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Abstract. We give a new a priori estimate for a classical solution of the inhomo-
geneous wave equation in R" x R, where n=2,3. As an application of the estimate,
we study the asymptotic behavior as  — + oo of solutions u(x,¢) and v(x,?) to a system
of semilinear wave equations: 0’u — Au=|v|’, d?v—Av=|u|? in R" x R, where
(n+1)/(n—1) <p<gq with n=2 or n=3. More precisely, it is known that there
exists a critical curve I'=TI'(p,q,n) =0 on the p-q plane such that, when I" > 0, the
Cauchy problem for the system has a global solution with small initial data and that,
when I" <0, a solution of the problem generically blows up in finite time even if the
initial data are small. In this paper, when I" >0, we construct a global solution
(u(x,1),v(x,t)) of the system which is asymptotic to a pair of solutions to the homo-
geneous wave equation with small initial data given, as t — —oo, in the sense of both the
energy norm and the pointwise convergence. We also show that the scattering operator
exists on a dense set of a neighborhood of 0 in the energy space.

1. Introduction and statement of main results.

The initial value problem for semilinear wave equations with small initial
data and the related nonlinear scattering theory have been developed by many
authors, since the work of F. John [12] was established in 1979. (See for instance
[1]-[38]). In those works, the “basic estimates” for solutions to the following
inhomogenious wave equations play an essential role in an explicit or implicit
manner:

(L.1) 0’u—Au=F in R" xR,

where 0, = 0/0t and 4 =} | 6]2 with 0; = 0/0x; (j=1,...,n). The aim of this
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paper is to give a new basic estimate for the solution to (1.1) in the case where
n =2 or n =3, which refines previous ones, especially for n =2. (See also [20],
[26], and 2) of the remarks following [Theorem 1.2). To state this more
precisely, we introduce an integral operator L(F)(x,t) as follows:

(1.2) L(F)(X’Z)Z%J dsJOS ( p)2 deJ F(x+ pw,s)dsS,,
—0 [—s —p w|=1

for (x,7) € R* x R and

(1.3) L(F)(x,t) :$J (l—s)dsJ F(x+ (t—s)w,s)dS,

|w]=1

for (x,f) € R* x R. Note that L(F)(x,) satisfies (1.1) under a suitable assump-
tion on F(x,¢). The main result of this paper is summarized as follows.

THEOREM 1.1. Let n=2 or n=3. Let (x,t)e R" X R and r=|x|. Let
FeC(R"xR). Then we have

(14) |L(F)(x,0)|(1 4+ r+ )" V72 /D, (r, 1;v)

n—1)/2 1+v 1
<C sup "Ryl )T+ [y = I8 D) TE G, )1
(y,5)ER"XR

for any u >0 and v > 0, where C is a constant depending only on u and v. Here
we have set

(1.5) D3(r, t;v) = (14 |r—1))7",
and

(1+|r—1e)" if —oo<t<r,

1.6 Dy (r,t;v) =
with [a], = max{a,0} and A% =1+ log A.

REMARK. When ¢ <0, the assumption g > 0 may be relaxed so that u >
—(n—1)/2. More precisely, one can replace the @,(r,#;v) in (1.4) by

D, (r,15v) (1 + |r — 1) 7%,

provided v >0, u > —(n—1)/2 and t < 0. This would be attained by modifying
a little the proofs of Lemmas and 4.4 below.

As an application of [Theorem 1.1, we consider a system of semilinear wave
equations:
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(1.7) %u—Au=1|o"'v in R" xR,
(1.8) v —dv=|u/"'u in R" xR,

where 1 < p < ¢ and either n =2 or n = 3. Concerning the initial value problem
for (1.7) and (1.8) with small initial data, Del Santo, Georgiev and Mitidieri
[6] proved the existence of global solutions to (1.7) and (1.8) in R" x (0, o0),
provided

(1.9) I'=1TI(p,q,n) >0,
(1.10) (mn+1)/(n—1)<p<gq, ie, 0<p"<gq’,
where we have set

I'=oa+pp, a=pg =1, B=qp" -1,

. n—1 n+1
p - 2 p 2 I

(1.11) el ontd

=797

On the other hand, when I" < 0, there is a solution which blows up in finite time,
even if the initial data are sufficiently small. (See [6], [5], [8] for the case I" <0

and [7], [2], [17], for the case I' =0). In this article, we study asymptotic
behavior of classical solutions to (1.7) and (1.8), when and (1.10) hold. To

this end, we introduce the following function space X, , for v >0, x > 0:
(1.12) Xoe ={(u,v) € C(R" x R) x C(R" x R); ||ul|, + [v]|,, < +o0},

where the norm | - ||, is defined by

v

(1.13) lull, = sup  {Ju(x, D1+ 7+ |e)" 2D, (r, |2];v)}
(x,)eR"xR

with » = |x|. In addition, we set for ¢ > 0
(1.14) X,(0) = {(,0) € Xy < [[ul], + o], < 0}

Next, let us denote by u~(x, ) and v~ (x, t) the solutions to the homogeneous
wave equation

(1.15) 0*w—Aw=0 in R" xR,
satisfying the following initial conditions, respectively:
(1.16) u (x,0) = fi(x), du (x,0)=gi(x) in R",
(1.17) v (x,0) = f,(x), 0w (x,0) =ga(x) in R"
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We assume that f; € C3(R") and g; € C*(R") (j =1,2) satisfy
A e+ 02 f (] < el 41D

ZWfl )+ 1g1(x)] < e(1+r) 2P
(1.18) -~

Z 107 f5(x)| + [g2(x)] < (1 + r)—(n+1)/2—q*7
=1

and

sup (1+r)(”“)/2+”*( Y A+ Y 1ogi(x )) <+,

xeR" 2<)y|<3 1<|y|<2

(1.19)
sup (Hr)““”“f( dooahL@I+ D 10le(x >) < +o0,

xeR" 2<y|<3 1<py|<2

where ¢ > 0 and r = |x|. Then there is a positive constant Cy = Cy(p,¢,n) such
that

(1.20) (u,v7) € Xpe g+ (Coe), (0lu,00v") € Xy 4o for |y <2,

provided (1.10) holds. For the proof, see Lemma 2 in for 3-dimensional
case and Proposition 1.1 in [20] (or Proposition 2.1 in [19]) for 2-dimensional
case. (See also those proofs).

It follows from the definitions of I, o and S that

(1.21) p<I'/(p+1)<a for l <p<yqy.
Here we shall state a part of our results for a special case where
(1.22) p>0, ie, gp*>1.

The general case will be discussed in Section 5 below. Notice that [1.22) implies
according to (1.21) and that is equivalent to when
p =¢q. Moreover, since ¢ > p, we have

n+1+vn2+10n—-7
2(n—1)

The number p,(n) is known as a critical exponent for the initial value problem
for a single wave equation (1.30) below with small initial data.

(1.23) B>0 if pp*>1, ie, p>po(n):=

THEOREM 1.2. Let n=2 or n=3. Suppose that (1.10), (1.18), (1.19) and
(1.22) hold. Then for any v and i satisfying

(1.24) 1/g<v<p*, 1/p<k<gq,
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there is a positive number &y = & (v,k, p,q) such that for any ¢ with 0 < & < &,
there exists uniquely a classical solution (u,v) € X, (2Coe) of (1.7) and (1.8)
verifying the following properties:

(1.25) I = u)(@0)ll, < ClIlIZ(1+|e)™"" for ¢ <0,
(1.26) (0= o))l < Cllull{(1+ 1)~ for 1 <0,
where

llu(o)ll; = %{HVM(I)H@ + [loa(D)l|z2}-

Moreover, for any (x,t) € R" x R we have
. ulx,t)—u (x, 1) < Cjv +r+|t Wt pr),
1.27 Clvll2(1 “=hi2g *
. v(x,t) —v (x,0)] < C|lu +r+ )" W(r 5q%).
1.28 Cllul?(1 (U2

Furthermore, there exists a unique solution (u*,v") e X,- ;- of the homoge-
neous wave equation (1.15) satisfying (5.54) through (5.57) below. Here C is a
constant depending only on v, k, p and q.

ReMARKS. 1) The existnce of v and x satisfying follows from the
assumption that o > f > 0. Moreover, the scattering operator

(1.29) (f15./2:91,92) = (u"(0),07(0), 0,47 (0), 0,07 (0))

is defined for such (fi, f5,91,92) satisfying and (1.19) with 0 < ¢ < &.

2) We shall here compare the basic estimate (1.4) with the ones in the
previous works [26], and [20]. Let us consider a single semilinear wave
equation

(1.30) 0*u — Au=F(u) in R" xR,

where n =2 or n=3, and F(u) = [u|’ or F(u)=|u|’'u with p > 1. Assume
that

(1.31) pp*>1, ie, p>po(n),

where p* and p,(n) are given respectively in (1.11) and (1.23). Note that

(1.32) p*>1/po(n) for p > po(n).

Besides, we have p*=p—2, p,(3)=1++2 for n=3 and p* = (p—3)/2,
p0(2) = (3++/17)/2 for n=2. Then it is shown in Pecher for n =3,
Tsutaya for n=2 and Kubota and Mochizuki for n=2 that the
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scattering operator for (1.30) is defined on a dense set of a neighborhood of 0 in
the energy space by establishing the following basic estimates 1.33), {1.35), [(1.39)

and (1.40).
When n = 3, Pecher proved that

(1.33) \L(F())(x,0)|(1 + 7+ () (1 + |r — o))" < Cllul].

for (x,¢) € R* x R with r = |x|, u(x,7) € C(R® x R) and p,(3) < p <3, where the
norm ||ul|, is defined by with [1.5), and L is the linear operator given by
(1.3). We shall compare {(1.33) with our basic estimate (1.4) with F = F(u) and

/)

v=p*. Note that the latter implies that the left hand side of is dominated
by

1
Cosup  {Ju(p )" (L+ [y + )L+ |y = Is] )
(y,5)eR*XR

for >0, since 2+ p* =p for n =3. Choosing v such that v > 1/p and taking
u=pv—1, we get from [1.13)] with

[y, ) (L+ ]+ 1) (U L] = sl ) < [lufl?
for (y,s) € R® x R, hence
(1.34) [L(F () (x, ) (147 + [e))(1+ |r = 1)) < Cllu

for (x,#)e R* x R. Note that refines when 1/p <v<p*.

Next let us consider the case of two space dimensions, i.e., n = 2. Tsutaya

proved that
(1.35) \L(Fu))(x,0)|(1 4 r+ ) "* < Clu|? ¥, (r, 1)

for (x,t) e R* x R with r=|x| and u(x,?) € C(R* x R), where L is the linear
operator defined by (1.2),

Po(r,t) = (1+ |r—1t) " {1 +log(l + |r —1])},

= sup {July, )+ 7]+ [s)"?/ Pl ], s}
(y,5)eR*XR

and
m =min{1/2, p*},

provided we take the parameter k£ in the hypothesis (H2) of so that
k> (p—2)/2. (See in that paper). On the other hand, our basic
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estimate (1.4) with F = F(u) and v = p* gives an upper bound of the left hand

side of by

COy(r tip7) x  sup  {[u(y,s)|"(1+ [y + |2 (1+ [yl = Is )"}
(»,5)eR*xR

for u> 0, since (3/2) 4+ p* =p/2 for n=2. Choosing v such that

1 1
1. — =
(1.36) p<v<2

and taking 4 =pv—1, we get from with (1.6)
()P (14 ]+ )20+ )= 15D < )]

for (y,5) € R® x R, hence

(1.37) [L(F (u)) (6, OI(L+ 7+ 1) < Cllullf Do, 55 p°)

for (x,f) e R* x R.
Notice that (1.6) implies

(1.38) B (r,t;p%) = (1+|r— 1))
for either 0 < p* < 1/2 or p*>1/2 and —oo <t <r. Therefore we see that
(1.37) refines [(1.35), provided

% <v<m=min{l/2 p*}.
Indeed, as for the decay rates of L(F(u))(x,t) we have

Po(r, 15 p") < W (r, 1) /{1 +log(1 + |r —1])}
if p* #1/2, while @,(r,t; p*) < Pu(r,t) if p* =1/2, i.e., p=4. Moreover
W[ y];Is))/ @2 (|31, Il v) = {1 +log(L+ [y = Is| D}/ (L + [yl = IsI )™

implies ||u||, < Clul,, since v < m.

Finally we shall compare our (1.4) with the basic estimates and (2.21)
with in [20]. For simplicity of description we suppose that the parameter
K in of that paper satisfies k > p/2. Then the second author and Mochizuki
proved that if

1 1

—<yv<p < 7,

p 2
then

(1.39) L(F @) (e, (L4 ) (1 | = )" < Cllull?
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for 0 <J <p*, and if

l <y < 1 <p*
p 2 p )
then
(1.40) IL(F(u) (x, (1 + 7+ )2 (1 + |r = ) * < Cllul?

for (x,7) € R* x R and u(x,7) € C(R* x R). (See Proposition 2.1 and [T.27] in
that paper). It is easy to see that with refines and

according to [(1.38).
It is also shown in that

(1.41) [L(F(u))(x, 0)|(1+ 7+ 1) V277070 < )

for t <0 and x e R* with r = |x|, provided

1 —-p* 1
(1.42) P <y<- and 0<v,

p—1 P
which implies p* +pv—1>v. (See Proposition 1.8 and there). Making
use of the remark following Theorem 1.1, one can prove also [1.41). In fact,

when 1/2 < pv < 1, the proof of is still valid, if we replace @,(r,t; p*) by
Pa(r, 5 p") (1 =) < (L fef) 7Y,

since 1 <0and —1/2<u=pv—1<0. If pr < 1/2, we replace p* in @,(r,t; p*)
by p*+pv—1—u with some 0> pu>—1/2. Then we obtain [1.41), since
pv—1—u<DO.

The plan of this paper is as follows: In Section 2, we collect some nota-
tions. In Section 3, we prepare a couple of lemmas which are needed to prove
Theorem 1.1, and we carry out the proof of the theorem in Section 4. In Section
5, we state our results for a system of semilinear wave equations. In Section 6,
we establish a priori estimates by making use of Theorem 1.1, and we prove
Theorems 5.1 and in Section 7.

2. Notations.

In this section we collect some notations which will be used in the sequel.
We set

(2.1) av b=max{a,b} for a,beR.
In particular, we put

(2.2) @, =av0, A% =1+log4.
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Next we define several norms for a real valued function u(x,?):

(2.3) lull, = sup  {Ju(y,$)|(1+ [+ [sD" 72/ @u(|y], sl v)},
(»,8)ER"R

(2.4) [u], = max ||07u]|,,
Iy <2

25)  Nu@)ll; = %{HVM(I)IIiz +[loa(D)l|z:},

where @,(r,#;v) is given by and (1.6).
We set for v>0 and >0

(2.6) Zvu(Ay8) = (L4 |s) + 2 (14 [|s] =AD",
(2.7) M, (F)=sup  {[p" 2, u(|5], )| F (3, 9)]}.
(y,8)eR"XR

3. Preliminaries.

In this section we collect a basic identity and elementary inequalities. The
first is a fundamental identity concerning the spherical mean. For the proof, see
[27], also Lemma 2.3 in [19].

Lemma 3.1. Let be C([0,00)), xe R*\{0}, n>2, r=|x| and p > 0. Then
we have
pr

(3.1) L » b(|x + pwl|) dS,, = 23_’1wn1(rp)2"J Ib(A)h(A, p,r)d2,

lp—1

where cy =21/ (k/2) and
(3.2) h(d,por) = (p* = (=) ()P = p?) 2,
The following inequalities are due to Lemmas 1.2 and 2.2 in [20].

LemMA 3.2. For a<b <d, we set

b do
3.3 J(a,b,d) = )
(3:3) (a ) L\/b—m/a—a\/d—a
Then we have
i
34 J(a,b,d) <
34) (@b.d) < ——
and for any 60 >0
d—a\" 1
(3.5) J(a,b,d)SC(d_b> —

where C is a constant depending only on 0.
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Finally, we prepare the following useful lemma, which is an extended version
of Lemmas 1.3 and 1.5 in [20]. This lemma will be repeatedly used in Section 4
below.

Lemma 33. Let k>0, 0<y<1 and k+y>1. Then we have
o0
(3.6) J (1+0) ™ (a+0)"do< C(1+|b)*7 for a>—1b).
i

Moreover, we have
b

(3.7) J (1+ o)) ™(a—0)"do < C(1+|a)) 71 +|a)* ™ for a>b,
—

or equivalently,

0

(3.8) L (1+ o)) ™ (a+0)7do < C(1+|a)) (1 +|a)"™  for a > —b.

Here C is a constant depending only on k and .

REmMARK. If a <0, one can replace the right hand side of (3.7) by that of
(3.6).

Proor. First we show [3.6). Since (¢ +0) 7 < (o —1|b|)”7, by integration
by parts, we have

J (1+0) " (a+o)"do< LJ (1+0) "7 do,
b L=7 )

which yields (3.6), because x + y > 1.
Next we show (3.8). If we set

|al 0
plzj (1 + o)) " (a + 0) 7 do, PZZJ (14 |o]) (a+ )" do,

—a @

we see from the assumption b > —a that the left hand side of (3.8) is dominated
by P;+ P;. Then with b = a gives

P, < C(1 + |a]) ™7t

While P; is estimated as follows: when 0 < a < 1, it is enough to show that P; is
bounded. It follows that

P < J (a+0)"da,

hence P; i1s bounded, because y < 1. On the other hand, when a > 1, we split
the integral at ¢ = —a/2 to get
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P<(1+9)” J_Z/z(“ voydo+ (3) Jiz/z(l 4 |o])* do

Since <1 and a>1, we get PISC(I—I—a)_y(l-i—a)“_KL. The proof is

complete. ]

4. Basic estimates.

In this section, we shall prove [Theorem 1.1. By [2.7), we have
(4.1) J F(x+ pw,s)dS,| < M, (F)J S
. I | = v, i n—
o] =1 =1 A"V, (A, 5)

with A =[x+ pw|. Applying Lemma 3.1, we get
e 6P p.r)

- Zvuls)

di.

ds,, . n

CASE 1: n=2. If we set

t t—s pHr q1/2
43) ()= §J dsJ P dpJ Lk
Pl o Ju—gr o2 D Balhs)

it follows from (1.2), (4.1) and (4.2) with n =2 that

(4.4) |L(F)(x,t)| < M, ,(F) x I(r,t).

Changing the order of the integrals, we get

(4.5) I(r,t) = Li(r,t)+ L(r 1),
where we have set

t t—s+r 1
4.6 Ii(r,t :J dsJ Ki(A,s,r t)dA,
(4.6) 1(r, 1) I ey 1 )

t—r t—s—r 1
(47) IZ(I", t) = J_OO dSJO ZV,IIJ(TS)KZ(/’{’S, r, t) di.
Here

(4.8)  Ki(4,s,11) =

dp for [t—s—r|<A<t—s+r,

2V J’_s ph(4,p,r)

T Ji—r] (t_s)2 —p?

(4.9)  Ky(4,s,1,t) =

Atr
NIJ PP 4y for 0<i<i—s—r
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We introduce new variables
(4.10) a=A+s and f=1-ys.

If we denote by 11i and 12i the integrals over +s > 0 of I} and I, respectively,
then we have

1 t+r o
(4.11) ITZEX(Z)L |(1+oc)_1_vdocJ (14 |B) K, dp,
t—r r—t
1 t+r e 0 1oy
(4.12) Ilzij (1 + |2 ”docJ IR R
t—r oV |r—t
and
1 (1] . o |
(4.13) R e ed I (i ¥
0 —o
t—r 00]
(4.14) I{:%J (1—|—|o<|)_1_“docj (1+8)""Ky d,
o o

where y(t) =1 for t >0 and y(z) =0 for 1 <0. In addition, we further divide
I; into J; and J, which are defined by

(4.15) J = %::rh(l —|—/3)_1_Vd/3J:(1 o) Ky d
(4.16) Jr = % |Oo_t(1 +8) 1 ap J:;(l + o)) K do.
Then we have

(4.17) L(rnt)=1]+17, bL(rnt)=5L +J+J/.

Next we derive several estimates of K; and K, in the following lemma.

LemmA 4.1. Let t—r<o<t+r and f>r—t with (4.10). Then it holds
that

Vo
(4.18) Ki(A,8,r,1) < TFrrsisr— for o> P,
(4.19) Ki(4,s,r,1) < \/B for o < f
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and
(4.20) Ki (4 1) < 1
: ST —_—.
RSB Jarr—1
Moreover, we have for any 6 >0
C 0
(4.21) Ki(hs,r0) < VA P for a <p.

Vit r—a/Brt—r(a+r—1n"°

Let —f<a<t—r. Then it holds that

NG
4.22 Ky(A,s,1r,t) < or o> p,
422 sl < = e 1 02
VB
4.23 Ky(A,s,rt) < or o <
42) sl < F==y s TS
and
(4.24) Kolhsrf) < ——
. 2\ 0, 0] = m
Moreover, we have for any 0 > 0
0
(4.25) Ky(A,s,1,1) < < ﬁ—e for B>t—r.
r(t—r—o)

ProOF. First we consider K;. It is easy to see that 1 —r < a < ¢+ r and

p>r—t imply |[A—rl<t—s<A+r. It follows from (4.8), and
that

(4.26) Ky (4, 8,r,1) = %ﬂ]((z — )% (t=9) (A+71)D).
By (3.4) and (4.10), we have

VA
O+ = (=5

Vi
VB+r+natr—t

(4.27) Ki(A,s,r,t) <

Noting that

(4.28) <o fora>pf, AZf fora<p,
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we get (4.18) and (4.19). Moreover, since A < f+ ¢ for s < ¢, we get from
(4.27). Furthermore, it follows from [4.26], and (4.10) that

(429)  Ki(J,8,1,1) < C(((i T

+r)? = (1—s)? \/(t—s)z—(/l—r)2
:C( 47 >9 Vi
Brr+O(at+r—1)) Jitr—oa/B+t—r

which implies (4.21), by (4.28) and f+r+¢t>r for s <t

Next we consider K,. It is easy to see that —ff < o < ¢ — r implies |4 —r| <
J4+r<t—s. It follows from (4.9), and that

(4.30) K>(A,5,r,1) = %ﬂj(u — 13+ (- 5)D).
By (3.4) and (4.10), we have

ﬂ
V== G+

V.
_\/t—r—oc\/t-l—r-i—ﬂ'

Noting (4.28), we get (4.22) and (4.23). Moreover, since A < f+ ¢ for s < ¢, we
get from [4.31). Furthermore, it follows from [4.30}, and (4.10) that

<zsfumj7 Vi
(=)= CG+0) Jor? = =

_ C<(t—r+ﬁ)(t—|—r—oc)>9 I

(4.31) KA1 1) <

432)  Ky(Asri0) < c(

(t=r—o)(t+r+p)) Var
which yields (4.25), because t —r < f§ and —o < . This completes the proof.
]

Now we shall prove for u >0, v>0
(4.33) I(r,t) < C(1 +r+t)) " *®s(r,1;v) for r>0, r€R,

by establishing the estimates in Propositions 4.1 and below. Once we obtain
those estimates, it is easy to see that (4.33) follows from them via (4.5), (4.17) and
(1.6).
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ProposITION 4.1. Let t —r >0 and let >0 and v>0. Then we have
(4.34) L<Clar+0 PA+e—r) P11 -2k
(4.35) Ji<C(l+r+ t)*1/2(1 +1— r)*l/Z(l Lo r)[l/Z—v]Jr.

Proor. First we consider 7. It follows from [4.13) and (4.22) that for
t—r>0

o0

(4.36) IJS%JZr(l+’O")_l/z_v(f—"—a)_l/zdaj (1+18) " (t+r+p) 7 ap.
0 —o

Using (3.8) as a=t+r, b=—a, k=1+pu and y=1/2, we have

t—r
(I +r 40" < cJ (4 o) (0= r = o) o
Using (3.7) as a=b=t—r, k=(1/2)+v and y=1/2, we get (4.34).
Next we consider J;. It follows from (4.15) and (4.23) that for t—r >0

t—r B
(4.37) L1 < % (L+1B) Pt +r+ )72 dﬁJ (T4 o)) (1= r—a) " da
° -
<l QB g P R,
Jo

because ¢ > 0. When 0 <r+1¢ <1, it is enough to show that J; is bounded. It
follows from (4.37) that
t—r
Ji < cJ B2t —r— B ap,

0

hence J; is bounded. When r+¢ > 1, it follows from (4.37) that

1—r

Ji<Cl+ r+r)‘1/2J L+ 1B) 2 (= r = p)"' 7 dp.

— 00

Using (3.7) as a=b=t—r, k=(1/2)+v and y=1/2, we get (4.35). The
proof is complete. [

PropoSITION 4.2. Let >0 and v>0. Then we have
(4.38) IF < Cl+r+) " PA+r—1)7,
(4.39) ID<C+r+ ) PA+r—1),

(4.40) S < C(L+r+) A +1r—e).
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Proor. First we show (4.38). It follows from and (4.18) that for
>0

o0

(L Jo) ™2 b r =)™ daf (L+|B) " (e +r 452 dp.

r—t

(441) If < lj

2)
To deal with the o-integral, we use as a=b=r—1t, k= (1/2)+v and
y=1/2.  While, to handle the S-integral, we employ (3.8) asa=t¢+r,b=r—1,
k=1+u and y=1/2. Then we obtain [4.38), because ¢ > 0.

Next we shall show [4.39) and (4.40), by proving the following Lemmas
andd.3. Indeed, for such (r,7) that r+ ¢ > 4 and 0 < ¢ < 3r, the desired estimates
follow from [Lemma 4.3. While for the other case, yields them, because
1 4 |r—t| is equivalent to 1+ r+ |t for the case.

LemMA 4.2. Let u>0 and v>0. Then we have
(4.42) IF<C+r—) ™ V27 < +r—1)~ 27

Proor. First we consider I;. It follows from [4.12) and [4.20] that

| =

s e - docjoo (145" dp

t—r |r—1|

| * - _
<~ (I+]r—1) J (U4 ) Mt r— 1) d
2V t—r
Using 38) asa=r—t,b=t—r, k=1+u and y=1/2, we get [4.42) for I .
Next we consider J,. It follows from [4.16] and [4.24) that

t—r

r@ (1+p"" dﬁJ L+ o)) (1= r—a) P da

|r—1| -

S <

| =

1 rr - _

<o (llr=d) J (U + o) (= r — a) " do.
Using (3.7) asa=b=t—r, k=1+pu and y=1/2, we get for J,. The
proof is complete. [

Lemma 4.3, Let u>0andv>0. Ifr+t>4and 0 <t <3r, then we have
(443) Im <C(l+r+0)" A +pr=1)", Hh<Cl+r+0) PA+r—d)

Proor. First we consider J,. We choose 6 such that 0 < § < min{v, 1/2}.
Then it follows from and (4.25) that
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t—r

J< %@(1 B g1 e - )

t—r
<CO+r+0"P(1+]r- t|)—v+9J (14 o)™ (e —r — 2) ™ do,
because 4r >r+t>4. Using (3.7)asa=b=t—r,k =1+ pand y =0, we get
(4.43) for J,.
Next we consider /;. It follows from and (4.21) that

t+r
I < cJ () 47— o) Pt r— 0 da

t—r

) J T AT ) ap

=
t+r
< C(1+]r— z|)v+9J (Ut o)+ 7 — a) Pt r— )" do,
t—r
where we have taken 6 to be 0 < § < min{v,1/2} and we have used as
a=b=t—r, k=(1/2)+v—0 and y=1/2.
Note that (1 +r)/2>¢t—rfort<3r. Since t+r—o>(t+r)/2fort—r<
a<(t+r)/2 and |a| > (t+71)/2 for (t+7r)/2 <a<t+r, we have

(4.44) (1+|r—)""I; <C(t+r)"? r (1+ o) a+r—1)"da

—r

t+r
+(1+r+ t)‘l‘”J (t+r—a) P a+r—1)"do.

t—r

Using 3.8) as a=r—t, b=t—r, k=1+4+pyu and y =0, we get

(4.45) JOO L+ ) a+r—0)"do< C1+r—1))"

t—r
Moreover, since 6 < 1/2, we have

t+r

t+r
J (t+r— oc)_l/z(oc tr—0)"da< (2r)1/2_9J (t+r— oc)_l/z(oc +r— Z)_1/2 do

t—r —r
<C(l+r+0)"*"
Therefore, we see that the right hand side of (4.44) is dominated by C(1 +r+1)""/*-

I+ |r—1t 79, because r+t>4. Hence, we get (4.43) for I;. The proof is
( g 1 p
complete. ]
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CaSE 2: n=3. If we set

1 t t—s+r 1
4.46 I(r,1 =—J dSJ da,
( ) ( ) 2r —» |t—s—r| Zv,,u(ia S)

it follows from [1.3), (4.1) and (4.2) with n =3 and p =1¢— s that

(4.47) IL(F)(x, )| < M, u(F) x I(r, ).

Moreover, if we denote by /£ the integrals over +s5s > 0 of I, respectively, then
we have

@48) ()= (t)rr (1+2) " da| (1) ap

. T 4,,% |t—r] r—t ’

(4.49) I (rt) = iJHV(I + |oc|)_1_” do JOO (1 —I—ﬂ)_l_v dp,
4r t—r aV |r—t|

where y(¢) =1 for + >0, y(1) =0 for t <0. Since

(4.50) I(r,t) =1T"(r,t) + 1 (r,1),

it suffices to show

(4.51) I < C+r+ ) A+ r—1)"
To this end, we prepare the following:

LEmMA 4.4. Let k > 1. For r>0 and t >0, we have

t+r
(4.52) lj (1+0) " do < CA4r+0) " (14 |r—) ™.

FJe—r]
Moreover, for r >0 and t € R, we have

1 t+r . B
(4.53) ;J (1+o)) “do< C(1+r+|1)".
t—r
Proor. We shall show only [(4.53), because was handled in a similar
fashion. When r+ |t > 1 and |f| < 2r, (4.53) follows from the fact that r~! <
C(1+r+]tf)"", because x>1. In the other case, we have (I+]o)™" <
C(l+r+|t)™ for t—r <o <t+r hence we get [4.53). This completes the

proof. ]

Now we estimate /. Since u >0, we have

l t+r
4.54 IT(r 1) < — (¢ J 1 +0) 7V da,
(4.54) R I
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which yields for It by with k= 1+v. Moreover, since v > 0, we
have

(4.55) (14 |r— )T (r,0) < E;JH4(1+WaD_4_”da,

t—r

from which we get for I~ by [4.53]. This completes the proof of
Theorem 1.1.

5. An application.

As we have mentioned in Section 1, we shall consider a system of semilinear

wave equations as an application of [Theorem I.1:

(5.1) 0*u— Au=F(v) in R" xR,

(5.2) 0*v— Av=G(u) in R" xR.

Suppose that F e C*(R) and G e C?*(R) satisfy

(5.3) F(0)=F'(0)=F"(0)=0, G(0)=G'(0)=G"(0)=0,

and that there are p > 2, ¢ > 2 and 4 > 0 such that for |u;| < I, || <1 (i=1,2)

(54) |F"(n1) — F"(n)] <

Ap(p =)oy — v if 2<p <3,
Ap(p = Dlor — v (|or] + |02)? if p > 3,

Ag(q — Duy — up] 72 if2<qg<3,

(5.5)  |G"(ur) — G"(u)| < .
Ag(q — Dluy — w|(jw| + |u)) if ¢ > 3.

ReMARrk. Typical examples of F and G are
(5.6) F(v)=[o[/'v or F(v)=|v,
(5.7) Gu)=u|""'u or G(u)=|u’.
Before stating the main result, we prepare the following lemma:

LemmA 5.1.  Assume that (1.9) and (1.10) hold.
(1) If v satisfies

(5.8) 0<v<p

r  1—-p+p(l-q)

5.9 v>pt— =
59) pq—1 pqg—1

)
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then there is a number K verifying

(5.10) 0<k<q,
(5.11) SRS
P P
and
1 r
(5.12) K<q*—1+qv:—+q<v—p*—|——>.
p pPq

(ii) Let v satisfy (5.8) and (5.9). Furthermore, if I' > (pq — 1)/2, we assume
r 1 1 1
5.13 v>p*————:—<1+——q*>.
(553 pq 2pq  q 2p
Then there is a number x verifying (5.10), (5.11), (5.12) and

1
14 —.
(5.14) K > %
(iil) If v satisfies (5.8) and
r 1 1 1
(5.15) v>p*——:——i=—<1+——q*>a
pPqe 9 P9 4 P
then there is a number x verifying (5.10), (5.12) and
(5.16) K > !
: r:

ReMARK. Note that the conditions {5.9), (5.13) and [(5.15) are meaningful
only when the right hand sides are positive, by [5.8). Moreover, it is easy to see

that (5.15) implies and (5.13).

ProorF OF LEmMMmA 5.1. Firstly, we prove the statement (iii). It suffices to
check

] 1 1 r
5.17 —<q", —<—+ (v— *+—>.
(5.17) ¢ <ot Pt

Notice that and (1.21) yield o = pg* — 1 > 0, hence the first inequality in
holds. While the other follows from |5.15) immediately.

Secondly, we prove the statement (i), by dividing the argument into two
cases.
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Case 1. 1/g<v<p.
In this case, we have

g -<q"—14qv.

Since ¢* > 0, it is enough to show

1 pr e
(5.18) N —_

p p

Since

* 1 p*—V 1 *
’ —(—— )=—<a+p ),
p D D

we get (5.18), by o« >0 and [5.8).

CasE 2. O0<v<l/g.
In this case, we have

(5.19) g —1+qgv<q".

Moreover, it holds that

1 * 1 r
(5.20) L v<—+q(v—p*+—).
Indeed, this is equivalent to

*

pr—rv<

pqg—1

which follows from [5.9]. Namely, we obtain by the equality of

I pr—v
5.21 —— <qg"—14qv.
(5.21) R
Note that
(5.22) g —14+qv>0 if ¢g* > 1,
and that
1 *—
(5.23) S P TV 0 gt <,
P P

895

because p* < g¢* and v > 0. Therefore, the statement (i) follows from (5.19),

(5.21), (5.22) and (5.23).
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Finally, we prove the statement (ii). Since we have assumed (5.8) and (5.9),
we see from the statement (i) that there is a number x verifying [5.10},
and (5.12). When either I' < (pg—1)/2 or I' > (pg—1)/2 and v > p* —1/2,
we have [5.14) by (5.11). Next we consider the case where I” > (pg — 1)/2 and
v<p*—1/2. Then we have

I pr—v 1
p D 2p’
hence it suffices to show
1 1 1 &
5.24 —<q", —<—+q(v—p*+—).
(5.24) 2p p p Pq

Since « > 0, we have ¢* > 1/p. Moreover, the latter inequality follows from

(5.13). This completes the proof of Lemma 5.1. O

THEOREM 5.1. Let n=2 or n=3. Suppose that (1.9), (1.10), (1.18), (1.19)
and (5.8) hold.

(A) Let v and x satisfy (5.9) through (5.12). Then there is a positive number
e =eo(v,x,p,q,A) such that for any ¢ with 0 < ¢ < gy, there exists uniquely a

classical solution (u,v) € X, (2Coe) of (5.1) and (5.2) verifying

(5.25)  lox(u(x,t) — um (x, 0)] < CZ(1+ 7+ o)™ V20, (r, 1),

(5.26)  [0%(u(x, 1) — v (x, )] < Culd(1+ 7+ [6)" 2y (r, 1)

for any (x,t) e R" X R and |«| <2, and

(527) [l =w )@l < Clo|2(L+ )7 {1+ ()32 for £ <0,
(5:28) M=)l < Clullf(1+ ()~ {1+ )" 2032 for 1 <0,

where u~ and v~ are the solutions to the homogeneous wave equation satisfying
(1.16) and (1.17). In addition, [-], and | -||, are defined by (2.4) and (2.5),
respectively.

(B) Let v and x satisfy (5.15), (5.10), (5.12) and (5.16). Then we have

(5.29) 0%, ) = um (x, 0)] < (1 +r+ [d]) ™" V2, (r, 15 p7)
for any (x,t) € R" X R and |«| <2, and

(5.30) G = u)(@)lle < ClRIE+ )™ for t<0.
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(C) Suppose
(5.31) gp* >1, ie., p>0.
Let v and x satisfy
(5.32) l/g<v<p*, 1l/p<k<q.
Then we have (5.29), (5.30),

(5.33) 0%(00x, 1) = v (e, )| < CLlf (1 47+ )" V20, (r,1347)
for any (x,t) e R" X R and |«| <2, and
(5.34) v = o)D)l < Cllull /(1 +[e)™" for £ <0.

Here C is a constant depending only on v, k, p, q and A.

REMARK. The existence of such v and x as in the part (A) and (B) in
is guaranteed by [Lemma 5.1. In particular, if we take v as v = p*,
we can find x satisfying (5.10) and

| 1 I
(5.35) —<Kk<qg =1+qgp"=—+—,
4 YL 4

by [Lemma 5.1. Hence, we have and (5.30).

Note that if v and « satisfy [(5.32), then (5.15), {(5.10), [(5.12) and hold.
Also remark that if v and x satisfy [5.15), [(5.10), (5.12] and [5.16), then

through hold.
If (5.31) holds, we can find v such that 1/¢g <v <p*. Moreover, since
v > 1/q imply [5.15), there is a number « satisfying 1/p < k < ¢*. Furthermore,
the first part of follows from the parts (A) and (C) in [Theorem 3.1.
In both (5.27) and (5.28), the right hand sides tend to zero as t — —co.
More precisely, we have the following.

COROLLARY 5.1. Let n=2 or n=3. Suppose that (1.9), (1.10), (1.18) and
(1.19) hold. Let v and x satisfy (5.8) through (5.12).
If 2px > 1, (5.30) holds. While, if 2pi < 1, we have

(5.36) I =)Dl < CllollZ(1+|) ™2 for 1<0.
Moreover, if 2qv > 1, (5.34) holds. While, if 2qv < 1, we have
(5.37) (v = o)l < Cllullf (1 + )" for 1 <0.

Proor. When 2px > 1, (5.30) immediately follows from (5.27). Moreover,
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when 2pr < 1, we have p* — ([ —2p«],)/2 > 1/2+v by [5.1T]. Therefore, (5.36)
follows from (5.27).

Furthermore, when 2gv > 1, (5.34) follows from (5.28). On the other hand,
2gv < 1 and yield ¢* — ([1 —2¢qv],)/2 > 1/2 4 K, hence (5.37) follows from
(5.28). This completes the proof. O

REMARK. When 2px < 1, we must have p* >1/2+v>1/2, by (5.11).
When 2¢v < 1, we must have ¢* > 1/2+x > 1/2, by [5.12].

We can find x satisfying 2px > 1 and through [[5.12), when v satisfy
(5.8), [5.9), and if I' > (pg—1)/2, by Lemma 3.1.

If we assume
(5.38) 2qp* > 1, e, 26+1>0,

we can choose v verifying 2gv > 1, (5.8), (5.9) and [5.13]. On the other hand, if
does not hold, we have 2¢v < 1, because v < p*.

The following corollary follows from [Theorem 5.1 and [Corollary 3.1, by
setting p = q.

COROLLARY 5.2. Let n=2 or n=3 and let p =gq. Suppose that pp* > 1,
(5.8), (1.18) and (1.19) hold.
(A) If v and i satisfy (5.10),

., pp'—1 1-p~
5.39 —
and
1 pr—
(5.40) S P T < L4y,
P P

then (5.25) through (5.28) with p = q hold.
(B) If v and x satisfy (5.10),

. w+Dpp—1) 1 ppr—1 1 1,
(5.41) V>p _! )1()2 ):;_ = 1+;_p :
and
1
(5.42) ;<K<p*—1+pv,

then (5.29) and (5.30) hold.
(C) Let v and x satisfy (5.32). Then (5.29), (5.30), (5.33) and (5.34) with
p=gq hold.
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(D) Let v=rx and v satisfy (5.39). If 2pv > 1, we have (5.30) and (5.34)
with p =q. While, if 2pv < 1, we have (5.36) and (5.37) with p = q.

RemARrk. If we take x = v, then (5.40) is equivalent to (5.39).

Here we would like to compare |Corollary 5.2 with the previous results in
20], [26] and [36], which concern with the asymptotic behavior of the solution
to

(5.43) 0*u— Au=F(u) in R" xR,
such that
(5.44) lu(?) — up(2)[], — 0 as t — —oo,

where uy is the solutions to the homogeneous wave equation satisfying

(5.45) up(x,0) =f(x), dup(x,0) =¢g(x) in R".

Since u = v and u~ = v~ if we choose f; =f, =f and g; = g, = ¢, |Corollary 5.2
1s a natural extension of those previous works in the sense that the parameters v
and x are taken as v=x =p* in and [36], while in [20], it is assumed that
pv # 1.

At the end of this section, we state asymptotic behavior of the solution (u, v)

obtained by as t — +o0.

THEOREM 5.2. Let n=2 or n=3. Suppose that (1.9), (1.10), (1.18), (1.19)
and (5.8) hold. Let u~ and v~ be the solutions to the homogeneous wave equation
satisfying (1.16) and (1.17).  For a solution (u,v) € X, . of (5.1) and (5.2) verifying
(5.25) through (5.28), we define

(5.46) u(x,1) = u(x,t) — Li(F(v))(x,7) in R" xR,
(5.47) v (x, 1) = v(x, 1) — Li(G(u))(x,t) in R" xR,

where we have set

(548)  Li(F)(x1) = %f ds JH p -y J | Flet pos)ds,
for (x,1) e R* x R and
(5.49) Li(F)(x,t) = —JOC(S —1) dsJ F(x+ (s —tw,s)dS,

for (x,) e R® x R,
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(A) Let v and x satisfy (5.9) through (5.12). Then ut and v are classical
solutions to the homogeneous wave equation satisfying

(5.50)  |0*(u(x, ) —u"(x,0))] < C2(1 +r + |t)) """V 2@, (r, —1;),

(5.51)  |03(o(x, 1) — v (x, )| < Clld(1+ 7+ [e) ™"V, (r, — 1)

for any (x,t) e R" X R and |«| <2, and

(552)  lw—u")(Oll, < Cloll2(1+|d) {1+ )32 for 120,

(5:53) M=)l < Clullf (1 + 1) {0+ )03 for 1> 0.
(B) Let v and x satisfy (5.15), (5.10), (5.12) and (5.16). Then we have

(5.54) 02 (u(x, 1) —ut (x,0))] < Cl2(1+ 7+ |t) ™"V, (r,—1; p*)

for any (x,t) e R" X R and |«| <2, and

(5.55) (= u")(Oll, < Cllo| 200+ 1) for £20.

(C)  Suppose that (5.31) holds and that v and w satisfy (5.32). Then we have
(5.54), (5.55),

(5.56) 0X(0(x,1) = o™ (x, 1) < CR (14 r+ )" Py (r, —17)
for any (x,t) e R" x R and |o| <2, and

(5.57) I =)Dl < Cllull{(1+1)" " for 1=0.

6. A priori estimate.

The aim of this section is to prove a priori estimates, which are needed to show
Theorems B.1 and B.2. The following lemma is a consequence of Theorem 1.1.

LemmA 6.1.  Assume that (1.9) and (1.10) hold. Let v and x satisfy (5.8)
through (5.12). Let (u,v) € X, . Then we have

(6.1) L"), < Cullolle,  ILCul D < Cullull],
where C) is a constant depending only on p, q, v and k.

Proor. It follows from and (1.4) with F = |v|” and F = |u|? that for
uw>0

(6.2) L(ol”) e, O] (147 + [e) "2 /@, (r,15v) < CMu(Jo]),

(6.3) (| ") (x, O] (1 47+ )" 2, (v, 1550) < CM u(Ju] ).
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Therefore, will be established, if we can find a positive number u such that
(6.4) My ([0]") < Cllollg, Micu(lul”) < Cllulf,
because @, (r,t;v) < @,(r,|t|;v). It follows from (1.11) and that

L |2 — [s] )P
(L4 2+ s)"

2V 4 3) 0+ L= I ) o9 < ol

and
L+ |4 — |s| )
(14 A+ s)? "

unless 7 = 2 and either v > 1/2 or kx > 1/2. By (5.11) and [5.12), we can choose
a positive number u such that

R Rl R I VA R e G | [ (

Y

(6.5) u<pk—1l+p —v, u<gv—1+4+4qg*—x.

Hence, by and together with [2.7), we obtain with C=1.
When n=2 and either v>1/2 or x> 1/2, we get less hard. Indeed,

if n=2, we have 3 <p <gq by (1.10), hence p/2 >3/2. This completes the
proof. ]

Next we introduce a function space Y, , defined by
(6.6) Y, = {(u,0) € C*(R" x R) x C*(R" x R) : [u], + [v], < + 0},

where [-], is defined by [(2.4). In what follows, by C we denote the various
constants depending only on 4, p, ¢, v and k. On the basis of [Lemma 6.1, we
prove the following.

ProposITION 6.1.  Let v and i satisfy (5.8) through (5.12). Assume (5.3)
through (5.5) hold.
(A) Let (u,v) e X, ,(1)NY, . Then we have

(6.7) IL(E@)I, < AG ol (LG, < ACully,

(6.8) [19xL(F @), < ApCillol 10xll,  NOL(Gw))Il, < AgClull{ ™ [0,

v

where [|0xull, =", [|07ull, and Cy is the constant in (6.1). Moreover, we get
(6.9) |GRLE @), < ApCulloll 2 103ell, + CllollZl1oxvlly,
(6.10) 163 L(G(w)ll,c < AgCulul|~ |03ull, + Cladl] 2|0l

2 ‘
where [[05ull, = 31 llocull,-
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(B) Let (w,v,) € Xon(1)N Yox (j=1,2). Then we have

(6.11) IL(F (01)) = LIF@))Il, < ApCi(lonll, + o2l or = 2]l

(6.12) IL(G(w1)) = L(G ()|, < AGCi([lw]], + [leal|,) ™ [fur = ],

(613) [0 L(F(12) = L))}, < ApCi([orll + [loall )" 0x(o1 = v,
+ C([or], + [020 )" o = v2]l

(6.14) (104 L(G(2)) — LG ) HI, < AgCr([], + lleea]l,) " ([0 (1 = w2)],
+ C([m], + ], ) = o],

(6.15)  [|OHL(F(v2) = LIF)}], < 4pCi(|[orl, + o2l )" 10301 = v,
+ Co([or), + [o2)) o — 0217

+ C([],e + [, )™ Y 10k (01 = v

o] <1

(6.16)  [|03{L(G(u2)) — L(G(ur))}H,e < AqCr(Jlur]l, + lJuall,) 105y — wo),
+ Ca([w], + [ua],)*lun — wa| 2

+ C(fr], + [a) 7 10 = w)l,,

o] <1

where Cy and Cs are constants depending only on A, p, q, v and x such that C; =0
if p>3, and C3=0 if ¢ > 3.

Proor. It is easy to see from [5.3), (5.4) and (5.5) that for |u| <1 and
lv] <1

(6.17) [F(o)] < Aol”,  |G(u)] < Alul”,
(6.18) [F'(0)] < Aplol”™", |G (u)] < Aqlul™",
(6.19) [F"(0)l < Ap(p = Do, [G"(w)] < Aqlq — 1)[u] ",

Note that we have

0

0 0
N < bl wall

0 0 0
[FTwi ™ fwa] ™ ws| llwsll,?

for w; e C(R" x R) and 6; € [0, 1] with 6, + 6, + 03 = 1. Therefore, we get from
6.1
\

/l

0 0 0 0 0 0
(6.20) L (w7 w2 ws PO, < Cullwalle bz L lwsl ],
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Since 0, L(F(v)) = L(0x,F(v)) (1 <j<n) and
(6.21) u(x, ) < flull,,  [olx, )] < [Jvll, for (x,7) € R" x R,

the statements of the part (A) follow from [6.17) through (6.20).
Next we prove (6.15). When 2 < p < 3, we have from [6.18), (6.19), (5.4)
and (6.20)

1050 { L(F (v2)) — LIF (o) }I, < ApCillel|2 ™[00k (61 = v2)
+Ap(p—1)Ci(|[orll + l[vall )~ lor = w2l N1Js0kvall
+Ap(p—1)Cil[oall22[105(v1 = v2)l| [l Gk,
+A4p(p—1)C[[oal|2 106 (01 — v2) 1972,
+A4p(p—1)Cillor = w22 0501, kw1 ],

which yields (6.15). When p >3, we get (6.15) with C, =0, similarly. Since
the treatment of others are less hard, we omit the further details. (See also

12)). O

7. Proof of Theorems 5.1 and 5.2.

Firstly we show the part (A) in [Theorem 5.1. The classical solution (u,v) of
(5.1) and (5.2) verifying [5.25) through (5.28) is furnished by a solution of the
following system of integral equations:

(7.1) u(x,t) =u (x,t) + L(F(v))(x,¢) in R" X R,
(7.2) v(x,t) =v (x,t) + L(G(u))(x,t) in R" xR,

where u~ and v~ are the solutions to the homogeneous wave equation satisfy-
ing (1.16) and (1.17), and L(F(v))(x,t) and L(G(u))(x,t) are given by (1.2) and
with F replaced by F(v) and G(u). To establish this fact, we introduce a
sequence {(up, )}, defined by up=u", vo =v" and for m >0

(7.3) Upmi1(x, 1) = up(x,t) + L(F(vm))(x,) in R" x R,
(7.4) Ums1(x, 1) = vo(x,1) + L(G(up))(x,2) in R" X R.

By (1.20) and [2.4), we have

(7.5) [uoll, + [[vol],, < Coe,  [uo], + [vo], < C,
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provided (5.8) and (5.10) hold. As for ¢ >0, we assume that

(7.6) 2Ce < 1,

1
(7.7) ApCi(4Coe)" ! < =, AqC1(4Coe)q_lg§,

N —

where C; is the constant in [Lemma 6.1.

Lemma 7.1. We assume that (1.9), (1.10), (1.18), (1.19), (7.6) and (7.7)
hold. Then we have for nonnegative integers m

(7.8) [l + [Foml,e < 2(lluoll, + [feoll,) <1,

(7.9) it = thnl, + ot = vl < €27,

(7.10) [thn], + [Um],. < C,

(7.11) 103 (@1 = )|, + 0 (Vi1 = vm) ], < Cs27" + CCym27",
and

(7.12) 102ttt — )|, + 1102 (Wms1 — vm)|l,. < C627™ 4+ Cm(Cs27™ 4+ Cym2™™)

+ CCm(Cy2~ (=D 4 ¢y (a-2my,
where C, and Cy are the constants in (6.15) and (6.16) respectively, and we have set
Ca = [lur = woll, +[lor = woll,  Cs = [|0x(n —wo)l[, + [[0x (1 = vo)l
Cs = (103 —w)ll, + 10301 = wo), €7 =€+ ¢

Proor. First we show (7.8). It is clear that holds for m = 0, by
and [7.6]. Inductively, suppose that holds for some m (m >0). Then it

follows from (7.3), (7.4), and that
s lly + oms e < (luoll, + looll) (1 +24C1(2Coe)" ™" +24C1(2Coe) ™).

By virtue of [7.7), we find that holds for any nonnegative integer m.
Next we show (7.9). Note that by (7.8), and we have

Lo 1
(7.13)  ApCi(llomle + low-i,)"™ < 55 AgCi(lunll, + m-1],) < 3
for m > 1. It follows from (7.3), (7.4), (6.11), and (7.13) that
1
(7.14) [tms1 = tmll, + [[vmsr = Omlle < 5 (et = w1 [l, + lom = Om—11l,0);

T2
which implies (7.9).

/l
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Next we show [(7.10). It follows from (7.3), (7.4), [(7.5), (6.8) and (7.13) that

1
Haxumﬂ”v + [|OxUmt1 HK < C‘*’E(”axumnv + ”axUmH;c)a

which gives
(7.15) | Oxttm]|, + ||OxVml|,, < C  for m > 0.

In a similar fashion, we see from (6.9}, (6.10), [(7.5), (7.13), and (7.15) that
(7.15) with d, replaced by 02 holds. Hence we get [7.10).
Next we show (7.11). By (6.13), (6.14), (7.13), (7.10) and 7.9), we have

10 st = wm) ||, + 10 (Vi1 = vm) I,

2

o =

1 m—l
< 310t =t )+ oo = ol + €G3 (3] for m 1,

which implies (7.11).
Finally, we show (7.12). By (6.15), (6.16), (7.13), (7.10), and (7.11), we
have

”a;zc(”mﬂ - ”m)Hv + ||a>2c(vm+1 - Um)”;c

1
< 5 (103Gt = 1)l + 105 (om = om1)l)

+ c<(c4 +Cs) G)m_l + Cylm—1) @M)
1o (c4 @1)2 e (c4 G)l)z

1
< 5 (102 Cum = wm- ), + 105 (om = 1))

1\" 1\" 1 (p—2)m 1 (g—=2)m
Cl| Cs| = Cam| = CC | G| = G| =
re(afy) ren))realel) el )

for m > 1, because C, =0 for p > 3, and C; =0 for ¢ > 3. This estimate gives
(7.12) and the proof is completed. W

From Lemma 7.1, we see that there is a solution (u,v) € X, ,(2Coe) N Y,
of (7.1) and (7.2). In addition, we observe from the proof of (7.14) that such
a solution is unique. Moreover, the solution satisfies and [5.26). 1Indeed,
when o« = 0, those asymptotic estimates follow from |(6.17), [(6.2), (6.3) and [6.4).
Analogously, we obtain them for |«| =1,2.
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Next we prove that the solution (u,v) of (7.1) and (7.2) satisfies (5.27) and
(5.28). We start with showing that for (u,v) € X, (1)

(7.16) F () ()1 72gmy < CllRll? (14 [s)) ™ 72 (1 + s 2,
(7.17) 1G (1) (5) 172y < Cllull (1 4+ [s]) 72472 (1 + |s]) 720

Since —(n—1)p+ (n—1)=—-2p* —2, it follows from {1.13) and [6.17) that

(7.18) IF(0)(s)lI72 < A%n|lo]P1(s),
where we have set

(7.19) I(s) = J:(l Fr4 )R+ = s| )P dr,

unless n =2 and x > 1/2. We divide I(s) into /;(s) and I,(s) which are defined
by

2l *
(7.20) B = [l R - )

0

. 2p* =2 2
(1.21) B0 = [ () )

It is easy to see that for x >0

(7.22) Lis) < C(1+|s|)~ % 17",
While we have

(7.23) (L+[s)¥ 21 (s) < C(1+ syt

These estimates yield (7.16).
When n=2 and x > 1/2, we have

|F(0)(s)172 < Cllell? JO (L7 1s]) ™ (U Jr = || )77 (1 +Tog (1 + [r = |s] )™ dr

< Clloll¥ JO (L rls) ™ 2 (L r—s| ) dr

2 —2p*=2
< Clfll"(1+Is) ™ 7,

since p > 3. We thus obtain (7.16). Analogously, we also get 7.17).
Since u(t,-) —u(¢,-) and v(¢,-) — v~ (z,-) can be represented by (8.6) below,
with F = F(v) and F = G(u) respectively, it holds that
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t
(7.24) I —u=) (@), < (n+1) J £ (0) () 2 () 95,
-0

t
(7.25) I =o") @), < (n+1) J 1G () ()| 2(gr) s,
provided there are positive constants  and C satisfying

(7.26) |F @) () 2y + I G@) ()l 2ry < C(LA[s]) ™" for seR.

A proof of (7.24) and [7.25) will be given in the appendix below.
Now it follows from and that for 1 <0

(7.27) |||<u—u-><r>|||esC||v||fzj_ (1 Js]) 7+ Jsl) 312 ds

0

bl [

/1

If 2px > 1, we easily have (5.27). When 2px = 1, by integration by parts, we get
(5.27).  Moreover, if we notice that implies p* — (1/2) +px > (1/2) +v >0,
we obtain (5.27). Since the proof of (5.28) is similar to that of (5.27) if we use

instead of [5.11), we omit the details.

Next we prove the uniqueness of the solution. More precisely, we show that
a solution (u,v) € X, (2Coe) N Y, of (5.1) and (5.2) satisfying (5.27) and (5.28)
is unique, provided through [5.12), and hold. Moreover it is

enough to show that such a solution of (5.1) and (5.2) must satisfy the integral
equations (7.1) and (7.2), since we have already established the uniqueness of the
solution of (7.1) and (7.2). To this end, we set

(7.28) wi=u—u —L(F(v)), wr=v—0v — L(G(u)).

We easily see that w; € C2(R" x R) (i =1,2) and (Jw; =0 in R" x R. Therefore,
if we could show

(7.29) wi(x,0) = dwi(x,0) =0 for xe R",

we would obtain w;(x,7) =0 for any (x,7) € R" x R.
We prove (7.29) only for i =1. It follows from the proof of (5.27) that

(7.30) IL(E@) O, < Clloll(1+ 1)~ for £ <0,

where 0 is a positive constant satisfying 0 < p* and 0 < 1/2. Therefore we have
from (5.27)

(7.31) w1 ()l = i (@)l < Cllellf(L +1e)™ for £ <0.
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We thus get
(7.32) owi1(x,0) =0, Vwi(x,0)=0 for xeR".

In particular, we see that w;(x,0) is a constant. Moreover, since (u,v) € X, (1)
and (v ,v”) € X,- 4+, we have from

/l

wi(x,0)] < (lfeell, + [l [],,- + ACu[[ol|2)(1 + ]y~ "D,

which implies wi(x,0) =0 for x e R", hence (7.29) holds. This completes the
proof of the part (A).

Secondly we show the part (B) in [Theorem 5.1. Since (5.30) follows from
(5.27) by [5.16), it is enough to show [5.29]. In view of the proof of [Lemma 6.1,
one can assume without loss of generality that v < 1/2 and x < 1/2 when n = 2.
By with v = p* and [6.3), it suffices to show that there is a positive number
4 such that

(7.33) My ((Jo)") < lolle, Mieuful) < [lull.
Indeed, we can choose a positive number u such that
(7.34) u<px—1, u<qv—1+4q" —x,

by [(5.16) and [5.12), hence [7.33) holds. (See the proof of (6.1)).
Finally we show the part (C) in [Theorem 5.1. It is enough to show [5.33],

since the others are easily handled. By with v = p* and with k¥ = ¢*, it
suffices to show that there is a positive number u such that

(7.35) My u([017) < ol Mye u(ul®) < Jully.

In fact, we can choose a positive number u such that

(7.36) u<pk—1, u<qv—1,

by [5.32). This completes the proof of MTheorem 3.1. O
Next we prove Theorem 5.2. If we note that L;(F)(x, ) = L(F)(x, —t) with

F(x,t) = F(x,—t), we obtain the desired estimates from the proof of

5.1. We omit further details. ]
8. Appendix.

In this section we prove |7.24) and [7.25) in a more general situation. By
u(t) we denote a function of 7€ R with values in 2'(R"), the space of distribu-
tions on R". Consider the initial value problem

(8.1) u"(t) — Au(t) = F(t) for te R
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with zero initial data
(8.2) u(t)=u'(1)=0 at t=s,

where s is an arbitrary real number and u”(¢) stands for the second derivative of
u(t), and so on. For a function f € L>(R") we denote by f and f ™, respectively
the Fourier transform of f and the inverse Fourier transform of f such that

(8.3) 1 2y = 1" N 2y = 1S 1 2y
Then the following facts are in essence well known.

PROPOSITION 8.1.  Assume that F(t) e C(R; L*(R")).
1) Let s€ R be fixed. Forte R we define a linear form u(t;s) on & (R") by

84 tishor = [ ar| G @az for g

where & (R") stands for the space of rapidly decreasing functions on R". Then
u(t;s), with s regarded as a parameter, is a solution of the initial value problem
(8.1)—(8.2) such that u(t;s) e C*(R; H-'(R")). Moreover the solution is unique in
C*(R;2'(R")).

i) Let n>2. Assume that there are positive constants 0 and C such that

(8.5) 1))l oy < CA+ )" for teR.

For te R we define a linear form u(t) on S (R") by

(8.6) <u<z>,¢>=[ | nwﬁw,rm*(@dé for pe SR,
Then
(8.7 u(t) € CH(R: 7' (R")),

where &' (R") stands for the space of tempered distributions on R", and we have
for each te R

(8.8) u' (1) e L*(R"), Vu(t) e L*(R")
and
(8.9) [ ()| 2oy + [IV() || 2rry < (n+ 1) J_ 1F ()l 2pm dT.

Proor. The first part i) is well known. (For the uniqueness see for in-
stance [16], Lemma 3.1). First we shall prove [8.7]. Let € R be fixed. Then
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we claim that u(z) e ' (R"). To see this we take a positive number J such that
0<0and 0 <1. Then

(8.10)

Sin(f—f)|5|‘ e |
E AT

and ]f|5*1¢*(5) e L?>(R") for n > 2, hence the integrand in the right hand side of
(8.6) is integrable with respect to (&,7) over R" x (—oo,|, according to (8.5).
Therefore we have for ¢ € #(R")

u(t), @) = Jim u(t; —k), o),

where u(t;s) is given by (8.4). Since u(t; —k) e '(R") for all k=1,2,..., we
find by the Banach-Steinhaus’ theorem that u(z) € #'(R").
Now the desired property follows easily from the above procedure.
Finally we shall prove (8.8) and [8.9). Let Dy = —vV—18/dx; (k=1,...,n).
Then we get by virtue of (8.5)

t
<Det), 9| < ||¢||L2<Rn>j 1F () .

Hence Dju(t) € L>*(R") and

t
D)o < | 1@l d
Analogously we obtain (8.8) and [8.9). ]
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