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Abstract. The bicategory of normal functors between W*-categories is shown
to be monoidally equivalent to the bicategory of W*-bimodules.

Introduction.

Related to subfactor theory two kinds of tensor categories have been utilized in
describing quantum symmetry ([6], [9]): Given a von Neumann algebra M , we have the
tensor category MBimodM of M -M bimodules on the one hand and the tensor category
E nd(M) of endomorphisms on the other hand. In spite of different appearances, they
admit a close similarity: For an endomorphism ρ of M , assign the bimodule L2(M)ρ,
where L2(M)ρ is the standard Hilbert space of M with the right action modified by
ρ. Then we have canonical isomorphisms L2(M)ρ ⊗M L2(M)σ → L2(M)(ρ ◦ σ) for
endomorphisms ρ and σ, which turn out to satisfy the condition of multiplicativity for
monoidal functors and defines a fully faithful embedding of the opposite of E nd(M) into
the tensor category MBimodM .

If M is of infinite type, this monoidal embedding gives an equivalence of categories,
i.e., they contain the same information as structural data. For a finite von Neumann
algebra, however, the embedding is not surjective because of the independent sizes of left
and right modules in that case.

Furthermore, the category Bimod of bimodules is more flexible than E nd(M) in
the point that we can work with categories which are closed under taking subobjects
if we allow different algebras for left and right actions. The bimodules, together with
the associative tensor products, then constitute a so-called bicategory (see Section 2 for
explanations of the notion).

With these observations in mind, the author has anticipated the possibility of en-
larging the tensor category E nd(M) in such a way that the above embedding can be
extended to an equivalence of bicategories. The major purpose of the present article is
to give an affirmative answer to this question in the framework of W*-categories: the bi-
category of normal functors between W*-categories is shown to be monoidally equivalent
to the bicategory Bimod of W*-bimodules.

On the way of describing the above result, we shall also review some of basic facts
on operator categories ([11], [3], [7]), where we have fully used tensor products of W*-
modules (the relative tensor product) to obtain concise expressions.

Technically we have to rely on the modular theory in operator algebras on occasions,
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which is, however, algebraic (and formal) in nature rather than analytic in the present
context if properly formulated (see [16]).

As backgrounds of the subject, we refer, for example, to [15] on operator algebras
and to [8], [10] for background on category theory.

The author would like to thank the referee for helpful comments on the original
manuscript.

1. W*-categories.

By a linear category, we shall mean an essentially small category for which hom-
sets are vector spaces over the complex number field C and the operation of taking
compositions is complex-linear in variables involved.

The restriction of essential smallness reflects our standing position that we shall not
study operator algebras with the help of categorical languages but work with categories
themselves of operator algebraic natures.

A functor between linear categories is said to be linear if the operation on morphisms
is linear. Recall that a functor is said to be faithful if it is injective on hom-sets (no
commitment to objects).

A linear category is called a *-category if it is furnished with conjugate-linear
involutions on hom-sets satisfying (i) f∗ : Y → X for f : X → Y and (ii) (g◦f)∗ = f∗◦g∗
for f : X → Y and g : Y → Z.

A *-category is called a C*-category if hom-sets are Banach spaces such that (i)
‖g◦f‖ ≤ ‖g‖ ‖f‖ for morphisms of the form f : X → Y and g : Y → Z, (ii) ‖f∗f‖ = ‖f‖2
and (iii) f∗f ≥ 0 for any morphism f .

Note here that, by the conditions (i) and (ii), each End(X) is a C*-algebra and the
meaning of positivity in (iii) is that for C*-algebras.

A C*-category C is called a W*-category if each Banach space Hom(X, Y ) is the
dual of a Banach space. ‘Preduals’ are uniquely determined by the C*-category C as can
be checked easily (an analogue of Sakai’s characterization, [13]).

A typical example of W*-categories is the category Rep(A) of *-representations of
a C*-algebra A in Hilbert spaces of a specified class with hom-sets given by intertwiners
of representations.

When A is separable (i.e., having a countable norm-dense subset), we can define
the much smaller W*-category S Rep(A) of *-representations of A in separable Hilbert
spaces of a specified class with hom-sets given by intertwiners of representations. If
A = C, Rep(A) (resp. S Rep(A)) is the category of Hilbert spaces (resp. separable
Hilbert spaces) of a specified class H ilb (resp. S H ilb) whose morphisms are bounded
linear operators.

Another typical example of W*-category is the category P(M) of projections in
a W*-algebra M : objects of P(M) are projections in M with hom-sets given by
Hom(e, f) = fMe for projections e and f in M .

A typical example of C*-category is the category A-M od of Hilbert A-modules
(again in a specified class) with A a C*-algebra.

Given *-categories C and D , a functor F : C → D is called a *-functor if F is
linear in morphisms and preserves the *-operation. If both of C and D are C*-categories,
then a *-functor F : C → D is norm-decreasing:
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‖F (f)‖2 = ‖F (f∗f)‖ ≤ ‖f∗f‖ = ‖f‖2

for a morphism f : X → Y in C . The kernel of F (which is a C*-subcategory of C ) is
then an analogue of closed *-ideals in C*-algebras and we have the exact sequence

0 → KerF (X, Y ) → Hom(X, Y ) → F (Hom(X, Y )) → 0

of C*-categories.
Given *-categories C and D , we define the category H om(C ,D) with objects given

by *-functors and morphisms consisting of natural transformations. Recall here that
we have stuck to essentially small categories, which enables us to keep H om(C ,D)
essentially small. When D is a C*-category, morphisms are restricted to be bounded so
that the category H om(C ,D) of functors is again a C*-category.

Given an object X in a C*-category C and a positive linear functional ϕ on the C*-
algebra End(X), we introduce the *-functor Fϕ : C → H ilb by the GNS-construction:
For an object Y in C , the Hilbert space Fϕ(Y ) is the completion of the vector space
Hom(X, Y ) with respect to the positive-semidefinite inner product

(y|y′) = ϕ(y∗y′) for y, y′ : X → Y .

We shall often use the notation yϕ1/2 to distinguish the morphism y in C with the
associated element in the Hilbert space Fϕ(Y ).

For a morphism f : Y → Z in C , Fϕ(f) : Fϕ(Y ) → Fϕ(Z) is the bounded linear
map defined by

Fϕ(f)(yϕ1/2) = (fy)ϕ1/2.

These are well-defined by the positivity and the C*-norm assumption in the definition of
C*-categories.

Note that, if X ∼= Y and positive linear functionals ϕ : End(X) → C, ψ : End(Y ) →
C are related by a *-isomorphism between End(X) and End(Y ), then the functors Fϕ

and Fψ are unitarily equivalent.
Since (infinite) direct sums are permitted in the C*-category H ilb, we can define

the *-functor F : C → H ilb as the direct sum of {Fϕ}, where ϕ ∈ End(X)∗+ with the
family {X} representing the isomorphism classes of objects in C . Then F is faithful on
each C*-algebra End(X) and we have

‖F (f)‖2 = ‖F (f∗f)‖ = ‖f∗f‖ = ‖f‖2

for a morphism f : X → Y , which implies that F is isometric on hom-sets. Thus, given
a finite family {Xi}1≤i≤n of objects in the C*-category C , the algebra of matrix form




F (Hom(X1, X1)) · · · F (Hom(Xn, X1))
...

. . .
...

F (Hom(X1, Xn)) · · · F (Hom(Xn, Xn))
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is a C*-algebra on the Hilbert space

n⊕

i=1

F (Xi),

which is *-isomorphic to the *-algebra




Hom(X1, X1) · · · Hom(Xn, X1)
...

. . .
...

Hom(X1, Xn) · · · Hom(Xn, Xn)


 .

Proposition 1.1. Given a C*-category C and a finite sequence {Xi}1≤i≤n of
objects in C , the vector space




Hom(X1, X1) · · · Hom(Xn, X1)
...

. . .
...

Hom(X1, Xn) · · · Hom(XnXn)




is a C*-algebra with each matrix component isometrically identified with the Banach
spaces Hom(Xi, Xj).

The above proposition is used to enlarge a C*-category C so that it allows finite
direct sums; consider the category Ĉ for which objects are finite sequences of objects in
C and hom-sets are given by

Hom({Xi}, {Yj}) =




Hom(X1, Y1) · · · Hom(Xm, Y1)
...

. . .
...

Hom(X1, Yn) · · · Hom(Xm, Yn)




with the norm induced from a bigger C*-algebra of matrix form.

Corollary 1.2. A C*-category is a W*-category if and only if

M =

(
End(X) Hom(Y, X)

Hom(X, Y ) End(Y )

)

is a W*-algebra for any pair (X, Y ) of objects in C .

Let C be a W*-category. Since Hom(X, Y ) is realized as a corner of a W*-algebra,
we can define their Lp-extensions (see [4] for Lp-theory on von Neumann algebras, cf. also
[16], [17]): the Banach space Lp(X, Y ) is defined to be qLp(M)p, where Lp(M) is the
Lp space associated to the W*-algebra M with p : X ⊕ Y → X and q : X ⊕ Y → Y the
obvious projections in M . We then have the bounded bilinear map Lq(X, Y )×Lp(Y, Z) →
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Lr(X, Z) if 1/r = 1/p + 1/q and L∞(X, Y ) is identified with Hom(X, Y ). We also have
the duality Lp(X, Y )∗ = Lq(X, Y ) with 1/p + 1/q = 1 and the predual of Hom(X, Y ) is
identified with the Banach space L1(X, Y ).

Proposition 1.3. Given a finite family {Xi} of objects in a W*-category, the
matrix algebra




Hom(X1, X1) · · · Hom(Xn, X1)
...

. . .
...

Hom(X1, Xn) · · · Hom(Xn, Xn)




is a W*-algebra. Moreover, any W*-category is extended (uniquely up to equivalence of
*-categories) so that it admits finite direct sums.

Let C be a *-category and D be a W*-category. Then H om(C ,D) is again a W*-
category (C being assumed to be essentially small and natural transformations being
restricted to be bounded). For the identity functor idC , End(idC ) is then a commutative
W*-algebra Z(C ) given by

{
t = {tX}; tX ∈ End(X), ftX = tY f for any f ∈ Hom(X, Y ) in C

}
.

We call Z(C ) the center of C . If C is a full subcategory of M -M od including a faithful
representation, then Z(C ) is naturally isomorphic to the center of M .

For a morphism f : X → Y in C , the central support of f is defined to be the
projection c(f) in Z(C ) which is minimal among the projections c in Z(C ) satisfying
cY f = f = fcX . For a family {fi} of morphisms, we define its central support as the
smallest projection in Z(C ) majorizing all c(fi)’s: c =

∨
i c(fi). For a family {Xi} of

objects, its central support is defined to be the central support of the family {1Xi
}.

The central support c of f is calculated by

cZ(f) =
∨

g:Z→X

s(fg),

where s(fg) denotes the support projection of the element g∗f∗fg in End(Z). In partic-
ular, if Hom(X, Y ) = {0}, i.e., X and Y are disjoint, then c(1X)c(1Y ) = 0.

A family {Ui} of objects in a *-category C is said to be generating if the associated
family of hom-functors Hom(Ui, ·) : C → V ec is faithful, i.e., the algebraic direct sum

⊕

i

Hom(Ui, ·) : C → V ec

is faithful. A single object U in C is called a generator if the one-object family {U} is
generating, i.e., the hom-functor Hom(U, ·) : C → V ec is faithful.

Example 1.4. Any family of objects representing all isomorphism classes is gen-
erating.
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Lemma 1.5. Let {Ui} be a family of objects in a W*-category C . Then the following
conditions are equivalent.

(i) The family {Ui} is generating.
(ii) For any object X and any projection 0 6= p ∈ End(X), we can find a Ui such that

Hom(Ui, pX) = pHom(Ui, X) 6= {0}.
(iii) The central support of {Ui} is equal to the family {1X} of identity morphisms.
(iv) For any object X in C , we can find a family of partial isometries {ui,j : Ui → X}

such that

∑

i,j

ui,ju
∗
i,j = 1X .

Proof. (i) ⇒ (ii). If there exist an object X and a projection 0 6= p ∈ End(X)
such that Hom(Ui, pX) = {0} for any i, then p can not be distinguished with 0 under
the hom-functor Hom(Ui, ·), which contradicts with the condition (i).

(ii) ⇒ (iii). If the central support {cX} of {Ui} is different from {1X}, we can
find an object X such that cX 6= 1X , which satisfies (1X − cX)f = 0 for any i and any
f : Ui → X.

(iii) ⇒ (iv). The formula for the central support together with polar decompositions
shows that for any object X, we can find i and a non-zero partial isometry u : U → X.
Now the maximality argument gives the result.

(iv) ⇒ (i) is obvious. ¤

Lemma 1.6 ([12, Lemma 2.1]). Let X, Y and Z be objects in C . Let T :
L2(X, Y ) → L2(X, Z) be a bounded linear map satisfying T (ξx) = T (ξ)x for ξ ∈
L2(X, Y ) and x ∈ End(X). Then we can find an element y ∈ Hom(Y, Z) such that
T (ξ) = yξ for ξ ∈ L2(X, Y ).

Proof. Let M be the W*-algebra associated to the family {X, Y, Z} in Proposi-
tion 1.3 with e, f and g projections of M to the component X, Y and Z respectively.
Consider a bounded operator T on L2(M) satisfying T (ξ) = gT (fξe)e for ξ ∈ L2(M)
and T (ξexe) = T (ξ)exe for x ∈ M .

Since the commutant of a reduction is the induction of the commutant, the second
condition on T implies we can find y ∈ M satisfying T (ξ) = yξ. Now the restrictions on
T for the domain and range reveal that we can replace y by the element gyf and we are
done. ¤

Proposition 1.7. Given a generating family {Ui} in a W*-category C , let M be
the opposite of the von Neumann algebra

⊕
i,j Hom(Ui, Uj). Then the functor F : C →

H ilb defined by

F (X) =
⊕

i

L2(Ui, X)

with the obvious right action of M◦ on F (X) gives a fully faithful embedding of C into
the W*-category M -M od.
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Proof. The surjectivity of the functor on morphisms is a consequence of the pre-
vious lemma because solutions for finite indices give rise to a bounded net in Hom(X, Y )
indexed by finite subsets of the index set, which admits a convergent cofinal subnet by
the weak* compactness of the unit ball of Hom(X, Y ).

On the other hand, if f : X → Y vanishes on the Hilbert space F (X), then
fHom(Ui, X)ϕ1/2

i = {0} for any i and any ϕi ∈ End(Ui)+∗ , whence fHom(Ui, X) = {0}
for i. Since {Ui} is generating, this implies f = 0. ¤

Lemma 1.8. For a von Neumann algebra M , the following are equivalent.

(i) M has the separable predual.
(ii) M has a faithful normal representation on a separable Hilbert space.
(iii) The standard space L2(M) is separable.

Proof. Non-trivial is (i) ⇒ (iii).
Let {fi}i≥1 be a countable dense set of M∗. Then we can find a family {xi ∈ M}i≥1

such that ‖xi‖ ≤ 1 and |fi(xi)| ≥ ‖fi‖/2, which turns out to be total in M with respect
to the weak*-topology. In fact, if not, we can find an element x ∈ M and a functional
f ∈ M∗ satisfying f(x) = 1 and f(xi) = 0 for i ≥ 1. For each integer n ≥ 1, choose
in ∈ N so that ‖fin

− f‖ ≤ 1/n. Then the inequality

1
2
‖fin

‖ ≤ |fin
(xin

)| = |fin
(xin

)− f(xin
)| ≤ ‖fin

− f‖ ≤ 1
n

implies ‖fin
‖ → 0 and hence f = limn fin

= 0, which contradicts the choice f(x) = 1.
The separability of the predual M∗ also ensures that we can find a faithful positive

functional ϕ in M∗. Now the set {xiϕ
1/2}i≥1 is total in L2(M) by the Kaplansky’s

density theorem and we are done. ¤

Remark.

(i) A similar argument shows that, if a Banach space X has the separable dual Banach
space, then X itself is separable. Thus, the separability of Lp(M) for some 1 < p <

+∞ implies the separability of Lq(M) with 1/p + 1/q = 1 and then the predual is
separable as a continuous image of Lp(M)× Lq(M).

(ii) The argument in the above proof reveals that a von Neumann algebra is countably
generated if it has the separable predual. The converse implication is, however, not
true; the dual Banach space of the separable C*-algebra C[0, 1] is identified with
the space M [0, 1] of complex measures in the interval [0, 1], which is not separable
because ‖δs−δt‖ = 2 if s 6= t in [0, 1]. Then the double dual von Neumann algebra
M [0, 1]∗ = L∞[0, 1] is countably generated with the non-separable predual M [0, 1].

Definition 1.9. A W*-category is said to be locally separable if each
Hom(X, Y ) has the separable predual. A locally separable W*-category is said to be
separable if it admits a countable generating family.

Given a W*-algebra M , we denote by Rep(M) the W*-category of normal *-
representations of M on Hilbert spaces in a specified class. When M has the separable
predual, we denote by S Rep(M) the W*-category of normal *-representations of M on
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separable Hilbert spaces in a specified class.

Proposition 1.10.

(i) A W*-category C is equivalent to Rep(M) for some W*-algebra M if and only if
C admits subobjects (projections are associated to subobjects) and arbitrary direct
sums.

(ii) A W*-category C is equivalent to S Rep(M) for some W*-algebra M of separable
predual if and only if C is separable and admits countable direct sums as well as
subobjects.

Proof. Clearly the condition is necessary. On the other hand, we have the fully
faithful embedding F : C → M -M od by Proposition 1.7 and any M -module is isomorphic
to F (X) for some object X in C by the condition (cf. the structure theorem of normal
representations [1], [15]). ¤

For functors between W*-categories, it is reasonable to restrict to normal ones: a
*-functor F : C → D of W*-categories is said to be normal if F is weak*-continuous on
each Hom(X, Y ).

Lemma 1.11 ([11, Prop. 4.7]). Let {Ui} be a generating family of objects in C .
A *-functor F : C → D between W*-categories is normal if and only if it is normal on
each W*-algebra End(Ui).

Proof. Assume that F is normal on End(Ui)’s.
We will first show that F is normal on each End(X): for any ϕ ∈ End(F (X))+∗ , the

functional End(X) 3 x → ϕ(F (x)) is weak*-continuous. To see this, it suffices to check
the σ-strong continuity on the unit ball of End(X) by a well-known result ([1, Theorem
I.3.1]). Let xα → x in the σ-strong topology with xα and x in the unit ball. Here choose
a family of partial isometries {ui,j : Ui → X} satisfying

∑
ui,ju

∗
i,j = 1X .

Then ui,j(xα− x)∗(xα− x)u∗i,j ∈ End(Ui) converges to 0 in the weak*-topology and
hence by the normality of F on End(Ui), we have

F (ui,j)∗F (xα − x)∗F (xα − x)F (ui,j) = F
(
u∗i,j(xα − x)(xα − x)ui,j

) → 0

in the weak*-topology, i.e., F (xα− x)F (ui,j) converges to 0 in the σ-strong topology for
each index (i, j). Thus

(
ϕ1/2|F (xα − x)F (ui,ju

∗
i,j)ϕ

1/2
) → 0 as α →∞

for each (i, j).
Since ‖F (xα − x)‖ ≤ 2 and

∑ (
ϕ1/2|(F (ui,ju

∗
i,j)ϕ

1/2
)

= (ϕ1/2|ϕ1/2)

is finite, the usual argument shows that ϕ(F (xα− x)) = (ϕ1/2|F (xα− x)ϕ1/2) converges
to 0, proving the normality of F on End(X).
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Now let fα be a net in Hom(X, Y ) which converges to 0 in σ*-strong topology. Then
f∗αfα → 0 in weak*-topology and hence F (fα)∗F (fα) = F (f∗αfα) → 0, i.e., F (fα) → 0 in
σ-strong topology. Thus the *-homomorphism

(
End(X) Hom(Y, X)

Hom(X, Y ) End(Y )

)
→

(
End(F (X)) Hom(F (Y ), F (X))

Hom(F (X), F (Y )) End(F (Y ))

)

between W*-algebras induced from F is σ-strongly continuous. Then it is weak*-
continuous by the well-known result on topologies of W*-algebras ([1, Theorem I.3.1])
and we are done. ¤

Corollary 1.12. An equivalence of W*-categories is automatically normal.

Proof. This follows from the automatical normality of *-isomorphisms between
W*-algebras (the normality being described by a condition on the order structure of
hermitian elements). ¤

Let M and N be W*-algebras and H be an N -M bimodule. Then we can define a
normal *-functor Rep(M) → Rep(N) by

F (MX) = NH ⊗M X

(see [14] further information on relative tensor products, cf. also [16], [17]).
Conversely we have the following reformulation of Rieffel’s theorem on Morita equiv-

alences.

Proposition 1.13. Any normal *-functor F : Rep(M) → Rep(N) (resp. F :
S Rep(M) → S Rep(N) with M and N having separable preduals) is unitarily equivalent
to the one associated to an N -M bimodule H (resp. a separable N -M bimodule).

The bimodule H is uniquely determined up to unitary isomorphisms by the functor
F : H = NF (ML2(M))M with the right action of M = End(ML2(M))◦ on H given by the
normal *-homomorphism End(ML2(M)) → End(NF (ML2(M))) induced by the functor.

Proof. Let MX be an M -module. By the structure theorem of normal *-
homomorphisms ([1, Theorem I.4.3]), we can find an index set I and a projection in
MatI(M) so that MX ∼= ML2(M)⊕Ip. We shall then construct a unitary intertwiner

NF (ML2(M))⊗M X → NF (MX)

by the commutativity of the diagram

H ⊗M X −−−−→ F (X)y
y

H ⊗M L2(M)⊕Ip −−−−→ F (ML2(M)⊕Ip).
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Here the bottom line is a unitary map given by the composition of natural identities

NF
(
ML2(M)

)⊗M L2(M)⊕Ip

= NF
(
ML2(M)

)⊕I
p = NF

(
ML2(M)⊕I

)
F (p) = NF

(
ML2(M)⊕Ip

)
.

By the multiplicativity of F on morphisms, the unitary map H ⊗M X → F (X) is
independent of the choice of an isomorphism MX → ML2(M)⊕Ip and behaves naturally
for intertwiners. ¤

A W*-category is said to be of type I if the matrix W*-algebra

(
End(X) Hom(Y, X)

Hom(X, Y ) End(Y )

)

is of type I (in the sense of Murray-von Neumann) for any pair (X, Y ) of objects.
The following is an easy reformulation of the structure theorem on W*-algebras of

type I.

Proposition 1.14 (cf. [11, Theorem 8.10]). Assume that a W*-category C has
subobjects. Then C is of type I if and only if we can find a generating family {Ui}
satisfying (i) End(Ui) is commutative and (ii) Hom(Ui, Uj) = {0} for i 6= j.

2. W*-Tensor categories.

Recall that a tensor category is a linear category T together with a functor
Φ : T × T → T and a natural isomorphism (the associativity constraint) a : Φ(Φ ×
idT ) → Φ(idT × Φ) satisfying the so-called pentagonal condition. It is also assumed
that T have a special object I (called the unit object) and two natural isomorphisms
lX : I ⊗X → X, rX : X ⊗ I → X (left and right unit constraints respectively) satisfying
the triangular condition. The tensor product notation is often used to denote the functor
Φ: Φ(X, Y ) = X ⊗ Y and Φ(f, g) = f ⊗ g for objects X, Y and morphisms f , g in T .

When T is a *-category and Φ preserves the *-operation, i.e., (f ⊗ g)∗ = f∗⊗ g∗ for
morphisms f , g in T , T is called a *-tensor category. A *-tensor category is called a
C*-tensor category if it is based on a C*-category and the associativity constraint is
unitary.

A W*-tensor category is, by definition, a C*-tensor category T with the tensor
product functor Φ : T × T → T is binormal in the sense that it is separately normal
on each variables.

Similar adjective definitions work for bicategories; we can talk about *-bicategories,
C*-bicategories and W*-bicategories.

Recall that a bicategory consists of labels, A,B, C, . . . , categories H om(A,B) in-
dexed by pairs of labels, functors

ΦA,B,C : H om(B,A)×H om(C, B) → H om(C, A)
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indexed by triples of labels together with natural isomorphisms

aA,B,C,D : ΦA,C,D

(
ΦA,B,C × idH om(D,C)

) → ΦA,B,D

(
idH om(B,A) × ΦB,C,D

)

indexed by quadruples of labels and satisfying the pentagonal relation.
The functor ΦA,B,C is often denoted by the notation of composition, which reflects

the view-point that a bicategory is a ‘categorization’ of hom-sets as hom-categories.
Here is another view-point from which we regard the hom-category H om(A,B) as

an analogue of the category of B-A bimodules (if labels represent algebras) with the
notation H om(A,B) = BMA. Then the functor ΦA,B,C is consequently denoted by
the tensor product notation: For objects X in AMB and Y in BMC , ΦA,B,C(X, Y ) is
denoted by X ⊗B Y . Similarly for morphisms.

A typical example of W*-bicategory is provided by bimodules with normal actions
of W*-algebras.

A bicategory is said to be strict if the natural isomorphisms aA,B,C,D are identities,
i.e.,

ΦA,C,D

(
ΦA,B,C × idH om(D,C)

)
= ΦA,B,D

(
idH om(B,A) × ΦB,C,D

)

and aA,B,C,D is the identity for each quadruplet.
A typical example of strict bicategory is provided by categories of functors: Let

F, F ′ : C → D and G,G′ : D → E be functors. Then, given natural transformations
s : F → F ′ and t : G → G′, we can associate the natural transformation G ◦F → G′ ◦F ′

by the commutative diagram

G(F (X))
G(sX)−−−−→ G(F ′(X))

tF (X)

y
ytF ′(X)

G′(F (X)) −−−−−→
G′(sX)

G′(F ′(X)) .

Thus F = DFC , G = E GD and E G ⊗D FC = E (G ◦ F )C with the unit objects given
by identity functors. Note that the commutativity of the above diagram expresses the
identity (t⊗D 1F ′)(1G⊗D s) = (1G′ ⊗D s)(t⊗D 1F ). The (strict) associativity for tensor
products of morphisms is also immediate.

In particular, the category E nd(C ) of functors from C into itself is a strict monoidal
category.

Example 2.1. If C is a one-object category, objects of E nd(C ) are endomorphisms
of the algebra A = End(pt) with hom-sets given by

Hom(ρ, σ) = {a ∈ A; aρ(x) = σ(x)a, ∀x ∈ A}.

The monoidal structure takes the form ρ ⊗ σ = ρ ◦ σ for ρ, σ ∈ End(A) and a ⊗ b =
aρ(b) = ρ′(b)a for a ∈ Hom(ρ, ρ′), b ∈ Hom(σ, σ′).
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When C is a W*-category, A is a W*-algebra and objects in E nd(C ) are normal
*-endomorphisms of A.

The tensor category E nd(C ) is also denoted by E nd(A) (see [6] for more information
on E nd(A)).

Lemma 2.2 ([3, Theorem 7.13], [2, Lemma 2.1]). Let C , D be W*-categories and
{Ui} be a generating family in C . Let U be the full subcategory of C consisting of objects
in {Ui}.

Then the restriction (of functors and natural transformations)

H om(C ,D) 3 F 7→ F |U ∈ H om(U ,D)

gives a fully faithful embedding of W*-categories. Here H om(C ,D) and H om(U ,D)
are W*-categories of normal *-functors and natural transformations.

More concretely, given a natural transformation {ti : F (Ui) → G(Ui)} between
normal *-functors F |U and G|U , the natural transformation tX : F (X) → G(X) is
recovered by the formula

tX =
∑

i,j

G(ui,j)tiF (ui,j)∗,

where {ui,j : Ui → X} is a family of partial isometries satisfying
∑

i,j ui,ju
∗
i,j = 1X .

Proof. Let X be an object in C . Since {Ui} is a generating family, we can find
a family {ui,j : Ui → X} of partial isometries such that

∑
i,j ui,ju

∗
i,j = 1X .

Given a natural transformation t : F → G, we have tXF (ui,j) = G(ui,j)ti for any
(i, j) and then

tX =
∑

i,j

tXF
(
ui,ju

∗
i,j

)
=

∑

i,j

G(ui,j)tiF (ui,j)∗

by the normality of F . Thus the restriction is injective on natural transformations.
Conversely, given a natural transformation {ti : F (Ui) → G(Ui)} between F |U and

G|U and an object X in C , write

tX =
∑

i,j

G(ui,j)tiF (ui,j)∗,

which is a morphism in Hom(F (X), G(X)).
If Y is another object in C with a family {vk,l : Uk → Y } of partial isometries

satisfying
∑

k,l vk,lv
∗
k,l = 1Y , we associate another morphism tY : F (Y ) → G(Y ). Then,

for any morphism f : X → Y in C , we have



Operator categories 553

G(f)tX =
∑

i,j

G(fui,j)tiF (ui,j)∗

=
∑

i,j

∑

k,l

G
(
vk,lv

∗
k,lfui,j

)
tiF (ui,j)∗

=
∑

i,j

∑

k,l

G(vk,l)tkF
(
v∗k,lfui,j

)
F (ui,j)∗

= tY F (f)

by the naturality of {ti} and the normality of F , G.
If we take f = 1X (X = Y particularly), then the above formula means that the

morphism tX is well-defined. Thus, the natural transformation {tX} is recovered from
{ti}. ¤

If we restrict ourselves to W*-categories, normal *-functors and bounded natural
transformations, then we obtain the strict W*-bicategory Funct. Recall that the tensor
category E nd(M) in Example 2.1 is a part of Funct. In accordance with our separability
notation, we denote by S Funct the W*-bicategory of normal functors between separable
W*-categories. Moreover we have the W*-bicategory FunctI of normal functors between
W*-categories of type I.

We shall now give a fully faithful embedding of Funct into the bicategory Bimod

of W*-bimodules.
To this end, we first enlarge the relevant W*-categories so that they admit genera-

tors; we shall take a generator UA for each W*-category A and define the W*-algebra
A by A = End(UA ) (B = End(UB) and son on). Then, by the embedding theorem
of W*-categories, we have fully faithful embedding ΦA of A into the category of right
A-modules:

ΦA : X 7→ L2(UA , X)A.

To each functor F : A → B, we associate the right B-module by

Φ(F ) = L2(UB, F (UA )).

Note here that the functor F has the unique extension to the enlargements of A and B
(cf. Lemma 2.2). The Hilbert space Φ(F ) admits the left action of A by

aξ = F (a)ξ, a ∈ A, ξ ∈ L2(UB, F (UA )),

which clearly commutes with the right action of B. Thus Φ(F ) is an A-B module.
Moreover, given a natural transformation t : F → F ′ in H om(A ,B), the left

multiplication of tUA ∈ A defines an A-B intertwiner between Φ(F ) and Φ(F ′). In this
way, we obtain a *-functor Φ : Funct → Bimod. By the previous lemma, Φ is fully
faithful.
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Given a functor F : A → B and an object X in A , we define a linear map
mX,F : L2(UA , X)⊗A Φ(F ) → L2(UB, F (X)) by

L2(UA , X)⊗A L2(UB, F (UA )) 3 xϕ1/2 ⊗ϕ−1/2 fψ1/2

7→ F (x)fψ1/2 ∈ L2(UB, F (UA )),

which is clearly B-linear and isometric because of

(
xϕ1/2 ⊗ϕ−1/2 fψ1/2|xϕ1/2 ⊗ϕ−1/2 fψ1/2

)
= (fψ1/2|F (x∗x)fψ1/2) = ‖F (x)fψ1/2‖2,

where ϕ ∈ A+
∗ and ψ ∈ B+

∗ .
To see the surjectivity of mX,F , choose a family {xi : UA → X} of partial isometries

satisfying
∑

i xix
∗
i = 1X . Then, for y : UB → F (X), the normality of F shows that

y = F

( ∑

i

xix
∗
i

)
y =

∑

i

F (xi)F (x∗i )y =
∑

i

F (xi)fi,

where fi = F (x∗i )y is in Hom(UB, F (UA )). Thus the image of mX,F is dense in
L2(UB, F (X)) and mX,F gives a unitary map.

Let G : B → C be another normal *-functor. We can then define a unitary map
mF,G : Φ(F )⊗B Φ(G) → Φ(G ◦ F ) by

mF (UA ),G : L2(UB, F (UA ))⊗B L2(UC , G(UB)) → L2(UC , GF (UA )),

which is A-C linear by the definition of mX,F and the left action of A. The explicit form
of these multiplication maps also shows the identity

mF (X),G(mX,F ⊗ 1Φ(G)) = mX,GF (1Φ(X) ⊗mF,G).

In other words, the following diagram commutes.

Φ(X)⊗A Φ(F )⊗B Φ(G) −−−−→ Φ(X)⊗A Φ(GF )y
y

Φ(F (X))⊗B Φ(G) −−−−→ Φ(GF (X)).

Summarizing the argument so far, we obtain the following.

Theorem 2.3. The opposite of the bicategory Funct (S Funct or FunctI respec-
tively) is monoidally equivalent to the bicategory Bimod of W*-bimodules (S Bimod of
separable W*-bimodules or C Bimod of W*-bimodules with actions of commutative W*-
algebras respectively).
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Proof. We have a fully faithful monoidal embedding Funct → Bimod by the
above argument, whose image covers every bimodule up to unitary isomorphisms by
Proposition 1.13. ¤
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