**). We use the Riemannian metrics which are chosen in the beginning of Section 5. The map $\exp_P \circ (\pi_P^k \circ \sigma | S^{V^i})^{TP} | D_{\gamma}(Q)$ is an immersion for some small positive function γ . We express a point of $E(S^{V^i})$ as x_c , where $c \in S^{V^i}$ and $||x_c|| \leq \delta(\sigma(c))$.

It follows from Corollary 5.3 that G is an \mathscr{O} -regular map defined on $E(S^{V^i}) \cup W(C_{i+1})_1$. It is known that the Riemannian metrics on N and P induce the Riemannian metric on $J^k(N, P)$ by using (1.2) (see, for example, [**An6**, Section 3]). Let h_1^1 and h_0^3 be the maps $(E(S^{V^i}), S^{V^i}) \to (\mathscr{O}^i(N, P), V^i(N, P))$ defined by

$$h_{1}^{1}(x_{c}) = \exp_{\mathscr{O}(N,P),\sigma(c)} \circ d_{c}\sigma \circ (\exp_{N,c})^{-1}(x_{c}),$$

$$h_{0}^{3}(x_{c}) = \exp_{\mathscr{O}(N,P),j^{k}G(c)} \circ d_{c}(j^{k}G) \circ (\exp_{N,c})^{-1}(x_{c}).$$
(6.1)

By applying Lemma 5.5 to the sections σ and h_1^1 (respectively h_0^3 and $j^k G$) we first obtain a homotopy h_{λ}^1 (respectively h_{λ}^3) $\in \Gamma_{\mathscr{O}^i}(E(S^{V^i}), P)$ between $h_0^1 = \sigma$ and h_1^1 on $E(S^{V^i})$ (respectively between h_0^3 and $h_1^3 = j^k G$) satisfying the properties (5.5.1), (5.5.2) and (5.5.3) of Lemma 5.5.

Next we construct a homotopy of bundle maps $E(S^{V^i}) \to \nu(V^i(N, P))$ covering $\kappa_{\lambda} : S^{V^i} \to V^i(N, P)$ in Lemma 5.4 using a homotopy between $d\sigma |\mathfrak{n}(\sigma, V^i)$ and $d(j^k G) |\mathfrak{n}(\sigma, V^i)$. By the equalities of the homomorphisms in Corollary 5.3, (5.3.6), we obtain a homotopy of bundle maps

$$\kappa_{\lambda}^{E,\mathscr{M}}:\mathfrak{n}(\sigma,V^{i})\to\mathscr{M}(S^{V^{i}}(\sigma))^{\bullet}\xrightarrow{(\kappa_{\lambda})^{\mathscr{M}(V^{i})^{\bullet}(k-1)}}\mathscr{M}(V^{i})^{\bullet(k-1)}$$

covering κ_{λ} as the composite $(\kappa_{\lambda})^{\mathscr{M}(V^{i})^{\bullet(k-1)}} \circ \mathscr{D}\sigma$. Let $\widetilde{\kappa_{\lambda}}$ denote the composite $p_{\nu}^{\mathscr{M}} \circ$

 $\kappa_{\lambda}^{E,\mathscr{M}}$, where $p_{\nu}^{\mathscr{M}}$ is the projection in (2.9). Then $\widetilde{\kappa_{\lambda}}$ is a bundle map between the ρ dimensional vector bundles covering κ_{λ} . Since the composite $p_{\nu}^{\mathscr{M}} \circ p_{\mathscr{M}} \circ \sigma \pi_{\theta,T}^{k-1} \circ \pi^{\dagger}$ is equal to the canonical projection $p_{\nu(V^{i})}$ by Lemma 2.1, we have

$$\widetilde{\kappa_0} = p_{\nu}^{\mathscr{M}} \circ \left(\sigma | S^{V^i} \right)^{\mathscr{M}(V^i)^{\bullet(k-1)}} \circ \mathscr{D}\sigma$$
$$= p_{\nu}^{\mathscr{M}} \circ p_{\mathscr{M}^{\bullet}} \circ \pi_{\theta,T}^{k-1} \circ \Pi_{\mathfrak{f}}^k \circ d\sigma | \mathfrak{n}(\sigma, V^i)$$
$$= p_{\nu(V^i)} \circ d\sigma | \mathfrak{n}(\sigma, V^i)$$

and $\widetilde{\kappa_1} = p_{\nu(V^i)} \circ d(j^k G) | \mathfrak{n}(\sigma, V^i)$ similarly.

We define a homotopy $h_{\lambda}^2 : (E(S^{V^i}), S^{V^i}) \to (\mathscr{O}^i(N, P), V^i(N, P))$ covering κ_{λ} by

$$h_{\lambda}^{2}(x_{c}) = \exp_{\mathscr{O}(N,P),\sigma(c)} \circ \widetilde{\kappa_{\lambda}} \circ (\exp_{N,c})^{-1}(x_{c}),$$

where $h_0^2(x_c) = h_1^1(x_c)$, $h_1^2(x_c) = h_0^3(x_c)$ on $E(S^{V^i})$. Since $h_0^1(x_c) = h_1^3(x_c) = \sigma(x_c)$ for $x_c \in W(C_{i+1})_1$, we may assume in the construction of h_{λ}^1 , h_{λ}^2 and h_{λ}^3 that if $x_c \in W(C_{i+1})_1$, then

$$h_{\lambda}^{2}(x_{c}) = h_{0}^{2}(x_{c}) = h_{1}^{2}(x_{c}) \text{ and } h_{\lambda}^{1}(x_{c}) = h_{1-\lambda}^{3}(x_{c}) \text{ for any } \lambda.$$
 (6.2)

Let $h'_{\lambda} \in \Gamma_{\mathscr{O}^i}(E(S^{V^i}), P)$ be the homotopy which is obtained by pasting h^1_{λ} , h^2_{λ} and h^3_{λ} . The homotopies h^1_{λ} and h^3_{λ} are not homotopies relative to $E(S^{V^i}) \cap W(C_{i+1})_1$ in general. By using the above properties and (6.2) about h^1_{λ} , h^2_{λ} and h^3_{λ} , we can modify h'_{λ} to a smooth homotopy $h_{\lambda} \in \Gamma_{\mathscr{O}^i}(E(S^{V^i}), P)$ with $\pi^k_P \circ h_{\lambda}(c) = \pi^k_P \circ \sigma(c)$ such that

- (4) $h_{\lambda}(x_c) = h_0(x_c) = \sigma(x_c)$ for any λ and $x_c \in E(S^{V^i}) \cap U(C_{i+1})_2$,
- (5) $h_0(x_c) = \sigma(x_c)$ for any $x_c \in E(S^{V^i})$,
- (6) $h_1(x_c) = j^k G(x_c)$ for any $x_c \in E(S^{V^i})$,
- (7) h_{λ} is transverse to $V^{i}(N, P)$ and $h_{\lambda}^{-1}(V^{i}(N, P)) = S^{V^{i}}$.

Since $G(E(S^{V^i}) \cup W(C_{i+1})_1 \setminus C_{i+1}) \subset \mathscr{O}^i(N, P)$ and $j^k G$ is transverse to $V^i(N, P)$, it follows from [**G-G**, Ch. II, Corollary 4.11] that there exists a homotopy G_{λ} of \mathscr{O} -regular maps $E(S^{V^i}) \cup U(C_{i+1})_2 \to P$ relative to $U(C_{i+1})_2$ with $G_0 = G$ such that

$$j^{k}G_{\lambda}^{-1}(\mathscr{O}(N,P)\backslash \mathscr{O}^{i}(N,P)) \subset \operatorname{Int}\big(\exp_{N}(D_{(1/2)\delta\circ\sigma}(\mathfrak{n}(\sigma,V^{i}))) \cup U(C_{i+1})_{2}\big),$$

that $j^k G_{\lambda}$ is transverse to $V^i(N, P)$ for any λ and that $j^k G_1$ is transverse to $V^j(N, P)$ for all j.

By using (4)–(7), we can extend h_{λ} to the homotopy $H'_{\lambda} \in \Gamma_{\mathscr{O}}(E(S^{V^{i}}) \cup U(C_{i+1})_{2}, P)$ defined by

$$\begin{aligned} H'_{\lambda} | E(S^{V^{i}}) &= h_{2\lambda} & (0 \le \lambda \le 1/2), \\ H'_{\lambda} | (E(S^{V^{i}}) \cup U(C_{i+1})_{2}) &= j^{k} G_{2\lambda - 1} & (1/2 \le \lambda \le 1), \\ H'_{\lambda} | U(C_{i+1})_{2} &= \sigma | U(C_{i+1})_{2} & (0 \le \lambda \le 1), \end{aligned}$$

such that $H'_{\lambda}(\partial(E(S^{V^i}) \cup U(C_{i+1})_2)) \subset \mathscr{O}^{i-1}(N, P)$. Furthermore, we slightly modify H'_{λ} to be smooth.

By the transversalities of H'_{λ} to $V^i(N, P)$ and of H'_1 to $V^j(N, P)$ for all j and the homotopy extension property to σ and H'_{λ} , we can extend H'_{λ} to a homotopy

$$H_{\lambda}: (N, S^{V^i}) \longrightarrow (\mathscr{O}(N, P), V^i(N, P))$$

relative to $U(C_{i+1})_1$ such that $H_0 = \sigma$, $H_1 \in \Gamma^{tr}_{\mathscr{O}}(N, P)$ and $H_1(N \setminus \operatorname{Int}(E(S^{V^i}) \cup U(C_{i+1})_2)) \subset \mathscr{O}^{i-1}(N, P)$. Then H_{λ} is the required homotopy in $\Gamma_{\mathscr{O}}(N, P)$ in the assertion (A).

7. \mathscr{K} -simple singularities.

Let z be a jet of $J^k(n,p)$. We say that z is \mathscr{K} -k-simple if there exists an open neighborhood U of z in $J^k(n,p)$ such that only a finite number of \mathscr{K} -orbits intersect with U. A \mathscr{K} -orbit $\mathscr{K}z$ of a \mathscr{K} -k-simple k-jet z is also called \mathscr{K} -k-simple.

Let W_j denote the subset consisting of all $z \in J^k(n,p)$ such that the codimensions of $\mathscr{K}z$ in $J^k(n,p)$ are not less than j. Let W_j^* denote the union of all irreducible components of W_j whose codimensions in $J^k(n,p)$ is less than j. The following lemma has been observed in [**MaV**, Section 7 and Proof of Theorem 8.1].

Lemma 7.1.

- (i) W_j is a closed algebraic subset of $J^k(n, p)$.
- (ii) If we set W'_j = W_j\(W^{*}_j ∪ W_{j+1}), then W'_j is a Zariski locally closed subset of J^k(n,p) of codimension j.
- (iii) For any jet $z \in W'_i$, $\mathscr{K}z$ is open in W'_i .
- (iv) W'_i consists of a finite number of \mathscr{K} -orbits.

We define \mathscr{K} -k-simplicity for a jet in $J_{x,y}^k(N, P)$ similarly as in $J^k(n, p)$. A smooth map germ $f: (N, x) \to (P, y)$ is called \mathscr{K} - ℓ -determined if any smooth map germ $g: (N, x) \to (P, y)$ such that $j_x^\ell f = j_x^\ell g$ is \mathscr{K} -equivalent to f. If f is \mathscr{K} - ℓ -determined, then $j_x^\ell f$ is also called \mathscr{K} - ℓ -determined.

PROPOSITION 7.2. Let $k \ge p+1$ and $z \in J_{x,y}^k(N, P)$. If z is a singular \mathscr{K} -k-simple jet and $\operatorname{codim} \mathscr{K} z \le |n-p| + k - 2$, then z is \mathscr{K} -(k-1)-determined.

PROOF. For $1 \leq \ell \leq k$, let $\pi_{\ell}^k : J_{x,y}^k(N,P) \to J_{x,y}^\ell(N,P)$ denote the canonical projection. Let $c_\ell(z)$ denote the codimension of the \mathscr{K} -orbit of $\pi_{\ell}^k(z)$ in $J_{x,y}^\ell(N,P)$. Since $\pi_{\ell}^k(z)$ is of rank $r < \min(n,p)$ and $\operatorname{codim}\Sigma^{n-r}(n,p) = (n-r)(p-r)$, we have $c_1 \geq (n-r)(p-r)$. Since $c_1 \leq c_2 \leq \cdots \leq c_k$, we have

$$|n-p| + 1 \le c_1 \le \dots \le c_k \le |n-p| + k - 2.$$

There exists a number ℓ with $1 \leq \ell \leq k-2$ such that $c_{\ell} = c_{\ell+1}$. By applying [MaIII, Proposition 7.4] to the tangent spaces of $\mathscr{K}(\pi_{\ell}^{k}(z))$ and $\mathscr{K}(\pi_{\ell+1}^{k}(z))$, we have that

$$tf(\mathfrak{m}_x\theta(N)_x) + f^*(\mathfrak{m}_y)\theta(f)_x + \mathfrak{m}_x^{\ell+1}\theta(f)_x$$

= $tf(\mathfrak{m}_x\theta(N)_x) + f^*(\mathfrak{m}_y)\theta(f)_x + \mathfrak{m}_x^{\ell+2}\theta(f)_x.$

From the Nakayama Lemma it follows that

$$tf(\mathfrak{m}_x\theta(N)_x) + f^*(\mathfrak{m}_y)\theta(f)_x \supset \mathfrak{m}_x^{\ell+1}\theta(f)_x.$$

Therefore, z is \mathscr{K} - $(\ell + 1)$ -determined and so, \mathscr{K} -(k - 1)-determined by [W, Theorem 1.2].

COROLLARY 7.3. Let $k \ge p+2$. Let z be a singular \mathscr{K} -k-simple jet and $\operatorname{codim} \mathscr{K} z \le n$. Then z is \mathscr{K} -(k-1)-determined and we have $\mathscr{K} z = (\pi_{k-1}^k)^{-1}$ $(\mathscr{K}(\pi_{k-1}^k(z))).$

Now we have the following Theorem.

THEOREM 7.4. Let $k \ge p+2$. Let $z = j_x^k f \in J_{x,y}^k(N, P)$ be \mathscr{K} -(k-1)-determined and $w = \pi_{k-1}^k(z)$. Then we have

$$d(\mathbf{K}(\mathscr{K}^{z}(N,P))_{z}) \cap \left(\pi_{k-1}^{k} | \mathscr{K}^{z}(N,P)\right)^{*} \left(T(\mathscr{K}^{w}(N,P))\right)_{z} = \{0\}.$$

PROOF. For a vector $\boldsymbol{v} \neq \boldsymbol{0}$ let $\zeta_{\boldsymbol{v}}^z$ be the vector field in Lemma 2.3. Suppose that $\pi^{\mathfrak{f}} \circ \boldsymbol{d}(\boldsymbol{v}) \in T_w(\mathscr{K}^w_{x,y}(N,P))$. Then it follows from (2.4) and Corollary 7.3 that $tf(\boldsymbol{v}_U) \in tf(\mathfrak{m}_x\theta(N)_x) + f^*(\mathfrak{m}_y)\theta(f)_x$. It has been proved in the proof of [MaIV, Theorem 2.5] that $\boldsymbol{v}_U \in \mathfrak{m}_x\theta(N)_x$. This is a contradiction.

The following theorem follows from Corollary 7.3, and Theorems 0.1 and 7.4.

THEOREM 7.5. Let k be an integer with $k \ge p+2$. Let $\mathscr{O}(n,p)$ be a nonempty open subset in $J^k(n,p)$ which consists of a finite number of \mathscr{K} -k-simple \mathscr{K} -orbits, and of $\Sigma^{n-p+1,0}(n,p)$ in addition in the case $n \ge p$. Then $\mathscr{O}(n,p)$ is an admissible open subset. In particular, Theorem 0.1 holds for $\mathscr{O}(n,p)$.

REMARK 7.6. In Theorem 7.5, if f is transverse to all singular \mathscr{K} -orbits, then the germ $f: (N, c) \to (P, f(c))$ is C^{∞} -stable in the sense of [MaIV]. This fact follows from [Mar2, Ch. XV, 5, Theorem].

Finally we give examples of open sets $\mathcal{O}(n,p)$ in $J^k(n,p)$ in Theorem 7.5. Let $k \gg n, p$.

(1) Let A_m , D_m and E_m denote the types of the singularities of function germs studied in [**Mo**] and [**Ar**]. We say that a smooth map germ $f : (\mathbf{R}^n, \mathbf{0}) \to (\mathbf{R}^p, \mathbf{0})$ has a singularity of type A_m , D_m or E_m , when f is \mathscr{K} -equivalent to one of the versal unfoldings $(\mathbf{R}^n, \mathbf{0}) \to (\mathbf{R}^p, \mathbf{0})$ of the following genotypes with respective singularities, where $n > p \ge 2$ in the case of types D_m and E_m .

Singularities of given \mathscr{K} -invariant class

 $(A_m) \quad \pm u^{m+1} \pm x_p^2 \pm \dots \pm x_{n-1}^2 \quad (m \ge 1),$ $(D_m) \quad u^2 \ell \pm \ell^{m-1} \pm x_p^2 \pm \dots \pm x_{n-2}^2 \quad (m \ge 4),$ $(E_6) \quad u^3 \pm \ell^4 \pm x_p^2 \pm \dots \pm x_{n-2}^2,$ $(E_7) \quad u^3 + u\ell^3 \pm x_p^2 \pm \dots \pm x_{n-2}^2,$ $(E_8) \quad u^3 + \ell^5 \pm x_p^2 \pm \dots \pm x_{n-2}^2.$

Let \mathfrak{a}_m , \mathfrak{d}_m and \mathfrak{e}_m denote the k-jets of the germs of types A_m , D_m and E_m of codimension $n - p + m \leq n$ in $J^k(n, p)$. Let O(n, p) be a subset which consists of all regular jets and a number of \mathscr{K} -orbits $\mathscr{K}\mathfrak{a}_i$, $\mathscr{K}\mathfrak{d}_j$ and $\mathscr{K}\mathfrak{e}_h$ of codimensions $\leq n$. This subset O(n, p) is an open subset of $J^k(n, p)$ if and only if the following three conditions are satisfied.

- (i) If $\mathscr{K}\mathfrak{a}_i \subset \mathscr{O}(n,p)$, then $\mathscr{K}\mathfrak{a}_\ell \subset \mathscr{O}(n,p)$ for all ℓ with $1 \leq \ell < i$.
- (ii) If $\mathscr{K}\mathfrak{d}_i \subset \mathscr{O}(n,p)$, then $\mathscr{K}\mathfrak{a}_\ell$ $(1 \leq \ell < i)$ and $\mathscr{K}\mathfrak{d}_\ell$ $(4 \leq \ell < i)$ are all contained in $\mathscr{O}(n,p)$.
- (iii) If $\mathscr{K}\mathfrak{e}_i \subset \mathscr{O}(n,p)$, then $\mathscr{K}\mathfrak{a}_\ell$ $(1 \leq \ell < i)$, $\mathscr{K}\mathfrak{d}_\ell$ $(4 \leq \ell < i)$ and $\mathscr{K}\mathfrak{e}_\ell$ $(6 \leq \ell < i)$ are all contained in $\mathscr{O}(n,p)$.

One can prove this assertion by the adjacency relation among the singularities of types A, D and E due to $[\mathbf{Ar}]$ (see, for example, the detailed proof in $[\mathbf{An5}]$).

(2) Let $\mathcal{O}(n,p)$ denote the open subset in $J^k(n,p)$ which consists of all regular jets and \mathcal{K} -k-simple orbits.

(3) Let n = p. Let $\mathcal{O}(n, p)$ be the open subset in $J^k(n, p)$ which consists of all regular jets, the \mathscr{K} -orbits $\mathscr{K}\mathfrak{a}_m$ and the \mathscr{K} -orbits of the following types of codimensions $\leq n$ in [MaVI, Section 7].

$$\begin{split} \mathrm{I}_{a,b} &: \boldsymbol{R}[[x,y]]/(xy,x^a+y^b), \quad b \geq a \geq 2, \\ \mathrm{II}_{a,b} &: \boldsymbol{R}[[x,y]]/(xy,x^a-y^b), \quad b \geq a \geq 2, \\ \mathrm{III}_a &: \boldsymbol{R}[[x,y]]/(x^2+y^2,x^a), \quad a \geq 3. \end{split}$$

References

- [An1] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471–487.
- [An2] Y. Ando, An existence theorem of foliations with singularities A_k , D_k and E_k , Hokkaido Math. J., **19** (1991), 571–578.
- [An3] Y. Ando, Fold-maps and the space of base point preserving maps of spheres, J. Math. Kyoto Univ., 41 (2002), 691–735.
- [An4] Y. Ando, Existence theorems of fold-maps, Japanese J. Math., **30** (2004), 29–73.
- [An5] Y. Ando, The homotopy principle in the existence level for maps with only singularities of types A, D and E, http://front.math.ucdavis.edu/math.GT/0411399.
- [An6] Y. Ando, A homotopy principle for maps with prescribed Thom-Boardman singularities, Trans. Amer. Math. Soc., 359 (2007), 480–515.
- [An7] Y. Ando, Stable homotopy groups of spheres and higher singularities, J. Math, Kyoto Univ., 46 (2006), 147–165.
- $[An8] \qquad {\rm Y. \ Ando, \ Cobordisms \ of \ maps \ with \ singularities \ of \ given \ \mathscr{K}\mbox{-invariant \ class, \ preprint.}}$

[Ar]	V. I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups A_k ,
[]	D_k, E_k and Lagrangian singularities, Funct. Anal. Appl., 6 (1972), 254–272.
[B]	J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33 (1967), 21–57.
[C]	D. Chess, A note on the class $[S_1^k(f)]$, In: Proceedings of Symposia in Pure Math., 40, Part
	1, AMS., 1983, pp. 221–224.
[duP1]	A. du Plessis, Maps without certain singularities, Comment. Math. Helv., 50 (1975), 363-382.
[duP2]	A. du Plessis, Homotopy classification of regular sections, Compos. Math., 32 (1976), 301–333.
[duP3]	A. du Plessis, Contact invariant regularity conditions, 535, Springer Lecture Notes, 1976,
	pp. 205–236.
[E1]	J. M. Èliašberg, On singularities of folding type, Math. USSR. Izv., 4 (1970), 1119–1134.
[E2]	J. M. Èliašberg, Surgery of singularities of smooth mappings, Math. USSR. Izv., 6 (1972),
	1302–1326.
[F]	S. Feit, k-mersions of manifolds, Acta Math., 122 (1969), 173–195.
[G1]	M. Gromov, Stable mappings of foliations into manifolds, Math. USSR. Izv., 3 (1969), 671–
	694.
[G2]	M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, Heidelberg, 1986.
[G-G]	M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag,
	Berlin, Heidelberg, 1973.
[H]	M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242–276.
[K-N]	S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 1, Interscience Publishers,
(* 1	New York, 1963.
[L]	H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, I,
[] (] (]	Springer Lecture Notes in Math., 192 , Springer-Verlag, Berlin, 1971, pp. 1–85.
[Mar1]	J. Martinet, Déploiements versels des applications différentiables et classification des applica-
[M9]	tions stables, Springer Lecture Notes in Math., 535 , Springer-Verlag, Berlin, 1976, pp. 1–44.
[Mar2]	J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, London, 1982.
[MaIII]	J. N. Mather, Stability of C^{∞} mappings, III: Finitely determined map-germs, Publ. Math.
[main]	Inst. Hautes Étud. Sci., 35 (1968), 127–156.
[MaIV]	J. N. Mather, Stability of C^{∞} mappings, IV: Classification of stable germs by <i>R</i> -algebra, Publ.
[wiai v]	Math. Inst. Hautes Étud. Sci., 37 (1970), 223–248.
[MaV]	J. N. Mather, Stability of C^{∞} mappings, V: Transversality, Adv. Math., 4 (1970), 301–336.
[MaVI]	J. N. Mather, Stability of C^{∞} mappings: VI, The nice dimensions, Springer Lecture Notes in
	Math., 192 , Springer-Verlag, Berlin, 1971, pp. 207–253.
[Mo]	B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sci.
	Paris, 260 (1960), 6503–6506.
[P]	A. Phillips, Submersions of open manifolds, Topology, 6 (1967), 171–206.
[Sady]	R. Sadykov, The Chess conjecture, Algebr. Geom. Topol., 3 (2003), 777–789.
[Sm]	S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. Math., 69
	(1969), 327-344.
[Ste]	N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951.
[T]	R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1955–56),
	43-87.
[W]	C. T. C. Wall, Finite determinacy of smooth map germs, Bull. London Math. Soc., ${\bf 13}$ (1981),
	481–539.
	Yoshifumi Ando

Department of Mathematical Sciences Faculty of Science Yamaguchi University Yamaguchi 753-8512, Japan E-mail: andoy@yamaguchi-u.ac.jp

582

Y. Ando