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Abstract. We give a new a priori estimate for a classical solution of the inhomo-

geneous wave equation in R
n � R, where n � 2; 3. As an application of the estimate,

we study the asymptotic behavior as t !Gy of solutions u�x; t� and v�x; t� to a system

of semilinear wave equations: q
2
t uÿ Du � jvjp, q

2
t vÿ Dv � jujq in R

n � R, where

�n� 1�=�nÿ 1� < pa q with n � 2 or n � 3. More precisely, it is known that there

exists a critical curve G � G�p; q; n� � 0 on the p-q plane such that, when G > 0, the

Cauchy problem for the system has a global solution with small initial data and that,

when Ga 0, a solution of the problem generically blows up in ®nite time even if the

initial data are small. In this paper, when G > 0, we construct a global solution

�u�x; t�; v�x; t�� of the system which is asymptotic to a pair of solutions to the homo-

geneous wave equation with small initial data given, as t ! ÿy, in the sense of both the

energy norm and the pointwise convergence. We also show that the scattering operator

exists on a dense set of a neighborhood of 0 in the energy space.

1. Introduction and statement of main results.

The initial value problem for semilinear wave equations with small initial

data and the related nonlinear scattering theory have been developed by many

authors, since the work of F. John [12] was established in 1979. (See for instance

[1]±[38]). In those works, the ``basic estimates'' for solutions to the following

inhomogenious wave equations play an essential role in an explicit or implicit

manner:

q
2
t uÿ Du � F in R

n � R;�1:1�

where qt � q=qt and D �
Pn

j�1 q
2
j with qj � q=qxj � j � 1; . . . ; n�. The aim of this
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paper is to give a new basic estimate for the solution to (1.1) in the case where

n � 2 or n � 3, which re®nes previous ones, especially for n � 2. (See also [20],

[26], [36] and 2) of the remarks following Theorem 1.2). To state this more

precisely, we introduce an integral operator L�F ��x; t� as follows:

L�F��x; t� �
1

2p

� t

ÿy

ds

� tÿs

0

r
��������������������������

�tÿ s�2 ÿ r2
q dr

�

joj�1

F �x� ro; s� dSo�1:2�

for �x; t� A R
2 � R and

L�F ��x; t� �
1

4p

� t

ÿy

�tÿ s� ds

�

joj�1

F �x� �tÿ s�o; s� dSo�1:3�

for �x; t� A R
3 � R. Note that L�F��x; t� satis®es (1.1) under a suitable assump-

tion on F �x; t�. The main result of this paper is summarized as follows.

Theorem 1.1. Let n � 2 or n � 3. Let �x; t� A R
n � R and r � jxj. Let

F A C�Rn � R�. Then we have

jL�F��x; t�j�1� r� jtj��nÿ1�=2=Fn�r; t; n��1:4�

aC sup
�y; s� AR n�R

fjyj�nÿ1�=2�1� jyj � jsj�1�n�1� j jyj ÿ jsj j�1�mjF �y; s�jg

for any m > 0 and n > 0, where C is a constant depending only on m and n. Here

we have set

F3�r; t; n� � �1� jrÿ tj�ÿn;�1:5�

and

F2�r; t; n� �
�1� jrÿ tj�ÿn

if ÿy < ta r,

�1� tÿ r�ÿ1=2�1� tÿ r��1=2ÿn�� if r < t

(

�1:6�

with �a�� � maxfa; 0g and A�0�� � 1� logA.

Remark. When ta 0, the assumption m > 0 may be relaxed so that m >

ÿ�nÿ 1�=2. More precisely, one can replace the Fn�r; t; n� in (1.4) by

Fn�r; t; n��1� jrÿ tj��ÿm�� ;

provided n > 0, m > ÿ�nÿ 1�=2 and ta 0. This would be attained by modifying

a little the proofs of Lemmas 4.2 and 4.4 below.

As an application of Theorem 1.1, we consider a system of semilinear wave

equations:
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q2t uÿ Du � jvjpÿ1
v in R

n � R;�1:7�

q2t vÿ Dv � jujqÿ1
u in R

n � R;�1:8�

where 1 < pa q and either n � 2 or n � 3. Concerning the initial value problem

for (1.7) and (1.8) with small initial data, Del Santo, Georgiev and Mitidieri

[6] proved the existence of global solutions to (1.7) and (1.8) in R
n � �0;y�,

provided

G � G�p; q; n� > 0;�1:9�

�n� 1�=�nÿ 1� < pa q; i:e:; 0 < p�
a q�;�1:10�

where we have set

G � a� pb; a � pq� ÿ 1; b � qp� ÿ 1;

p� �
nÿ 1

2
pÿ

n� 1

2
; q� �

nÿ 1

2
qÿ

n� 1

2
:

�1:11�

On the other hand, when Ga 0, there is a solution which blows up in ®nite time,

even if the initial data are su½ciently small. (See [6], [5], [8] for the case G < 0

and [7], [2], [17], [18] for the case G � 0). In this article, we study asymptotic

behavior of classical solutions to (1.7) and (1.8), when (1.9) and (1.10) hold. To

this end, we introduce the following function space Xn;k for n > 0, k > 0:

Xn;k � f�u; v� A C�Rn � R� � C�Rn � R�; kukn � kvkk < �yg;�1:12�

where the norm k � kn is de®ned by

kukn � sup
�x; t� AR n�R

fju�x; t�j�1� r� jtj��nÿ1�=2=Fn�r; jtj; n�g�1:13�

with r � jxj. In addition, we set for d > 0

Xn;k�d� � f�u; v� A Xn;k : kukn � kvkka dg:�1:14�

Next, let us denote by uÿ�x; t� and vÿ�x; t� the solutions to the homogeneous

wave equation

q2t wÿ Dw � 0 in R
n � R;�1:15�

satisfying the following initial conditions, respectively:

uÿ�x; 0� � f1�x�; qtu
ÿ�x; 0� � g1�x� in R

n;�1:16�

vÿ�x; 0� � f2�x�; qtv
ÿ�x; 0� � g2�x� in R

n:�1:17�
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We assume that fj A C3�Rn� and gj A C2�Rn� � j � 1; 2� satisfy

j f1�x�ja e�1� r�ÿ�nÿ1�=2ÿp �
; j f2�x�ja e�1� r�ÿ�nÿ1�=2ÿq �

;

X

jgj�1

jqg
x f1�x�j � jg1�x�ja e�1� r�ÿ�n�1�=2ÿp�

;

X

jgj�1

jqg
x f2�x�j � jg2�x�ja e�1� r�ÿ�n�1�=2ÿq�

;

�1:18�

and

sup
x AR n

�1� r��n�1�=2�p � X

2ajgja3

jqg
x f1�x�j �

X

1ajgja2

jqg
xg1�x�j

0

@

1

A

8

<

:

9

=

;

< �y;

sup
x AR n

�1� r��n�1�=2�q � X

2ajgja3

jqg
x f2�x�j �

X

1ajgja2

jqg
xg2�x�j

0

@

1

A

8

<

:

9

=

;

< �y;

�1:19�

where e > 0 and r � jxj. Then there is a positive constant C0 � C0�p; q; n� such

that

�uÿ; vÿ� A Xp �;q ��C0e�; �qg
xu

ÿ; qg
xv

ÿ� A Xp�;q � for jgja 2;�1:20�

provided (1.10) holds. For the proof, see Lemma 2 in [26] for 3-dimensional

case and Proposition 1.1 in [20] (or Proposition 2.1 in [19]) for 2-dimensional

case. (See also those proofs).

It follows from the de®nitions of G , a and b that

baG=�p� 1�a a for 1 < pa q:�1:21�

Here we shall state a part of our results for a special case where

b > 0; i:e:; qp� > 1:�1:22�

The general case will be discussed in Section 5 below. Notice that (1.22) implies

(1.9) according to (1.21) and that (1.22) is equivalent to (1.9) when

p � q. Moreover, since qb p, we have

b > 0 if pp� > 1; i:e:; p > p0�n� :� n� 1�
��������������������������

n2 � 10nÿ 7
p

2�nÿ 1� :�1:23�

The number p0�n� is known as a critical exponent for the initial value problem

for a single wave equation (1.30) below with small initial data.

Theorem 1.2. Let n � 2 or n � 3. Suppose that (1.10), (1.18), (1.19) and

(1.22) hold. Then for any n and k satisfying

1=q < na p�; 1=p < ka q�;�1:24�
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there is a positive number e0 � e0�n; k; p; q� such that for any e with 0 < ea e0,

there exists uniquely a classical solution �u; v� A Xn;k�2C0e� of (1.7) and (1.8)

verifying the following properties:

jjj�uÿ uÿ��t�jjjeaCkvkp
k�1� jtj�ÿp �

for ta 0;�1:25�

jjj�vÿ vÿ��t�jjjeaCkukq
n �1� jtj�ÿq�

for ta 0;�1:26�

where

jjju�t�jjj2e � 1

2
fk`u�t�k2L2 � kqtu�t�k2L2g:

Moreover, for any �x; t� A R
n � R we have

ju�x; t� ÿ uÿ�x; t�jaCkvkp
k�1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; p��;�1:27�

jv�x; t� ÿ vÿ�x; t�jaCkukq
n �1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; q��:�1:28�

Furthermore, there exists a unique solution �u�; v�� A Xp �;q � of the homoge-

neous wave equation (1.15) satisfying (5.54) through (5.57) below. Here C is a

constant depending only on n, k, p and q.

Remarks. 1) The existnce of n and k satisfying (1.24) follows from the

assumption that ab b > 0. Moreover, the scattering operator

� f1; f2; g1; g2� 7! �u��0�; v��0�; qtu��0�; qtv��0���1:29�

is de®ned for such � f1; f2; g1; g2� satisfying (1.18) and (1.19) with 0 < ea e0.

2) We shall here compare the basic estimate (1.4) with the ones in the

previous works [26], [36] and [20]. Let us consider a single semilinear wave

equation

q2t uÿ Du � F �u� in R
n � R;�1:30�

where n � 2 or n � 3, and F �u� � jujp or F �u� � jujpÿ1
u with p > 1. Assume

that

pp� > 1; i:e:; p > p0�n�;�1:31�

where p� and p0�n� are given respectively in (1.11) and (1.23). Note that

p� > 1=p0�n� for p > p0�n�:�1:32�

Besides, we have p� � pÿ 2, p0�3� � 1�
���

2
p

for n � 3 and p� � �pÿ 3�=2,
p0�2� � �3�

�����

17
p

�=2 for n � 2. Then it is shown in Pecher [26] for n � 3,

Tsutaya [36] for n � 2 and Kubota and Mochizuki [20] for n � 2 that the
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scattering operator for (1.30) is de®ned on a dense set of a neighborhood of 0 in

the energy space by establishing the following basic estimates (1.33), (1.35), (1.39)

and (1.40).

When n � 3, Pecher [26] proved that

jL�F �u���x; t�j�1� r� jtj��1� jrÿ tj�p
�

aCkukp
p ��1:33�

for �x; t� A R
3 � R with r � jxj, u�x; t� A C�R3 � R� and p0�3� < pa 3, where the

norm kukn is de®ned by (1.13) with (1.5), and L is the linear operator given by

(1.3). We shall compare (1.33) with our basic estimate (1.4) with F � F�u� and

n � p�. Note that the latter implies that the left hand side of (1.33) is dominated

by

C sup
�y; s� AR3�R

fju�y; s�jp�1� jyj � jsj�p�1� j jyj ÿ jsj j�1�mg

for m > 0, since 2� p� � p for n � 3. Choosing n such that n > 1=p and taking

m � pnÿ 1, we get from (1.13) with (1.5)

ju�y; s�jp�1� jyj � jsj�p�1� j jyj ÿ jsj j�1�m
a kukp

n

for �y; s� A R
3 � R, hence

jL�F�u���x; t�j�1� r� jtj��1� jrÿ tj�p
�

aCkukP
n�1:34�

for �x; t� A R
3 � R. Note that (1.34) re®nes (1.33) when 1=p < n < p�.

Next let us consider the case of two space dimensions, i:e:, n � 2. Tsutaya

[36] proved that

jL�F �u���x; t�j�1� r� jtj�1=2aCjujpmCm�r; t��1:35�

for �x; t� A R
2 � R with r � jxj and u�x; t� A C�R2 � R�, where L is the linear

operator de®ned by (1.2),

Cm�r; t� � �1� jrÿ tj�ÿmf1� log�1� jrÿ tj�g;

jujm � sup
�y; s� AR2�R

fju�y; s�j�1� jyj � jsj�1=2=Cm�jyj; jsj�g

and

m � minf1=2; p�g;

provided we take the parameter k in the hypothesis (H2) of [36] so that

kb �pÿ 2�=2. (See Lemma 4.1 in that paper). On the other hand, our basic
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estimate (1.4) with F � F �u� and n � p� gives an upper bound of the left hand

side of (1.35) by

CF2�r; t; p
�� � sup

�y; s� AR2�R

fju�y; s�jp�1� jyj � jsj�p=2�1� j jyj ÿ jsj j�1�mg

for m > 0, since �3=2� � p� � p=2 for n � 2. Choosing n such that

1

p
< n <

1

2
�1:36�

and taking m � pnÿ 1, we get from (1.13) with (1.6)

ju�y; s�jp�1� jyj � jsj�p=2�1� j jyj ÿ jsj j�1�m
a kukp

n

for �y; s� A R
3 � R, hence

jL�F �u���x; t�j�1� r� jtj�1=2aCkukp
nF2�r; t; p

���1:37�

for �x; t� A R
2 � R.

Notice that (1.6) implies

F2�r; t; p
�� � �1� jrÿ tj�ÿp�

�1:38�

for either 0 < p� < 1=2 or p�
b 1=2 and ÿy < ta r. Therefore we see that

(1.37) re®nes (1.35), provided

1

p
< n < m � minf1=2; p�g:

Indeed, as for the decay rates of L�F�u���x; t� we have

F2�r; t; p
��aCm�r; t�=f1� log�1� jrÿ tj�g

if p�
0 1=2, while F2�r; t; p

��aCm�r; t� if p� � 1=2, i:e:, p � 4. Moreover

Cm�jyj; jsj�=F2�jyj; jsj; n� � f1� log�1� j jyj ÿ jsj j�g=�1� j jyj ÿ jsj j�mÿn

implies kuknaCjujm, since n < m.

Finally we shall compare our (1.4) with the basic estimates (2.4) and (2.21)

with (1.27) in [20]. For simplicity of description we suppose that the parameter

k in (1.3) of that paper satis®es kb p=2. Then the second author and Mochizuki

[20] proved that if

1

p
< n < p�

a
1

2
;

then

jL�F �u���x; t�j�1� r� jtj�1=2�1� jrÿ tj�p
�ÿd
aCkukp

n�1:39�
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for 0 < d < p�, and if

1

p
< n <

1

2
< p�;

then

jL�F�u���x; t�j�1� r� jtj�1=2�1� jrÿ tj�1=2aCkukp
n�1:40�

for �x; t� A R
2 � R and u�x; t� A C�R2 � R�. (See Proposition 2.1 and (1.27) in

that paper). It is easy to see that (1.37) with (1.36) re®nes (1.39) and (1.40)

according to (1.38).

It is also shown in [20] that

jL�F�u���x; t�j�1� r� jtj��1=2��p ��pnÿ1
aCkukp

n�1:41�

for ta 0 and x A R
2 with r � jxj, provided

1ÿ p�

pÿ 1
< n <

1

p
and 0 < n;�1:42�

which implies p� � pnÿ 1 > n. (See Proposition 1.8 and (1.27) there). Making

use of the remark following Theorem 1.1, one can prove also (1.41). In fact,

when 1=2 < pn < 1, the proof of (1.37) is still valid, if we replace F2�r; t; p
�� by

F2�r; t; p
���1� jrÿ tj��ÿm��a �1� r� jtj�ÿp �ÿ�pnÿ1�;

since ta 0 and ÿ1=2 < m � pnÿ 1 < 0. If pna 1=2, we replace p� in F2�r; t; p
��

by p� � pnÿ 1ÿ m with some 0 > m > ÿ1=2. Then we obtain (1.41), since

pnÿ 1ÿ m < 0.

The plan of this paper is as follows: In Section 2, we collect some nota-

tions. In Section 3, we prepare a couple of lemmas which are needed to prove

Theorem 1.1, and we carry out the proof of the theorem in Section 4. In Section

5, we state our results for a system of semilinear wave equations. In Section 6,

we establish a priori estimates by making use of Theorem 1.1, and we prove

Theorems 5.1 and 5.2 in Section 7.

2. Notations.

In this section we collect some notations which will be used in the sequel.

We set

a4b � maxfa; bg for a; b A R:�2:1�

In particular, we put

�a�� � a40; A�0�� � 1� logA:�2:2�
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Next we de®ne several norms for a real valued function u�x; t�:

kukn � sup
�y; s� AR n�R

fju�y; s�j�1� jyj � jsj��nÿ1�=2=Fn�jyj; jsj; n�g;�2:3�

�u�n � max
jgja2

kqg
xukn;�2:4�

jjju�t�jjj2e � 1

2
fk`u�t�k2L2 � kqtu�t�k2L2g;�2:5�

where Fn�r; t; n� is given by (1.5) and (1.6).

We set for n > 0 and m > 0

zn;m�l; s� � �1� jsj � l�1�n�1� j jsj ÿ lj�1�m;�2:6�

Mn;m�F � � sup
�y; s� AR n�R

fjyj�nÿ1�=2
zn;m�jyj; s�jF �y; s�jg:�2:7�

3. Preliminaries.

In this section we collect a basic identity and elementary inequalities. The

®rst is a fundamental identity concerning the spherical mean. For the proof, see

[27], also Lemma 2.3 in [19].

Lemma 3.1. Let b A C��0;y��, x A R
nnf0g, nb 2, r � jxj and r > 0. Then

we have
�

joj�1

b�jx� roj� dSo � 23ÿnonÿ1�rr�2ÿn

� r�r

jrÿrj
lb�l�h�l; r; r� dl;�3:1�

where ok � 2pk=2=G�k=2� and

h�l; r; r� � �r2 ÿ �lÿ r�2��nÿ3�=2��l� r�2 ÿ r2��nÿ3�=2:�3:2�
The following inequalities are due to Lemmas 1.2 and 2.2 in [20].

Lemma 3.2. For a < b < d, we set

J�a; b; d� �
� b

a

ds
�����������

bÿ s
p

�����������

sÿ a
p ������������

d ÿ s
p :�3:3�

Then we have

J�a; b; d�a p
�����������

d ÿ b
p�3:4�

and for any y > 0

J�a; b; d�aC
d ÿ a

d ÿ b

� �y
1
�����������

bÿ a
p ;�3:5�

where C is a constant depending only on y.
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Finally, we prepare the following useful lemma, which is an extended version

of Lemmas 1.3 and 1.5 in [20]. This lemma will be repeatedly used in Section 4

below.

Lemma 3.3. Let k > 0, 0a g < 1 and k� g > 1. Then we have
�
y

jbj

�1� s�ÿk�a� s�ÿg
dsaC�1� jbj�ÿkÿg�1

for abÿjbj:�3:6�

Moreover, we have

� b

ÿy

�1� jsj�ÿk�aÿ s�ÿg
dsaC�1� jaj�ÿg�1� jaj��1ÿk�� for ab b;�3:7�

or equivalently,
�
y

b

�1� jsj�ÿk�a� s�ÿg
dsaC�1� jaj�ÿg�1� jaj��1ÿk�� for abÿb:�3:8�

Here C is a constant depending only on k and g.

Remark. If aa 0, one can replace the right hand side of (3.7) by that of

(3.6).

Proof. First we show (3.6). Since �a� s�ÿg
a �sÿ jbj�ÿg, by integration

by parts, we have
�
y

jbj

�1� s�ÿk�a� s�ÿg
dsa

k

1ÿ g

�
y

jbj

�1� s�ÿkÿg
ds;

which yields (3.6), because k� g > 1.

Next we show (3.8). If we set

P1 �

�jaj
ÿa

�1� jsj�ÿk�a� s�ÿg
ds; P2 �

�
y

jaj

�1� jsj�ÿk�a� s�ÿg
ds;

we see from the assumption bbÿa that the left hand side of (3.8) is dominated

by P1 � P2. Then (3.6) with b � a gives

P2aC�1� jaj�ÿkÿg�1:

While P1 is estimated as follows: when 0 < aa 1, it is enough to show that P1 is

bounded. It follows that

P1a

� a

ÿa

�a� s�ÿg
ds;

hence P1 is bounded, because g < 1. On the other hand, when a > 1, we split

the integral at s � ÿa=2 to get
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P1a 1� a

2

� �ÿk
�ÿa=2

ÿa

�a� s�ÿg
ds� a

2

� �ÿg
� a

ÿa=2

�1� jsj�ÿk
ds:

Since g < 1 and a > 1, we get P1aC�1� a�ÿg�1� a��1ÿk�� . The proof is

complete. r

4. Basic estimates.

In this section, we shall prove Theorem 1.1. By (2.7), we have

�

joj�1

F �x� ro; s� dSo

�

�

�

�

�

�

�

�

�

�

aMn;m�F �
�

joj�1

dSo

l�nÿ1�=2zn;m�l; s�
�4:1�

with l � jx� roj. Applying Lemma 3.1, we get

�

joj�1

dSo

l�nÿ1�=2zn;m�l; s�
� 23ÿnonÿ1�rr�2ÿn

� r�r

jrÿrj

l�3ÿn�=2h�l; r; r�
zn;m�l; s�

dl:�4:2�

Case 1: n � 2. If we set

I�r; t� � 2

p

� t

ÿy

ds

� tÿs

0

r
��������������������������

�tÿ s�2 ÿ r2
q dr

� r�r

jrÿrj

l1=2h�l; r; r�
zn;m�l; s�

dl;�4:3�

it follows from (1.2), (4.1) and (4.2) with n � 2 that

jL�F ��x; t�jaMn;m�F� � I�r; t�:�4:4�

Changing the order of the integrals, we get

I�r; t� � I1�r; t� � I2�r; t�;�4:5�

where we have set

I1�r; t� �
� t

ÿy

ds

� tÿs�r

jtÿsÿrj

1

zn;m�l; s�
K1�l; s; r; t� dl;�4:6�

I2�r; t� �
� tÿr

ÿy

ds

� tÿsÿr

0

1

zn;m�l; s�
K2�l; s; r; t� dl:�4:7�

Here

K1�l; s; r; t� �
2

���

l
p

p

� tÿs

jlÿrj

rh�l; r; r�
��������������������������

�tÿ s�2 ÿ r2
q dr for jtÿ sÿ rj < l < tÿ s� r;�4:8�

K2�l; s; r; t� �
2

���

l
p

p

� l�r

jlÿrj

rh�l; r; r�
��������������������������

�tÿ s�2 ÿ r2
q dr for 0 < l < tÿ sÿ r:�4:9�
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We introduce new variables

a � l� s and b � lÿ s:�4:10�

If we denote by IG1 and IG2 the integrals over Gsb 0 of I1 and I2, respectively,

then we have

I�1 � 1

2
w�t�

� t�r

jtÿrj
�1� a�ÿ1ÿn

da

� a

rÿt

�1� jbj�ÿ1ÿm
K1 db;�4:11�

Iÿ1 � 1

2

� t�r

tÿr

�1� jaj�ÿ1ÿm
da

�

y

a4jrÿtj
�1� b�ÿ1ÿn

K1 db;�4:12�

and

I�2 � 1

2

��tÿr��

0

�1� a�ÿ1ÿn
da

� a

ÿa

�1� jbj�ÿ1ÿm
K2 db;�4:13�

Iÿ2 � 1

2

� tÿr

ÿy

�1� jaj�ÿ1ÿm
da

�

y

jaj
�1� b�ÿ1ÿn

K2 db;�4:14�

where w�t� � 1 for t > 0 and w�t� � 0 for ta 0. In addition, we further divide

Iÿ2 into J1 and J2 which are de®ned by

J1 �
1

2

��tÿr��

0

�1� b�ÿ1ÿn
db

� b

ÿb

�1� jaj�ÿ1ÿm
K2 da;�4:15�

J2 �
1

2

�

y

jrÿtj
�1� b�ÿ1ÿn

db

� tÿr

ÿb

�1� jaj�ÿ1ÿm
K2 da:�4:16�

Then we have

I1�r; t� � I�1 � Iÿ1 ; I2�r; t� � I�2 � J1 � J2:�4:17�

Next we derive several estimates of K1 and K2 in the following lemma.

Lemma 4.1. Let tÿ r < a < t� r and b > rÿ t with (4.10). Then it holds

that

K1�l; s; r; t�a
���

a
p

������������������

b � r� t
p

������������������

a� rÿ t
p for ab b;�4:18�

K1�l; s; r; t�a
���

b
p

������������������

b � r� t
p

������������������

a� rÿ t
p for aa b�4:19�
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and

K1�l; s; r; t�a
1

������������������

a� rÿ t
p :�4:20�

Moreover, we have for any y > 0

K1�l; s; r; t�a
C

���

b
p

������������������

t� rÿ a
p ������������������

b � tÿ r
p

by

�a� rÿ t�y
for aa b:�4:21�

Let ÿb < a < tÿ r. Then it holds that

K2�l; s; r; t�a
���

a
p

������������������

tÿ rÿ a
p ������������������

t� r� b
p for ab b;�4:22�

K2�l; s; r; t�a
���

b
p

������������������

tÿ rÿ a
p ������������������

t� r� b
p for aa b�4:23�

and

K2�l; s; r; t�a
1

������������������

tÿ rÿ a
p :�4:24�

Moreover, we have for any y > 0

K2�l; s; r; t�a
C
��

r
p by

�tÿ rÿ a�y
for b > tÿ r:�4:25�

Proof. First we consider K1. It is easy to see that tÿ r < a < t� r and

b > rÿ t imply jlÿ rj < tÿ s < l� r. It follows from (4.8), (3.2) and (3.3)

that

K1�l; s; r; t� �
1

p

���

l
p

J��lÿ r�2; �tÿ s�2; �l� r�2�:�4:26�

By (3.4) and (4.10), we have

K1�l; s; r; t�a
���

l
p

�������������������������������������

�l� r�2 ÿ �tÿ s�2
q�4:27�

�
���

l
p

������������������

b � r� t
p

������������������

a� rÿ t
p :

Noting that

la a for ab b; la b for aa b;�4:28�
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we get (4.18) and (4.19). Moreover, since l < b � t for s < t, we get (4.20) from

(4.27). Furthermore, it follows from (4.26), (3.5) and (4.10) that

K1�l; s; r; t�aC
�l� r�2 ÿ �lÿ r�2

�l� r�2 ÿ �tÿ s�2

 !y ���

l
p

�������������������������������������

�tÿ s�2 ÿ �lÿ r�2
q�4:29�

� C
4lr

�b � r� t��a� rÿ t�

� �y
���

l
p

������������������

t� rÿ a
p ������������������

b � tÿ r
p ;

which implies (4.21), by (4.28) and b � r� t > r for s < t.

Next we consider K2. It is easy to see that ÿb < a < tÿ r implies jlÿ rj <
l� r < tÿ s. It follows from (4.9), (3.2) and (3.3) that

K2�l; s; r; t� �
1

p

���

l
p

J��lÿ r�2; �l� r�2; �tÿ s�2�:�4:30�

By (3.4) and (4.10), we have

K2�l; s; r; t�a
���

l
p

�������������������������������������

�tÿ s�2 ÿ �l� r�2
q�4:31�

�
���

l
p

������������������

tÿ rÿ a
p ������������������

t� r� b
p :

Noting (4.28), we get (4.22) and (4.23). Moreover, since la b � t for s < t, we

get (4.24) from (4.31). Furthermore, it follows from (4.30), (3.5) and (4.10) that

K2�l; s; r; t�aC
�tÿ s�2 ÿ �lÿ r�2

�tÿ s�2 ÿ �l� r�2

 !y ���

l
p

��������������������������������������

�l� r�2 ÿ �lÿ r�2
q�4:32�

� C
�tÿ r� b��t� rÿ a�
�tÿ rÿ a��t� r� b�

� �y 1
�����

4r
p

which yields (4.25), because tÿ r < b and ÿa < b. This completes the proof.

r

Now we shall prove for m > 0, n > 0

I�r; t�aC�1� r� jtj�ÿ1=2
F2�r; t; n� for r > 0; t A R;�4:33�

by establishing the estimates in Propositions 4.1 and 4.2 below. Once we obtain

those estimates, it is easy to see that (4.33) follows from them via (4.5), (4.17) and

(1.6).
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Proposition 4.1. Let tÿ r > 0 and let m > 0 and n > 0. Then we have

I�2 aC�1� r� t�ÿ1=2�1� tÿ r�ÿ1=2�1� tÿ r��1=2ÿn�� ;�4:34�

J1aC�1� r� t�ÿ1=2�1� tÿ r�ÿ1=2�1� tÿ r��1=2ÿn�� :�4:35�

Proof. First we consider I�2 . It follows from (4.13) and (4.22) that for

tÿ r > 0

I�2 a
1

2

� tÿr

0

�1�jaj�ÿ1=2ÿn�tÿ rÿa�ÿ1=2
da

�
y

ÿa

�1�jbj�ÿ1ÿm�t� r�b�ÿ1=2
db:�4:36�

Using (3.8) as a � t� r, b � ÿa, k � 1� m and g � 1=2, we have

�1� r� t�1=2I�2 aC

� tÿr

ÿy

�1� jaj�ÿ1=2ÿn�tÿ rÿ a�ÿ1=2
da:

Using (3.7) as a � b � tÿ r, k � �1=2� � n and g � 1=2, we get (4.34).

Next we consider J1. It follows from (4.15) and (4.23) that for tÿ r > 0

J1a
1

2

� tÿr

0

�1� jbj�ÿ1=2ÿn�t� r� b�ÿ1=2
db

� b

ÿb

�1� jaj�ÿ1ÿm�tÿ rÿ a�ÿ1=2
da�4:37�

aC

� tÿr

0

�1� jbj�ÿ1=2ÿn�t� r� b�ÿ1=2�tÿ rÿ b�ÿ1=2
db;

because m > 0. When 0a r� ta 1, it is enough to show that J1 is bounded. It

follows from (4.37) that

J1aC

� tÿr

0

bÿ1=2�tÿ rÿ b�ÿ1=2
db;

hence J1 is bounded. When r� tb 1, it follows from (4.37) that

J1aC�1� t� r�ÿ1=2

� tÿr

ÿy

�1� jbj�ÿ1=2ÿn�tÿ rÿ b�ÿ1=2
db:

Using (3.7) as a � b � tÿ r, k � �1=2� � n and g � 1=2, we get (4.35). The

proof is complete. r

Proposition 4.2. Let m > 0 and n > 0. Then we have

I�1 aC�1� r� jtj�ÿ1=2�1� jrÿ tj�ÿn;�4:38�

Iÿ1 aC�1� r� jtj�ÿ1=2�1� jrÿ tj�ÿn;�4:39�

J2aC�1� r� jtj�ÿ1=2�1� jrÿ tj�ÿn:�4:40�
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Proof. First we show (4.38). It follows from (4.11) and (4.18) that for

t > 0

I�1 a
1

2

�
y

jtÿrj

�1�jaj�ÿ1=2ÿn�a� rÿ t�ÿ1=2
da

�
y

rÿt

�1�jbj�ÿ1ÿm�t� r�b�ÿ1=2
db:�4:41�

To deal with the a-integral, we use (3.6) as a � b � rÿ t, k � �1=2� � n and

g � 1=2. While, to handle the b-integral, we employ (3.8) as a � t� r, b � rÿ t,

k � 1� m and g � 1=2. Then we obtain (4.38), because t > 0.

Next we shall show (4.39) and (4.40), by proving the following Lemmas 4.2

and 4.3. Indeed, for such �r; t� that r� tb 4 and 0a ta 3r, the desired estimates

follow from Lemma 4.3. While for the other case, Lemma 4.2 yields them, because

1� jrÿ tj is equivalent to 1� r� jtj for the case.

Lemma 4.2. Let m > 0 and n > 0. Then we have

Iÿ1 aC�1� jrÿ tj�ÿ�1=2�ÿn; J2aC�1� jrÿ tj�ÿ�1=2�ÿn:�4:42�

Proof. First we consider Iÿ1 . It follows from (4.12) and (4.20) that

Iÿ1 a
1

2

�
y

tÿr

�1� jaj�ÿ1ÿm�a� rÿ t�ÿ1=2
da

�
y

jrÿtj

�1� b�ÿ1ÿn
db

a
1

2n
�1� jrÿ tj�ÿn

�
y

tÿr

�1� jaj�ÿ1ÿm�a� rÿ t�ÿ1=2
da:

Using (3.8) as a � rÿ t, b � tÿ r, k � 1� m and g � 1=2, we get (4.42) for Iÿ1 .

Next we consider J2. It follows from (4.16) and (4.24) that

J2a
1

2

�
y

jrÿtj

�1� b�ÿ1ÿn
db

� tÿr

ÿy

�1� jaj�ÿ1ÿm�tÿ rÿ a�ÿ1=2
da

a
1

2n
�1� jrÿ tj�ÿn

� tÿr

ÿy

�1� jaj�ÿ1ÿm�tÿ rÿ a�ÿ1=2
da:

Using (3.7) as a � b � tÿ r, k � 1� m and g � 1=2, we get (4.42) for J2. The

proof is complete. r

Lemma 4.3. Let m > 0 and n > 0. If r� tb 4 and 0a ta 3r, then we have

Iÿ1 aC�1� r� t�ÿ1=2�1� jrÿ tj�ÿn; J2aC�1� r� t�ÿ1=2�1� jrÿ tj�ÿn:�4:43�

Proof. First we consider J2. We choose y such that 0 < y < minfn; 1=2g.

Then it follows from (4.16) and (4.25) that
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J2a
C
��

r
p

�

y

jrÿtj
�1� b�ÿ1ÿn�y

db

� tÿr

ÿy

�1� jaj�ÿ1ÿm�tÿ rÿ a�ÿy
da

aC�1� r� t�ÿ1=2�1� jrÿ tj�ÿn�y

� tÿr

ÿy

�1� jaj�ÿ1ÿm�tÿ rÿ a�ÿy
da;

because 4rb r� tb 4. Using (3.7) as a � b � tÿ r, k � 1� m and g � y, we get

(4.43) for J2.

Next we consider Iÿ1 . It follows from (4.12) and (4.21) that

Iÿ1 aC

� t�r

tÿr

�1� jaj�ÿ1ÿm�t� rÿ a�ÿ1=2�a� rÿ t�ÿy
da

�
�

y

jrÿtj
�1� b�ÿ1=2ÿn�y�b � tÿ r�ÿ1=2

db

aC�1� jrÿ tj�ÿn�y

� t�r

tÿr

�1� jaj�ÿ1ÿm�t� rÿ a�ÿ1=2�a� rÿ t�ÿy
da;

where we have taken y to be 0 < y < minfn; 1=2g and we have used (3.6) as

a � b � tÿ r, k � �1=2� � nÿ y and g � 1=2.

Note that �t� r�=2b tÿ r for ta 3r. Since t� rÿ ab �t� r�=2 for tÿ ra

aa �t� r�=2 and jajb �t� r�=2 for �t� r�=2a aa t� r, we have

�1� jrÿ tj�nÿy
Iÿ1 aC�t� r�ÿ1=2

�

y

tÿr

�1� jaj�ÿ1ÿm�a� rÿ t�ÿy
da�4:44�

� �1� r� t�ÿ1ÿm

� t�r

tÿr

�t� rÿ a�ÿ1=2�a� rÿ t�ÿy
da:

Using (3.8) as a � rÿ t, b � tÿ r, k � 1� m and g � y, we get

�

y

tÿr

�1� jaj�ÿ1ÿm�a� rÿ t�ÿy
daaC�1� jrÿ tj�ÿy:�4:45�

Moreover, since y < 1=2, we have

� t�r

tÿr

�t� rÿ a�ÿ1=2�a� rÿ t�ÿy
daa �2r�1=2ÿy

� t�r

tÿr

�t� rÿ a�ÿ1=2�a� rÿ t�ÿ1=2
da

aC�1� r� t�1=2ÿy:

Therefore, we see that the right hand side of (4.44) is dominated by C�1� r� t�ÿ1=2 �
�1� jrÿ tj�ÿy, because r� tb 4. Hence, we get (4.43) for Iÿ1 . The proof is

complete. r
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Case 2: n � 3. If we set

I�r; t� �
1

2r

� t

ÿy

ds

� tÿs�r

jtÿsÿrj

1

zn;m�l; s�
dl;�4:46�

it follows from (1.3), (4.1) and (4.2) with n � 3 and r � tÿ s that

jL�F ��x; t�jaMn;m�F� � I�r; t�:�4:47�

Moreover, if we denote by IG the integrals over Gsb 0 of I, respectively, then

we have

I��r; t� �
1

4r
w�t�

� t�r

jtÿrj

�1� a�ÿ1ÿn
da

� a

rÿt

�1� jbj�ÿ1ÿm
db;�4:48�

Iÿ�r; t� �
1

4r

� t�r

tÿr

�1� jaj�ÿ1ÿm
da

�
y

a4jrÿtj

�1� b�ÿ1ÿn
db;�4:49�

where w�t� � 1 for t > 0, w�t� � 0 for ta 0. Since

I�r; t� � I��r; t� � Iÿ�r; t�;�4:50�

it su½ces to show

IG�r; t�aC�1� r� jtj�ÿ1�1� jrÿ tj�ÿn
:�4:51�

To this end, we prepare the following:

Lemma 4.4. Let k > 1. For r > 0 and t > 0, we have

1

r

� t�r

jtÿrj

�1� s�ÿk
dsaC�1� r� t�ÿ1�1� jrÿ tj�ÿk�1

:�4:52�

Moreover, for r > 0 and t A R, we have

1

r

� t�r

tÿr

�1� jsj�ÿk
dsaC�1� r� jtj�ÿ1

:�4:53�

Proof. We shall show only (4.53), because (4.52) was handled in a similar

fashion. When r� jtjb 1 and jtja 2r, (4.53) follows from the fact that rÿ1
a

C�1� r� jtj�ÿ1, because k > 1. In the other case, we have �1� jsj�ÿk
a

C�1� r� jtj�ÿk for tÿ ra sa t� r, hence we get (4.53). This completes the

proof. r

Now we estimate IG. Since m > 0, we have

I��r; t�a
1

2mr
w�t�

� t�r

jtÿrj

�1� a�ÿ1ÿn
da;�4:54�
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which yields (4.51) for I� by (4.52) with k � 1� n. Moreover, since n > 0, we

have

�1� jrÿ tj�nIÿ�r; t�a
C

r

� t�r

tÿr

�1� jaj�ÿ1ÿm
da;�4:55�

from which we get (4.51) for Iÿ by (4.53). This completes the proof of

Theorem 1.1.

5. An application.

As we have mentioned in Section 1, we shall consider a system of semilinear

wave equations as an application of Theorem 1.1:

q2t uÿ Du � F�v� in R
n � R;�5:1�

q2t vÿ Dv � G�u� in R
n � R:�5:2�

Suppose that F A C2�R� and G A C2�R� satisfy

F�0� � F 0�0� � F 00�0� � 0; G�0� � G 0�0� � G 00�0� � 0;�5:3�

and that there are p > 2, q > 2 and A > 0 such that for juija 1, jvija 1 �i � 1; 2�

jF 00�v1� ÿ F 00�v2�ja
Ap�pÿ 1�jv1 ÿ v2j

pÿ2 if 2 < pa 3,

Ap�pÿ 1�jv1 ÿ v2j�jv1j � jv2j�
pÿ3 if p > 3,

(

�5:4�

jG 00�u1� ÿ G 00�u2�ja
Aq�qÿ 1�ju1 ÿ u2j

qÿ2 if 2 < qa 3,

Aq�qÿ 1�ju1 ÿ u2j�ju1j � ju2j�
qÿ3 if q > 3.

(

�5:5�

Remark. Typical examples of F and G are

F �v� � jvjpÿ1
v or F �v� � jvjp;�5:6�

G�u� � jujqÿ1
u or G�u� � jujq:�5:7�

Before stating the main result, we prepare the following lemma:

Lemma 5.1. Assume that (1.9) and (1.10) hold.

(i) If n satis®es

0 < na p�
;�5:8�

n > p� ÿ
G

pqÿ 1
�

1ÿ p� � p�1ÿ q��

pqÿ 1
;�5:9�
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then there is a number k verifying

0 < ka q�;�5:10�

k >
1

p
ÿ
p� ÿ n

p
�5:11�

and

k < q� ÿ 1� qn �
1

p
� q nÿ p� �

G

pq

� �

:�5:12�

(ii) Let n satisfy (5.8) and (5.9). Furthermore, if G > �pqÿ 1�=2, we assume

n > p� ÿ
G

pq
ÿ

1

2pq
�

1

q
1�

1

2p
ÿ q�

� �

:�5:13�

Then there is a number k verifying (5.10), (5.11), (5.12) and

k >
1

2p
:�5:14�

(iii) If n satis®es (5.8) and

n > p� ÿ
G

pq
�

1

q
ÿ

a

pq
�

1

q
1�

1

p
ÿ q�

� �

;�5:15�

then there is a number k verifying (5.10), (5.12) and

k >
1

p
:�5:16�

Remark. Note that the conditions (5.9), (5.13) and (5.15) are meaningful

only when the right hand sides are positive, by (5.8). Moreover, it is easy to see

that (5.15) implies (5.9) and (5.13).

Proof of Lemma 5.1. Firstly, we prove the statement (iii). It su½ces to

check

1

p
< q�;

1

p
<

1

p
� q nÿ p� �

G

pq

� �

:�5:17�

Notice that (1.9) and (1.21) yield a � pq� ÿ 1 > 0, hence the ®rst inequality in

(5.17) holds. While the other follows from (5.15) immediately.

Secondly, we prove the statement (i), by dividing the argument into two

cases.
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Case 1. 1=q < na p�.

In this case, we have

q� < q� ÿ 1� qn:

Since q� > 0, it is enough to show

1

p
ÿ

p� ÿ n

p
< q�:�5:18�

Since

q� ÿ
1

p
ÿ

p� ÿ n

p

� �

�
1

p
�a� p� ÿ n�;

we get (5.18), by a > 0 and (5.8).

Case 2. 0 < na 1=q.

In this case, we have

q� ÿ 1� qna q�:�5:19�

Moreover, it holds that

1

p
ÿ

p� ÿ n

p
<

1

p
� q nÿ p� �

G

pq

� �

:�5:20�

Indeed, this is equivalent to

p� ÿ n <
G

pqÿ 1
;

which follows from (5.9). Namely, we obtain by the equality of (5.12)

1

p
ÿ

p� ÿ n

p
< q� ÿ 1� qn:�5:21�

Note that

q� ÿ 1� qn > 0 if q� > 1;�5:22�

and that

1

p
ÿ

p� ÿ n

p
> 0 if q�

a 1;�5:23�

because p�
a q� and n > 0. Therefore, the statement (i) follows from (5.19),

(5.21), (5.22) and (5.23).
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Finally, we prove the statement (ii). Since we have assumed (5.8) and (5.9),

we see from the statement (i) that there is a number k verifying (5.10), (5.11)

and (5.12). When either Ga �pqÿ 1�=2 or G > �pqÿ 1�=2 and nb p� ÿ 1=2,

we have (5.14) by (5.11). Next we consider the case where G > �pqÿ 1�=2 and

n < p� ÿ 1=2. Then we have

1

p
ÿ

p� ÿ n

p
<

1

2p
;

hence it su½ces to show

1

2p
< q�;

1

2p
<

1

p
� q nÿ p� �

G

pq

� �

:�5:24�

Since a > 0, we have q� > 1=p. Moreover, the latter inequality follows from

(5.13). This completes the proof of Lemma 5.1. r

Theorem 5.1. Let n � 2 or n � 3. Suppose that (1.9), (1.10), (1.18), (1.19)

and (5.8) hold.

(A) Let n and k satisfy (5.9) through (5.12). Then there is a positive number

e0 � e0�n; k; p; q;A� such that for any e with 0 < ea e0, there exists uniquely a

classical solution �u; v� A Xn;k�2C0e� of (5.1) and (5.2) verifying

jqa

x�u�x; t� ÿ uÿ�x; t��jaC�v�p
k
�1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; n�;�5:25�

jqa

x�v�x; t� ÿ vÿ�x; t��jaC�u�q
n
�1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; k��5:26�

for any �x; t� A R
n � R and jaja 2, and

jjj�uÿ uÿ��t�jjjeaCkvkp
k
�1� jtj�ÿp �

f�1� jtj��1ÿ2pk��g1=2 for ta 0;�5:27�

jjj�vÿ vÿ��t�jjjeaCkukq
n
�1� jtj�ÿq �

f�1� jtj��1ÿ2qn��g1=2 for ta 0;�5:28�

where uÿ and vÿ are the solutions to the homogeneous wave equation satisfying

(1.16) and (1.17). In addition, � � �
n
and jjj � jjje are de®ned by (2.4) and (2.5),

respectively.

(B) Let n and k satisfy (5.15), (5.10), (5.12) and (5.16). Then we have

jqa

x�u�x; t� ÿ uÿ�x; t��jaC�v�p
k
�1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; p
���5:29�

for any �x; t� A R
n � R and jaja 2, and

jjj�uÿ uÿ��t�jjjeaCkvkp
k
�1� jtj�ÿp �

for ta 0:�5:30�
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(C) Suppose

qp� > 1; i:e:; b > 0:�5:31�

Let n and k satisfy

1=q < na p�; 1=p < ka q�:�5:32�

Then we have (5.29), (5.30),

jqa
x�v�x; t� ÿ vÿ�x; t��jaC�u�qn �1� r� jtj�ÿ�nÿ1�=2

Fn�r; t; q
���5:33�

for any �x; t� A R
n � R and jaja 2, and

jjj�vÿ vÿ��t�jjjeaCkukq
n �1� jtj�ÿq�

for ta 0:�5:34�

Here C is a constant depending only on n, k, p, q and A.

Remark. The existence of such n and k as in the part (A) and (B) in

Theorem 5.1 is guaranteed by Lemma 5.1. In particular, if we take n as n � p�,

we can ®nd k satisfying (5.10) and

1

p
< k < q� ÿ 1� qp� �

1

p
�
G

p
;�5:35�

by Lemma 5.1. Hence, we have (5.29) and (5.30).

Note that if n and k satisfy (5.32), then (5.15), (5.10), (5.12) and (5.16) hold.

Also remark that if n and k satisfy (5.15), (5.10), (5.12) and (5.16), then (5.9)

through (5.12) hold.

If (5.31) holds, we can ®nd n such that 1=q < na p�. Moreover, since

n > 1=q imply (5.15), there is a number k satisfying 1=p < ka q�. Furthermore,

the ®rst part of Theorem 1.2 follows from the parts (A) and (C) in Theorem 5.1.

In both (5.27) and (5.28), the right hand sides tend to zero as t ! ÿy.

More precisely, we have the following.

Corollary 5.1. Let n � 2 or n � 3. Suppose that (1.9), (1.10), (1.18) and

(1.19) hold. Let n and k satisfy (5.8) through (5.12).

If 2pk > 1, (5.30) holds. While, if 2pk < 1, we have

jjj�uÿ uÿ��t�jjjeaCkvkp
k�1� jtj�ÿ1=2ÿn

for ta 0:�5:36�

Moreover, if 2qn > 1, (5.34) holds. While, if 2qn < 1, we have

jjj�vÿ vÿ��t�jjjeaCkukq
n �1� jtj�ÿ1=2ÿk

for ta 0:�5:37�

Proof. When 2pk > 1, (5.30) immediately follows from (5.27). Moreover,
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when 2pk < 1, we have p� ÿ ��1ÿ 2pk���=2 > 1=2� n by (5.11). Therefore, (5.36)

follows from (5.27).

Furthermore, when 2qn > 1, (5.34) follows from (5.28). On the other hand,

2qn < 1 and (5.12) yield q� ÿ ��1ÿ 2qn���=2 > 1=2� k, hence (5.37) follows from

(5.28). This completes the proof. r

Remark. When 2pk < 1, we must have p� > 1=2� n > 1=2, by (5.11).

When 2qn < 1, we must have q� > 1=2� k > 1=2, by (5.12).

We can ®nd k satisfying 2pk > 1 and (5.10) through (5.12), when n satisfy

(5.8), (5.9), and (5.13) if G > �pqÿ 1�=2, by Lemma 5.1.

If we assume

2qp� > 1; i:e:; 2b � 1 > 0;�5:38�

we can choose n verifying 2qn > 1, (5.8), (5.9) and (5.13). On the other hand, if

(5.38) does not hold, we have 2qna 1, because na p�.

The following corollary follows from Theorem 5.1 and Corollary 5.1, by

setting p � q.

Corollary 5.2. Let n � 2 or n � 3 and let p � q. Suppose that pp� > 1,

(5.8), (1.18) and (1.19) hold.

(A) If n and k satisfy (5.10),

n > p� ÿ
pp� ÿ 1

pÿ 1
�

1ÿ p�

pÿ 1
;�5:39�

and

1

p
ÿ

p� ÿ n

p
< k < p� ÿ 1� pn;�5:40�

then (5.25) through (5.28) with p � q hold.

(B) If n and k satisfy (5.10),

n > p� ÿ
�p� 1��pp� ÿ 1�

p2
�

1

p
ÿ

pp� ÿ 1

p2
�

1

p
1�

1

p
ÿ p�

� �

;�5:41�

and

1

p
< k < p� ÿ 1� pn;�5:42�

then (5.29) and (5.30) hold.

(C) Let n and k satisfy (5.32). Then (5.29), (5.30), (5.33) and (5.34) with

p � q hold.
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(D) Let n � k and n satisfy (5.39). If 2pn > 1, we have (5.30) and (5.34)

with p � q. While, if 2pn < 1, we have (5.36) and (5.37) with p � q.

Remark. If we take k � n, then (5.40) is equivalent to (5.39).

Here we would like to compare Corollary 5.2 with the previous results in

[20], [26] and [36], which concern with the asymptotic behavior of the solution

to

q2t uÿ Du � F �u� in R
n � R;�5:43�

such that

jjju�t� ÿ u0�t�jjje ! 0 as t ! ÿy;�5:44�

where u0 is the solutions to the homogeneous wave equation satisfying

u0�x; 0� � f �x�; qtu0�x; 0� � g�x� in R
n
:�5:45�

Since u � v and uÿ � vÿ if we choose f1 � f2 � f and g1 � g2 � g, Corollary 5.2

is a natural extension of those previous works in the sense that the parameters n

and k are taken as n � k � p� in [26] and [36], while in [20], it is assumed that

pn0 1.

At the end of this section, we state asymptotic behavior of the solution �u; v�

obtained by Theorem 5.1 as t ! �y.

Theorem 5.2. Let n � 2 or n � 3. Suppose that (1.9), (1.10), (1.18), (1.19)

and (5.8) hold. Let uÿ and vÿ be the solutions to the homogeneous wave equation

satisfying (1.16) and (1.17). For a solution �u; v� A Xn;k of (5.1) and (5.2) verifying

(5.25) through (5.28), we de®ne

u��x; t� � u�x; t� ÿ L1�F�v���x; t� in R
n � R;�5:46�

v��x; t� � v�x; t� ÿ L1�G�u���x; t� in R
n � R;�5:47�

where we have set

L1�F��x; t� �
1

2p

�

y

t

ds

� sÿt

0

r
��������������������������

�sÿ t�2 ÿ r2
q dr

�

joj�1

F�x� ro; s� dSo�5:48�

for �x; t� A R
2 � R and

L1�F ��x; t� �
1

4p

�

y

t

�sÿ t� ds

�

joj�1

F �x� �sÿ t�o; s� dSo�5:49�

for �x; t� A R
3 � R.
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(A) Let n and k satisfy (5.9) through (5.12). Then u� and v� are classical

solutions to the homogeneous wave equation satisfying

jqa
x�u�x; t� ÿ u��x; t��jaC�v�pk�1� r� jtj�ÿ�nÿ1�=2

Fn�r;ÿt; n�;�5:50�

jqa
x�v�x; t� ÿ v��x; t��jaC�u�qn �1� r� jtj�ÿ�nÿ1�=2

Fn�r;ÿt; k��5:51�

for any �x; t� A R
n � R and jaja 2, and

jjj�uÿ u���t�jjjeaCkvkp
k�1� jtj�ÿp �

f�1� jtj��1ÿ2pk��g1=2 for tb 0;�5:52�

jjj�vÿ v���t�jjjeaCkukq
n �1� jtj�ÿq �

f�1� jtj��1ÿ2qn��g1=2 for tb 0:�5:53�

(B) Let n and k satisfy (5.15), (5.10), (5.12) and (5.16). Then we have

jqa
x�u�x; t� ÿ u��x; t��jaC�v�pk�1� r� jtj�ÿ�nÿ1�=2

Fn�r;ÿt; p���5:54�

for any �x; t� A R
n � R and jaja 2, and

jjj�uÿ u���t�jjjeaCkvkp
k�1� jtj�ÿp �

for tb 0:�5:55�

(C) Suppose that (5.31) holds and that n and k satisfy (5.32). Then we have

(5.54), (5.55),

jqa
x�v�x; t� ÿ v��x; t��jaC�u�qn �1� r� jtj�ÿ�nÿ1�=2

Fn�r;ÿt; q���5:56�

for any �x; t� A R
n � R and jaja 2, and

jjj�vÿ v���t�jjjeaCkukq
n �1� jtj�ÿq�

for tb 0:�5:57�

6. A priori estimate.

The aim of this section is to prove a priori estimates, which are needed to show

Theorems 5.1 and 5.2. The following lemma is a consequence of Theorem 1.1.

Lemma 6.1. Assume that (1.9) and (1.10) hold. Let n and k satisfy (5.8)

through (5.12). Let �u; v� A Xn;k. Then we have

kL�jvjp�knaC1kvk
p
k ; kL�jujq�kkaC1kuk

q
n ;�6:1�

where C1 is a constant depending only on p, q, n and k.

Proof. It follows from (2.7) and (1.4) with F � jvjp and F � jujq that for

m > 0

jL�jvjp��x; t�j�1� r� jtj��nÿ1�=2=Fn�r; t; n�aCMn;m�jvj
p�;�6:2�

jL�jujq��x; t�j�1� r� jtj��nÿ1�=2=Fn�r; t; k�aCMk;m�juj
q�:�6:3�
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Therefore, (6.1) will be established, if we can ®nd a positive number m such that

Mn;m�jvj
p�aCkvkp

k ; Mk;m�juj
q�aCkukq

n ;�6:4�

because Fn�r; t; n�aFn�r; jtj; n�. It follows from (1.11) and (1.13) that

l�nÿ1�=2�1� l� jsj�1�n�1� jlÿ jsj j�1�mjv�y; s�jpa kvkp
k

�1� jlÿ jsj j�1�mÿpk

�1� l� jsj�p
�ÿn

and

l�nÿ1�=2�1� l� jsj�1�k�1� jlÿ jsj j�1�mju�y; s�jqa kukq
n

�1� jlÿ jsj j�1�mÿqn

�1� l� jsj�q
�ÿk ;

unless n � 2 and either nb 1=2 or kb 1=2. By (5.11) and (5.12), we can choose

a positive number m such that

m < pkÿ 1� p� ÿ n; m < qnÿ 1� q� ÿ k:�6:5�

Hence, by (5.8) and (5.10) together with (2.7), we obtain (6.4) with C � 1.

When n � 2 and either nb 1=2 or kb 1=2, we get (6.4) less hard. Indeed,

if n � 2, we have 3 < pa q by (1.10), hence p=2 > 3=2. This completes the

proof. r

Next we introduce a function space Yn;k de®ned by

Yn;k � f�u; v� A C2�Rn � R� � C2�Rn � R� : �u�n � �v�k < �yg;�6:6�

where � � �n is de®ned by (2.4). In what follows, by C we denote the various

constants depending only on A, p, q, n and k. On the basis of Lemma 6.1, we

prove the following.

Proposition 6.1. Let n and k satisfy (5.8) through (5.12). Assume (5.3)

through (5.5) hold.

(A) Let �u; v� A Xn;k�1�VYn;k. Then we have

kL�F�v��knaAC1kvk
p
k ; kL�G�u��kkaAC1kuk

q
n ;�6:7�

kqxL�F�v��knaApC1kvk
pÿ1
k kqxvkk; kqxL�G�u��kkaAqC1kuk

qÿ1
n kqxukn;�6:8�

where kqxukn �
P

jaj�1 kq
a
xukn and C1 is the constant in (6.1). Moreover, we get

kq2xL�F �v��knaApC1kvk
pÿ1
k kq2xvkk � Ckvkpÿ2

k kqxvk
2
k;�6:9�

kq2xL�G�u��kkaAqC1kuk
qÿ1
n kq2xukn � Ckukqÿ2

n kqxuk
2
n ;�6:10�

where kq2xukn �
P

jaj�2 kq
a
xukn.
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(B) Let �uj; vj� A Xn;k�1�VYn;k � j � 1; 2�. Then we have

kL�F�v1�� ÿ L�F �v2��knaApC1�kv1kk � kv2kk�
pÿ1kv1 ÿ v2kk;�6:11�

kL�G�u1�� ÿ L�G�u2��kkaAqC1�ku1kn � ku2kn�
qÿ1ku1 ÿ u2kn;�6:12�

kqxfL�F�v2�� ÿ L�F �v1��gknaApC1�kv1kk � kv2kk�
pÿ1kqx�v1 ÿ v2�kk�6:13�

� C��v1�k � �v2�k�
pÿ1kv1 ÿ v2kk;

kqxfL�G�u2�� ÿ L�G�u1��gkkaAqC1�ku1kn � ku2kn�
qÿ1kqx�u1 ÿ u2�kn�6:14�

� C��u1�n � �u2�n�
qÿ1ku1 ÿ u2kn;

kq2xfL�F�v2�� ÿ L�F �v1��gknaApC1�kv1kk � kv2kk�
pÿ1kq2x�v1 ÿ v2�kk�6:15�

� C2��v1�k � �v2�k�
2kv1 ÿ v2k

pÿ2
k

� C��v1�k � �v2�k�
pÿ1
X

jaja1

kqa

x�v1 ÿ v2�kk;

kq2xfL�G�u2�� ÿ L�G�u1��gkkaAqC1�ku1kn � ku2kn�
qÿ1kq2x�u1 ÿ u2�kn�6:16�

� C3��u1�n � �u2�n�
2ku1 ÿ u2k

qÿ2
n

� C��u1�n � �u2�n�
qÿ1
X

jaja1

kqa

x�u1 ÿ u2�kn;

where C2 and C3 are constants depending only on A, p, q, n and k such that C2 � 0

if p > 3, and C3 � 0 if q > 3.

Proof. It is easy to see from (5.3), (5.4) and (5.5) that for juja 1 and

jvja 1

jF�v�jaAjvjp; jG�u�jaAjujq;�6:17�

jF 0�v�jaApjvjpÿ1
; jG 0�u�jaAqjujqÿ1

;�6:18�

jF 00�v�jaAp�pÿ 1�jvjpÿ2
; jG 00�u�jaAq�qÿ 1�jujqÿ2

:�6:19�

Note that we have

k jw1j
y1 jw2j

y2 jw3j
y3k

n
a kw1k

y1

n
kw2k

y2

n
kw3k

y3

n

for wi A C�Rn � R� and yi A �0; 1� with y1 � y2 � y3 � 1. Therefore, we get from

(6.1)

kL�jw1j
y1pjw2j

y2pjw3j
y3p�k

n
aC1kw1k

y1p
k

kw2k
y2p
k

kw3k
y3p
k

:�6:20�
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Since qxjL�F�v�� � L�qxjF �v�� �1a ja n� and

ju�x; t�ja kuk
n
; jv�x; t�ja kvk

k
for �x; t� A R

n � R;�6:21�

the statements of the part (A) follow from (6.17) through (6.20).

Next we prove (6.15). When 2 < pa 3, we have from (6.18), (6.19), (5.4)

and (6.20)

kqjqkfL�F�v2��ÿL�F �v1��gknaApC1kv1k
pÿ1
k

kqjqk�v1ÿv2�kk

�Ap�pÿ1�C1�kv1kk�kv2kk�
pÿ2kv1ÿv2kkkqjqkv2kk

�Ap�pÿ1�C1kv2k
pÿ2
k

kqj�v1ÿv2�kkkqkv1kk

�Ap�pÿ1�C1kv2k
pÿ2
k

kqk�v1ÿv2�kkkqjv2kk

�Ap�pÿ1�C1kv1ÿv2k
pÿ2
k

kqjv1kkkqkv1kk;

which yields (6.15). When p > 3, we get (6.15) with C2 � 0, similarly. Since

the treatment of others are less hard, we omit the further details. (See also

[12]). r

7. Proof of Theorems 5.1 and 5.2.

Firstly we show the part (A) in Theorem 5.1. The classical solution �u; v� of

(5.1) and (5.2) verifying (5.25) through (5.28) is furnished by a solution of the

following system of integral equations:

u�x; t� � uÿ�x; t� � L�F�v���x; t� in R
n � R;�7:1�

v�x; t� � vÿ�x; t� � L�G�u���x; t� in R
n � R;�7:2�

where uÿ and vÿ are the solutions to the homogeneous wave equation satisfy-

ing (1.16) and (1.17), and L�F�v���x; t� and L�G�u���x; t� are given by (1.2) and

(1.3) with F replaced by F �v� and G�u�. To establish this fact, we introduce a

sequence f�um; vm�g
y

m�0 de®ned by u0 � uÿ, v0 � vÿ and for mb 0

um�1�x; t� � u0�x; t� � L�F �vm���x; t� in R
n � R;�7:3�

vm�1�x; t� � v0�x; t� � L�G�um���x; t� in R
n � R:�7:4�

By (1.20) and (2.4), we have

ku0kn � kv0kkaC0e; �u0�n � �v0�kaC;�7:5�
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provided (5.8) and (5.10) hold. As for e > 0, we assume that

2C0ea 1;�7:6�

ApC1�4C0e�
pÿ1
a

1

2
; AqC1�4C0e�

qÿ1
a

1

2
;�7:7�

where C1 is the constant in Lemma 6.1.

Lemma 7.1. We assume that (1.9), (1.10), (1.18), (1.19), (7.6) and (7.7)

hold. Then we have for nonnegative integers m

kumkn � kvmkka 2�ku0kn � kv0kk�a 1;�7:8�

kum�1 ÿ umkn � kvm�1 ÿ vmkkaC42
ÿm

;�7:9�

�um�n � �vm�kaC;�7:10�

kqx�um�1 ÿ um�kn � kqx�vm�1 ÿ vm�kkaC52
ÿm � CC4m2ÿm

;�7:11�

and

kq2x�um�1 ÿ um�kn �kq2x�vm�1 ÿ vm�kkaC62
ÿm �Cm�C52

ÿm �C4m2ÿm��7:12�

� CC7m�C22
ÿ�pÿ2�m �C32

ÿ�qÿ2�m�;

where C2 and C3 are the constants in (6.15) and (6.16) respectively, and we have set

C4 � ku1 ÿ u0kn � kv1 ÿ v0kk; C5 � kqx�u1 ÿ u0�kn � kqx�v1 ÿ v0�kk;

C6 � kq2x�u1 ÿ u0�kn � kq2x�v1 ÿ v0�kk; C7 � C
pÿ2
4 � C

qÿ2
4 :

Proof. First we show (7.8). It is clear that (7.8) holds for m � 0, by (7.5)

and (7.6). Inductively, suppose that (7.8) holds for some m �mb 0�. Then it

follows from (7.3), (7.4), (6.7) and (7.5) that

kum�1kn � kvm�1kka �ku0kn � kv0kk��1� 2AC1�2C0e�
pÿ1 � 2AC1�2C0e�

qÿ1�:

By virtue of (7.7), we ®nd that (7.8) holds for any nonnegative integer m.

Next we show (7.9). Note that by (7.8), (7.5) and (7.7) we have

ApC1�kvmkk � kvmÿ1kk�
pÿ1
a

1

2
; AqC1�kumkn � kumÿ1kn�

qÿ1
a

1

2
�7:13�

for mb 1. It follows from (7.3), (7.4), (6.11), (6.12) and (7.13) that

kum�1 ÿ umkn � kvm�1 ÿ vmkka
1

2
�kum ÿ umÿ1kn � kvm ÿ vmÿ1kk�;�7:14�

which implies (7.9).
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Next we show (7.10). It follows from (7.3), (7.4), (7.5), (6.8) and (7.13) that

kqxum�1kn � kqxvm�1kkaC �
1

2
�kqxumkn � kqxvmkk�;

which gives

kqxumkn � kqxvmkkaC for mb 0:�7:15�

In a similar fashion, we see from (6.9), (6.10), (7.5), (7.13), (7.8) and (7.15) that

(7.15) with qx replaced by q
2
x holds. Hence we get (7.10).

Next we show (7.11). By (6.13), (6.14), (7.13), (7.10) and (7.9), we have

kqx�um�1 ÿ um�kn � kqx�vm�1 ÿ vm�kk

a
1

2
�kqx�um ÿ umÿ1�kn � kqx�vm ÿ vmÿ1�kk� � CC4

1

2

� �mÿ1

for mb 1;

which implies (7.11).

Finally, we show (7.12). By (6.15), (6.16), (7.13), (7.10), (7.9) and (7.11), we

have

kq2x�um�1 ÿ um�kn � kq2x�vm�1 ÿ vm�kk

a
1

2
�kq2x�um ÿ umÿ1�kn � kq2x�vm ÿ vmÿ1�kk�

� C

�

�C4 � C5�
1

2

� �mÿ1

� C4�mÿ 1�
1

2

� �mÿ2�

� CC2

�

C4
1

2

� �mÿ1�pÿ2

� CC3

�

C4
1

2

� �mÿ1�qÿ2

a
1

2
�kq2x�um ÿ umÿ1�kn � kq2x�vm ÿ vmÿ1�kk�

� C C5
1

2

� �m

� C4m
1

2

� �m� �

� CC7

�

C2
1

2

� �� pÿ2�m

� C3
1

2

� ��qÿ2�m�

for mb 1, because C2 � 0 for p > 3, and C3 � 0 for q > 3. This estimate gives

(7.12) and the proof is completed. r

From Lemma 7.1, we see that there is a solution �u; v� A Xn;k�2C0e�VYn;k

of (7.1) and (7.2). In addition, we observe from the proof of (7.14) that such

a solution is unique. Moreover, the solution satis®es (5.25) and (5.26). Indeed,

when a � 0, those asymptotic estimates follow from (6.17), (6.2), (6.3) and (6.4).

Analogously, we obtain them for jaj � 1; 2.
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Next we prove that the solution �u; v� of (7.1) and (7.2) satis®es (5.27) and

(5.28). We start with showing that for �u; v� A Xn;k�1�

kF �v��s�k2L2�R n�aCkvk2p
k
�1� jsj�ÿ2p �ÿ2�1� jsj��1ÿ2pk�� ;�7:16�

kG�u��s�k2L2�Rn�aCkuk2q
n
�1� jsj�ÿ2q �ÿ2�1� jsj��1ÿ2qn�� :�7:17�

Since ÿ�nÿ 1�p� �nÿ 1� � ÿ2p� ÿ 2, it follows from (1.13) and (6.17) that

kF�v��s�k2L2aA2
onkvk

2p
k
I�s�;�7:18�

where we have set

I�s� �

�
y

0

�1� r� jsj�ÿ2p �ÿ2�1� jrÿ jsj j�ÿ2pk
dr;�7:19�

unless n � 2 and kb 1=2. We divide I�s� into I1�s� and I2�s� which are de®ned

by

I1�s� �

� 2jsj

0

�1� r� jsj�ÿ2p �ÿ2�1� jrÿ jsj j�ÿ2pk
dr;�7:20�

I2�s� �

�
y

2jsj

�1� r� jsj�ÿ2p�ÿ2�1� jrÿ jsj j�ÿ2pk
dr:�7:21�

It is easy to see that for k > 0

I2�s�aC�1� jsj�ÿ2p �ÿ1ÿ2pk:�7:22�

While we have

�1� jsj�2p
��2

I1�s�aC�1� jsj��1ÿ2pk�� :�7:23�

These estimates yield (7.16).

When n � 2 and kb 1=2, we have

kF �v��s�k2L2aCkvk2p
k

�
y

0

�1� r�jsj�ÿ2p �ÿ2�1�jrÿjsj j�ÿp�1� log�1�jrÿjsj j��2p dr

aCkvk2p
k

�
y

0

�1� r�jsj�ÿ2p �ÿ2�1�jrÿjsj j�ÿ2
dr

aCkvk2p
k
�1�jsj�ÿ2p �ÿ2;

since p > 3. We thus obtain (7.16). Analogously, we also get (7.17).

Since u�t; �� ÿ uÿ�t; �� and v�t; �� ÿ vÿ�t; �� can be represented by (8.6) below,

with F � F �v� and F � G�u� respectively, it holds that
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jjj�uÿ uÿ��t�jjjea �n� 1�

� t

ÿy

kF �v��s�kL2�Rn� ds;�7:24�

jjj�vÿ vÿ��t�jjjea �n� 1�

� t

ÿy

kG�u��s�kL2�R n� ds;�7:25�

provided there are positive constants y and C satisfying

kF�v��s�kL2�R n� � kG�u��s�kL2�R n�aC�1� jsj�ÿ1ÿy for s A R:�7:26�

A proof of (7.24) and (7.25) will be given in the appendix below.

Now it follows from (7.24) and (7.16) that for ta 0

jjj�uÿ uÿ��t�jjjeaCkvkp
k

� t

ÿy

�1� jsj�ÿp �ÿ1f�1� jsj��1ÿ2pk��g1=2 ds�7:27�

� Ckvkp
k

�y
jtj

�1� s�ÿp �ÿ1f�1� s��1ÿ2pk��g1=2 ds:

If 2pk > 1, we easily have (5.27). When 2pk � 1, by integration by parts, we get

(5.27). Moreover, if we notice that (5.11) implies p� ÿ �1=2�� pk > �1=2�� n> 0,

we obtain (5.27). Since the proof of (5.28) is similar to that of (5.27) if we use

(5.12) instead of (5.11), we omit the details.

Next we prove the uniqueness of the solution. More precisely, we show that

a solution �u; v� A Xn;k�2C0e�VYn;k of (5.1) and (5.2) satisfying (5.27) and (5.28)

is unique, provided (5.8) through (5.12), (7.6) and (7.7) hold. Moreover it is

enough to show that such a solution of (5.1) and (5.2) must satisfy the integral

equations (7.1) and (7.2), since we have already established the uniqueness of the

solution of (7.1) and (7.2). To this end, we set

w1 � uÿ uÿ ÿ L�F �v��; w2 � vÿ vÿ ÿ L�G�u��:�7:28�

We easily see that wi A C 2�Rn � R� �i � 1; 2� and rwi � 0 in R
n � R. Therefore,

if we could show

wi�x; 0� � qtwi�x; 0� � 0 for x A R
n;�7:29�

we would obtain wi�x; t� � 0 for any �x; t� A R
n � R.

We prove (7.29) only for i � 1. It follows from the proof of (5.27) that

jjjL�F�v���t�jjjeaCkvkp
k
�1� jtj�ÿy for ta 0;�7:30�

where y is a positive constant satisfying y < p� and ya 1=2. Therefore we have

from (5.27)

jjjw1�0�jjje � jjjw1�t�jjjeaCkvkp
k
�1� jtj�ÿy for ta 0:�7:31�
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We thus get

qtw1�x; 0� � 0; `w1�x; 0� � 0 for x A R
n:�7:32�

In particular, we see that w1�x; 0� is a constant. Moreover, since �u; v� A Xn;k�1�

and �uÿ; vÿ� A Xp�;q � , we have from (6.7)

jw1�x; 0�ja �kukn � kuÿkp� � AC1kvk
p
k��1� jxj�ÿ�nÿ1�=2;

which implies w1�x; 0� � 0 for x A R
n, hence (7.29) holds. This completes the

proof of the part (A).

Secondly we show the part (B) in Theorem 5.1. Since (5.30) follows from

(5.27) by (5.16), it is enough to show (5.29). In view of the proof of Lemma 6.1,

one can assume without loss of generality that n < 1=2 and k < 1=2 when n � 2.

By (6.2) with n � p� and (6.3), it su½ces to show that there is a positive number

m such that

Mp �;m�jvj
p�a kvkp

k ; Mk;m�juj
q�a kukq

n :�7:33�

Indeed, we can choose a positive number m such that

m < pkÿ 1; m < qnÿ 1� q� ÿ k;�7:34�

by (5.16) and (5.12), hence (7.33) holds. (See the proof of (6.1)).

Finally we show the part (C) in Theorem 5.1. It is enough to show (5.33),

since the others are easily handled. By (6.2) with n � p� and (6.3) with k � q�, it

su½ces to show that there is a positive number m such that

Mp �;m�jvj
p�a kvkp

k ; Mq�;m�juj
q�a kukq

n :�7:35�

In fact, we can choose a positive number m such that

m < pkÿ 1; m < qnÿ 1;�7:36�

by (5.32). This completes the proof of Theorem 5.1. r

Next we prove Theorem 5.2. If we note that L1�F ��x; t� � L�F̂��x;ÿt� with

F̂ �x; t� � F �x;ÿt�, we obtain the desired estimates from the proof of Theorem

5.1. We omit further details. r

8. Appendix.

In this section we prove (7.24) and (7.25) in a more general situation. By

u�t� we denote a function of t A R with values in D 0�Rn�, the space of distribu-

tions on R
n. Consider the initial value problem

u 00�t� ÿ Du�t� � F �t� for t A R�8:1�
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with zero initial data

u�t� � u 0�t� � 0 at t � s;�8:2�

where s is an arbitrary real number and u 00�t� stands for the second derivative of

u�t�, and so on. For a function f A L2�Rn� we denote by f̂ and f̂ �, respectively

the Fourier transform of f and the inverse Fourier transform of f such that

k f̂ kL2�R n� � k f̂ �kL2�R n� � k f kL2�Rn�:�8:3�

Then the following facts are in essence well known.

Proposition 8.1. Assume that F �t� A C�R;L2�Rn��.

i) Let s A R be ®xed. For t A R we de®ne a linear form u�t; s� on S�Rn� by

hu�t; s�; ji �

� t

s

dt

�
R

n

sin�tÿ t�jxj

jxj
F̂�x; t�ĵ��x� dx for j A S�Rn�;�8:4�

where S�Rn� stands for the space of rapidly decreasing functions on R
n. Then

u�t; s�, with s regarded as a parameter, is a solution of the initial value problem

(8.1)±(8.2) such that u�t; s� A C2�R;Hÿ1�Rn��. Moreover the solution is unique in

C 2�R;D 0�Rn��.

ii) Let nb 2. Assume that there are positive constants y and C such that

kF�t�kL2�R n�aC�1� jtj�ÿ1ÿy
for t A R:�8:5�

For t A R we de®ne a linear form u�t� on S�Rn� by

hu�t�; ji �

� t

ÿy

dt

�
R

n

sin�tÿ t�jxj

jxj
F̂ �x; t�ĵ��x� dx for j A S�Rn�:�8:6�

Then

u�t� A C2�R;S 0�Rn��;�8:7�

where S
0�Rn� stands for the space of tempered distributions on R

n, and we have

for each t A R

u 0�t� A L2�Rn�; `u�t� A L2�Rn��8:8�

and

ku 0�t�kL2�R n� � k`u�t�kL2�R n�a �n� 1�

� t

ÿy

kF�t�kL2�R n� dt:�8:9�

Proof. The ®rst part i) is well known. (For the uniqueness see for in-

stance [16], Lemma 5.1). First we shall prove (8.7). Let t A R be ®xed. Then
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we claim that u�t� A S
0�Rn�. To see this we take a positive number d such that

d < y and d < 1. Then

sin�tÿ t�jxj
jxj

�

�

�

�

�

�

�

�

a �tÿ t�d 1

jxj1ÿd
�8:10�

and jxjdÿ1
ĵ��x� A L2�Rn� for nb 2, hence the integrand in the right hand side of

(8.6) is integrable with respect to �x; t� over R
n � �ÿy; t�, according to (8.5).

Therefore we have for j A S�Rn�

hu�t�; ji � lim
k!y

hu�t;ÿk�; ji;

where u�t; s� is given by (8.4). Since u�t;ÿk� A S
0�Rn� for all k � 1; 2; . . . , we

®nd by the Banach-Steinhaus' theorem that u�t� A S
0�Rn�.

Now the desired property (8.7) follows easily from the above procedure.

Finally we shall prove (8.8) and (8.9). Let Dk � ÿ
�������

ÿ1
p

q=qxk �k � 1; . . . ; n�.
Then we get by virtue of (8.5)

jhDku�t�; jija kjkL2�R n�

� t

ÿy

kF�t�kL2�R n� dt:

Hence Dku�t� A L2�Rn� and

kDku�t�kL2�R n�a

� t

ÿy

kF�t�kL2�R n� dt:

Analogously we obtain (8.8) and (8.9). r
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