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Abstract. We prove a generalized resolvent estimate of Stokes equations with
nonhomogeneous Robin boundary condition and divergence condition in the Lg
framework (1 < ¢ < o0) in a domain of R™ (n 2 2) that is a bounded domain
or the exterior of a bounded domain. The Robin condition consists of two conditions:
v-u=0and au+ B(T(u,p)v — (T'(u,p)v,v)v) = h on the boundary of the domain
with o, 3 2 0 and a + 3 = 1, where u denotes a velocity vector, p a pressure, T'(u, p)
the stress tensor for the Stokes flow, and v the unit outer normal to the boundary
of the domain. It presents the slip condition when 3 = 1 and the non-slip one when
a = 1, respectively.

1. Introduction.

Let Q be a domain in R™ with boundary I' that is a compact hypersurface. Given
velocity vector u = *(uq,...,u,)* and pressure p, the stress tensor T'(u,p) of the Stokes
flow is defined by the formula: T'(u,p) = D(u) —pI, where D(u) and I are n X n matrices
whose (j, k) components D(u);, and I;;, are given by the formulas:

_ Ouy O

Dlw)iv = g T B2y

g =06 =1(j = k) and Ijx = 05 = 0(j # k).

In this paper, we are interested in the L, (1 < ¢ < c0) estimate of solutions v and p to
the generalized Stokes resolvent problem in 2 with Robin boundary condition:
Au—DivT(u,p) = f, divu=g in Q
v-u=0, Bygu)=oaou+B(T(u,pv— {T(upr,v)v)=h onl (1.1)
where « and (3 are two constants such as a, § =2 0 and a + 8 = 1; (-,-) denotes the
inner product in R", v the unit outer normal to ', f =*(fy,..., f.) the prescribed force

for the motion, h = *(hq,..., h,) the prescribed force on the boundary, and g the given
divergence of the problem. Noting that (v, ) = 1, we have

B, g(u) = au+ B(D(u)v — (D(uw)v, v)v) (1.2)
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and therefore the Robin condition does not contain the pressure p, which is an essential
difference from the pure Neumann condition: T'(u,p)v = h on I' that was treated by
Grubb and Solonnikov [9], Grubb [10], Shibata and Shimizu [17] and Steiger [20]. When
B = 0, the boundary condition is the usual non-slip one, and this case has been studied
by Farwig and Sohr [5]. Therefore, we shall study the case where 3 > 0 only in this
paper.

The problem (1.1) with 8 > 0 was first studied by Giga [8] when 2 is bounded
and ¢ = 0. He actually considered more general boundary condition and gave some
sufficent condition to obtain a resolvent estimate. Later on, Grubb and Solonnikov [9]
and Grubb [10] proved the well-posedness of the non-stationary Stokes equation with
general first order boundary condition. But, the arguments due to Giga [8] and also
to Grubb and Solonnikov ([9], [10]) relied heavily on the calculus of pseudo-differential
operators. Such arguments can be understood only by those who are quite familiar with
the pseudo-differential operator techniques. However, when the boundary condition is
the non-slip one (u = 0 on I'), Farwig and Sohr [5] proved the resolvent estimate by
using rather elementary method based on Fourier analysis and functional analysis. Our
motivation of this paper is to study the generalized resolvent problem for the Stokes
equation with Robin boundary condition by extending the method due to Farwig and
Sohr, so that our argument in this paper is completely different from the argument
due to [8], [9] and [10] but rather closed to that due to [5]. When © is a half space
and g = h = 0, Saal [15] studied (1.1) and he proved not only the resolvent estimate
but also H* calculus. Miyakawa [13] and Akiyama, Kasai, Shibata and Tsutsumi [1]
studied the Stokes resolvent problem with some first order boundary condition like v -
uw = 0 and (rotu) X ¥ = 0 on T" which arises from the mathematical theory of the
magnetohydrodynamics.

Concerning the non-stationary Navier-Stokes equation with Robin boundary condi-
tion, Itoh, Tanaka and Tani [12] proved a locally in time unique existence theorem in
the Holder space framework. When €2 is a bounded domain, Steiger [20] studied it in the
L, (1 < g < oo) framework and he proved a locally in time unique existence theorem of
solutions with very irregular initial data. He used Giga’s result [8] to show the generation
of the Stokes semigroup, so that he treated only the case where €2 is bounded. By using
our result obtained in this paper, we can show the generation of Stokes semigroup even
when €2 is an exterior domain, and therefore Steiger’s result seems to hold when 2 is an
exterior domain.

In order to state our main results, at this point we outline our notation. Given
vector or matrix M, ‘M denotes the transpose of M. Given Banach space X with norm
Il - 1lx, we set

n
Xt ={o="(v1,...,va) [v; € X}, Jolx =D llujllx.
j=1

To denote the inner-product in R™, we use the two symbols: = -y = (z,y) = Z;L=1 TiYj
for every x = (x1,...,2,) and y = (y1,...,yn) € R". F = (F};) means the n X n matrix
whose (j, k) component is Fj;. For the differentiation of a scalar function p, an n-vector
of functions u = *(uq,...,u,) and an n x n matrix of functions F' = (Fjj), we use the
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following symbols:

9;p=0p/0z;, Vp="p,...,0up), Vu= (d5uy),

j=1 j=1

For any domain D in R™ with boundary 8D, the inner products (-,-)p and (-,-)gp are
defined by the formulas:

o) = [ uta) v@de. (wo)op = [ (o) @) do

where do denotes the surface element of 9D and ¥ the complex conjugate of v. L,(D) and
Wi (D) (1 = q < o0) denote the usual Lebesgue and Sobolev spaces of functions defined
on D with norms |||, ., and |- ||Wg”(D)’ respectively. We denote the closure of C§°(D)
in W7 (D) by W,(D) and the dual space of W(}/’O(D) by W, (D) with ¢ = q/(q —1).
Set

Br={zeR"||z| <L}, Sp={xe€R"||zx|=1L},
DL’L+1:{SL'€R7L|L§|$|§L+1}.

Let R be a fixed positive number such as Br_5 D I'. Set Qp, = QN B for L > R—5. If
Q is bounded, then Q; = when L > R — 5.

As a space of pressure terms, we introduce the homogeneous space qu(Q) that is
defined by the formula:

W, () = {p € Lg1oc(Q) | VP € Lg(Q)}
where we have to identify two elements differing by a constant. When 2 is bounded,
Lg,10c(Q2) may be replaced by Ly(£2). Moreover, we may fix a representative u € W, (Q)
by [, udx = 0. Therefore, in view of Poincaré’s inequality we may identify

Wi@) = {pe i) [ o)z =o}

provided €2 is bounded. Let

be the dual space of W;, (Q) (¢ =¢/(g—1)and 1 < ¢ < 00) endowed with the norm:

g1l -

Wil

sup |[g,v]|/IVY]],
0£veW), () '
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where [+, -] denotes the duality of W, 1(Q) and qu,(Q). When D is one of R", R’ and a

bent half space that will be defined in Section 4 below, qu (D) and qu L(D) are defined
in the same manner as above. Here and hereafter, R! denotes the half space that is
defined by

R} ={z=(a',2,) € R" |2’ = (%1,...,20-1) € R z, > 0}.

Set

i qu(Q) if  is a bounded domain
W (Qgr) =
2 () {p € qu(QR) | p|SR = O} if 2 is an exterior domain

and let Wq_l(QR) be the dual space of qu, (Qr) endowed with the norm:

(][ ey sup g, 0J1/110 0, -

L=
) 0#£veW], (Qr)

As a space of data for the divergence equation: divu = g in (1.1), we introduce the space
Wy aiv(€2) that is defined by
{g€ WhHQ) | [q9(z)dz=0]} if Qis a bounded domain
Woav(€) = ¢ {g=divg | g € W), § € Ly()", v-§lr =0}

if 2 is an exterior domain.

We have

Cllgll,, o if 2 is a bounded domain
gl o) = { (1.3)
q

191,  if Qis an exterior domain

for every g € Wy 4iv(R2) where C is some positive constant arising from Poincaré’s in-
equality. A useful characterization of the space of data for the divergence equation was
given by Farwig-Sohr [5]. As a space of boundary forces, we introduce the space Wg 5(82)
(j = 1,2) that is defined by

W (@) = {h e WJ(Q)" | v-h|r =0}
To state the Helmholtz decomposition, we introduce the following spaces:

J4(2) = the closure of the space Cg5, (2) in L,(€2)"
Co%, () = {u e C3° ()" | divu = 0 in Q}
Gq(Q) = {Vp |pe W ()}
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Then, it is well-known that there holds the Helmholtz decomposition: Ly(Q2)" = J,(Q) &
G4(2), @ being the direct sum (cf. [6], [5], [7], [14] and [18] and references therein).
Namely, given any u € Ly(2)", there exist v € J,(2) and p € W;(Q) uniquely such that
u = v+ Vp. For the later use, we define the solenoidal projection .7, and the gradient
projection ¢, by the relations: #u = v and %,u = Vp, respectively. For the resolvent
parameter A\, we introduce the set ¥, defined by the formula:

Ye={ e C\{0} | |arg \| <7 —¢€}, O<e<m.
For the notational simplicity, we set

I\(u,p, D) = ‘)\H‘UHLQ(D) + ‘)‘|1/2HVUHLQ(D> + ||V2U‘HLQ(D) + ||vp||Lq(D)

Ia(£59:h D) = f o yo) T 1Ml o ) + N2, )y o)+ 1V(9: 2 1y

(D

which are used to state our generalized resolvent estimate. By C' we denote a generic
constant and Cy .. denotes the constant depending on the quantities a,b,.... The
constants C' and C, ... may change from line to line.

Throughout the paper we assume that the following two conditions hold:

ASSUMPTION 1.1.  Assume that 3 > 0 and that I' is a C*! compact hypersurface.

Since A = 0 is resolvent for the Stokes operator in any bounded domain with nonslip
boundary condition (cf. [5]), in our case it is also natural to consider the solvability of
the problem (1.1) when € is bounded and A = 0. Concerning this topics, we need some
geometrical assumption on €2 when o = 0.

DEFINITION 1.2. By a hyperline in R™ we mean that an affine subspace of codi-
mension two.

Q is said to be rotationally symmetric with respect to a hyperline L if for any
a € L the two-dimensional section L N of Q by L} is, if nonempty, symmetric
with respect to a, where L~ denotes the plane through a and orthogonal to L.
Moreover, €2 is said to be rotationally symmetric if there exists a hyperline L such
that Q is rotationally symmetric with respect to L.

Two theorems which follow are our main results.

THEOREM 1.3. Letl < q < oo.

(1) Let 0 < € < w/2 and & > 0. Then, for every X € C \ (—00,0], f € Ly(Q)",
9 € Wyaiv(Q) and h € W, 5(Q) the problem (1.1) admits a unique solution (u,p) €
W2(Q)" x qu (Q) which satisfies the estimate:

jk(’uﬂpaﬂ) é Ce7q,5‘@)\(f7g7ha9> (14>

provided X\ € B¢ and |A| 2 6.
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(2) Let Q be a bounded domain. Assume that Q is not rotationally symmetric. Then,
there exists a Ao > 0 depending only on Q such that for every A € {\ € C'| |\|
Xots [ € Ly(Q)", g € Wyai(Q) and b € W, ,(Q) the problem (1.1) admits a
unique solution (u,p) € W2 ()™ x W; (Q) which satisfies the estimate:

s e + 1Py S Ca (1o + 15 ) (L)

provided A € C with |\ £ Ag.

THEOREM 1.4. Letl1l < g < oo and 0 < € < w/2. Let us consider the equation
(L.1) with f € Jo(Q), g =0 and h = 0. If (u,p) € W2)™ x W}(Q) is a solution to
(1.1), then we have

Nl s g+ 1)y S Cea NZHDE=0D 1], (1.6)

= q(92)

provided that A € ¥, and |A| 2 1.

REMARK 1.5.

(1) We call (1.1) the generalized resolvent problem when all of f, g and h are non-
trivial, while we call (1.1) the resolvent problem when only f is non-trivial.

(2) When the boundary condition is the non-slip one (v = 0 on I'), the theorem
corresponding to Theorem 1.3 was proved by Farwig and Sohr [5] under only
the assumption that I' € C1'!. But, in our case we can not avoid the condition:
[ € C%! as far as we use the transformation (4.5) in Section 4 below that keeps the
divergence condition and what the normal component of the velocity field vanishes
on the boundary unchanged at the same time.

(3) When € is a bounded domain in R?, the assertion (2) of Theorem 1.3 was proved
by Solonnikov-Séadilov [19]. The point is Korn’s first inequality. In our proof, we
use some generalization of Korn’s first inequality due to Ito [11].

(4) The estimate for the pressure term given in Theorem 1.4 also holds even if the
boundary condition is the non-slip one, which Farwig and Sohr [5] did not mention.
The estimate in Theorem 1.4 will play an important role to show uniform L,-L,
decay estimates when ) is an exterior domain, which will be shown elsewhere.

The organization of the paper is as follows: Using the Fourier multiplier theorem,
we prove the estimates of .#)\(u,p, R") and .#)(u,p, R}) in Section 2 and Section 3,
respectively. The half space problem has been studied by Saal [15] when ¢ = 0 and
h = 0. However, we have to study essentially the case where all of f, g and h are non-
trivial, so that our solution formula is different from Saal’s one. Therefore, we give a
proof of estimates of solutions to the generalized resolvent problem in the half space. In
Section 4, we solve the generalized resolvent problem in a bent half space by transforming
the problem to the half space problem. Our assumption: I' € C% arises only from this
transformation. In Section 5, first of all using the usual localization procedure and the
results obtained in Section 2 and Section 4 we show the a priori estimate:
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(0,0, £ C{AAF.9. 0, Q) + [l 0 + Ml

1Vl gy + A2l g - (L.7)

In order to eliminate two perturbation terms: [jp|, ., , and |)\|||uHW_1(Q ) in (1.7) for
q R

large |A|, we use an estimate of solutions to the Neumann problem for the Laplace

operator in g, while Farwig and Sohr used a compactness argument based on the

uniqueness of the Helmholtz decomposition. In fact, we show that

9] < LIVl ey + 190l 00+ 1Gaf sy, + MLl b

q

Allfell < C{IDW) Py + 1D Py + 11y }- (1.8)

chl(n]?) =

This is a key observation to eliminate the perturbation terms in the right hand side of
(1.7), which seems to be new. Combining (1.7) and (1.8), we can eliminate the pertur-
bation terms in (1.7) for large |A|. As a by-product, we also have (1.6). When \ varies in
any compact set of X, we use a compactness argument based on the uniqueness of solu-
tions to (1.1) in order to eliminate the perturbation terms in the right hand side of (1.7).
In this way, we prove a priori estimates stated in (1.4), (1.5) and (1.6). In Section 6, we
prove the unique existence of solutions to (1.1) under the assumption that €2 is bounded.
We start with the unique existence of weak solutions to (1.1) in the Lo framework. And
then, by using the localization method and results obtained in Section 2 and Section 4,
we show that such weak solutions actually belong to W2 ()" x qu (Q). Finally, we show
that such weak solutions satisfy the boundary condition. In the argument in Section 6
we essentially use the boundedness assumption of the domain 2 to show the existence of
the pressure term by using the idea due to Solonnikov and Sc¢adilov [19]. As Farwig and
Sohr did ([5, p. 630]), by the Riesz representation theorem and the de Rham theorem we
can show the existence of u € W3 (Q)" and p € W () such that Au — DivT(u,p) = f
and divu = 0 in the distribution sense of €2 even when () is an exterior domain. This
observation is useful to treat the case where v = 0 on I'. But, the boundary condition is
hidden in the weak formula of the equation in our case, because our boundary condition
is of first order. Therefore, from what u and p satisfy the equation in the distribution
sense we do not get any information whether u satisfies the boundary condition unlike the
non-slip condition case. This is the reason why our discussion about the unique existence
of solutions is different from that due to Farwig and Sohr. In Section 7, we prove the
unique existence of solutions under the assumption that €2 is an exterior domain. We can
not use the argument in Section 6, because the domain is unbounded. Therefore, in order
to show the existence of solutions we construct a parametrix by combining the solutions
of the whole space problem and those of the problem in Qg by a cut-off technique.

2. A generalized Stokes resolvent problem in the whole space.

In this section, we consider the generalized Stokes resolvent problem in R™:

M —DivT(u,p)=f, divu=g in R". (2.1)
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By the Fourier transform and its inversion formula, the solutions u and p of (2.1) are
given by the formulas:

u=Fe L+|&5|2

ol

] F=f—-Vp+Vyg
3

] AF ﬁé?] +2g (2.2)

where F(¢), f(€) and §(€) denote the Fourier transforms of F, f and g, respectively;
9{ ! denotes the Fourier inverse transform with respect to ¢ variables.
The following theorem is a main result in this section.

THEOREM 2.1. Let1l < ¢ < oo and 0 < € < 7w/2. Then, for every A\ € X,
f € Ly(R")™ and g € W, (R™) N W;l(Rn), the problem (2.1) admits a unique solution
(u,p) € W2(R™)™ x W; (R™) which satisfies the estimate:

232, B = C{ o, + AL+ ) 1981 |

(R™)

for some constant C' depending on €, g and n only.

ProoF. Noting that C§°(R") is dense in qu(R”) (cf. Lemma 5.1 in Farwig and
Sohr [5]), we have

(A — Div T (u, p),v) gu = (u, Av — Div T (v,0)) on (2.3)

for every A € C, u € WqQ(R”)" with divue = 0, v € WqQ,(R”)" with dive = 0, p €
W(}(R") and 6 € W(}/(Rn), where ¢’ = ¢/(g—1). Therefore, the uniqueness follows from
the existence of solutions to the dual problem. Since

X+ 1€17] 2 (sin(e/2))(1A] + [€]%) (2.4)

for every A € ¥, and £ € R"™, applying the Mikhlin Fourier multiplier theorem (cf. Triebel
[21]) to the solution formula of v in (2.2), we have

[Aflfl + AVl oy + 1920l ) S Cegnl P

q(R?) =

= eqn”(fv (7 ))||Lq(R”)

Lg(RM) Lq(R™)

for every A € X..
To estimate Vp, we write

§(e- f(&))} Az Fg(a)

_ g-1
Vr =7 { e G

] +2Vyg. (2.5)
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The L, boundedness of the first term of the right side of (2.5) follows from the Mikhlin
Fourier multiplier theorem immediately. To estimate the second term of the right side of
(2.5), we take a test function ¢ € C§°(R™) and observe the following formulas:

(P ©l20) | = (9. 2 @l %) |

VZEp©lel | (2.6)

<
= ||g||Wq_1(R") Lq/(R")'

Since

IVFS ea€)lEl]| s Cog el (2.7)

Ly (R™)

as follows from the Mikhlin Fourier multiplier theorem, combining (2.6) and (2.7) we
have

17 @I,y S Cnalall,

Lq(R™) (R

Therefore, we have

1981,y S Cortan {1 lzeny + Wl s ey + 1961, }

(R™)
which completes the proof of the theorem. O

3. A generalized resolvent problem for the Stokes equation in the half
space.

In this section, we consider the generalized resolvent problem in the half space R} :

Au — DivT(u,p) = f, divu=g in R}
v-u=0, Bag(u)=h ondR" (3.1)

where OR" = {(2/,0) | 2/ € R" '} and B, s(u) = au + 3(D(uw)v — (D(u)v,v)v) with
v="1%0,...,0,—1). Since

01Uy + Onuy
D(u)v — (D(w)v,v)v = — . (0 =0/0x;)

anflun + anunfl
0

in the half space case, the boundary condition in (3.1) is written as follows:

up =0, auj — foqu; =h; (j=1,...,n—1) on OR. (3.2)
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As a compatibility condition, it is necessary to assume that v-h = —h, = 0 on OR'}.
Set W, 5(RY) = {h € Wy(R})" | v-h =0 on dR}}. The following theorem is a main
result in this section.

THEOREM 3.1. Let1 < g<o00,d >0 and 0 < e < m/2. Let A € C\ (—00,0],
f € Ly(RY)", g e Wi (RY)N W;l(Ri) and h € W, 5(R%) and assume that supp g is
compact. Then, the problem (3.1) admits a unique solution (u,p) € W2 (R})" x W;(Ri)
which satisfies the estimates:

I ) Z Cos {11y + IV )y A2 D)y, N}

provided that A € X, and |A| 2 §, where C. 5 is a positive constant depending on €, 6, n
and q.

In what follows, we shall show Theorem 3.1. We start with the following lemma, by
which (3.1) will be reduced to the divergence free case.

LEMMA 3.2. Letl <g< oo andg € W;(Rﬁ) N Wq_l(Ri). Assume that supp g is
compact. Then, there exists a v € WqQ(Ri)” such that divv = g in R} and v, =0 on
ORY .

Moreover, v satisfies the following estimates:

V7o

1ollz, e, = Callgll, s < CollVigllLymy, (=01

(R") L (R”) =

PROOF. Let E(z) be a fundamental solution of the Laplace operator A given by
the formula: E(z) = e(|z|), where e(r) is a function such that e(r) = ¢,r~ (=2 forn > 3
and cglogr for n = 2 with some constant ¢,, depending on n. Since supp g is compact,
setting

V) = [ (Bla =)+ B~ y)g)dy = (B +4°)(0)

where y = (v, y,) and y* = (¢, —yn); and ¢° is the even extension of g to the whole
space defined by the formula: ¢°(z) = g(x) for x, > 0 and ¢°(z) = g(z’,—x,) for
Zn < 0. We see easily that V € quloc( RY), V2V, Locrn) S < Clgll, Lo(rn)? V3V, Lotrny =
C||Vyll and 9,V = 0 on ORY. To estimate HVVH we take ¢ € Cg°(RY)

arbitrarily and observe that (VV, ¢) ... = (g, (VE)*¢®) R where ¢° is the even extension
+

Lg(RT) Lo(R})?

of ¢ to the whole space. Therefore, we have
[(VV. )y | = HQHWE(R?II(VQE) N gy Z Ol 1ML

which implies that ||[VV]| < Clgll. S If we set v =VV = (&,V,...,0,V),
+

then v satisfies the required properties, which completes the proof of the lemma. O

Lq(RT)
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We set w = v+w in (3.1) and (3.2), and then w and p satisfy the following equation:

Aw —DivT(w,p) = f — A+ DivD(v), divw=0 in R
wy =0, aw; — Bo,w; = h; — (aw; — BOpv;) (j=1,...,n—1) on OR. (3.3)
Set F' = f — A+ DivD(v) and F*(x) = (Ff(x),...,Ft_i(z), F2(x)), where F? is the
odd extension of F,, to the whole space defined by the formulas: F2(z) = F,(z) for
xp > 0and F(z) = —F,(2',x,) for z,, < 0. Let (U, ®) be a solution to the whole space

problem:

AU —-DivT(U,®)=F*, divU=0 in R". (3.4)

By Theorem 2.1 and Lemma 3.2, we have U € WZ(R")", ® € qu (R™) and

(U, ®,R") = Ce gl F*

||Lq(R")

< Cogn{ 1 yimsy + W9l s g, 1y} (35)
Moreover, we see easilty that
U,=0 ondRY. (3.6)

We set w =U + z and p = ® + 6, and then it follows from (3.3), (3.4) and (3.6) that
(z,0) satisfies the equations:

Az —DivT(z,0) =0, divz=0 in R?
2 =0, azj— 0wz =H; (j=1,...,n—1) onJRY (3.7

where we have set
Hj = hj - (Ck’Uj - 68nvj) - (CkUj - ﬁ@nU])
By Lemma 3.2 and (3.5) we see that

IVHG I,y + A2 IH; < CsPx(f,9.h, RY) (3.8)

G (R MEIES
provided that A € X, and |A| = 4.
Now, we shall show the following theorem.

THEOREM 3.3. Let1l < q< oo and 0 < e < m/2. Then, the equation (3.7) admits
a solution (z,0) € W2(RL)"™ x W, (R'}Y) which satisfies the estimate: Fx(z,0, R) <
C.2\(H), where we have set Zx\(H) = |\'/2||H]||, + [|[VH]

a(RT) Lq(RY) "
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Since the uniqueness follows from the existence theorem of the dual problem, from
Theorem 3.3, (3.8), (3.5) and Lemma 3.2 we have Theorem 3.1. Therefore, we shall show
Theorem 3.3 in what follows.

First of all, we shall derive the solution formula of (3.7). For this purpose, applying
the partial Fourier transform with respect to 2’ to (3.7), we have a system of ordinary
differential equations:

A+ Zi(2n) — 02Z(2n) +i€;0(2,) =0 2, >0
A+ 112 Zn(20) = 2 Zp(20) + 0,O(20) =0 2, > 0

"z_: i Z;(xn) + OnZn(xn) =0 Z, >0
Zn(0) =0, aZ;(0) = 5(9.2;)(0) = H;(€',0) (3.9)

for j =1,...,n — 1, where we have set Z;(x,) = Fu[2;](¢, zy), O(zy) = Fu [0](&, 1),
ij (&,0) = F,[H;](&,0); and Fp [E](¢, ) denotes the partial Fourier transform of
k(x) with respect to 2’ that is defined by the formula:

Fu k(€ xn) = /Rn_l e k(@)da!, 2 = (21, 1), € = (&1, &), (3.10)

To solve (3.9), we set Z; = Pje=4% 4+ Q e~ 5% and © = Re=B%» with A = /A +[¢/|?
and B = |¢’|. Inserting these formulas into (3.9) implies that

(A2 - BYHQ; +i¢;R=0, (A>-B*Q,— RB=0

n—1 n—1
> i P - P,A=0, Y i§Q;—QnB =0
j=1 j=1

P+ Q. =0, afP;+Q;)+B(AP; + BQ,) = H;(¢',0)

for j =1...,n— 1. Solving this system of linear equations, we have
— Az, R B ) n—1 [—A[ , 0
Z](ggn) ¢ Hj(fl, O) o+ ﬂ §J Zk:1 €k k(f 5 ) B*Aﬂﬂn
+ BA a+BA(A—-B)(a+p(A+B))B

&0 G He(€,0)
(A= B)(a+B(A+ B))B

— _ n—1
e Az, 6 e Amngj

~ oA - Ay pa s BB 2 S HEO)

N 1 e—Amn _ e—Bx,,,
(@t B(A+B)B A-B

n—1
&> GHi(€,0)
k=1
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i e~ Atn _ p—Bzn T 1

Znlen) = S TBATE A-D Zfchkg 0)

_ _Z(A + B) —Bx, = 2 /
Set
, ean:” _ efB:v
() =

Using the identities:

a(z)b(0) = — /0 h a%[am )by

- " (00) (@ + )by s — / " 4@+ ) (Onb) ()
0 0

O My (€', ) = —e~ A% — BM,\(€', z,,) (3.11)

denoting the inverse partial Fourier transform with respect to & by fg_,l, writing

By(¢') = A = /A 4+ [¢)? and recalling that B = |¢’|, finally we arrive at the formu-
las:

— - g—1 eiB/\(gl)(w"+y") B / ) I:I ! Nd
Zj(fﬂ)*/o Fer {a—i—ﬂB,\(f’)( A(E) = 0n) j(gvyn):|(1') Un

e_Bk(fl)(anryn)

—1 i€k
+;/0 Ze {(OéJrﬂBA(f’))(Oﬁﬂ(Bx(f/H|€’|))|§’|

(ot B0 E (€, m] (+')dy

n—1

gjngA(§/7 Ty + yn) ’
M A e e RCRE ) G2

ifke_BA(E/)(zn“"yn)

_ s e —1 2 / .’L‘/
)= I;/ 2 | S e T )| @,

i MA(E T+ Yn) (10 _ T (¢! z
*Z/ 7 (a5 B 1 - e )

(€' + Ba(£))&pe € 1 @ntum) o /
Z/ 5/[ (a+ B(BAE) + [EDIE (a”"f')Hk<5’yn>]<x>dyn-

(3.12)

In order to estimate z; and ¢, we use the following two lemmas.
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LEMMA 3.4. Let 0 < e < w/2. Then, there exist constants ¢1 and ¢z depending on
€ such that

cr(IAY2 +[€']) < Re BA(€') < ea(|A[Y2 + [€]) (3.13)

for every A € &, and £ € R 1.
Moreover, we have the following estimates:

|08 BA(E')®] < Car e (|A[V2 + [€/])> 1] (3.14)

|08 1€']°] £ Cuar €/~ (3.15)

!0?/ e BAEen) <o (INV? + ‘,5/|)—\a/|e—<c1/2><|xwl/2+\§’\)xn (3.16)

‘3?,' e—\f’lwn| < Ca/\§’|_‘”‘/|e_(1/2)‘5/‘””" (3.17)

|08 [1€'|MA(E,2)]| £ Cor e|€'] 71 Te U (3.18)

10 (a+ BBA(E) | £ Car e (A2 4 |g/|) 11 (3.19)

|08 (ar+ B(BAE) + €)™ £ Car &/ (3.20)

for every o' € Ngil, T, >0, € R A€, and s € R, where Cp 5. and Co ¢ are
positive constants independent of x,,, £, and \; and we have set d = min(1,¢;)/2.

LEMMA 3.5. Let 0 < e < m/2 and 1l < g < oo. (1) Let my(X\, &) be a function
defined on X x (R"~1\ {0}) such that

08 m1 (A, €)] £ Car AM2(A12 4 /)71 (3.21)

for any o/ € NJ™', X € B, and ¢ € R"'. If we define the operator Ki()\) by the
formula:

Ki(M)g)(z) = /0 T [ma(\, §)e” PNt gy )] (@) dy,
then we have

||K1()\)[9]HL{1(R1) g CE”-g”Lq(Ri)
forany X\ € ¥ and g € Ly(R). Here and hereafter, we write (&', x,) = Fur[g(-, 2n)](£)
(cf. (3.10)).
(2) Let ma(X, €') be a function defined on X x (R™~1\ {0}) such that

|08 ma(A,€)] £ Car, o€’ (3.22)

for any o/ € Ngf—l, A€ X and & € R, If we define the operators Ko(\), K3()\) and
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K4(\) by the formulas:

K>(\)[g)(z) = /0 A [ma(X, €)e™ PXEN @t (e’ y )] (2')dy,,
K3(\)[g)(z) = /0 N Fert Ima(N, €)e €1t u (el )] (2" )dyn
Ky(\)[g)(z) = /0 h Fei [ma(\ EEIMAE 2 + yn)3(€ yn)] () dyn

then we have
“Kj<)‘)[g]||Lq(R1) < CﬁHgHLq(Riy J=2,3,4

for any A € ¢ and g € Ly(R).

A PROOF OF LEMMA 3.4.  Set By(¢') = |\ + |¢/[]}/2€%. Since —7 + € < arg(\ +
|€'1?) £ m— e for A € X, we see that —(m —€)/2 < 0 < (7 — €)/2, and therefore by (2.4)
we have (3.13) immediately.

To prove (3.14), we set f(t) = t*/2 and observe that

o] , ,
08" BA(E)*| < Car DO FOBMED)| D0 [0 BA)] - |08 BA€)-
=1

af+-tap=a’
Jaf|Z1

Since g Ba(¢')? = 9g' |€']%, by (3.13) we have

lo|

|3?/ B}\(f/)s| < Ca/,sZ(p\‘lﬂ + |£l|)872f Z |§/|k
= Kt2(e=k)=la’|
0Sk<¢

o]

= Cars D (A2 4 1€)*2(INY2 - JT) 1]
{=1

< Cor s (A2 4 [¢/])> 1

which shows (3.14). Analogously, we can show (3.15).
To show (3.16), we set f(t) = e '~ and observe that

o]

08" e Bz < ST[FOBAEN] Y. 8 BAE)] - |05 BAe)]

/=1 a’1+~“+a2:a’
laf|21

By (3.13) and (3.14) we have
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la’

C Z —c1(|)\‘1/2+\§|znx (|)\|1/2+|§ I)e ||
(=1

’8?,/ e_B% (5,)rw

< Cre= /DA HE Dan (| 3172 4 g7y~ 1]

which shows (3.16). Analogously, we have (3.17).
To show (3.18), by the Taylor formula we write

1
|| M€ zy) = _|§/|mn/ e~ ((1=0)I&'|[+0Bx(E"))zn gp
0

Employing the same argument as in the proof of (3.16) and using (3.13), (3.14) and
(3.15), we have

|02 e~ ((1=01E/H+OBAE e
o |

< Cor 3 a0 HerdN 2 e
=1

x Y (=01 R (Al 4 ) 1)

al 4 tah=a’

laf|21 ((1_9)|§/|1—\a2\+6(|)\|1/2+|€/|)1—\a2\)

|o
Z (OO (1= 0)[¢/] + (A2 + [€) fe/ |1
(=1

IIA

< Cpre= D=0 HOAHIE Nan | ¢/~ < ¢, o= /B n |7~ Ie]

where 2d = min(1, ¢;). Therefore, by the Leibniz formula we have (3.18).
To estimate (3.19), we set f(t) = ¢~! and observe that

08 (a+ BBA(E))

o]

< Co 1O+ BBAEN] Y |05 @+ BBAE))] |05 (a+ BBAE))]
=1 ol 4 ta,
o121
|’

< Corse 3 (Ber (A1 + 1) CHD (BN + €)1

S Car e (BINY2 +1¢7) 71

which shows (3.19). Since

(@ + BBAE) + 1ED) 7 = (Ber (A2 + 1€
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as follows from the fact: @ = 0 and (3.13), by (3.14) and (3.15) we have (3.20). This
completes the proof of the lemma. O

To prove Lemma 3.5 we shall use the following two lemmas.

LEMMA 3.6. Let0<e<m/2. (1) Let m1(A\, &) be the same function as in Lemma
3.5 and set

k(A z) = Zot (A, €)e” B (a),
Then, we have
[k1(A, @)| < Celz| ™" (3.23)

for any A€ X, and x € R'}.
(2) Let ma(A,&') be the same function as in Lemma 3.5 and set

ka(\ ) = Fgt [ma(N, €)™ BrED™] (2/)

ks(\ z) = Z5 [ma(\, €)e 1€ 1] ()

Then, we have
lkj(\2)| = Celz|™", j=2,3,4 (3.24)

forany A€ X, and x € R} .

LEMMA 3.7.  Let 0 < e <m/2. Let k(X x) be a function defined on X x R}, which
satisfies the estimate:

k(X z)| = Llz[" (3.25)

for any v € R} and A € X, with some constant L independent of v and X. Let Ky be
the integral operator defined by the formula:

Kx[gl(x) = - k(A 2" =y en +yn)g(y)dy, « € RY.
+

Then, we have

K9l S CogLlgll,

Lq(R}) =

(3.26)

«(R)

for any g € Ly(RY).
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A PROOF OF LEMMA 3.5. Let k;(A, ) be functions defined in Lemma 3.6, and
then the operators K;(\) defined in Lemma 3.5 are written as follows:

K;(N)gl(z) = - k(N 2" — ' 0+ yn)g(y)dy.

Therefore, applying Lemma 3.7 implies Lemma 3.5 immediately. 0

Therefore, we shall prove Lemmas 3.6 and 3.7 to complete the proof of Lemma 3.5.

A PROOF OF LEMMA 3.6. To show (3.23), we use the identity:

n—1 T a
: ialel = ginte, 3.27
Z iR ogt ¢ (3:27)

Applying (3.27) n times and using (3.14) and (3.21), we have

|75 (A, €)em P (o))

£0n 2 <||>

la|=

C —n
= T |A|1/2/Rn71(lkl”2+|€’\) d¢’. (3.28)

|08 [my(\, &) BrEDn] | ag/

Rn—1

To proceed the estimate (3.28), we observe that
/ (|)\|1/2 + ‘§/|)—nd£/ § |/\|(1—n)/2/ dgl + ‘)\|1/2/ |£l|—nd§/
Rn—1 e[S |Afr/2 l€71Z[A11/2
<G, (3.29)

with some constant C,, independent of A. Combining (3.28) and (3.29) we have

| Fot [ma(N, €)e PAEm] ()] £ T2 (3.30)
On the other hand, by (3.13) and (3.28) we have

[Za 0 €)e P @) S CuAP2 [ emer D g

RTL*I
Cn| A/ “n Cn
< S [ e S o (331

with some constant C), independent of A, which combined with (3.30) implies (3.23).
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To show (3.24), we use the following lemma due to Shibata and Shimizu [16].

LEMMA 3.8. Let B be a Banach space and |- |p its norm. Let o be a number > —n
and set « = N 4+ o —n where N is an integer and 0 < o < 1. Let f(&) be a function in
C>(R™\ {0}, B) such that

9 f(§) € Li(R",B) for |y| =N

0 f(E)lB = CL €1~ for every € #0 and v € N

Set g(x) = [pne™™ $f(€)d¢. Then, we have

9(z)|B éCn,a( max Cv)|x|—(n+a)

[yIEN+2

for every x # 0, where C, o 1s a constant depending only on n and o.

By (3.16) and (3.22) we have

|ag// [m2()\’€/)6713x(5/)%} < Ca/’e|£’|17‘O‘/|67(Cl/2)|€/|w" (3.32)

and therefore applying Lemma 3.8 with o = 1 (replacing n by n — 1), we have
| Fe [ma (A e PO ()] < Cela’| ™
On the other hand, by (3.13) and the change of variable: ¢'x,, =7, we have

| Zo [ma(N, €)e BrEm] (a))|

SOy [ [l g = / /e V'
- Rn—1 (.’En)” Rn—1

Combining these estimates implies that |ky(\, x)] < Ce|z|™™. Analogously, by (3.22),
(3.15), (3.18) and Lemma 3.8 we see that (3.24) holds for j = 3,4, which completes the
proof of the lemma.

A PROOF OF LEMMA 3.7. By Minkowski’s inequality for integral, Young’s in-
equality and (3.25), we have

||K)\ [g](7 xn)”Lq(Rnfl)

L/“ {/ / l9(y's yn)| dy
0 ro-1 | Jro-1 (|27 =Y/ 12 + (0 +yn)?2)"/?

o lgCsyn)ll, pn-
L/ / LD . (3.33)
no1 +\y\ n/2 Tp + Yn

q

A

1/q
dm’] dyn
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To proceed the estimate, we apply the Marchinkiewitz interpolation inequality to the
integral operator:

Glh)(zn) = / T o) g

T + Yn

In fact, by Holder’s inequality we have

< dy, Yd
‘G[h](ﬂﬁnﬂ < (/o W) ||h||Lq(R+)

© gt \Y7'
— = —1/q
([ ) @ bl

which implies that

sup R pu({wn > 0| |G[h](x,)] Z R}V < (¢ = 1)V |11,

R0 Fafe)

where 1 denotes the Lebesgue measure on R. Therefore, by the Marcinkiewitz interpo-
lation inequality G becomes a bounded linear operator on Ly(R.) for any 1 < ¢ < oo,
which applied to (3.33) implies (3.26). This completes the proof of Lemma 3.7. O

Now, by Lemmas 3.4 and 3.5 we shall show Theorem 3.3. First of all, we consider
the term:

g€ yn) | (@Ndyn, k=1,...,n—1

w(x) =

/OOJ |:ng)\(§ xn"'yn)
o % La+B(BaE) +1¢)

where §(¢’,x,,) stands for one of 9, H;(¢',x,), Ba(&)VH; (€', x,) and |¢'|H, (€', x,). To
show that

(Mllwll,, ey < Cellgll, (3.34)

a(RT)

using the identity: AM (€, 2,) = (BA(E') + [€/]) (e BrE2n — e~I€l7n) we write
M (x) = /0 N T [GAE N (e POt e Elentundyg(el y,)] (2 ) dyn

where we have set A(&,\) = (BA(&) + |€']) (o + B(BA(E') + €'])) L. Since

108 [6k A(E', N)]| £ Cor €11

for every o/ € NJ!', A € ¥, and ¢ € R"™! as follows from Lemma 3.4, by Lemma 3.5
we have (3.34).
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To show that

A2V +IV*0ll,, ) S Cellgll, (3.35)

Lq(RY) Lg(RY) = Lq(RY)

we write

1/2 [T IAM2i8E0|E IMA(E, T + Yn)
Aot = [ 7 [ (@t B(BrE) + 1EN)E]

1/2 _ — |)‘|1/2§k( ~BA(E) @ntyn) +|£/|M>\( $n+yn))
A Onau(a) = /o‘/f { a1 BBAE) + €))

(€' )| @),

§(e, ynﬂ (') dyn

_ > ag—1 fkféfm‘§l|M>\(§/7$n+yn)A ’ :| ’
Oom) = / e Law(w ) enen v )

=BAE)@ntyn) 4 ¢/ My (£, 2 + Un e ,
o0 Y o—Ba (") (@n+yn) n-l
(e — [mBA( ) +1¢])e € )0 5
20(2) / 7; e T ) | @)y > Pw(x)

where ¢ and m range from 1 to n — 1 and we have used (3.11). Since
| £ Car g1
[ UAP/%k(a +BBAE) €)1 | £ Carel€' 7

102 [ek€eém{(a + BBAE) + 1EMIE]

]

]

< O el M1

|
|

| § Oa’,e'é‘l_la/‘
|98 [x€e(a+ BBAE) +1€'D) ]
( |

08 [66(BAE) + 1€/ (e + BBAE) +1€'1) 7] £ Cor e 1]

for every o/ € N1, A € ¥, and ¢’ € R*™! as follows from Lemma 3.4, by Lemma 3.5
we have (3.35).

Write
n—1
BA(€)H; (€ n) = AM(BAE) M) THAV2ZH, (€ ) — i Y EBA(E) T OeH; (€ )
=1

|§ |H €7xn :*ZZ§€|£| 18/ fvxn)

Since
108" [NBAENNY) | S Cor €711, 108 [€0BAE) ]| £ Car el |71
108 [€11€'71]] S Carele’| 71!
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for every o/ € NJ ™', A € & and ¢ € R"! as follows from Lemma 3.4, by Fourier
multiplier theorem (cf. Triebel [21]) we have

190y, S Ce(INM2NH iy + IV H L)
where g(z) = Z5 [BA(&)H: (€, 2,)|(2) or F5|€'|H; (€, 2n)](2'). Therefore, we have
3 J 13 J

A0l ey + A2 IV gy + (V0]

(R (R Lg(RY)

< C(IN2UH 1 g + IVE L,

a(RT) q<R¢>)

for every A\ € X..
Employing the same arguments as above, by Lemmas 3.4 and 3.5 we can estimate
other terms in (3.12) and therefore we may omit the detailed proof of Theorem 3.3.

4. Resolvent problem of the Stokes system in a bent half space.

Let w : R*! — R be a bounded function in C%*! class whose derivatives up to
third order are all essentially bounded on R"~!. Let us define a bent half space H by
the formula:

H={z=(2,z,) € R" |z, >w(z")}.

The boundary OH and the unit outer normal v = v(z’) to H are given by the formulas:

OH = {z = (2/,w(2) | 2’ € R*'} and v(2') = (Vw,—1)//1 + |V'w]|?, respectively.
Here and hereafter, we set V'w = (O1w,...,0,—1w). In this section, we consider the
following generalized resolvent problem of the Stokes system in H:

Au—DivT(u,p) = f, divu=g¢g inH
v-u=0, Byg(u)=h ondH. (4.1)

The following theorem is a main result of this section.

THEOREM 4.1. Letl < g < oo and 0 < € < w/2. Let A € &, f € L,(H)",
g€ W;(H)HW(Z_I(H) and h € W} (H)"™. Assume that supp g is compact and that v-h = 0
on OH. Then, there exist constants Ao = Ao(q, €, ||V'w||@2<Rn71)) =1 and Ko = Ko(qg,€)
with 0 < Ko < 1 such that if ||V’w||Loo(Rn71> < Ko and |A| 2 Ao, then the problem

; ; ; 2 11 ; ; ; .
(4.1) admits a unique solution (u,p) € Wi (H)" x W (H) which satisfies the estimate:

IA(u,p, H) = COx(f, g, h, H) with some constant C = C(q, &, [|V'w|| ; .-r,) > 0. Here
and hereafter, we set
’ o _
va”@k(Rn—l) - Z Hax’wHLOQ(Rn_l)a k*172

1<’ |Sk+1
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ProOOF. First of all, we shall make one remark concerning the boundary condition.
If u satisfies n boundary conditions:

n
vou=0, aup+ B Dy(w)ve — (D(u)v, )y, = hy, (k=1,...,n—1) (4.2)
=1
on OH, then u satisfies the following condition automatically:
oy, + ﬁz Dye(w)ve — (D(uw)v, v)vy, = hy (4.3)
=1

on OH provided that v-h =0 on 0H. In fact, by (4.2) and the facts that v-h = 0 and
v-v=1on 0H, we have

0 = {au+ B(D(u)v — (D(u)v,v)v),v)

n—1

—;thk—i—un{aun—l—ﬁ(ZDng (engem Wym) n)}
Vn{hn+aun+6<éDng(u (E;IMm wum) n)} (4.4)

Since v, = —(1 + |V'w|?)"/2 £ 0, (4.4) implies (4.3).

Now, we shall prove the theorem. For this purpose, first of all we reduce the problem
(4.1) with (4.2) to the half space problem. Let us introduce the transformation ¢ : H —
R defined by y = p(z) = (2/,2, —w(z’)). Obviously, ¢ is a bijection whose Jacobian
is equal to 1. For a function or a vector field w defined on H, we define w(y) by the
formula: w(y) = w(z). Note that

0 0 Ow 0 0 0
Erl —— (=1...,n-1), —=_—.
T ayj 8y] 8yn al’n ayn
Below, for the notational simplicity we write Ko = [V'w| .., and K; =

[IV'w]| @i (mn—1) (1 = 1,2). Since we shall choose K small enough, we may assume that

0 < Koy £ 1 from the beginning.
Let (u,p) solve (4.1). If we set

v =8(y) G=1,..,n—=1), va(y) =anly) = Y 71— )ie(u), 0(y)=5p(y) (4.5)

we see that the problem (4.1) is reduced to the equation:

A —DivT(v,0) = f + S(\,v,0), dive=g in R
v, =0, avj— BO,v; = (1+|V'w?) 2h; + S5(v) on IR? (4.6)
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for j =1,...,n — 1, where S(\,v,60) and S§(v) are suitable functions which are linear
with respect to v, Vv, V2v and V6, and satisfy the following estimates:

15O, gy < CLED NIV ) + 19201, + 196

q(RT) q(R% Lq<R¢>)

+ K110l ey + B2lol s, |

1S5, o, = C{EOIVOIL, g, + (K + )llo]

Lq(RT) Lq(Ri)}

VS5, S C{EIV20l, ) + Ka (1901, iy, + o]

¢ (RT) Lg(RT Lq<R1))

Lq(Ri)

+ Kalloll,, a |- (4.7)
Given (v,0) € W2(R})" x W;(Ri), let (w, k) be a solution to the equation:

)\w—DivT(w,n):f—l— S(Av,0), dive=g in R"

wy, =0, awj — Bow; = (1+ |V'w>)"/2h; + S5(v) on R}

for j = 1,...,n — 1. Applying Theorem 3.1 and using (4.7), we see that (w, k) exists
uniquely in W7 (R')™ x W, (R'}) and satisfies the estimate:

Iy (w,k, RY) < c{% (F,3,h, RY) + Ko (v,0, RY)

TRV, g + (@b KON + o)l )} (48)

provided that |A| = 1. Let us define the map G by the formula: G(v,0) = (w, k), and
then G is a linear map from W2(R%)" x W2(R") into itself. If we choose Ko and A
in such a way that C(Ky + (2K + a)Aal/Q + Ay ' K3) £ 1/2, then by (4.8) G becomes
a contraction map on W2 (R’ )" x W;l(Rﬁ) provided that A € ¥, and |A| 2 Ao, which
shows the unique existence of solutions (v, #) of the equation (4.6). Moreover, by (4.8)
we see that #)\(v,0, R}) < 2C%(f,g, B,Ri), which completes the proof of Theorem
4.1. O

5. A priori estimate.

In this section, we shall show the following three theorems and Theorem 1.4.

THEOREM 5.1. Letl < ¢ < 00 and 0 < € < w/2. Let A € X, f € Ly()",
g € WH(Q)N Wq_l(ﬂ) and h € qu,a(Q)- Let (u,p) € W2(Q)™ x qu(Q) solve the
equation (1.1). Then, there exists a constant \y = 1 depending on €, q¢ and Q such that
Ia(u, p, Q) < Cq.0,eD(f, g, h, Q) provided that || = 1.

THEOREM 5.2. Let 1 < g < oo and 0 < € < w/2. Assume that § is an exterior
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domain. Let K be a compact set in Xe. Let f € Ly(Q)", g € W ()N Wq_l(Q) and
h € qu,a(Q)~ Assume that for A\ € K the uniqueness of solutions to (1.1) holds. If

(u,p) € WqQ(Q)” X W(}(Q) solves the equation (1.1) for A € K, then we have

L o el (Fi B ORI 7

where C' is a constant that depends on q, €, Q and K.

THEOREM 5.3. Let1 < ¢ < 00 and 0 < ¢ < 7/2. Assume that Q is a bounded
domain. Let K be a compact set in C. Let f € Ly(Q)", g € Wy aiv(Q) and h € W, 5(2).
Assume that for X € K the uniqueness of solutions to (1.1) holds. If (u,p) € W2(€)™ x
qu(Q) solves the equation (1.1) for A € K, then we have

llys a + 12l S C (11200 + 10 P )

where C' is a constant that depends on q, €, Q and K.
In order to prove Theorems 5.1, 5.2 and 5.3, we start with the following theorem.

THEOREM 54. Letl<qg<oo,0<e<m/2and Xg>0. Let \ € X, f € L,(N",
g€ W;(Q)ﬂszl(Q) and h € W} 5(). Let (u,p) € W2(Q)" x qu (Q) solve the equation
(1.1). Then, there exists a constant C depending on Ao, €, ¢ and Q such that

(0, Q) £ C((f,9,h,9) + |[Vul,

q(2R)
Al + Wl 2+ o) (5D

provided that |\| 2 Ao.

PROOF.  Let (u,p) € W2()" x qu(Q) solve the equation (1.1). Given cut-off
function ¢ € C*°(R"), we have

Meu) — DivT(pu, ep) = f,, div(pu) =g, inQ
v-(pu) =0, Baglpu)=h, onl (5.2)

where we have set

e N~ N0 (0 O\ o
(fSD)Z - Sﬁfz D (u) Z i ( "LL,L + 8I2u3> + axzp,

= Ox; *J = Oz \ Oz
Coh g (22, 0 N, ~ (O, 9% N,
(hso>z—50hz+5j; (azjuz‘f' axiuj)yj ﬁ<j§1 (axkuj—i_axjuk ViVg | Vi

9o = div (pu) = pg + (Vo) - u
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and k; denotes the i-th component of n vector k. Here and hereafter, v = *(vy,...,vy) is
suitably extended into R™ as a vector of functions in C%!(R") having compact support.
First of all, we shall derive an estimate near the boundary. Pick zy € I" up and consider
a small neighborhood of B, (z¢) = {x € R" | |z — z¢| < o} of xg, where o will be chosen
later. Let ¢ be a cut-off function in C§°(Bs(¢)) such that p(x) =1 on B, /o(xg). Let
O be an orthogonal matrix such that Ov(xg) =*(0,...,0,—1). Consider the change of
variable: x = x¢+ Oy and set (pu)(z) = v(y), (pp)(z ) = H(y) and w(y) = *Cv(y). Then,
we have

\w — DivT(w,0) = F, divw = G in Q
7-w=0, aw+ B(D(w)y — (D(w)p,?)0) = F5 on T
where Q = {{0(x — o) | = € Q}, #(y) = Ov(y), Fly) = 10f,(x), Gly) = g,(x) and

Fy(y) = 'Ohy(z). Let ¢y and € be two small positive numbers such that 0 < 2y < €
and

By NQC{y=W1,---s9n) | yn > (), v € B.}

B NTC{y=(y1,---yn) | yn =0, v € B.,}

for some ¢ € C%(B.,) that satisfies the conditions:

$(0) =0, V'%(0)=0, »= (V' -1)/VV1+[Vy]

where V') = (014, ...,0n-1%), B¢, = {y € R" | |y| < €}, and B, = {y/ € R"™" |
|y/| < e1}. Let p(y') be a function in C§°(R™!) such that p(y’) = 1 for |y/| £ 1 and
pla) = 0 for |yf| = 2 and set w(y') = ply/ /o) (y),

H={y= - ym) € R [yn >w(), v € R},

OH ={y=(y1,--,yn) € R" | yn =w(y), ¥’ € R"'},

v, = (V'w, —=1)/4/1+ |[V'w|2.

Let us choose ¢ > 0 so small that suppw and supp @ C B,,, and then we finally arrive

at the equation:

€0

Aw —DivT(w,0) =F, divw =G in H
Vo w=0, aw+ B(D(w)v, — (D(w)vy, Vy)V,) = Fs on OH. (5.3)

Moreover, we have ||V'w|| < C(e1)ep with some constant C(e1) that depends

Loo(RP—1) =
on e; but does not depend on ey. Let Ky = Ky(g,€) be the positive number given in
Theorem 4.1. Let us choose ¢y > 0 so small that C(e;)eg < Kp. Since 7 = v, on supp Fp,
we see that v, - Fy = 0 on 0H. Then, applying Theorem 4.1 to (5.3), we see that there

exist constants A 2 1 and C' > 0 depending on ¢, ¢, €y and €; such that



A resolvent estimate of Stokes system with Robin boundary condition 495
j)\(w707H)§C-@)\(FaGaFaaH) (54)

provided that A € ¥, and |A| =2 A. We may assume that supp ¢ C Bg, and then noting
that |A| 2 A =2 1, we see easily that

12y S C@o){ Il gy + 1PNy + 17z

IV (G, Fo)l iy + IAI2I(G, Fo)

[P

< Co) {1900, W), oy + Y2108, D) o + 190l + N2l -
(5.5)
Now, we shall estimate ||G||W71(H>. Recall that
1G, ., = sup {I(Gov)al | v € Wi (H). IVl =1} (5.6)

Given v € qu, (H), we set ®(x) = v(z) with z = '@ (x — z¢). Defining the constant ¢ by
the formulas:

Joo®dz/ [, ¢dx when Q is a bounded domain
CcC =
®dxr when () is an exterior domain

1
p((suppp)NQ) fsuppwﬂﬂ

where p denotes the Lebesgue measure on R"™, we set &9 = ® —c. When (2 is a bounded
domain, the fact that [, ®odz = 0 implies that ¢, € qu,(ﬂ); and when Q is an
exterior domain, the fact that (V¢)®( vanishes on Sg implies that (Vo)®g € WI}/(QR).
Recalling that G(z) = (div (¢u))(x), that v - (pu) =0 on T, and that suppp N C Qp,
we have

(G, v)u| = [(div (pu), @)al = [(pu, V®o)al = [(g, #Po)al + [(u, (Ve)Po)al

19010y 9ROy + il 1(F) 0 (5.7)

(@R) I W (@R)

When © is an exterior domain, we have |,
inequality we have

1pp PN ®y dx = 0, and therefore by Poincaré’s

||v(<:0(1>0)||Lq,(Q)’ H(V@)(I)OHW(;/(QR) § C”Vq)HLq,(n)' (5'8)
When 2 is a bounded domain, we also have (5.8), because we know the estimate:
||(I) - Clqu,(Q) é CHv(b”Lq,(ﬂ) (59)

for any ® € W, (Q) with ¢ = [, p® dx/ [, ¢ dx. In fact, we can show (5.9) by contradic-
tion as follows. Suppose that for any natural number m there exists a &, € W(}/(Q)
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such that [|®,, — cull, o > MIVOLl, o Where ¢ = [ 9@ dz/ [ pdr. Set
Ui = (P — )/l Pm — emll, (), and then [[¥ =1 and [|[VU < 1/m.

Since ||, || <1+ 1/m £ 2 for any natural number m, passing to a subsequence if

m“Lq(Q) anq,(n)

wl, ()
q
necessary, we may assume that there exists a ¥ € qu,(Q) such that ¥,, — ¥ weakly in
qu, () and strongly in Lg(£2) as m — oco. In particular, we have V¥ = 0, that is ¥ = ¢
(constant), and [[¥[, o =1.
q
On the other hand, we see that fQ W dx = 0, because

1
/gplllmdx:(/goémdx—/godxcm> =0.
Q [ @0 — Cm”Lq,(Q) Q Q

Therefore, 0 = fQ pUdxr = cfQ ¢ dx, which implies that 0 = ¢ = W¥. This contradicts to
the fact that ||V,  , =1, which shows that (5.9) holds.

By (5.6), (5.7) and (5.8), we have ||G]| | < C*"(”g”vv;l(m + ||u||W(;1(QR)), which

gran =

combined with (5.4) and (5.5) implies that

20,0, 90) € oy [y + 10 Wy + N2

VUl oy + N2l oy + Allull s gy + 1Pl g

provided that A € X, and |\ = A, where C,, is a constant depending on z, and
Qy, = {z € R" | |t — x| < o/2}. Since I is compact, covering I" by a finite number
of small neighborhoods like €2, we see that there exist a subdomain €’ of 2 and two

numbers A\; = 1 and C such that Q' D T and

231 Y) £ C[Uf oy + IV D)y + 200 1)y + AN

HIVull,, g + A2l 0, + Alllull s gy 1Pl gy | (5-10)

q(QR)

provided that A € ¥, and |[A| 2 A;.
Now, let A be any complex number such as [A| < Xi. If (u,p) € W2(Q)" x W} (Q)
satisfy (1.1), then it also satisfies the equation:

Au—DivT(u,p) = f+ (M —Nu, divu=g inQ
v-u=0, Byg(u)=h onT. (5.11)

Therefore, applying (5.10) to (5.11), we have

ol ar, + 191 S C L1y 10 B gy + 1911

g s + 101+ TPy
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which combined with (5.10) implies that

I(u,p, ) < O[%(f,g,h,ﬂ) FIVull,, o + A2 ull,

q(QR)

Ml 1P (5.12)

(QRr)

provided that A € ¥, and |A| 2 Ag, where C' is a constant that depends on ¢, ¢, 2, and
Ao-

Now, we shall estimate v and p on Q \ . Let ¢ be a positive number such that
O D {xeQ|dist(x,T') < 46} and let ¢ be a function in C*°(R"™) such that ¢(z) =1
for x € D3s = {x € Q| dist(2,T) > 30} and p(z) = 0for z € Es = QU {x € Q |
dist (z,T") < 0}. From (5.2) it follows that

A(pu) — Div T (pu, pp) = fp, div(pu) = g, in R"
and therefore by Theorem 2.1 we have

(5.13)

j)\(@u? Qpp7 Rn) é OE,(] |:||fW||Lq(R1L) + ||vg‘P||Lq(Rn) + |>\|||gS@qu—l(Rn):|

provided that A € ¥.. We see easily that

Wi llycans 1986 iy S C L uiar 190y 0y F el oy + 100 ] (510)

To estimate ||g¢||W , for any ¢ € C§°(R™) we observe that

L®’™

(9, V) rr| = |(div (u), ) rn| = |(ou, V(¢ — ¢y)) rr
= (9, 0¥ — cp))al + |(u, (Vo) (¥ — cp))al
IV(e® =)l @ + llul,

< gl GO

(Q) 7 l@pr)

where we have set

{ Joevdz/ [ pdx when  is a bounded domain
Copp =

m fsupp(vw Ydx when Q is an exterior domain.

By Poincaré’s inequality and (5.9),
||V(<p(¢ - C¢))”Lq,(n)7 ||(V<P)(¢ - Ci/J)HquI(QR) é CvaHLq,(R")

and therefore we have ||g, || ], which combined with

<
iy Mgl + il

(5.13) and (5.14) implies that

(@
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IAu P D3s) = C|If 20 + 19l o + Mgl o g,

+ [lull Al TPl |- (5.15)

Wi(QR) Q
Combining (5.10) and (5.15) completes the proof of Theorem 5.3, because ' U D35 = Q.
U

A PROOF OF THEOREM 5.1. In view of Theorem 5.4, to prove Theorem 5.1 we

have to estimate the terms: |p[|, ., and |>‘|||“HW71<Q - First of all, we shall estimate
q R

Il Lyt For this purpose, we shall use the following two propositions.

PROPOSITION 5.5. Let 1 < g < 0o and D be a bounded domain whose boundary
dD is a CV' compact hypersurface. Let f € Ly(D) and g € W}(D) and assume that
fD fdx = fangO'. Then, there exists a unique u € WqQ(D) which solves the equation:
Au = f in D and O,u = g on 0D with side condition: fDudx = 0, and satisfies the
estimate: ||ung<D> < C{llfll,, o) + Hg||W(}(D)}, Here, v denotes the unit outer normal

to D and 0, = v - V.

PROPOSITION 5.6. Let1 < g < oo and assume that € is an exterior domain whose
boundary is a C' compact hypersurface. Set

W2(Q) = {u € Lioc(Q) | Vue WH(Q)}

I:q’Rl(Q):{feLq(Qﬂf(x):O for|lz] 2 R—1 and/fdsz}.
Q

Then, for every f € IA/q’R,l(Q) there exists a u € qu(Q) which uniquely solves the
equation: Au = f in Q and 0,u =0 on I' and satisfies the estimate:

<clfl, (5.16)

lull,, e jl;pRlarl”*Hu(xn + || V| .

wl)

Here, v denotes the unit outer normal to I' and 0, =v - V.

Propositions 5.5 and 5.6 seems to be well-known. But, to make the paper self-
contained as much as possible, we shall prove both propositions in the appendix, because
we could not find any proofs in the literatures.

First, we consider the case where 2 is a bounded domain. From the definition
of W(}(Q) we may assume that [,pdz = 0. Given ¢ € C§°(Q), we set gy = ¢ —
w(Q)~! [, o da and observe that (p, p)o = (p,o)a. Since [, ¢odz = 0, by Proposition
5.5 there exists a 1) € qu, (©2) which satisfies the equation: Ay = ¢q in Q and 9,0 =0
on I, the side condition: [, % dz = 0 and the estimate: [[¢[| , = < CH(pHLq/m). Using

q/(Q) -

such ¥, we have (p, po)a = (p, AY)q = —(Vp, Vio)q. Now, we use the relations: Vp =
f—=2+DivD(u) in Q and v-u = 0 on T', and then we proceed the observation as

follows:
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n

(P, )a = =A(divu,¥)a — (D(w)r, Vi) + > (Dyx(u), 9;00)0 — (f, Vib)o.

jik=1

That fQ 1 dx = 0 implies that ¢ € W(},(Q), and therefore using the relation: divu = g
in Q, we have

[A(divu, ¥)al = [Alllgll

7 @

IVl -
Using the trace theorem, we have
[(D(w)r, Vi)r| < CIDW L, 19120,

Since (S f, Vi)q = 0, we arrive at the estimate:

2 @al < C(IMgl, -+ o) + 1Vl ey + 1Vl + 190 |y ) 1y e

(@

which implies that

IVl + IVl ) (517)

«

1Pl S € (10 F Ny + Al

To estimate | , we take ¢ € W,()" arbitrarily and observe that

I

()‘uv SD)Q = (DivT(u,p), SO)Q + (fv SD)Q
= (T(u,p)v; )r — (1/2)(D(u), D(p))a + (p,dive)a + (f, ¥)o

and therefore we have

A, p)al = CLIDW), Pz, @) + (VD)L + 1F Iy o 12l

which implies that

RN = C(I(Vw ),y + 1V Ny @) - (5.18)
W, q q

;1(93)

When 2 is a bounded domain or an exterior domain, we know that

10l S Cor (V1% I Y + 1ol o) (5.19)

Lq(QR) q(QR)
which combined with Young’s inequality implies that

”UHLq(r) s GHVUHLq(QR)

+ Coqllvl (5.20)

Lq(QR)
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for any ¢ > 0 with some constant C, , that depends on ¢ and ¢. Combining (5.17),
(5.18) and (5.20), for any o1, o3 > 0 we have

Al s g, + 1Pl ) S CLITBl 0y + 02Cor [Tl

+ Coroaa | VUl @) T 11l + M9,

@)

which combined with Theorem 5.4 implies that

Alllell . oy + A2

IVl 0 + VUl o) + VP, o)

q(Q) q(Q)

é Cﬂl,dz’f»q@)\(fvgv hv Q) + CUI||VP||L + 0—20017‘1||v2u”1~q(9)

q(2)

+ C011027€1q (”quLq(Q) + |)\|1/2||U’HLQ(Q)) (521)

provided that A € 3, and |A| 2 1. Choosing o1, 02 > 0 and A\; 2 1 in such a way that
Coy1 £1/2, 05Cy, 4 S 1/2 and Cy, gyeah; /> £ 1/2 in (5.21), we have

f,\(u,p,Q) é 2001,0276,q-@/\(f,ga h7Q) (522)

provided that A € ¥, and |A| 2 A1, which completes the proof of Theorem 5.1 when € is
bounded.

When (2 is an exterior domain, to estimate ||p|| we shall use Proposition 5.6

Lq(QR)

instead of Proposition 5.5. Let ¢ be a function in C§°(Qg) such that [, odr = 1.
Subtracting a suitable constant from p if necessary, we may assume that

/ ppdr = 0. (5.23)
Q

To estimate [|p|, ,,, for such p, we choose ¢ € C§°(2g) arbitrarily. Set ¢ = Jo ¥ de,

and then [, (¢ — cp)dz = 0. By Proposition 5.6 there exists a ¥ € W(?,(Q) such that

ov
AV =1 —cpin EzoonF; (5.24)
¥y 2 (@ Ty ) SOl (526)

Using (5.23) and (5.24), we observe that (p,¥)q, = (0,¥ — cp)a = (p, A¥)q. Since
p € W}(Q), there exists a constant ¢; such that

1= c0)d ™I,y 0) = CIVPIL, @ (5.26)
q q

where d denotes a weight function defined by the formula: d(z) = (1 + |z|) when ¢ # n
and d(z) = (14 |z|) log(2 + |z|) when ¢ = n. This assertion is well-known as Hardy type
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inequality (cf. [7], [17]). Let p(t) be a function in C*°(R) such that p(t) = 1 for t < 1/2
and p(t) = 0 for t 2 1 and set p, () = p(Inln |z|/Inln L) which is called Sobolev’s cut-off
function. Since

Vo, (@) € C((mnDlalfa) ™!, [V, (@) € C(mnDaf e (5.27)
for eVlee L < |z| < L with large L, it follows from (5.24), (5.25), (5.26) and (5.27) that

(P, ¥)an = lim (p,p, AV)e = — lim (p, Vp,V¥)o

= lim (p, (\u— Div D(u) - f), V¥)q

= =g, W)a — (D), VO)r + Y (D(u)jk, ;0 V)a — (f, VT)a.
G k=1

Since (S f, V¥)q = 0, we have

BBl < [Nl s gy + 10+ 190y + 1 | IV
which combined with (5.25) implies that
190 £ Ol gy + 1000, + 190 + 190 ] - (529

To estimate |)\|Hu||vr1 , we take p € qu,(QR)" arbitrarily. Recalling that ¢|s, = 0

(QR)
q
when € is an exterior domain, we have

|(Aw, ©)agp| = [(Div T (u,p), )ar + [(f; ©)axl
S [(T(u, p)v, @)l + (1/2)1(D(w), D(@))ag | + [(p, div o)y | + [(f; ©)ax]
= C[H(vu?p)”Lq(F) + [[(Vu, p, f)HLq(QR)} ”Sﬁ”w(},(nR)

which implies that

IAllll,, = ClIVu Py + 1V, Py - (5.29)

7 H@p)

Employing the same argument as in the case that Q is bounded, by (5.28), (5.29), (5.20)
and Theorem 5.4 we see that there exists a A\; = 1 depending on € and ¢ such that
I\(u,p, Q) < CO\(f,9,h,Q) provided that A € X, and |A| = A1 in the case where Q is
an exterior domain. This completes the proof of Theorem 5.1. (]

A PROOF OF THEOREM 5.2. Since K is a compact set in X, and since X, does
not contain {0}, there exists a ox > 0 such that o < [A\| £ (o)~ ! for any X € K.

Obviously, Hu||W;1(QR) < |lull,, oy, - Therefore, by Theorem 5.4 we have
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Fell oy + 198

< C [y + 10 Wiy + 190 s + Nl ) + 1Pl |- (5:30)

By contradiction, we shall show that there exists a constant C such that

lilyy s + 1Pl ooy S C (1 Ly + 1005y + 9l ) (5.31)

q

Suppose that for any natural number m there exist A\,, € K, fn, € Ly(Q)", gm €
W) MW HRQ), hin € W) 5(Q), tm € WZ(Q)™ and p,,, € W,/ (Q) such that

Amtm — Div T (U, Dm) = fm, divim, = gm in Q

Vet =0, Bapg(Um)=Ggm onTl (5.32)

[ty gy + gy = 1 (5.33)

il yior + 1ms )  + gl o) € 1/ (5.34)
Combining (5.30), (5.33) and (5.34), we have [[um| 2 + [VDmll,, @ < 2Ck for any

m € IN. Therefore, passing to the subsequence if necessary, we may assume that there
exist A € K, u € WqQ(Q)" and p € qu(Q) such that \,, — A, u,, — u weakly in
WZ2()", Vpm — Vp weakly in Ly(Q), uy, — u strongly in W) (Qg)" and p, — p
strongly in L,(Qg) as m — oo. Letting m — oo in (5.32) and (5.33), we see that
(u,p) € W2()™ x qu () satisfies the homogeneous equation:

Au — DivT(u,p) =0, divu=0 inQ
v-u=0, Bypglu)=0 onTl

and therefore by the uniqueness assumption we have u = 0 and p = ¢ (¢ being a constant).
Since [, pmdx =0, [, pdx =0, which implies that p = ¢ = 0. On the other hand, by
(5.33) we have Hu||wa(ﬂR) +pll,, @, =1, which contradicts to the fact that u = 0 and
p = 0. This completes the proof of Theorem 5.2. O

A PROOF OF THEOREM 5.3. When € is bounded, by (1.3) we know that
HgHW(Tl(Q) < Cyllgll,, ) and therefore by Theorem 5.4 we have

tlya e + 1P g oy S Coc (1511 + 10 gy + il ) + 120 ] (5:35)

because 2z =  in the bounded domain case. Employing the same argument as in the
proof of Theorem 5.2 by contradiction we can show that there exists a constant C' such
that
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ully ) TPl ) S CUI Il o) + ||(9,h)llwa(m]

which combined with (5.35) implies the theorem. O

Finally, assuming that (1.4) holds we shall give

A PROOF OF THEOREM 1.4. Assume that (1.4) holds. If f € J,(€), g = 0 and
h =01in (1.1), then noting that ¢, f = 0, by (5.17) and (5.28) we have

1Pl = CUIVUlL, @ + VUl )]
which combined with (5.19) and (1.4) implies that

1Pl 0y S Ceng([AI7HDED 4 NZU2) ) £,

q(QRr) = q(£2)

< Ce,q|)\|_(1/2)(1_(1/q))Hf”L

q()

provided that A € ¥, and |A| = 1. This completes the proof of Theorem 1.4. O

6. A proof of Theorem 1.3 in the bounded domain case.

Throughout this section, we always assume that ) is a bounded domain and we
shall show Theorem 1.3. In order to prove Theorem 1.3, in view of Theorems 5.1 and 5.3
it suffices to show the unique existence of solutions to (1.1). First of all, we consider the
problem in the Lo framework. Set

HYQ) = {ue W3 ()" |v-ulr =0}, HL(Q) ={uec H)Q)|divu=0in Q}

@ ={pea@| [par=of,  pi-{% |a;;u||i2<m}1/2.

jal<1
If (u,p) € W2(Q)™ x W4 () solves (1.1), then we have
Au,v)0 + (1/2)(D(u), D(v)o + af~ ! (u,0)r — (p,dive)o = (f,v)o + 57 (h,o)r (6.1)
for every v € H3(€2). In view of (6.1), we set
Bj[u,v] = Mu, v)a + (1/2)(D(u), D(v))a + af~ (u,v)r
and we consider the variational equation:
Balu,v] = (f,v)a + 87 (b, 0)r (6.2)

on HX(Q).
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LEMMA 6.1.
(1) Let 0 < e <m/2 and o > 0. Then, there exists a positive constant c., such that

Bilu, u] 2 ceqllull?

for every X\ € X with |\ Z o and u € HA ().
(2) Assume that Q is not rotationally symmetric when o = 0. Then, there exist positive
constants \g and ¢ such that

| Ba[u,u]] 2 cfjul?

for any X € C with |\ £ \g and u € HL(Q).

PROOF.
(1) We know Korn’s second inequality:

I3, 0 + 1ull?, ) 2 collull® (6.3)

Lo(Q) Ly@) =

for every u € W () with some positive constant ¢y (cf. [4], [19]). On the other hand,
to show that

| Bx[u,u]] 2 sin(e/2) (IAJul?, , + @/DNID@)IE, ) +ab™ ul?, )

Lo(Q) L (2) Lo (T)
for any A\ € ¥, and u € W} (), we use an elementary calculus:
|AX + B| = sin(e/2)(A|A| + B)
for every nonnegative numbers A, B and A € .. Therefore, setting
Ce,c = Cpsin(e/2) min(c,1/2)

we have the first assertion.
(2) In view of Korn’s second inequality (6.3), by contradiction we shall show that there
exists a constant C > 0 such that
2 2 —19,. 012
lll?, ., £ CUD@IE, ., +aB~ul?,,,) (6.4)

for any u € H1(Q). Therefore, we assume that (6.4) does not hold, that is, there exists
a sequence {u bn=123... C HL(Q) such that

lunll? |, =1 (6.5)
IDun)l?. o + B Hual? . <1/n (6.6)

La(2) La(T)
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for all n. By (6.3), (6.5) and (6.6) we have ||u,|| < C((1/n)+1) < 2C for all n. Therefore,
passing to a subsequence if necessary, we see that there exists a u € HL(£) such that
un, — u weakly in W3 (Q) and strongly in Ly(9) as n — oo. By (6.6) we have D(u) = 0.
Furthermore, when a > 0 we have ||lul|,, ., =0, that is, u = 0 on I', and therefore we
have w = 0 (cf. [4]). On the other hand, when a = 0, the assumption that € is not
rotationally symmetric implies that w = 0 (cf. [19] and [11]). Therefore, we see that
u = 0. However, from (6.5) it follows that |[ul|,, ,, = 1, which contradicts the fact that
u = 0. Therefore, we have that (6.4) does hold with some constant C' > 0.
Combining (6.3) and (6.4) implies that

| Bolu, u]| 2 dl|ul]*
for any u € H1(Q) with some positive constant d, and therefore

Bx[u,u] 2 |Bo[u,ul| = Mlull?_ , = dIVul?, , +(d—=ADlull?,, -
Taking \g = d/2 and ¢ = d/2, we have the second assertion, which completes the proof
of the lemma. O

In view of Lemma 6.1, by the Lax-Milgram theorem (cf. [4]) we have the following
theorem.

LEMMA 6.2.
(1) Let 0 < e < m/2 and o > 0. Then, for every A\ € 3¢ with |\| = o, f € HX(2)* and
h € Ly(T') the variational equation (6.2) admits a unique solution u € HX(S2).
(2) Assume that Q is not rotationally symmetric when o = 0. Let Ay be the same
positive number as in Lemma 6.1 (2). Then, for every A € C with |A\| £ Ao,
f € HXQ)* and h € Ly(T) the variational equation (6.2) admits a unique solution

Following the argument due to Solonnikov and Scadilov [19] (cf. also [7, Theorem
5.2]), we have the following theorem.

LEMMA 6.3.
(1) Let 0 < e < m/2 and o > 0. Then, for every A\ € 3¢ with |\| = o, f € HX(Q)* and
h € Ly(T) there exists a unique (u,p) € HL() x La(Q) which solves the variational
equation:

By[u,v] — (p, divv)e = (f,v)a + 67" (h,v)r

for every v € H} ().

(2) Assume that Q is not rotationally symmetric when o = 0. Let \g be the same
positive number as in Lemma 6.1 (2). Then, for every A € C with |A\| £ Ao,
f e HY(Q)* and h € Lo(T) there exists a unique (u,p) € HL(Q) x La(Q) which
solves the variational equation:
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Bj[u,v] — (p,dive)q = (f,v)a + B (h,v)r

for every v € H3(R).

THEOREM 6.4.
(1) Let 0 < € < /2 and 0 > 0. Then, for every A € L. U{\ € C | |A| 2 o},
f e HXQ)*, g € Ly(Q) and h € Ly(T) there exists a unique (u,p) € H(Q)x Ly ()
such that divu = g and

Bi[u,v] — (p,dive)g = (f,v)q + 8 (h,v)r (6.7)

for every v € HA(9Q).

(2) Assume that Q is not rotationally symmetric when o = 0. Let Ao be the same
positive number as in Lemma 6.1 (2). Then, for every X\ € C with |A| £ Ao,
fe HYQ)*, g € Ly(Q) and h € Ly(T) there exists a unique (u, p) € HL(Q)x Ly ()
such that divu = g and

Bi[u,v] — (p,dive)g = (f,v)q + 87 (h,v)r (6.8)

for every v € H3(R).
PROOF. By Proposition 5.5 there exists a unique w € Lo () N W2(Q) such that
Aw =g in Q and dw/Ov =0 on I'. Set u = Vw + 2, and then from (6.8) we have
Bi[z,v] = (p,divo)a = (f,v)a + 87 (h,v)r — By[Vw, ] (6.9)

for every v € H}(Q). Since Vw € W3 ()", the map v — B,[Vw,v] belongs to H()*
and therefore by Lemma 6.3 we see the unique existence of solution (z,p) € HL(Q)x La(
of the variational equation (6.9), which completes the proof of the theorem.

0=

Now, we shall show the regularity of « and p obtained in Theorem 6.4.

THEOREM 6.5.

(1) Let 0 < e < /2 and o > 0. Then, for every A € B¢ with |\ = o, f € C°(Q)",
g € C®(Q) N Ly(Q) and h € C®°(Q)" N W3 5(Q) there exists a unique solution
(u,p) € ﬂ1<q<oo(WqQ(Q)” X qu(ﬂ)) of the equation (1.1).

(2) Assume that Q is not rotationally symmetric when o = 0. Let Ao be the same
positive number as in Lemma 6.1 (2). Then, for every A € C with |\ £ Ao,
fe e, g e C®°Q) N Ly(Q) and h € C>(Q)" N W3 5(Q) there exists a
unique solution (u,p) € ﬂ1<q<oo(Wq2(Q)” X qu(Q)) of the equation (1.1).

PRrROOF. Since we can show the assertions (1) and (2) by employing the same
argument, in the course of the proof we assume that A satisfies one of the following
conditions: A € X, with |[A\| Z o or A € C with |[A| £ A\g. To show the theorem, we shall
use the same localization procedure as in the proof of Theorem 5.4. Since f € HL(Q)*,
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g € Ly(Q) and h € Ly(T) by Theorem 6.4 we know the existence of (u, p) € H:(Q)x Ly ()
that satisfies the equation: divu = ¢ and solves (6.8) uniquely. First of all, we shall
show that (u,p) € W2(Q)" x W2(Q). Since © is bounded, it is enough to show that
(u,p) € Wiloc(ﬁ)" X W21710C(ﬁ). Pick zg € T up and let w, 0, F, G, Fy, H, OH and v,
be the same as in (5.3). Then, from (6.8) we have

A (w,v) g + (1/2)(D(w), D(v)) g + af ™ (w,v)an — (0,dive) gy
= (M = Nw,0)g + (F0)u + 87 (Fa,v)om (6.10)

for any v € W3 (H)™ with v, -v|pg = 0. From the assumptions on f, g and h and the fact
that u € W} (Q)"™ and p € L2(Q) it follows that (A1 —A\)w+F € Lo(H)", G € W3 (H) and
Fy € Wi (H)™ with v, - Fy = 0 on 0H. Moreover, from the discussion in Section 5 (cf.
(5.7)), we have G € W, L(H), because divu = g € W} () and u € Wi(Q) € Wy 1(QR).
Therefore, in view of Theorem 4.1 we choose A; so large that there exists a solution
(U, ®) € W2(H)" x W} (H) of the equation:

MU = DivT(U,®) = F + (\ — Nw, divU = G in H
v, - U=0, aU+B(DU)v, — (DU)v,,vy)1,) =Fy on dH. (6.11)

Since the strong solutions are also the weak ones, by (6.11) we see that U and ® satisfy
(6.11) too. Since divw = G in H and v,,-w = 0 on OH, setting V = w—U and ¥ = §— P,
we have

MV, v)g + (1/2)(D(V), D(v)g + o™ (V,v)om — (¥, dive)g =0 (6.12)

for any v € Wy (H)™ with v, - v|sgg = 0, and divV = 0 in H and v, -V = 0 on 0H.
Therefore, setting V = v in (6.12), we have

MIVIE,, + A/2IDVIE,, +af V]2, =0

which implies that V' = 0, and therefore (6.12) implies that (¥, dive)y = —(VU,v)g =0
for any v € W} (H)™ with v, - v|,,, = 0, which shows that V¥ = 0 on H. Therefore, we
have w € WZ(H)™ and V@ € Lo(H)™. In this way, we can show that u € WZ(2)" and
Vp S L2 (Q)n

Now, by Sobolev’s imbedding theorem we see that u € W, (Q)" and p € Ly(Q) for
every q with n(1/2 —1/q) < 1. Repeating the same argument as above, we can see that
u e W2(Q)" and Vp € Ly(Q)", and therefore repeated use of this argument implies that

(wp)e () (Wi" x Wi ()

1<g<oo

(cf. for more detailed proof we can refer to [5, pp.629-630], [17, Proof of Lemma 7.1]
and [1, Proof of Lemma 6.2]).
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Finally, we shall show that (u,p) actually satisfies (1.1) in the strong sense. Let v
be an arbitrary function in C§°(2)", then by (6.8) and the divergence theorem of Gauss
we have (Au — DivT(u,p) — f,v)q = 0, which combined with the fact that (u,p) €
W2(Q)" x W4(£2) implies that

(M —DivT(u,p) — f,p)a =0 (6.13)

for every ¢ € La(2)™. Let ¢ be any vector in C1(I')" such that v -4 =0 on I" and ¢ be
a vector in HA(Q)™ such that p|r = . By (6.13) and (6.8) we have

0= Xu,9)a + (1/2)(D(u), D(p)e + ab~ ' (u, )r — B~ (Ba,s(u), ¥)r — (f,¢)a
= 7' (h = Ba,s(u),¥)r. (6.14)
But, we see that (6.14) holds for any ¢ € C*(T')". In fact, let ¥ be any vector of C§°(I")"”

functions and set Y =1 — (v-9)v. Since (D(u)v — (D(u)v, v)v) - v = 0 identically on T
and since v -9 =0 on I, by (6.14) we have

(h = Bas(w),¥)r = (h— Bap(u), (v $))r = (h-v—au-v,v-¢)p =0 (6.15)

where we have used the facts that h-v =wu-v =0 on I'. Therefore, the arbitrariness of
choice of ¢ in (6.15) implies that h — B, g(u) = 0 on I', which completes the proof of the
theorem. 0

A PROOF OF THEOREM 1.3 IN THE BOUNDED DOMAIN CASE. Since we can show
the assertions (1) and (2) by employing the same argument, in the course of the proof
we assume that A satisfies one of the following conditions: A € ¥, with |A| 2o or A e C
with |[A| £ Xg. First of all, we shall prove the uniqueness of solutions to (1.1). Let
(u,p) € W2()™ x W, (€2) satisfy the homogeneous equation:

Au — DivT(u,p) =0, divu=0 1in Q
v-u=0, Byglu)=0 onT. (6.16)

Given any ¢ € C5°(2)", by Theorem 6.5 we know the existence of solution (v,6) €
W2 ()™ x W[}/(Q) to the equation:

v —DivT(v,0) = ¢, divv=0 inQ
v-v=0, Baglv)=0 onl. (6.17)

Therefore, by (6.16) and (6.17) we have

(u, @) = (u, Ao — DivT (v, 0))9 = (A —DivT(u,p),v)q =0
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which shows that u = 0. By (6.16) Vp = 0, which combined with the fact that [, pdz =0
implies that p = 0. Hence, we have shown the uniqueness, which combined with Theorems
5.1 and 5.3 implies the a priori estimates (1.4) and (1.5) of solutions to (1.1). To show the
existence of solutions, we define the map .o : W7 ,(Q) x WHQ) to Lg(Q)"™ x Wyaiv () x
qu,a(ﬂ) by the relation: 7 (u,p) = (Au — DivT(u,p),divu, Ba g(u)). The a priori
estimates (1.4) and (1.5) implies that the range of &7 is closed. On the other hand,
by Theorem 6.5 implies that C(Q)" x (C*(Q)"™ N Ly(Q)) x (C=(Q)" N W216(Q)) is
contained in the range of &7. Since C™°(Q)™ x (C°° ()™ N Ly(Q)) x (C=(Q)" N W3 5(2))
is dense in Lq(2)™ x Wy aiv () x quﬁ(Q), taking its closure implies that the range of ./
coincides with L,(2)™ x Wy a4iv () X qu’ 5(€2), which means the existence of solutions.
This completes the proof of Theorem 1.3 when 2 is a bounded domain. O

7. A proof of Theorem 1.3 in the exterior domain case.

To show Theorem 1.3, in view of Theorems 5.1 and 5.2 it suffices to show the unique
existence of solutions to (1.1). First of all, we reduce (1.1) to the case where f has
a compact support, g = 0 and h = 0. For this purpose, we shall use the following
well-known theorem (cf. [1], [5], [7], [9], [10] and [18]).

PRrROPOSITION 7.1. Let 1 < g < co and ) be an exterior domain whose boundary
T is a CY' compact hypersurface. Set

X (Q o {u € qu,loc(ﬁ) ‘ ||u||xq(§z) < OO} 1< g<n
! {u € qu

Jloc

(ﬁ) | fg2R+3 udr =0, ||UHX,1(Q) < OO} n<sq<oo

el o = IVUll @) + lu/dll 0

d:d(m):{1+|x (4 #7)
(1+ Jal) log(2 + [el) (g =n).

Given F € Ly()™ with div F' € Ly(Q) we consider the Laplace equation:
AU =divF inQ OU/Ov=v-F onT. (7.1)

Then, the equation (7.1) admits a unique solution U € X4(Q) such that V2U € Ly(Q)
and
Ul s, ECIFIL Iv2Ull,

SC(IFNL, @ + Idiv ]

Xq(Q2) q(2)7? q () q(22) Lq(Q))'

To show the existence theorem for (1.1), let A € C \ (—00,0], f € Ly(Q)", g =
divg € Wyai(Q) and h € W] ,(Q). Let U be a solution to the Laplace equation:
AU = g = divg in Q and 0U/Ov = v-g = 0 on I'. Since we assume that ' is a
C?! compact hypersurface, the function v given in Proposition 7.1 actually satisfies the
regularity condition: V3u € Lg(2) provided that divF € W, (Q) in addition. And
therefore, if we set v = VU + v in (1.1), then we arrive at the zero divergence case.
However, we would like to consider the case that I' is only assumed to be C1'! a compact
hypersurface, because we would like to mention that our method can be applied to the
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non-slip boundary condition case that has been studied by Farwig and Sohr [5] under the
assumption that I' € C%1. Therefore, we will use a different method based on a cut-off
technique.
Let 9, o and ¢~ be functions in C*°(R™) such that
Yx)=1for |z S R-3 and P(xz) =0 for || 2 R—2
po(z)=1for [z S R—-2 and o(xz)=0for |z|=2R—1
Yoo(z) =1for [z] 2 R—3 and ¢s(z)=0for x| < R—4. (7.2)

Note that
wo =1o0nsupp®; e =1onsupp (1l —1v); @o= e =1 on supp V. (7.3)

Let (uo,po) € W2 (Qr)" X W;(QR) and (oo, Poc) € W2(R™)"™ X qu (R™) be solutions to
the equations:
Aug — Div T (ug, po) = wof, divug =div(poVU) in Qg
v-ug =0, au-+ B(D(ug)v— (D(up)v,v)v) =h on Qg
Ao — DivT (Usos Poo) = Poof, divie =div(pVU) in R"

respectively. Here and hereafter, ¥ denotes not only the unit outer normal to I" but also
that to 9Qr = I' U Sk. Since

div (o VU) = o AU + (V) - (VU) = o9+ (V) - (VU) (N =0,00)

noting that v - VU = 0 on I', we see that div(poVU) € W;(QR) and also that
div (peoVU) € W(II(R") Therefore, by Theorem 1.3 in the bounded domain case and

Theorem 2.1 we know the existence of such (ugp,po) and (ueo,Po), respectively. From
(7.3) it follows that

div (Yuo + (1 = P)uce) = ¢div (poVU) + (1 = $)div (e VU) + (V) - (0 — too)
=divg+ (V) - (uo — tueo)-
By Bogovskii’s theorem (cf. [2], [3] and [7]) there exists a linear map B from W2 (D)
<

into W2(R™)" such that supp Blw] C D, divB[w] = w in R" and || Blw]
Cllw]|

||WC}3(R7L)

W2 (D)’ where D is any bounded domain with smooth boundary and we have set
q

W2, (D) = {w eW2o(D) | /D wdr = o}.

To apply the Bogovskii operator B to the term: (V) - (ug — tso ), we have to observe
that
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/ (V) - (o — oo}t
R—-3<Z|z|SR-2

/QR(W).uodx/ (V) - oo da

Br

Y divug dr — / div (Yuso )dz + Y div e dx
BR BR

= / div (¢U(])d$ -
Qr

Qr

= [ divi(om = o) VUM == [ (V) (o = 0) VU =

Qr

where we have used the facts: v-ug =0 on 0Qg, ¥ =0 on Sg, v-VU =0 on I and
(oo — o) = 0 on supp V. If we set u = Yug + (1 — ¥)uoe — B[(VY) - (ug — uso)] + v
and p = ¥po + (1 — ¢¥)peo + 0 in (1.1), then as the equation of (v, #) we have

Av—DivT (v,0) = F, divv=0 inQ
v-v=0, Bagv)=0 onl

where the i-th component F; of n-th vector F is given by the following formula:

F= — g;i (Po — Poo) + AB[(VY) - (ug — o)) Z a—D V) - (o — uoo)))ij

z:: oz (83:1 Uoj — Uooj) + O

J

(uoi — uooz)>

0
+ Z 8% <8l‘z Upj — Uooj) + %j(uoi uom)>

Since supp F; C Dr_3 r—2, to complete the proof of Theorem 1.3 in the exterior domain
case, it suffices to prove the following theorem.

THEOREM 7.2. Let1l < q < oo. Set
Lop-1={f € L()" | f(z) =0 for |¢| = R~ 1}

Then, for every A € C\ (—o00,0] and f € Ly r-_1(Q2) there exists a unique (u,p) €
W2()™ x W, () that solves the equation:
Au — Div (u,p) = f, divu=0 inQ
v-u=0, Bag(u)=0 onl. (7.4)
PRrROOF. Given f € L, r—1(Q), we set fo(x) = f(z) for x € Q and fo(x) = 0 for

x & Q and v f denotes the restriction of f to Qg. Let (vo,po) € W2 (Qg)" X W;(QR) and
(Vso» Poo) € WZ(R™)™ x VV(II(R") be solutions to the equations:
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Avg — Div T (vg, po) = vf, divug =0 in Qp,
v-vg =0, Bap(vg) =0 on dQg,
Moo — DIvT (Voo, Poo) = fo, divve, =0 in R,

respectively. Let us define the operator Ag : L r—1(Q) — W2(Qr)", Aso : Lg,r-1(2) —
W2(R™)", By : Lq,r—1(Q) — W(Qr) and B : L, r—1() — W2 (R") by the formulas:
Aof = vy, Asof = Voo, Bof = po and Bso f = Do, respectively. Let ¢ be a function in
C§°(R™) such that ¢(x) =1 for |x| £ R — 3 and ¢(z) = 0 for |z| = R — 2, and set

of =(1—-p)Axf +vAof + B[(Vy) - (A f — Aof)]
Vf=(1-¢)Bof+¢Bof
where B : W7 ,(Dp_3 r—2) — WZ(R")" is the Bogovskii operator. To apply B to

(Vo) - (Aso f — Ao f), we need the following observation:

[ 90 (Aaf - aapin = [ div(eAcniis - [ div(edof)ds
Dr—3,r—2 Br

Qr

:/SRV~(QDAOOf)dU—/ v (pAof)do = 0.

1219733

Subtracting suitable constants if necessary, we may assume that

/ Bof da = 0, / (Buoof — Bof)dx = 0. (7.5)
Qr-3 Qr

We have

ADf —DivT(Df, Uf) = f+Sf, div(®f)=0 inQ,
v-(®f)=0, Bas(@f)=0 onT (7.6)

where we have set

(575 = 2 g (Al = (Aa0)) + 52 (A )i - (A0

— xj \ Oz Oz,
"0 [0 9
2 5, ((%((Aoof)j — (401)3) + 5~ ((Asof)i = <Aof>i>)

oz, (Boof = Bof) + AB[(Ve) - (Aoc f — Ao f)]i

B % D(B[(V9) - (Ascf — Aof)])is-
g=1 "
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Since the solution of (7.4) is given by the formula: v = ®(I+S)"'fand p = ¥(I+S)~Lf
provided that (I+.9)~! exists, to prove Theorem 7.2 (and therefore to complete the proof
of Theorem 1.3 in the exterior domain case) we start with the following lemma.

LEMMA 7.3. If the uniqueness of solutions to (7.4) holds, then (I + S)~! exists.

PROOF. Since Sf € qu (Q) and supp Sf C Dg_3 r—2, S is a compact operator on
Ly r—1(£2). Therefore, to show the existence of (I+S5) ! it suffices to show the injectivity
of I+ 5. Let f € L, r() satisfy the equation: (I +.S5)f = 0. We shall show that f =0,
in what follows. Set w = ®f and p = ¥ f, and then (u,p) € WqQ(Q)” X qu(Q) Moreover,
from (7.6) it follows that (u,p) satisfies the homogeneous equation:
Au — DivT(u,p) =0, divu=0 in Q,
v-u=0, Baguy=0 onTl (7.7)

because (I + S)f = 0. By the assumption we have u = 0 and p = ¢ (¢ being a constant).
Since

/ pdm:/ \Ilfdx:/ Bofdx =0
Qr_3 Qr_3 Qr-_3

as follows from (7.5) and the fact that ¢ = 1 on Br_3, we have ¢ = 0. Therefore, we
have

0=01-9)Axf+eAof + B[(Vy) - (A f = Aof)]
0=(1~¢)Bof+¢Bof (7.8)
in , which in particular implies that

Af =0, Byof=0 for|z|=2R-2
Aof =0, Bof=0 forl|z|]<R-3. (7.9)
If we set w = Agf in Qg and w = 0 on the outside of Q and § = Byf in Qg and § =0
on the outside of Q, then (w,0) € W7 (Bgr)™ x W, (Bg) satisfies the equation:
Aw — DivT(w,0) = fo, divw =0 in Bg,
v-w=0, Byglw)=0 on Sk (7.10)
On the other hand, from (7.9) it follows that A f and B f also satisfy (7.10), and

therefore w = A f and 0 — B f = ¢ in Br where ¢ is some constant. But, by (7.5) we
have

/QR(H_BOOf)dx =/ (Bof — Boof)dz =0

Qr
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which implies that ¢ = 0. Namely, Ao f = Aof and B f = By f in Qg, which combined
with (7.8) implies that

A f = @(Aoof - AOf) - B[(VQO) ’ (Aoof - AOf)] =0, Bof= @(Boof - BOf) =0

in Q. Therefore, f = M f —DivT (A f, Boof) = 0 in 2, which completes the proof of
the lemma. g

In view of Lemma 7.3, to complete the proof of Theorem 7.2 our task is to show
the uniqueness of solutions to (7.4). Let A € C'\ (—oc, 0] and (u,p) € W7 ()" x qu(Q)
satisfies the homogeneous equation (7.7). By a boot-strap argument we see that u €
W2,..(Q)" and p € Wiloc (Q), because we already know that Theorem 1.4 holds for any

2,loc

bounded domains. Let ¢ be a function in C°°(R"™) such that ¢ = 1 for |z| 2 R — 2 and
1 =0 for |z| £ R—3, and set w = ¢Yu— B[(V¥) -u] and 6 = ¢p. To apply the Bogovskii
operator B to (V) - u, we need the following observation:

/DR_M_QWW wde=— [ i (1~ ) = [v-udo=o

Therefore, (w,0) € W2(R")" x WL(R") and (w, ) satisfies the equation:
Aw—DivT(w,8) =F, divw=0 in R" (7.11)

where we have set

Since F' € Ly(R™)"™ N Ly(R™)™, by Theorem 2.1 there exists (w,0) € (W3(R™)" N
WZ(R")") x (WHR™) N qu(R”)) that also satisfies (7.11). Since the uniqueness holds
in the whole space (cf. Theorem 2.1), we have w = @ and V6 = Vé, which implies that
u e W2(Q)" and p € W4 (). Therefore, noting that C5°(R™) is dense in W (Q) (cf. [5,
Lemma 5.1]) and using the divergence theorem of Gauss, by (7.7) we have

+af ™ |ulf? (7.12)

Lo (T)

0= (A —DivT(u,p),u)o = Aul?

L2(2)

2
/2D,
which combined with the fact: A € C'\ (—o0, 0] implies immediately that « = 0. And

therefore, by (7.7) we have also Vp = 0, which shows the uniqueness. This completes
the proof of Theorem 1.3. g
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A. Proofs of Propositions 5.5 and 5.6.

A PROOF OF PROPOSITION 5.5. To prove Proposition 5.5, we shall use the fol-
lowing well-known lemma (cf. [9], [10]).

LEMMA A1, Let1l < g < oo and D be a bounded domain whose boundary 0D is a
CYY hypersurface. Then, for every f € Ly(D) and g € Wy (D) there exists a v € W2 (D)
that uniquely solves the equation:

—v+Av=f inD, Odu=g ondD (A1)

and satisfies the estimate:

1oz oy < € (17 Ly + 19l ) (4.2)

Given f € Ly(D) and g € W, (D), let v € W2(D) be a solution to (A.1). If there
holds the relation: [, fdz = [,,, gdoO then by (A.1) we have

/Dvdx:/DAvdmf/Dfdx:/angaf/Dfdx:O. (A.3)

If we set u = v+ w, then it suffices to solve the equation: Aw = —v in D and d,w = 0 on
9D with side condition: || p wdz = 0. Therefore, the following lemma implies Proposition
5.5 immediately.

LEMMA A.2. Letl < g < oo and D be a bounded domain whose boundary 0D is a
CY! hypersurface. Set Ly(D) ={f € Lq(D) | [}, fdx = 0}. Then, for every f € Lq(D)
there exists a u € WZ(D) N L,(D) that uniquely solves the equation:

Au=f inD Ju=0 ondD (A.4)

and satisfies the estimate:

<C

ullyys py = CllFll, o)

(A.5)

PROOF.  Set Wf(D) ={ueW2(D)n Ly(D) | dyu =0 on D}. Given g € Ly(D),
let v € VV(IQ(D) be a solution to the equation: —v + Av = g in D. Let us define the
operator A : Ly(D) — W2(D) by the formula: Ag = v. Since Adg = (I + A)g (I
being the identity map on Ly(D)), if we show the existence of (I + A)~', then we see
that w = A(I + A)~'f is a required solution to (A.4). Since A is a compact operator
on L,(D), to show the existence of (I + A)~1, it suffices to show the injectivity of the
operator I + A. Let f be a function in L, (D) such that (I + A)f = 0. Set u = Af, and

then u € qu (D) and u satisfies the equation: Au =0 in D. By a boot-strap argument,
we see that u € WZ(D), and therefore by the divergence theorem of Gauss we have
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IVull,, p, = 0, which implies that u is a constant. But then, what [, udz = 0 implies
that u = 0. Since f = —u+ Au = 0, we have the injectivity of the operator I + A, which
completes the proof of the lemma. O

A PROOF OF PROPOSITION 5.6. As in the proof of Theorem 7.2, we shall con-
struct a parametrix. Let E(z) be a fundamental soluiton of the Laplace operator A
given in the proof of Lemma 3.2. Given f € L, r—1(Q2), we set

Ef(z) = E(z —y)foly)dy
Rn

where fo(x) = f(x) for x € Q and fo(x) = 0 for z ¢ Q. We see easily that

By + 310 ol B+ IVES ey € Ol (46)

On the other hand, given f € ﬁq,R_l(Q), ~vf denotes the restriction of f on Qp

and let g be a function in W, (Qr) such that g(x) = 9,(Ef) on Sk and g(x) = 0 on T
Observe that

/ gdoz/ gdcr—!—/gda: Oy (Ef)do = A(Ef)dx
8QR SR r SR BR
= fodx:/fdxzo.
Br Q

Noting that fQR vfdx = [, fdx =0, by Proposition 5.5 there exists a v € WZ(Q) that
solves the equation:

Av=~fin Qr, Jv=0,Ef on Sg and d,v =0o0n I (A7)

and satisfies the estimate:

o]l S Cllfllz g (A.8)

w2(eR) =

Moreover, subtracting a suitable constant from v if necessary, we may assume that
/ (v—Ef)dz =0. (A.9)
Qr

Let A be an operator from L, z_1(Q) into W2(Qr) defined by the formula: v = Af.
Let ¢ be a function in C§°(R™) such that ¢(x) = 1 for || £ R — 3 and ¢(x) = 0 for
|z| 2 R — 2, and set

Of =(1 - Q)Ef + pAf f€ Lyr1(Q).
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Then, we have
APf=f+Sf inQ 0,2f=0 onl (A.10)
where we have set
Sf=—div[(Vo)(Ef — Af)] = (Vo) - V(Ef — Af).

We observe that Sf € qu (), that supp Sf C Dr_3 r—2, and that

/Sfdx:—/(V¢)~V(Ef—Af)dx: V1 -¢) - V(Ef—Af)dz
Q Q

Qr

— [ auEs - apdo~ | (1= p)AES - Af)iz =0

Sk Qg

and therefore S is a compact operator on Ly z_1(9). If we show the existence of (I45)~1,
then u = ®(I + A)~'f € WqQ(Q) solves the equation: Au = f in Q and d,u =0 on I
Moreover, combining (A.6) and (A.8) we see that this u satisfies the estimate (5.16).
Since the uniqueness follows from the existence of solutions to the dual problem, to
complete the proof of Proposition 5.6 it suffice to show the existence of (I + S)~1.

Since S is a compact operator on L, r_1(9), to show the existence of (I +S)~!, it
suffices to show the injectivity of the operator I + S. Let f be a function in ﬁ%R_l(Q)
such that (I +S)f =0. Set u=®f € VAVqQ(Q), and then by (A.10), (A.6) and (A.8) we
see that u € W2 (1) satisfies the homogeneous equation: Au = 0 in Q and d,u = 0 on
I' and the radiation condition: u(z) = O(|z|~»~1) as || — oc. Therefore, u = 0 in Q.
In fact, by using a boot-strap argument, u € W3, (€). Let p be a function in C§°(R")
such that p(z) =1 for |2| £ 1 and p(x) =0 for |z| = 2 and set p, (x) = p(z/L). By the
divergence theorem of Gauss and the radiation condition we have

0= ngI;O(Au’ pLu)Q = LILH;C{ - (vuapLVU)Q + (1/2)(’&, (ApL)u)Q} = ||VU’||L2(Q)

which implies that u is a constant. But then, by the radiation condition we have u = 0.
Therefore, we have

0=01—-9)Ef+¢pAf inQ (A.11)

which in particular implies that
Ef=0 for|z|2R—-2, Af=0 for|z|]<R-3. (A.12)
If we define w(z) = Af(z) for z € Qp and w(z) = 0 for z ¢ , then by (A.12)

w € W(IQ(BR) and w satisfies the equation: Aw = fy in Br and d,w = 9, Ef on Sg,
which is also satisfied by Ef, and therefore w — Ef = ¢ in Bg (¢ being a constant). But
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then, by (A.9) we have [, cdr = [, (Af—Ef)dr =0, which implies that c = 0, that is

Ef =

Af in Qg. Inserting this equality into (A.11) implies that Ef = o(Ef — Af) =0

in 2, which shows that f = AEf =0 in . This show the injectivity of the map I + 5,
which completes the proof of Proposition 5.6. g
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