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Boundedness of maximal singular integral operators

on spaces of homogeneous type and its applications
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Abstract. Some equivalent characterizations for boundedness of maximal sin-
gular integral operators on spaces of homogeneous type are given via certain norm
inequalities on John-Strömberg sharp maximal functions and without resorting the
boundedness of these operators themselves. As a corollary, the results of Grafakos on
Euclidean spaces are generalized to spaces of homogeneous type. Moreover, applica-
tions to maximal Monge-Ampère singular integral operators and maximal Nagel-Stein
singular integral operators on certain specific smooth manifolds are also presented.

1. Introduction.

It is well-known that the space of homogeneous type introduced by Coifman and
Weiss [5] (see also [6]) is a natural setting for the Calderón-Zygmund theory of singular
integrals. The main purpose of this paper is to establish some equivalent characteriza-
tions for the boundedness of maximal singular integral operators on spaces of homoge-
neous type via certain norm inequalities on John-Strömberg sharp maximal functions
and without resorting the boundedness of these operators themselves. Part of the results
are also new even on Euclidean spaces. As a corollary of this, we generalize the results
of Grafakos in [7] on Euclidean spaces to spaces of homogeneous type. Moreover, using
these results, we obtain the boundedness of maximal Monge-Ampère singular integral
operators ([4]) and maximal Nagel-Stein singular integral operators on certain specific
smooth manifolds ([20]) in Lp, 1 < p < ∞, from L1 to weak L1 and from L∞c to BMO,
where and in what follows, L∞c means the set of L∞ functions with bounded support.

To be precise, we work on spaces of homogeneous type in the sense of Coifman
and Weiss [5], [6]. A homogeneous-type space (X, d, µ) means that X is a set, d is a
quasi-metric on X, namely, there exists a constant A ≥ 1 such that for any x, y, z ∈ X,

d(x, y) ≤ A[d(x, z) + d(y, z)]. (1.1)

Moreover, µ is a positive Borel regular measure and has the doubling property. Recall
that a measure µ is said to be doubling, if there is a constant C ≥ 1 such that for any
x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)). (1.2)
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In [17], Maćıas and Segovia proved that for any given quasi metric d, there is another
quasi metric d′, which is equivalent to d in the sense that there exists a constant C > 0
such that for all x, y ∈ X, C−1d(x, y) ≤ d′(x, y) ≤ Cd(x, y), and that the metric balls
with respect to d′ are open. Thus, throughout this paper, we always assume that all
balls in X are open, and the measure of any ball is finite.

Let K be a locally integrable function on X × X \ {(x, y) : x = y} satisfying the
following size condition and the standard Hörmander condition, that is, there exists a
constant C > 0 such that for all R > 0, and all y, y′ ∈ X,

∫

R<d(x,y)≤2R

[|K(x, y)|+ |K(y, x)|] dµ(x) ≤ C (1.3)

and

∫

d(x,y)≥2d(y,y′)

[|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)|] dµ(x) ≤ C. (1.4)

Associated to the above kernel K, we define a linear operator T by that for any f ∈
L∞c (X) and µ− a. e. x /∈ supp f ,

Tf(x) =
∫

X

K(x, y)f(y) dµ(y). (1.5)

We then define the truncated operator Tε for any ε > 0, and the maximal operator T ∗,
respectively, by

Tεf(x) =
∫

d(x,y)>ε

K(x, y)f(y) dµ(y)

and

T ∗f(x) = sup
ε>0

|Tεf(x)|, (1.6)

where x ∈ X and f ∈ L∞c (X).
The first result of this paper is the following equivalences for the boundedness of T ∗.

Theorem 1.1. Let µ(X) = ∞ and T ∗ be the maximal operator as in (1.6) with K

satisfying (1.3) and (1.4). Then the following statements are equivalent :

(i) for certain r > 0, there is a constant C > 0 such that for any λ > 0, ball B and
bounded function f supported in B,

µ
({x ∈ B : |T ∗f(x)| > λ}) ≤ Cλ−rµ(B)‖f‖r

L∞(X);

(ii) for certain σ > 0, there is a constant C > 0 such that for any ball B and bounded
function f supported in B,
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1
µ(B)

∫

B

|T ∗f(x)|σ dµ(x) ≤ C‖f‖σ
L∞(X);

(iii) T ∗ is bounded from L∞c (X) to BMO(X);
(iv) for any 1 < p < ∞, T ∗ is bounded on Lp(X);
(v) T ∗ is bounded from L1(X) to L1,∞(X).

To the extent that we know, the equivalence between (iii) and others of Theorem
1.1 are also new even when X = Rn.

Remark 1.1. The proof of Theorem 1.1 also indicates that when µ(X) < ∞,
the implicity (i) =⇒ (ii) =⇒ (iii) and (iv) =⇒ (v) =⇒ (i) of Theorem 1.1 still hold.
However, it is still unclear so far if the implicity (iii) =⇒ (iv) of Theorem 1.1 is true
when µ(X) < ∞.

When µ(X) < ∞, instead of Theorem 1.1, we have the following conclusion.

Theorem 1.2. Let µ(X) < ∞ and T ∗ be the maximal operator as in (1.6) with K

satisfying (1.3) and (1.4). The following statements are equivalent :

(1) T ∗ is bounded from L1(X) to L1,∞(X);
(2) for any 1 < p < ∞, T ∗ is bounded on Lp(X).

We remark that the conclusions of Theorem 1.2 when µ(X) = ∞ are included in
Theorem 1.1.

From Theorem 1.1 and Theorem 1.2, we can deduce the following conclusions, for
which, the first and the second conclusions when X = Rn were obtained by Grafakos in
[7].

Theorem 1.3. Let T and T ∗ be the operators, respectively, as in (1.5) and (1.6)
with K satisfying (1.3) and (1.4). If T is bounded on L2(X), then T ∗ is also bounded on
Lp(X) for any p ∈ (1,∞), bounded from L1(X) to L1,∞(X), and bounded from L∞c (X)
to BMO(X).

It should be stressed that in the proof of Theorem 1.3, we employ some of the
techniques which were inspired by the work of Rivière [23] and further developed by
Grafakos in [7]; see also [8, pp. 305–309].

The organization of this paper is as follows. In Section 2, for any p ∈ (0,∞), we
establish certain norm inequalities on the John-Strömberg sharp maximal function, which
are used in the proof of Theorem 1.1 and have independent interest; see Theorem 2.1
and Theorem 2.2 below. The proofs of Theorem 1.1 and Theorem 1.2 are presented in
Section 3, and Section 4 is devoted to the proof of Theorem 1.3. Finally, in Section 5, we
present two applications of Theorem 1.1 through Theorem 1.3 to maximal Monge-Ampère
singular integral operators in [4] and maximal Nagel-Stein singular integral operators on
certain specific smooth manifolds in [20], respectively.

We now make some conventions. Throughout the paper, unless explicitly indicated,
µ(X) can be finite or infinite. We always denote by C a positive constant which is
independent of the main parameters, but it may vary from line to line. Constant with
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subscript such as C1, does not change in different occurrences. The notation Y . Z

means that there exists a constant C > 0 such that Y ≤ CZ. Let D ⊂ X and we denote
by χD the characteristic function of D. Given λ > 0 and a ball B, λB denotes the ball
with the same center as B and whose radius is λ times that of B. For a local integrable
function f on X and a ball B, fB denotes the mean of f over B, namely,

fB =
1

µ(B)

∫

B

f(y) dµ(y).

2. Some maximal operators.

In this section, we consider the boundedness of some maximal operators, which are
used in the proofs of Theorem 1.1 through Theorem 1.3 and are of independent interest.
We begin with the following basic covering lemma in [1, p. 138].

Lemma 2.1. Let (X, d, µ) be a space of homogeneous type and B = {Bα}α∈Λ be
a family of balls in X such that U =

⋃
α∈Λ Bα is measurable and µ(U) < ∞. Then there

exists a disjoint sequence {B(xj , rj)}j∈N ⊂ B, such that U ⊂ ⋃
j∈N B(xj , C1rj) with

C1 a positive constant depending only on A. Moreover, for any α ∈ Λ, Bα is contained
in some B(xj , C1rj).

The first maximal operator we are concerned with is the operator M0, s, 0 < s < 1,
defined by

M0, sf(x) = sup
B3x

inf
{
t > 0 : µ({y ∈ B : |f(y)| > t}) < sµ(B)

}

for any locally integrable function f and x ∈ X. This operator in the setting of Euclidean
spaces was first introduced by John [12] and then rediscovered by Strömberg [24] and
Lerner [14], [15]. For any locally integrable function f , let f∗ be the nonincreasing
rearrangement of f , namely,

f∗(t) = inf
{
s > 0 : µ({x ∈ X : |f(x)| > s}) < t

}
;

see, for example, [13]. Then, it is easy to see that

M0, sf(x) = sup
B3x

(fχB)∗(sµ(B)).

Related to the operator M0, s, there is a sharp maximal operator M ]
0, s which, for

any locally integrable function f and x ∈ X, is defined by

M ]
0, sf(x) = sup

B3x
inf
c∈C

inf
{
t > 0 : µ({y ∈ B : |f(y)− c| > t}) < sµ(B)

}
.

It is easy to see that for any s ∈ (0, 1), locally integrable function f and x ∈ X,
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M ]
0, sf(x) ≤ M0, sf(x).

A useful variant of M0, s is the central maximal operator M c
0, s which, for any locally

integrable function f , is defined by

M c
0, sf(x) = sup

r>0
inf

{
t > 0 : µ({y ∈ B(x, r) : |f(y)| > t}) < sµ(B(x, r))

}
.

Applying the doubling condition (1.2) of µ, we can verify that there is a constant C2 > 1
depending on (X, d, µ) such that for any x ∈ X,

M c
0, sf(x) ≤ M0, sf(x) ≤ M c

0, C−1
2 s

f(x). (2.1)

Lemma 2.2. Let s ∈ (0, 1). Then for any two locally integrable functions f1 and
f2 and x ∈ X,

M c
0, s(f1 + f2)(x) ≤ M c

0, s/2f1(x) + M c
0, s/2f2(x). (2.2)

Proof. Let B be a ball and f be any locally integrable function. We define

m0, s, B(f) = inf
{
t > 0 : µ({y ∈ B : |f(y)| > t}) < sµ(B)

}
. (2.3)

For any fixed σ > 0, there are positive numbers t1 and t2 with

m0, s/2, B(f1) ≤ t1 < m0, s/2, B(f1) +
σ

2
,

and

m0, s/2, B(f2) ≤ t2 < m0, s/2, B(f2) +
σ

2
,

such that for j = 1, 2,

µ({y ∈ B : |fj(y)| > tj}) <

(
s

2

)
µ(B).

Thus,

µ({y ∈ B : |f1(y) + f2(y)| > t1 + t2}) < sµ(B).

This in turn implies that

m0, s, B(f1 + f2) ≤ t1 + t2 < m0, s/2, B(f1) + m0, s/2, B(f2) + σ,
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which together with the arbitrariness of σ then gives (2.2) immediately. This finishes the
proof of Lemma 2.2. ¤

We now recall the Hardy-Littlewood maximal operator M defined by

M f(x) = sup
B3x

1
µ(B)

∫

B

|f(y)| dµ(y),

where the supremum is taken over all balls containing x and of positive radius.

Lemma 2.3. Let s ∈ (0, 1). Then for any locally integrable function f and any
λ > 0,

{x ∈ X : |f(x)| > λ} ⊂ {
x ∈ X : M c

0, sf(x) > λ
}
, (2.4)

and

µ({x ∈ X : M0, sf(x) > λ}) ≤ C3s
−1µ({x ∈ X : |f(x)| > λ}), (2.5)

where C3 > 0 is a constant independent of f , λ and s.

Proof. Recall that µ is regular. For each fixed λ > 0, it follows from the Lebesgue
differentiation theorem that

µ({x ∈ X : |f(x)| > λ}) = µ
({x ∈ X : χ{y∈X: |f(y)|>λ}(x) = 1})

≤ µ
({x ∈ X : M c(χ{y∈X: |f(y)|>λ})(x) > s}),

where M c is the central Hardy-Littlewood maximal operator defined by

M cf(x) = sup
r>0

1
µ(B(x, r))

∫

B(x, r)

|f(y)| dµ(y).

We claim that

{
x ∈ X : M c(χ{y∈X: |f(y)|>λ})(x) > s

} ⊂ {
x ∈ X : M c

0, sf(x) > λ
}
. (2.6)

In fact, if M c(χ{y∈X: |f(y)|>λ})(x) > s, then there is a ball B(x, r) such that

µ({y ∈ B(x, r) : |f(y)| > λ}) > sµ(B(x, r)). (2.7)

Since for any t ≤ λ,

µ({y ∈ B(x, r) : |f(y)| > λ}) ≤ µ({y ∈ B(x, r) : |f(y)| > t}),

we have that
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inf
{
t > 0 : µ({y ∈ B(x, r) : |f(y)| > t}) < sµ(B(x, r))

} ≥ λ. (2.8)

Note that

{y ∈ B(x, r) : |f(y)| > λ} =
⋃

k≥1

{
y ∈ B(x, r) : |f(y)| > λ +

1
k

}
,

and

µ({y ∈ B(x, r) : |f(y)| > λ}) = lim
k→∞

µ

({
y ∈ B(x, r) : |f(y)| > λ +

1
k

})
,

which implies that if the equality in (2.8) holds, then for any k ∈ N ,

µ

({
y ∈ B(x, r) : |f(y)| > λ +

1
k

})
≤ sµ(B(x, r))

and therefore,

µ({y ∈ B(x, r) : |f(y)| > λ}) ≤ sµ(B(x, r)).

This contradicts (2.7). Thus, M c(χ{y∈X: |f(y)|>λ})(x) > s implies that

M c
0, sf(x) ≥ inf

{
t > 0 : µ({y ∈ B(x, r) : |f(y)| > t}) < sµ(B(x, r))

}
> λ

and the inequality (2.6) holds.
The proof of (2.5) follows from the same argument as that used in [15, p. 2451]. In

fact, note that for any λ > 0 and s ∈ (0, 1),

{x ∈ X : M0, sf(x) > λ} ⊂ {
x ∈ X : M (χ{y∈X: |f(y)|>λ})(x) ≥ s

}
,

which together with the fact that the operator M is bounded from L1(X) to weak L1(X)
gives us (2.5). This finishes the proof of Lemma 2.3. ¤

The following good-λ inequality is an analog of the good-λ inequality on the Hardy-
Littlewood maximal operator M and the Fefferman-Stein sharp maximal operator M ]

defined by

M ]f(x) = sup
B3x

1
µ(B)

∫

B

|f(y)− fB | dµ(y);

see [18] for the details on the good-λ inequality related to M and M ].

Lemma 2.4. Let 0 < s1, s2 ≤ 1/2, λ > 0 and f be any locally integrable function.
Suppose that B is a ball satisfying that there is a point x0 ∈ B such that M0, s1f(x0) ≤ λ.
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Then there is a constant C > 0, which is independent of f , B, λ, s1 and s2, such that

µ

({
x ∈ B : M c

0, s1
f(x) > 3λ, M ]

0, s2
f(x) ≤ λ

4

})
≤ Cs−1

1 s2µ(B).

Before proving Lemma 2.4, we recall the definition of median values; see [12], [24],
[11]. Let f be a real locally integrable function and B be a ball. The median value
mf (B) of f over B is defined to be one of real numbers satisfying that

µ({x ∈ B : f(x) > mf (B)}) ≤ µ(B)
2

,

and

µ({x ∈ B : f(x) < mf (B)}) ≤ µ(B)
2

.

If f is complex, we then define mf (B) = mRe(f)(B) + imIm(f)(B), where i2 = −1. It is
easy to verify that for any s ∈ (0, 1/2], ball B and locally integrable function f ,

|mf (B)| ≤
√

2 inf
x∈B

M0, 1/2f(x) ≤
√

2 inf
x∈B

M0, sf(x), (2.9)

and

µ
({

y ∈ B : |f(y)−mf (B)| > 2
√

2 inf
x∈B

M ]
0, sf(x)

})
≤ sµ(B); (2.10)

see [11, p. 238] for (2.9), and [11, p. 236] and [24, p. 519] for (2.10) in the setting of
Euclidean spaces.

Proof of Lemma 2.4. Let rB be the radius of B and

E =
{

x ∈ B : M c
0, s1

f(x) > 3λ, M ]
0, s2

f(x) ≤ λ

4

}
.

To prove the lemma, it suffices to consider the case when E 6=∅. For each fixed x ∈ E,
we have that M c

0, s1
f(x) > 3λ, which means that there exists a ball B(x, rx) such that

inf
{
t > 0 : µ({y ∈ B(x, rx) : |f(y)| > t}) < s1µ(B(x, rx))

}
> 3λ.

Since x0 6∈ B(x, rx) (for otherwise, M0, s1f(x0) > λ), by (1.1) together with x0, x ∈ B,
we then have rx < 2ArB and B(x, rx) ⊂ 4A2B. This in turn implies that

M c
0, s1

(fχ4A2B)(x) > 3λ

and so
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E ⊂
{

x ∈ B : M c
0, s1

(fχ4A2B)(x) > 3λ, M ]
0, s2

(f)(x) ≤ λ

4

}
.

Lemma 2.2 together with (2.9) and the definition of M c
0, s1/2 tell us that

M c
0, s1

(fχ4A2B)(x)

≤ M c
0, s1/2

(
(f −mf (4A2B))χ4A2B

)
(x) + M c

0, s1/2(mf (4A2B)χ4A2B)(x)

≤ M c
0, s1/2

(
(f −mf (4A2B))χ4A2B

)
(x) + |mf (4A2B)|

≤ M c
0, s1/2

(
(f −mf (4A2B))χ4A2B

)
(x) + 2 inf

y∈4A2B
M0, s1f(y)

≤ M c
0, s1/2

(
(f −mf (4A2B))χ4A2B

)
(x) + 2M0, s1f(x0).

Therefore, by the assumption that M0, s1f(x0) ≤ λ, Lemma 2.3 and E 6= ∅, which
implies that λ ≥ 4 infz∈4A2B M ]

0, s2
f(z), together with (2.10), we have

µ(E) ≤ µ
({

x ∈ B : M c
0, s1/2(|f −mf (4A2B)|χ4A2B)(x) > λ

})

. s−1
1 µ

({y ∈ 4A2B : |f(y)−mf (4A2B)| > λ})

. s−1
1 µ

({
y ∈ 4A2B : |f(y)−mf (4A2B)| > 4 inf

z∈4A2B
M ]

0, s2
f(z)

})

. s−1
1 s2µ(B),

which completes the proof of Lemma 2.4. ¤

Lemma 2.5. Let 0 < s1, s2 ≤ 1/2. Then there exist constants C4 > 0 and C > 0,
which depend only on X, such that for any locally integrable function f and any λ > 0,

µ
({x ∈ X : M c

0, s1
f(x) > 3λ})

≤ C4s
−2
1 s2µ({x ∈ X : |f(x)| > λ}) + Cµ

({
x ∈ X : M ]

0, s2
f(x) >

λ

4

})
, (2.11)

provided that µ({x ∈ X : |f(x)| > λ}) < C−1
3 s1µ(X).

Proof. For each fixed λ > 0, set

Vλ = {x ∈ X : M0, s1f(x) > λ},

and

Wλ =
{

x ∈ X : M c
0, s1

f(x) > 3λ, M ]
0, s2

f(x) ≤ λ

4

}
.
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We see by (2.5) that

µ(Vλ) ≤ C3s
−1
1 µ({y ∈ X : |f(y)| > λ}) < µ(X).

Thus, X\Vλ is not an empty set. Note that Wλ ⊂ Vλ and Vλ is an open set. For each
x ∈ Vλ, denote by rx the distance of x and the set X\Vλ, that is,

rx = inf
y∈X\Vλ

d(x, y).

Let C1 be the same as in Lemma 2.1. Obviously, we can assume that C1 ≥ 1. It is also
easy to see that rx > 0 and

Vλ =
⋃

x∈Vλ

B

(
x,

rx

2C1

)
.

Applying Lemma 2.1, we can find a sequence of non-overlapping balls {B(xj , rj/(2C1))}
such that

Vλ =
⋃

j

B

(
xj ,

4rj

5

)
, B

(
xj ,

5rj

4

)
∩ (X\Vλ) 6=∅.

By Lemma 2.4 and (1.2), we thus have that

µ(Wλ) ≤
∑

j

µ

({
x ∈ B

(
xj ,

5rj

4

)
: M c

0, s1
f(x) > 3λ, M ]

0, s2
f(x) ≤ λ

4

})

. s−1
1 s2

∑

j

µ

(
B

(
xj ,

rj

2C1

))

. s−1
1 s2µ(Vλ).

This together with (2.5) in Lemma 2.3 in turn gives us that

µ
({x ∈ X : M c

0, s1
f(x) > 3λ})

≤ µ(Wλ) + µ

({
x ∈ X : M ]

0, s2
f(x) >

λ

4

})

. s−1
1 s2µ(Vλ) + µ

({
x ∈ X : M ]

0, s2
f(x) >

λ

4

})

. s−2
1 s2µ({x ∈ X : |f(x)| > λ}) + µ

({
x ∈ X : M ]

0, s2
f(x) >

λ

4

})
. ¤

We can then formulate the main results of this section.
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Theorem 2.1. Let µ(X) = ∞, p ∈ (0,∞) and C4 > 0 be the same as in
Lemma 2.5. Then there exists a constant C > 0 such that for any s ∈ (0, 1/2] and
s < (223pC4)−1, and any locally integrable function f ,

sup
λ>0

λpµ({x ∈ X : |f(x)| > λ}) ≤ C sup
λ>0

λpµ
({x ∈ X : M ]

0, sf(x) > λ}),

provided that

sup
λ>0

λpµ({x ∈ X : |f(x)| > λ}) < ∞. (2.12)

Proof. By (2.4) and Lemma 2.5 with 0 < s2 = s ≤ 1/2 = s1, we see that for any
s ∈ (0, 1/2], λ > 0 and locally integrable function f ,

µ({x ∈ X : |f(x)| > 3λ})
≤ µ

({x ∈ X : M c
0, 1/2f(x) > 3λ})

≤ 22C4sµ({x ∈ X : |f(x)| > λ}) + Cµ

({
x ∈ X : M ]

0, sf(x) >
λ

4

})
.

Therefore,

(3λ)pµ({x ∈ X : |f(x)| > 3λ})

≤ 223pC4sλ
pµ({x ∈ X : |f(x)| > λ}) + Cλpµ

({
x ∈ X : M ]

0, sf(x) >
λ

4

})
.

Taking supremum over the last inequality gives us that for any R > 0,

sup
0<λ<3R

λpµ({x ∈ X : |f(x)| > λ})

≤ 223pC4s sup
0<λ<R

λpµ({x ∈ X : |f(x)| > λ}) + C sup
λ>0

λpµ
({x ∈ X : M ]

0, sf(x) > λ}),

which together with the assumptions that s < (223pC4)−1 and (2.12) completes the proof
of Theorem 2.1. ¤

Theorem 2.2. Let p ∈ (0,∞) and C4 > 0 be the same as in Lemma 2.5. There
exists a constant C > 0 such that for any s ∈ (0, 1/2] and s < (223pC4)−1, and any
locally integrable function f ,

(i) if µ(X) = ∞, and for some p0 ∈ (0, p),

sup
t>0

tp0µ({x ∈ X : |f(x)| > t}) < ∞, (2.13)

then
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‖f‖Lp(X) ≤ C
∥∥M ]

0, sf
∥∥

Lp(X)
;

(ii) if µ(X) < ∞, then

‖f‖Lp(X) ≤ C
∥∥M ]

0, sf
∥∥

Lp(X)
+ C‖f‖L1,∞(X),

where ‖f‖L1,∞(X) is the L1,∞(X) norm of f defined by

‖f‖L1,∞(X) = sup
τ>0

τµ({x ∈ X : |f(x)| > τ}).

Proof. We first consider the case that µ(X) = ∞. As in the proof of Theorem
2.1, by (2.4) and Lemma 2.5 with 0 < s2 = s ≤ 1/2 = s1, we see that for any s ∈ (0, 1/2],
R > 0 and locally integrable function f ,

∫ 3R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ

≤ 3p

∫ R

0

µ
({x ∈ X : M c

0, 1/2f(x) > 3λ})λp−1 dλ

≤ 223pC4s

∫ R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ + C
∥∥M ]

0, sf
∥∥p

Lp(X)
.

Note that if µ(X) = ∞ and f satisfies (2.13), it then follows that

∫ R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ < ∞.

Taking s ∈ (0, 1/2] such that s < (223pC4)−1, we then have that for any R > 0,

∫ 3R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ .
∥∥M ]

0, sf
∥∥p

Lp(X)
.

Letting R →∞ leads to the desired result.
Now let µ(X) < ∞. If λ > λf, X = 2C3‖f‖L1,∞(X)[µ(X)]−1, we know from Lemma

2.5 that

µ({x ∈ X : |f(x)| > 3λ})

≤ 22C4sµ({x ∈ X : |f(x)| > λ}) + Cµ

({
x ∈ X : M ]

0, sf(x) >
λ

4

})
.

For any R > λf, X , integrating the last estimate then yields
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∫ 3R

3λf, X

µ({x ∈ X : |f(x)| > λ})λp−1 dλ

≤ C
∥∥M ]

0, sf
∥∥p

Lp(X)
+ 223pC4s

∫ R

λf, X

µ({x ∈ X : |f(x)| > λ})λp−1 dλ.

This in turn implies that

∫ 3R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ

=
∫ 3λf, X

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ +
∫ 3R

3λf, X

µ({x ∈ X : |f(x)| > λ})λp−1 dλ

≤ Cλp
f, Xµ(X) + C

∥∥M ]
0, sf

∥∥p

Lp(X)
+ 223pC4s

∫ R

0

µ({x ∈ X : |f(x)| > λ})λp−1 dλ,

and the desired conclusion follows immediately. ¤

3. Proofs of Theorem 1.1 and Theorem 1.2.

To prove Theorem 1.1, we first recall the following Calderón-Zygmund decomposition
theorem on spaces of homogeneous type in [5, pp. 72–74].

Lemma 3.1. Let f ∈ L1(X) and λ > ‖f‖L1(X) [µ(X)]−1, there exist a family of
balls {Bj}j∈Λ, and constants C > 0 and L ≥ 1, such that

(a1) f = g + b with b =
∑

j∈Λ bj,
(a2) |g(x)| ≤ Cλ for almost all x ∈ X,
(a3) supp bj ⊂ Bj,

∫
Bj

bj(x) dµ(x) = 0, and for all x ∈ X,
∑

j∈Λ χBj (x) ≤ L,
(a4) ‖bj‖L1(X) ≤ Cλµ(Bj),
(a5)

∑
j∈Λ µ(Bj) ≤ Cλ−1‖f‖L1(X).

We also need the following interpolation theorem of operators, which can be proved
by the same argument as that used in the proof of Marcinkiewicz interpolation theorem.
We omit the details for brevity. The advantage of this interpolation theorem is that the
operators included are even not necessary to be sub-linear.

Lemma 3.2. Let 1 ≤ p1 < p0 < p2 ≤ ∞, and T , T1 and T2 be three operators.
Assume that

(1) there is a constant C > 0 such that for any f1, f2 ∈
⋃

p≥1 Lp(X),

|T (f1 + f2)(x)| ≤ C(|T1(f1)(x)|+ |T2(f2)(x)|);

(2) T1 and T2 are bounded, respectively, from Lp1(X) to Lp1,∞(X) and from Lp2(X)
to Lp2,∞(X).

Then T is also bounded on Lp0(X).
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Lemma 3.3. Let {Bj = B(xj , rj)}j∈Λ be a sequence of balls in X such that for
some constant C ≥ 1,

∑

j∈Λ

χBj
(x) ≤ C.

Furthermore, let λ > 0 and {bj}j∈Λ be a sequence of functions such that for some fixed
constant C5 > 0, supp bj ⊂ Bj,

∫
X

bj(x) dµ(x) = 0 and
∫

Bj
|bj(x)| dµ(x) ≤ C5λµ(Bj).

With the same assumptions as in Theorem 1.1, then there are constants C > 0 and
C6 > 2, which are independent of bj and λ, such that

µ

({
x ∈ X \

⋃

j

B∗
j : T ∗

( ∑

j∈Λ

bj

)
(x) > C6λ

})
≤ C

∑

j∈Λ

µ(Bj),

where B∗
j = A(4A2 + 1)Bj with A same as in (1.1).

Proof. To prove this lemma, we invoke some ideas from [7]. Let b =
∑

j∈Λ bj ,
and set

E1(x) =
∑

j∈Λ

∫

Bj

|K(x, y)−K(x, xj)||bj(y)| dµ(y)

and

E2(x) = λ
∑

j∈Λ

∫

Bj

|K(x, y)−K(x, xj)| dµ(y),

where xj is the center of Bj . If we can prove that there is a constant C7 > 0 such that
for x ∈ X\⋃

j B∗
j ,

T ∗b(x) ≤ 2E1(x) + C5E2(x) + C7λ, (3.1)

it then follows by (1.4) that

µ

({
x ∈ X \

⋃

j

B∗
j : T ∗(b)(x) > (C7 + 2)λ

})

≤ µ

({
x ∈ X \

⋃

j

B∗
j : E1(x) >

λ

2

})
+ µ

({
x ∈ X \

⋃

j

B∗
j : E2(x) >

λ

C5

})

. λ−1
{‖E1‖L1(X\Sj B∗j ) + ‖E2‖L1(X\Sj B∗j )

}
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. λ−1
∑

j∈Λ

∫

Bj

{ ∫

X\B∗j
|K(x, y)−K(x, xj)| dµ(x)

}
|bj(y)| dµ(y)

+
∑

j∈Λ

∫

Bj

∫

X\B∗j
|K(x, y)−K(x, xj)| dµ(x) dµ(y)

. λ−1
∑

j∈Λ

‖bj‖L1(X) +
∑

j∈Λ

µ(Bj),

which together with the assumption that ‖bj‖L1(X) . λµ(Bj) gives us the desired esti-
mate.

We now prove (3.1). For each fixed x ∈ X\⋃
j B∗

j and ε > 0, set

I1(x, ε) = {j ∈ Λ : for all y ∈ Bj , d(x, y) ≤ ε},
I2(x, ε) = {j ∈ Λ : for all y ∈ Bj , d(x, y) > ε},

and

I3(x, ε) = {j ∈ Λ : Bj ∩ {y ∈ X : d(x, y) > ε} 6=∅
and Bj ∩ {y ∈ X : d(x, y) ≤ ε} 6=∅}.

Then

|Tεb(x)| ≤
∣∣∣∣Tε

( ∑

j∈I2(x, ε)

bj

)
(x)

∣∣∣∣ +
∣∣∣∣Tε

( ∑

j∈I3(x, ε)

bj

)
(x)

∣∣∣∣.

Applying the vanishing moment hypothesis of bj , we know that

∣∣∣∣Tε

( ∑

j∈I2(x, ε)

bj

)
(x)

∣∣∣∣ =
∣∣∣∣

∑

j∈I2(x, ε)

∫

Bj

[K(x, y)−K(x, xj)]bj(y) dµ(y)
∣∣∣∣ ≤ E1(x),

and

∣∣∣∣Tε

( ∑

j∈I3(x, ε)

bj

)
(x)

∣∣∣∣ =
∣∣∣∣

∑

j∈I3(x, ε)

∫

Bj

K(x, y)bj(y)χB(x,ε){(y) dµ(y)
∣∣∣∣

≤
∣∣∣∣

∑

j∈I3(x, ε)

∫

Bj

K(x, y)
[
bj(y)χB(x,ε){(y)−Dj(ε)

]
dµ(y)

∣∣∣∣

+
∣∣∣∣

∑

j∈I3(x, ε)

∫

Bj

K(x, y)Dj(ε) dµ(y)
∣∣∣∣,

where B(x, ε){ = X \ B(x, ε) and Dj(ε) = [µ(Bj)]−1
∫

X
bj(y)χB(x,ε){(y) dµ(y). Obvi-
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ously, |Dj(ε)| ≤ C5λ for any j ∈ Λ by the assumption on bj . Thus

∣∣∣∣Tε

( ∑

j∈I3(x, ε)

bj

)
(x)

∣∣∣∣

≤
∣∣∣∣

∑

j∈I3(x, ε)

∫

Bj

[K(x, y)−K(x, xj)]
[
bj(y)χB(x,ε){(y)−Dj(ε)

]
dµ(y)

∣∣∣∣

+
∣∣∣∣

∑

j∈I3(x, ε)

Dj(ε)
∫

Bj

K(x, y) dµ(y)
∣∣∣∣

≤ E1(x) + C5E2(x) + C5λ
∑

j∈I3(x, ε)

∫

Bj

|K(x, y)| dµ(y).

For each j ∈ I3(x, ε), by its definition, we can choose y1
j , y2

j ∈ Bj such that d(x, y1
j ) > ε

and d(x, y2
j ) ≤ ε. Note that d(x, xj) ≥ A(4A2 + 1)rj by x /∈ B∗

j ,

ε ≥ d
(
x, y2

j

) ≥ 1
A

d(x, xj)− d
(
xj , y2

j

) ≥ (4A2 + 1)rj − rj = 4A2rj . (3.2)

Therefore, for any y ∈ Bj with j ∈ I3(x, ε), we have that

d(x, y) ≤ A
(
d(x, y2

j ) + d(y2
j , y)

) ≤ A(ε + 2Arj) ≤
(

A +
1
2

)
ε

and

d(x, y) ≥ 1
A

d
(
x, y1

j

)− d
(
y1

j , y
) ≥ ε

2A
.

This in turn implies

⋃

j∈I3(x, ε)

Bj ⊂ B

(
x,

(
A +

1
2

)
ε

)
\B

(
x,

ε

2A

)
,

and thus by the hypothesis that
∑

j∈Λ χBj (x) ≤ C and (1.3),

∑

j∈I3(x, ε)

∫

Bj

|K(x, y)| dµ(y) ≤
∫

B(x,(A+1/2)ε)\B(x, ε/(2A))

|K(x, y)|
∑

j∈I3(x, ε)

χBj
(y) dµ(y)

≤ C.

Therefore, (3.1) holds for C7 = CC5, which completes the proof of Lemma 3.3. ¤

Proof of Theorem 1.1. (i) ⇒ (ii). Choose σ ∈ (0, r) in (ii). For any fixed ball
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B and bounded function f supported in B, by (i), we have
∫

B

|T ∗f(x)|σ dµ(x)

≤ σµ(B)
∫ ‖f‖L∞(X)

0

tσ−1dt + σ

∫ ∞

‖f‖L∞(X)

µ({x ∈ B : T ∗f(x) > t})tσ−1dt

. µ(B)‖f‖σ
L∞(X),

namely, (ii) holds.
(ii) ⇒ (iii). Without loss of generality, we may assume that σ < 1 in (ii). Observe

that for any f ∈ L∞c (X), (T ∗f)σ is locally integrable, and thus T ∗f is finite almost
everywhere. By the characterization of the space BMO(X) of Long and Yang [16, p. 700],
to prove (iii), it suffices to verify that for any f ∈ L∞c (X),

sup
B

inf
c∈C

1
µ(B)

∫

B

|T ∗f(x)− c|σ dµ(x) . ‖f‖σ
L∞(X). (3.3)

To this end, for any fixed ball B and f ∈ L∞c (X), decompose f into

f(x) = f(x)χB∗(x) + f(x)χX\B∗(x) = f1(x) + f2(x),

where B∗ = A(4A2 + 1)B. It then follows that

inf
c∈C

1
µ(B)

∫

B

|T ∗f(x)− c|σ dµ(x)

≤ 1
µ(B)

∫

B

|T ∗f1(x)|σ dµ(x) + inf
c∈C

1
µ(B)

∫

B

|T ∗f2(x)− c|σ dµ(x).

Our hypothesis says that

1
µ(B)

∫

B

|T ∗f1(x)|σ dµ(x) . ‖f‖σ
L∞(X). (3.4)

Since |T ∗f2|σ is locally integrable, we can take xB ∈ B such that T ∗f2(xB) < ∞. For
any x ∈ B, a standard computation together with (1.3) and (1.4) leads to that

|T ∗f2(x)− T ∗f2(xB)|
≤ sup

ε>0
|Tεf2(x)− Tεf2(xB)|

≤ sup
ε>0

∫

X

|K(x, z)−K(xB , z)||f2(z)| dµ(z)

+ sup
ε>0

∫

X

|K(xB , z)|∣∣χ{d(xB , z)>ε}(z)− χ{d(x, z)>ε}(z)
∣∣|f2(z)| dµ(z)
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. ‖f‖L∞(X) + sup
ε>0

∫
d(xB, z)≤ε

d(x, z)>ε

|K(xB , z)||f2(z)| dµ(z)

+ sup
ε>0

∫
d(xB, z)>ε

d(x, z)≤ε

|K(xB , z)||f2(z)| dµ(z)

. ‖f‖L∞(X)

{
1 + sup

ε>0

∫

ε/(2A)<d(xB , z)≤ε

|K(xB , z)| dµ(z)

+ sup
ε>0

∫

ε<d(xB , z)≤(A+1/2)ε

|K(xB , z)| dµ(z)
}

. ‖f‖L∞(X),

which together with (3.4) then gives us the inequality (3.3). Here, in the second-to-last
inequality, we used the fact that 4A2rB ≤ ε by (3.2), where rB is the radius of B. Hence,
(iii) holds.

(iii) ⇒ (iv). We first claim that for any 0 < s < 1 and f1, f2 ∈
⋃

p≥1 Lp(X),

M ]
0, s[T

∗(f1 + f2)](x) ≤ M ]
0, s/2(T

∗f1)(x) + M0, s/2(T ∗f2)(x). (3.5)

In fact, for each fixed ball B, let m0, s, B(f) be the same as in (2.3) and

m̃0, s, B(f) = inf
c∈C

inf
{
t > 0 : µ({y ∈ B : |f(y)− c| > t}) < sµ(B)

}
.

For each fixed σ > 0, there exist constants c ∈ C, t1 ≥ 0 and t2 ≥ 0 with t1 <

˜m0, s/2, B(T ∗f1) + σ/2 and t2 < m0, s/2, B(T ∗f2) + σ/2 such that

µ
({y ∈ B : |T ∗f1(y)− c| > t1}

)
<

(
s

2

)
µ(B),

and

µ
({y ∈ B : T ∗f2(y) > t2}

)
<

(
s

2

)
µ(B).

Note that

|T ∗(f1 + f2)(y)− c| ≤ |T ∗f1(y)− c|+ |T ∗f2(y)|.

It is easy to see that

µ
({y ∈ B : |T ∗(f1 + f2)(y)− c| > t1 + t2}

)

≤ µ
({y ∈ B : |T ∗f1(y)− c| > t1}

)
+ µ

({y ∈ B : T ∗f2(y) > t2}
)
.

Therefore,
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m̃0, s, B [T ∗(f1 + f2)] ≤ ˜m0, s/2, B(T ∗f1) + m0, s/2, B(T ∗f2) + σ,

which together with the arbitrariness of σ and the definitions of M ]
0,s and M0,s yields

(3.5).
We now prove that for any s ∈ (0, 1), there is some constant C8 > 0 such that for

any f ∈ L1(X) ∩ L2(X) with bounded support,

µ
({x ∈ X : M ]

0, s(T
∗f)(x) > (C6 + C8s

−1)λ}) . s−1λ−1‖f‖L1(X), (3.6)

where C6 is the same as in Lemma 3.3. Since T ∗ is bounded from L∞c (X) to BMO(X),
then for any f ∈ L∞c (X),

‖M ](T ∗f)‖L∞(X) . ‖f‖L∞(X), (3.7)

where M ] is the Fefferman-Stein sharp function; see [18] for the details about M ]. It is
obvious that for any locally integrable function f and x ∈ X,

M ]
0, sf(x) ≤ s−1M ]f(x). (3.8)

Note that µ(X) = ∞. For each fixed f ∈ L1(X) ∩ L2(X) with bounded support, and
λ > 0, by Lemma 3.1, we can obtain a family of balls {Bj}j∈Λ and a constant C > 0
such that f can be decomposed into f = g + b as in Lemma 3.1. The hypothesis that T ∗

is bounded from L∞c (X) to BMO(X) together with (3.8), (3.7) and (a2) in Lemma 3.1
states that for some constant C8 > 0,

{
x ∈ X : M ]

0, s/2(T
∗g)(x) > C8s

−1λ
}

=∅.

This along with the inequalities (3.5) and (2.5) leads to that

µ
({x ∈ X : M ]

0, s(T
∗f)(x) > (C6 + C8s

−1)λ})

≤ µ
({x ∈ X : M ]

0, s/2(T
∗g)(x) > C8s

−1λ}) + µ
({x ∈ X : M0, s/2(T ∗b)(x) > C6λ}

)

. s−1µ
({x ∈ X : T ∗b(x) > C6λ}

)
.

On the other hand, by Lemma 3.3 and Lemma 3.1 (a5), we have that

µ
({x ∈ X : T ∗b(x) > C6λ}

) ≤ µ

( ⋃

j

B∗
j

)
+ µ

({
x ∈ X \

⋃

j

B∗
j : T ∗b(x) > C6λ

})

. λ−1‖f‖L1(X).

Combining the estimates above yields (3.6).
Let L∞c, 0(X) be the set of functions f ∈ L∞c (X) with

∫
X

f(x) dµ(x) = 0. If we can
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verify that for any f ∈ L∞c, 0(X),

sup
λ>0

λµ({x ∈ X : T ∗f(x) > λ}) < ∞, (3.9)

then by Theorem 2.1 (with s < (223pC4)−1) and (3.6), we see

sup
λ>0

λµ({x ∈ X : T ∗f(x) > λ}) . sup
λ>0

λµ
({x ∈ X : M ]

0, s(T
∗f)(x) > λ})

. ‖f‖L1(X).

This via a standard density argument states that T ∗ is bounded from L1(X) to L1,∞(X),
and so is M0, sT

∗ for any s ∈ (0, 1/2] and s < (223pC4)−1 by this fact together with (2.5)
in Lemma 2.3. By the last fact and the fact that M ]

0, sT
∗ is bounded from L∞c (X) to

L∞(X) together with (3.5) and Lemma 3.2, we know that M ]
0, sT

∗ is bounded on Lp(X)
for any p ∈ (1, ∞). An application of Theorem 2.2 then yields that for any p ∈ (1, ∞)
and f ∈ L∞c, 0(X),

‖T ∗f‖Lp(X) . ‖M ]
0, s(T

∗f)‖Lp(X) . ‖f‖Lp(X).

The density argument then gives us the desired Lp(X)-boundedness of T ∗ with p ∈
(1, ∞).

To see (3.9), let f ∈ L∞c, 0(X) and B be a ball such that supp f ⊂ B. It is obvious
that

λµ({x ∈ B∗ : T ∗f(x) > λ}) ≤ ‖T ∗f‖L1(B∗) < ∞,

since T ∗f ∈ BMO(X) and T ∗f is locally integrable. On the other hand, by Lemma 3.3,
we see that for any λ > 0,

λµ({x ∈ X \B∗ : T ∗f(x) > λ}) . ‖f‖L1(X) < ∞.

The estimate (3.9) then holds. Thus, (iv) is true.
(iv) ⇒ (v). It is easy to see that this is true by Lemma 3.1 and Lemma 3.3.
(v) ⇒ (i). This is obvious if we choose r = 1 in (i), which completes the proof of

Theorem 1.1. ¤

Proof of Theorem 1.2. As we have pointed out in Remark 1.1, it suffices to
show that when µ(X) < ∞, then (1) =⇒ (2). Recall that T ∗ is bounded from L1(X)
to L1,∞(X) implies that T ∗ is bounded from L∞c (X) to BMO(X). For each fixed s ∈
(0, 1/2), by Lemma 2.3, we know that M0, s is bounded from L1,∞(X) to itself. If (1)
is true, then the composition operator M ]

0, sT
∗ is bounded on L∞c (X), and M0, sT

∗ is
bounded from L1(X) to L1,∞(X). Thus by the estimate (3.5) and Lemma 3.2, we know
that M ]

0, sT
∗ is bounded on Lp(X) for any p ∈ (1, ∞). Take s < (223pC4)−1. An

application of Theorem 2.2 then leads to that
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‖T ∗f‖Lp(X) ≤ C‖M ]
0, s(T

∗f)‖Lp(X) + C‖T ∗f‖L1,∞(X)

≤ C‖f‖Lp(X) + C‖T ∗f‖L1,∞(X)

≤ C‖f‖Lp(X),

which completes the proof of Theorem 1.2. ¤

4. Proof of Theorem 1.3.

By Theorem 1.1 and Theorem 1.2, we only need to prove that T ∗ is bounded from
L1(X) to L1,∞(X). To this end, we need the following Cotlar-type inequality.

Lemma 4.1. Under the hypothesis of Theorem 1.3, there exists a constant C > 0
such that for any f ∈ L2(X) ∩ L∞(X) and µ-a.e. x ∈ X,

T ∗f(x) ≤ M (Tf)(x) + C‖f‖L∞(X).

Proof. We proceed with the proof as in that of Theorem 1 in [7]. For any fixed
f ∈ L2(X) ∩ L∞(X), since T is bounded on L2(X), |Tf(x)| is finite almost everywhere.
For each fixed x such that |Tf(x)| < ∞ and ε > 0, decompose f into

f(y) = f(y)χB(x, ε)(y) + f(y)χX\B(x, A(4A2+1)ε)(y) + f(y)χB(x, A(4A2+1)ε)\B(x, ε)(y)

= f1(y) + f2(y) + f3(y).

Observe that for any y ∈ B(x, ε), by (1.3),

|Tεf(x)| = |Tεf2(x)|+ |Tεf3(x)|
= |Tf2(x)|+ |Tf3(x)|
. |Tf2(x)− Tf2(y)|+ |Tf(y)|+ |Tf1(y)|+ ‖f‖L∞(X).

As in (ii)⇒(iii) in the proof of Theorem 1.1, we know that for any y ∈ B(x, ε),

|Tf2(x)− Tf2(y)| . ‖f‖L∞(X).

Therefore, by the L2(X)-boundedness of T ,

|Tεf(x)| . ‖f‖L∞(X) +
1

µ(B(x, ε))

∫

B(x, ε)

|Tf(y)| dµ(y)

+
{

1
µ(B(x, ε))

∫

B(x, ε)

|Tf1(y)|2 dµ(y)
}1/2

. ‖f‖L∞(X) + M (Tf)(x).

Taking supremum for all ε > 0 gives the conclusion of Lemma 4.1. ¤
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Proof of Theorem 1.3. By Theorem 1.1 and Theorem 1.2, it suffices to prove
that T ∗ is bounded from L1(X) to weak L1(X). For any fixed λ > [µ(X)]−1‖f‖L1(X),
applying Lemma 3.1 to f at level λ, we can decompose f into f = g + b with g and b

same as in Lemma 3.1. By Lemma 3.3, we see that

µ({x ∈ X : T ∗b(x) > λ}) . λ−1‖f‖L1(X).

On the other hand, for some constant C9 > 0, which is large enough and independent of
f and λ, Lemma 4.1 together with the L2(X)-boundedness of M and Lemma 3.1 tells
us that

µ({x ∈ X : T ∗g(x) > C9λ}) ≤ µ({x ∈ X : M (Tg)(x) > λ})
≤ λ−2‖M (Tg)‖L2(X)

. λ−1‖g‖L1(X)

. λ−1‖f‖L1(X).

This completes the proof of Theorem 1.3. ¤

5. Some applications.

This section is devoted to some applications of Theorem 1.1 through Theorem 1.3.
We first consider the Monge-Ampère singular integral operators in [4].

5.1. Monge-Ampère singular integral operators.
For x ∈ Rn and t > 0, denote by S(x, t) certain open and bounded convex set

containing x. We call F = {S(x, t) : x ∈ Rn, t > 0} a family of sections if {S(x, t) :
x ∈ Rn, t > 0} is monotone increasing in t, i. e., S(x, t) ⊂ S(x, t′) for t ≤ t′, and satisfies
the following three conditions:

(a) There exist positive constants K1, K2, K3, ε1 and ε2 such that given two sections
S(x0, t0) and S(x, t) with t ≤ t0 satisfying S(x0, t0) ∩ S(x, t) 6= ∅, and given an
affine transformation T that “normalizes” S(x0, t0), i. e.,

B

(
0,

1
n

)
⊂ T (S(x0, t0)) ⊂ B(0, 1),

there exists z ∈ B(0, K3) depending on S(x0, t0) and S(x, t) such that

B

(
z, K2

(
t

t0

)ε2 )
⊂ T (S(x, t)) ⊂ B

(
z, K1

(
t

t0

)ε1 )

and T (x) ∈ B(z, 1
2K2( t

t0
)ε2). Here and in what follows, B(x, t) denotes the Eu-

clidean open ball centered at x with radius t > 0.
(b) There exists a constant σ > 0 such that for any given section S(x, t) and y 6∈
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S(x, t), if T is an affine transformation that normalizes S(x, t),

B(T (y), εσ) ∩ T (S(x, (1− ε)t)) =∅

for any ε ∈ (0, 1).
(c)

⋂
t>0 S(x, t) = {x} and

⋃
t>0 S(x, t) = Rn.

In addition we assume that a positive Borel regular measure µ which is finite on
compact sets is given, µ(Rn) = ∞, and satisfies the following doubling condition

µ(S(x, 2t)) ≤ Cµ(S(x, t)), (5.1)

where C > 0 is independent of x and t.
The definition of sections was introduced by Caffarelli and Gutiérrez [3] to establish

a real variable theory associated to the Monge-Ampère equation. Caffarelli and Gutiérrez
[3] established a Besicovitch type covering lemma for F , a family of sections. In terms of
sections, they set up a variant of the Calderón-Zygmund decomposition by applying this
covering lemma. As applications of this decomposition, Caffarelli and Gutiérrez intro-
duced the Hardy-Litttlewood maximal operator M and the space BMOF associated to
a family of sections and the above given doubling measure, and obtained some important
results on the maximal operator M and this BMOF space. Recently, there are several
papers concerning the real analysis associated to the Monge-Ampère equation. Aimar,
Forzani and Toledano [2] proved that the properties (a) and (b) imply the following en-
gulfing properties of sections: there is a constant θ > 1, depending only on σ, K1 and ε1,
such that for any x, y ∈ Rn and t > 0, y ∈ S(x, t) implies that S(y, t) ⊂ S(x, θt) and
S(x, t) ⊂ S(y, θt). Moreover, they introduced the function

d(x, y) = inf{t > 0 : x ∈ S(y, t) and y ∈ S(x, t)}

and proved that d is a quasi metric satisfying that for all x, z, y ∈ Rn,

d(x, y) ≤ θ(d(x, z) + d(z, y)),

and also that for any x ∈ Rn and t > 0, S(x, t/(2θ)) ⊂ Bd(x, t) ⊂ S(x, t), where
Bd(x, t) = {y ∈ Rn : d(x, y) < t}. From this and (5.1), it is easy deduce that

µ(Bd(x, 2t)) ≤ (C0)[log2(4θ)]+1µ(Bd(x, t)),

where [log2(4θ)] is the largest integer no more than log2(4θ). Thus (Rn, d, µ) is a space
of homogeneous type in the sense of Coifman and Weiss [5]; see also [2]. Incognito [10]
introduced another “metric” ρ associated to the sections:

ρ(x, y) = inf{t > 0 : y ∈ S(x, t)}

and proved that ρ(x, y) ≤ θρ(y, x) and
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ρ(x, y) ≤ θ2(ρ(x, z) + ρ(z, y))

for any x, y, z ∈ Rn. With the aid of the function ρ, Incognito discussed the boundedness
of following Monge-Ampère singular integrals.

For each fixed y ∈ Rn and j ∈ Z, denote by Sj(y) the section S(y, 2j). Let {Kj}j

be a sequence of functions on Rn×Rn such that for any x ∈ Rn, suppKj(x, ·) ⊂ Sj(x),

∫

Rn

Kj(x, y) dµ(y) = 0,

sup
j

∫

Rn

|Kj(x, y)| dµ(y) . 1,

if T is an affine transformation that normalizes the section Sj(y), then for α ∈ (0, 1],

|Kj(x, u)−Kj(x, v)| . 1
µ(Sj(x))

|Tu− Tv|α,

and all still hold with x and y interchanged. Let K =
∑

j Kj . The operator defined by

Tf(x) =
∫

Rn

K(x, y)f(y) dµ(y) (5.2)

is called the Monge-Ampère singular integral operator. Caffarelli and Gutiérrez [4] proved
that for α = 1, the operator T is bounded on L2(Rn, µ). Incognito [10] proved that for
0 < α ≤ 1, the operator T is bounded on L2(Rn, µ) and also that

∫

ρ(x, y)≤4θ2ρ(y′, y)

|K(x, y)−K(x, y′)| dµ(x) . 1,

from which he further deduced that T is bounded from L1(Rn, µ) to L1,∞(Rn, µ). Note
that θ−1d(x, y) ≤ ρ(x, y) ≤ d(x, y); see [9]. As in the proof of Lemma 1 in [10], we can
verify that

∫

d(x, y)≥4θ3d(y, y′)

(|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)|) dµ(x) . 1.

Therefore, by Theorem 1.3, we have

Theorem 5.1. Let T be the Monge-Ampère singular integral operator as in (5.2)
and T ∗ be the associated maximal operator defined by

T ∗f(x) = sup
ε>0

∣∣∣∣
∫

d(x, y)≥ε

K(x, y)f(y) dµ(y)
∣∣∣∣.
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If, in addition, the kernel K satisfies

sup
R>0

∫

R<d(x, y)≤2R

(|K(x, y)|+ K(y, x)|) dµ(x) < ∞,

then T ∗ is bounded on Lp(Rn, µ) for any p ∈ (1,∞), bounded from L1(Rn, µ) to weak
L1(Rn, µ) and bounded from L∞c (Rn, µ) to BMO(Rn, µ).

5.2. Singular integral operators of Nagel and Stein.
In this subsection, we apply Theorem 1.3 to obtain the boundedness of maximal

singular integral operators of Nagel and Stein in [20]. Such singular integral operators
naturally appear in the study on solutions of the Kohn-Laplacian for certain unbounded
model polynomial domains in several complex variables in [21]. To be precise, we consider
two specific settings as in [20]:

(A) Let M be a compact connected C∞-manifold of dimension at least 3. Suppose
that there exist smooth vector fields {X1, . . . , Xk} on M , which together with
their commutators of order ≤ m span the tangent space to M at each point.

(B) Let Ω = {(z, w) ∈ C2 : =m[w] > P (z)}, where P is a real, subharmonic, non-
harmonic polynomial of degree m. Then M = ∂Ω can be identified with C ×R =
{(z, t) : z ∈ C, t ∈ R}. The basic (0, 1) Levi vector field is then Z̄ = ∂

∂z̄ − i∂P
∂z̄

∂
∂t ,

and we write Z̄ = X1+iX2. The real vector fields {X1, X2} and their commutators
of orders ≤ m span the tangent space at each point.

In both cases, we endow M with the control, or Carnot-Carathéodory, metric d

determined by the given smooth real vector fields ([22], [19], [20]); and in the compact
situation (A), we endow M with any fixed smooth measure µ of strictly positive density,
and in the situation (B), we endow M with the Lebesgue measure µ. Then by the results
in [22], [19] (see also Proposition 3.1.1 in [21]), (M, d, µ) is a space of homogeneous
type in the sense of Coifman and Weiss; see [20] for more details.

A function ϕ on M is said to be a bump function associated to a ball B(x0, δ), if
it is supported in that ball, and satisfies the differential inequalities |∂a

Xϕ| . δ−a for all
monomials ∂X in X1, . . . , Xk of degree a and all a ≥ 0.

We now recall the definition of singular integral operators of Nagel and Stein as
below; see [20, pp. 546–547]. Let T be a linear mapping from C∞0 (M) to C∞(M), where
C∞0 (M) is the space of C∞ functions on M of compact support. Suppose the operator T

has a distribution kernel K which is C∞ away from the diagonal of M ×M and satisfies
the following four properties:

(I-1) If ϕ, ψ ∈ C∞0 (M) have disjoint supports, then

〈Tϕ, ψ〉 =
∫

M×M

K(x, y)ϕ(y)ψ(x) dµ(x) dµ(y).

(I-2) If ϕ is a normalized bump function associated to a ball of radius r, then |∂a
XTϕ| .

r−a. More precisely, for each integer a ≥ 0, there is another integer b ≥ 0 and a
constant Ma, b so that whenever ϕ is a C∞ function supported in a ball B(x0, r),
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then

sup
x∈M

ra
∣∣(∂a

XTϕ)(x)
∣∣ ≤ Ma, b sup

c≤b
sup

x∈B(x0, r)

rc
∣∣∂c

Xϕ
∣∣.

(I-3) If x 6= y, then for every a ≥ 0, |∂a
X, Y K(x, y)| . d(x, y)−aV (x, y)−1.

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is, these
properties also hold for the adjoint operator T t defined by 〈T tϕ, ψ〉 = 〈Tψ, ϕ〉.

Nagel and Stein [20] proved that each singular integral operator T satisfying the
conditions (I-1) through (I-4) extends to a bounded operator on Lp(M) for any p ∈
(1,∞). From this and Theorem 1.3, it immediately follows the following conclusion.

Theorem 5.2. Let T be a singular integral operator satisfying the conditions (I-1)
through (I-4). Define

T ∗f(x) = sup
ε>0

∣∣∣∣
∫

d(x, y)>ε

K(x, y)f(y) dµ(y)
∣∣∣∣.

Then T ∗ is bounded on Lp(M) for any p ∈ (1,∞), bounded from L1(M) to weak L1(M)
and bounded from L∞c (M) to BMO(M).
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