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Abstract. In this paper, we discuss factorization of the solutions of some linear

ordinary di¨erential equations with transcendental entire coe½cients. We give a con-

dition which shows that the solutions for some di¨erential equations are prime, for some

are factorizable.

1. Introduction.

Let f �z� be a meromorphic function. f �z� is said to be factorizable, if there

exist a transcendental mermorphic function h�z� and a transcendental entire func-

tion g�z� such that f �z� � h�g�z��; f �z� is said to be prime (pseudo-prime, left-

prime), if every factorization f �z� � h�g�z�� implies that either h�z� is bilinear (a

rational function, bilinear) or g�z� is linear (a polynomial). N. Steinmetz ([9])

proved that each meromorphic solution of linear ordinary di¨erential equation

with rational coe½cients is pseudo-prime. A natural question arises: how about

the solutions of linear di¨erential equations with transcendental coe½cients? In

this paper, we shall point out ®rstly that certain class of entire functions are prime,

and then show that the solutions of some linear di¨erential equations with tran-

scendental coe½cients are prime. We also discuss the factorization of the solution

of some other di¨erential equations and prove that the solutions are factorizable.

Throughout this paper, by r� f � we denote the order of f �z�. We assume

that the reader is familiar with Nevanlinna's theory of meromorphic functions

and the meaning of the symbols T�r; f �;N�r; f � and etc. For other notation and

terminology, the reader is referred to [6].

2. A class of prime entire functions.

In this section, we obtain a class of prime entire functions, which is used to

discuss the factorization of the solutions of certain di¨erential equation with the

coe½cients of periodic entire functions.
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Theorem 2.1. Let f �z� � c�ez� exp�F�z� � dz�, where d is not a rational

number, c�z� is a polynomial having at least a non-zero simple zero, and F�z� is a

non-constant periodic entire function with period t and such that r�F�z�� <y.

Then f �z� is prime.

Since f �z� is not periodic, a result of Gross ([5]) shows that the primeness

of f �z� in general sense is equivalent to that in entire sense. Therefore we need

only prove f �z� is prime in entire sense, which follows immediately from the fol-

lowing Lemmas 2.2 and 2.4.

Let f �z� in Theorem 2.1 have the factorization

f �z� � h�g�z��; �2:1�

where h�z� and g�z� are entire functions.

Lemma 2.2. Suppose that h�z� in (2.1) has an in®nite number of zeros, then

g�z� is linear.

To prove Lemma 2.2, the following lemma is needed:

Lemma 2.3 ([10]). Let F�z� be an entire function. Assume that there exists

an unbounded sequence fwng such that all roots of the equations F�z� ÿ wn � 0

�n � 1; 2; . . .� lie in the half plane fz; jarg zÿ pj < p=2g and

lim inf
r!y

T�r;F�
r
� 0;

then F �z� is a polynomial of degree not greater than two.

Now we go back to the proof of Lemma 2.2. Let fwngyn�1 be the sequence

of zeros of h�z�. By Nevanlinna's second fundamental theorem, we know that

for any integer m b 2

N r;
1

c�ez�
� �

>
Xm

j�1

N r;
1

gÿ wj

� �
b �mÿ 1ÿ o�1��T�r; g�; for r A E;

where E is a set of ®nite linear measure. On the other hand, we have

N r;
1

c�ez�
� �

a T�r;c�ez�� �O�1�

� degz c�z�
p

r�O�1�
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Therefore

T�r; g�
r

<
degz c�z�

p�mÿ 1ÿ o�1�� ;

noting m is arbitrary we have

lim inf
r!y

T�r; g�
r

a lim inf
r!y
r AE

T�r; g�
r
� 0:

Obviously, the set of zeros of c�ez� is the same as the set of all the roots of

g�z� ÿ wn � 0, �n � 1; 2; . . .�. Suppose that z1; . . . ; zk are the zeros of c�z�, z0 �
max1a jakflogjzjjg > ÿy. Then all the zeros of c�ez� must lie on the left hand

side of the straight fz;Re z � z0g, and so do all the roots of g�z� ÿ wn � 0. By

Lemma 2.3, g�z� is a polynomial of degree a 2.

If deg g�z� � 2 and g�z� � �az� b�2 � g, then set Z � az� b or z � aZ � b,

g�z� � g�aZ � b� � Z2 � g is even in Z, and f �aZ � b� is even, writing Z by z,

we have

c�eaz�b� exp�F�az� b� � d�az� b��
� c�eÿaz�b� exp�F�ÿaz� b� � d�ÿaz� b��;

therefore

exp�2adz� � c�eÿaz�b�
c�eaz�b� exp�F�ÿaz� b� ÿF�az� b��:

This implies that F�ÿaz� b� ÿF�az� b� is a constant, for it is periodic.

Therefore exp�2adz� has period 2pi=a, 2d must be an integer. This is clearly a

contradiction. Therefore g�z� must be linear. Lemma 2.2 is proved.

Lemma 2.4. Suppose that h�z� in (2.1) has only ®nitely many zeros, then h�z�
is linear.

Proof. Since h�z� has only ®nitely many zeros, then h�z� must be of the

form

h�z� � C�z�eB�z� �2:2�

for a non-constant polynomial C�z� and an entire function B�z�. Since f �z� has

in®nitely many zeros, g�z� must be transcendental. It follows from (2.1) that

C�g�z�� � c�ez�eM�z��dz �2:3�
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and

B�g�z�� � F�z� ÿM�z� � c: �2:4�
We shall prove that B�t� is a constant. To the end, suppose that B�t�2

constant. From (2.3), we have

T�r;M� � o�T�r; g��; r B F ;

and from (2.4), we have

T�r;B�g��@T�r;B�g� �M�z� ÿ c� � T�r;F�z��; �r! �y; r B F�;
where F denotes the set of r with ®nite logarithmic measure, i.e.,

�
F

dt=t <y, and

then g�z� is of ®nite order, it follows from (2.3) that M�z� is a polynomial.

Below we prove that M�z�1 constant. To the end, suppose that M�z�2
constant. By a result of Urabe's ([10]), for any non constant polynomial p�z�,
F�z� � p�z� is left-prime. Therefore B�g�z�� is left-prime, i.e., B�z� is linear.

We may assume that B�z� � az, a A Cnf0g. From (2.4) we have

g�z� � F�z�=aÿM�z�=a� c=a �2:5�
Substituting (2.5) into (2.3), we get

C��F�z� ÿM�z� � c�=a� � c�ez�eM�z��dz:

Then

C��F�0� ÿM�nt� � c�=a� � c�ent�eM�nt��n dt:

Obviously, C��F�0� ÿM�nt� � c�=a�@ ank, as n!y, where a is a non-zero

constant and k � deg C deg M. On the other hand, c�ent�eM�nt��n dt is either

bound or equivalent to b exp�gnm�, as n! �y, where m is a positive integer.

Thus we have derived a contradiction. Therefore M�z�1 c0, and then

B�g�z�� � F�z� � c1:

Since r�F�z�� < �y and g is transcendental, we have r�B� � 0, and therefore

from B�g�z�� being periodic it follows that g�z� is periodic. On the other hand,

since d is not a rational number, C�g�z�� � c�ez�edz�c0 is not periodic. We

know, however, that C�g�z�� is periodic if and only if g�z� is periodic. And then

g�z� is not periodic. The contradiction shows that B�z�1 const, which implies

h�z� is a polynomial.

Suppose that h�z� has at least two distinct zeros. By the similar method to

the proof of Lemma 2.2, we have that r�g�a 1, and then f �z� � h�g�z�� is of

order at most 1. This is impossible. Therefore h�z� has only one zero. But the

given condition that c�z� has a non-zero simple zero implies that h�z� is linear.

The proof of Lemma 2.4 is now completed. r

J. ZHENG and Y. HE838



3. Solutions of w 00 � A�ez�w � 0.

With respect to representations of solutions of periodic second order linear

di¨erential equation

w 00 � A�ez�w � 0; �3:1�
where A�t� �Pp

j�0 bjt
j, bp 0 0, p b 2, S. Bank and I. Laine [2] proved the

following

Theorem A. Let f �z��2 0� be a solution of (3.1) with the property that the

exponent of convergence for the zero-sequence of f �z� is ®nite, then the following is

true:

(I) If f �z� and f �z� 2pi� are linearly dependent, then f �z� can be represented

in the form

f �z� � C�ez� exp
Xm

j�q

dje
jz � dz

 !
: �3:2�

(II) If f �z� and f �z� 2pi� are linearly independent, then f �z� can be

represented in the form

f �z� � C�ez=2� exp
Xm

j�q

dje
� j�1=2�z � dz

 !
; �3:3�

where C�t� is a polynomial all of whose roots are simple and nonzero, m and q A Z

with m b q and d; dq; . . . ; dm A C with dq � dm 0 0.

In this section, we shall point out that in (3.2) and (3.3), m > 0, q b 0 and

d � ���������ÿb0

p
.

Theorem 3.1. Let f �z� be de®ned as in Theorem A. If f �z� and f �z� 2pi�
are linearly dependent, then in (3.2), d � ���������ÿb0

p
, m � p=2 and q b 0.

Proof. By Theorem A, we have f �z� � tdG�t�, where t � ez,

G�t� � C�t� exp
Xm

j�q

djt
j

 !
:

Since

df �z�
dz
� d�tdG�t��

dt
� dt

dz
� d � tdG�t� � td�1G 0�t�;

d 2 f �z�
dz2

� d 2tdG�t� � �2d � 1�td�1G 0�t� � td�2G 00�t�;
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from (3.1) we get

t2G 00�t� � �2d � 1�tG 0�t� � �A�t� � d 2�G�t� � 0

and then C�t� � a0 � a1t� � � � � antn �a0 0 0� satis®es

t2C 00 � 2
Xm

j�q

jdjt
j � 2d � 1

 !
tC 0

�
0@Xm

j�q

j� j ÿ 1�djt
j �

Xm

j�q

jdjt
j

 !2

� �2d � 1�
Xm

j�q

jdjt
j � A�t� � d

1AC�t� � 0: �3:4�

We shall point out here that m > 0. Indeed, if m a 0, then as t!y, we haveXm

j�q

jdjt
j ! 0;

Xm

j�q

j� j ÿ 1� jdjt
j ! 0

and

t2C 00�t�
C�t� ! n�nÿ 1�; tC 0�t�

C�t� ! n:

Since A�t� !y as t!y, (3.4) implies a contradiction. Dividing (3.4) by

t2mC�t� and setting t!y, we have

A�t�
t2m
! ÿm2d 2

m 0 0:

Thus it shows that p � 2m.

We set H�s� � C�sÿ1� � a0 � a1sÿ1 � � � � � ansÿn. Similarly, from (3.4) we

can show that H�s� satis®es the following equation

s2H 00 � 1ÿ 2d ÿ 2
Xm

j�q

jdjs
ÿj

 !
sH 0

�
0@Xm

j�q

j� j ÿ 1�djs
ÿj �

Xm

j�q

jdjs
ÿj

 !2

� �2d 2 � 1�
Xm

j�q

jdjs
ÿj � A�sÿ1� � d 2

1AH � 0: �3:5�
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We shall prove q b 0. In fact, if q < 0, then by using the same method as in the

above, dividing both sides of (3.5) by sÿ2q and setting s!y, we get q2d 2
q a0 � 0.

This is a contradiction. Therefore it must be q b 0. Since s2H 00 and sH 0�s� tend

to zero as s!y, it follows from (3.5) that b0 � d 2 � 0, and further d � �ÿb0�1=2.

Theorem 3.1 follows. r

Theorem 3.2. Let f �z� be de®ned as in Theorem A. If f �z� and f �z� 2pi�
are linearly independent, then in (3.3), d � ���������ÿb0

p
, m � �pÿ 1�=2 and q b 0.

Proof. We set

f �z� � t2dG1�t�;
where G1�t� �C1�t� exp�Pm

j�q djt
2j�1�, t� ez=2, where C1�t� � a0�a1t� � � � � antn,

a0 0 0. From (3.1), it is easy to see that C1�t� satis®es the following equation

t2C 00
1 � 2

Xm

j�q

�2 j � 1�djt
2j�1 � 4d � 1

 !
tC 0

1

�
0@Xm

j�q

2 j�2 j � 1�djt
2j�1 �

Xm

j�q

�2 j � 1�djt
2j�1

 !2

� �4d � 1�
Xm

j�q

�2 j � 1�djt
2j�1 � 4d 2 � 4A�t2�

1AC1 � 0: �3:6�

Similar to Theorem 3.1, we can also point out that m > 0, and then dividing both

sides of (3.6) by C1�t�t4m�2 and setting t!y, we obtain

A�t2� f
t4m�1

! �2m� 1�2d 2
m 0 0;

so that m � �pÿ 1�=2.

Set H1�s� � C1�sÿ1�, we can show that H1�s� solves the following equation

s2H 00
1 � 1ÿ 2d ÿ

Xm

j�q

�2 j � 1�djs
ÿ�2 j�1�

 !
sH 0

1

�
0@Xm

j�q

2 j�2 j � 1�djs
ÿ�2 j�1� �

Xm

j�q

�2 j � 1�djs
ÿ�2 j�1�

 !2

� �4d � 1�
Xm

j�q

�2 j � 1�djs
ÿ�2 j�1� � 4d 2 � 4A�sÿ2�

1AH1 � 0: �3:7�
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Similarly we can prove that q b 0. Since s2H 00
1 �s� and sH 0

1�s� tend to zero as

s!y, from (3.7) we have that 4d 2 � 4b0 � 0, thus d � �ÿb0�1=2.

Combining Theorem A, 2.1, 3.1 and 3.2 we immediately have

Theorem 3.3. Let f �z� be a solution of (3.1) with the properties that 0 is not

a Picard exceptional value of f �z� and the exponent of convergence for the zeros of

f �z� is ®nite. If g � ���������ÿb0

p
is not a rational number, then f �z� is prime.

Remark. 1. If in Theorem 3.3, g � ���������ÿb0

p
is a rational number, then the

solution of (3.1) is factorizable (see [7]).

2. The following example was provided by N. Yanagihara which shows

that if the solution of (3.1) takes zero as Picard exceptional value, then it may be

factorizable.

Suppose that

w 00 � A�ez�w � 0; �3:8�
where A�ez� � ÿ�g2��2g� 1�ez� e2z�. Then it is easy to show f �z� � exp�gz� ez�
is a solution of (3.8), but f �z� has the factorization

f �z� � h�g�z��; h�z� � ez; g�z� � gz� ez:

Further if g is a rational number, then f �z� has another factorization. Indeed,

we may write g � p=q (both p and q are integers),

f �z� � h1�g1�z��; h1�z� � zpez q

and g1�z� � ez=q:

4. Solution of w 000 ÿ Kw 0 � A�ez�w � 0.

Suppose that f �z� is a solution of the equation

w 000 ÿ Kw 0 � �b0 � b1ez � b2e2z�w � 0 �4:1�
such that

log�N r;
1

f

� �
� o�r� as r!y: �4:2�

Then by S. Bank and J. K. Langley ([3])

f �z� � C�ez=q� expfdz� S�ez=q�g;
where C�z� �Ps

j�ÿr cjz
j, S�z� �Pm

j�ÿn djz
j, d is a constant, 1 a q a 3. We have

Theorem 4.1. Suppose that (4.1) admits a non-trivial solution satisfying (4.2).

Then it must be

K � b0 � ÿ1 �4:3�
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Furthermore, f �z� admits the following representation

f �z� � C�ez=3� expfÿz� S�ez=3�g;

C�z� �
Xs

j�0

cjz
j ; S�z� � d0 � d2z2; d2 � ÿ 3

2

�����
b2

3
p

:

Corollary. Let f �z� be a solution of (4.1) with the condition (4.2), then f �z�
is factorizable. Moreover, one of the factorization is that f �z� � h�g�z�� where

g�z� � ez=3, h�z� � c�z�zÿ3 exp S�z�.
Proof of Theorem 4.1. Let d̂ � d ÿ r

q
, ŝ � s� r, we may rewrite f �z� as

f �z� �
X̂s

j�0

ĉje
zj=q

( )
exp d̂z�

Xm

j�ÿn

dje
zj=q

( )

� Ĉ�ez=q� expfd̂z� S�ez=q�g: �4:4�
Set z � ez=q, then f �z� � zd̂qG�z�, G�z� � Ĉ�z� exp S�z�, where Ĉ�z� �Pŝ

j�0 ĉjz
j ,

S�z� �Pm
j�ÿn djz

j. A computation implies that

f 0�z� � d̂zd̂qG�z� � 1

q
zd̂q�1G 0�z�;

f 00�z� � d̂ 2zd̂qG�z� � 1

q2
�2d̂q� 1�zd̂q�1G 0�z� � 1

q2
zd̂q�2G 00�z�;

f 000�z� � d̂ 3zd̂qG�z� � 1

q3
�1� 3d̂q� 3d̂ 2q2�zd̂q�1G 0�z� � 3

q3
�1� d̂q�zd̂q�2G 00�z�

� 1

q3
zd̂q�3G 000�z�:

Substituting the above expressions into (4.1), we get

z3G 000�z� � 3�d̂q� 1�z2G 00�z� ÿ fKq2 ÿ �1� d̂q�3 � d̂ 3q3gzG 0�z�

� q3�d̂ 3 ÿ Kd̂ � b0 � b1z2 � b2z2q�G�z� � 0: �4:5�
We may assume that m0 0, dm 0 0, then by substituting the representation of

G 0�z�=G�z�, G 00�z�=G�z� and G 000�z�=G�z� with respect to z into (4.5), we have

�mdm�3z3m � 3�mdm�2�mÿ 1�dmÿ1z3mÿ1 � 3�d̂q� 1��mdm�2z2m

ÿ fKq2 ÿ �1� d̂q�3 � d̂ 3q3gmdmzm

� q3�d̂ 3 ÿ Kd̂ � b0 � b1zq � b2z2q� �O�z3mÿ2� � 0 �4:6�
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Collecting the coe½cient of the highest term z3m in (4.6), we get

3m � 2q and �mdm�3 � q3b2 � 0:

Noting 1 a q a 3, it must be q � 3, m � 2 and then d2 � ÿ�3=2� �����b2
3
p

. Likewise,

the coe½cient of the term z3mÿ1 is 3�mdm�2�mÿ 1�dmÿ1 � 0, it must be dmÿ1 �
d1 � 0. Therefore S�z� � d2z2 � d0 � dÿ1zÿ1 � � � � � dÿnzÿn. We are going to

show n � 0. To the end, set t � 1=z, G�z� � G�1=t� � G1�t� and then G1�t� �
c1�t� exp S1�t�, where

c1�t� �
X̂s

j�0

ĉjt
ÿj; S1�t� � d2tÿ2 � d0 � dÿ1t� � � � � dÿntn:

A computation implies that G1�t� satis®es

t3G 0001 �t� � 3�1ÿ 3d̂ �t2G 001 �t� � �1ÿ 9d̂ � 27d̂ 2 ÿ 9K�tG 01�t�

ÿ 27�d̂ 3 ÿ Kd̂ � b0 � b1tÿ3 � b2tÿ6�G1�t� � 0 �4:7�
On the other hand, it is easy to show that if n0 0, we may assume ndÿn 0 0,

then substituting the representation of G 01�t�=G1�t�, G 001 �t�=G1�t� and G 0001 �t�=G1�t�
with respect to t into (4.7), and then dividing both sides of resulting equality by

t3n and letting t!y, we get �ndÿn�3 � 0, which is a contradiction to n0 0.

Therefore S�z� � d2z2 � d0 and then S 0�z� � 2d2z, S 00�z� � 2d2, S 000�z� � 0, so

that we have G 0�z�=G�z� � 2d2z�O�zÿ1�, G 00�z�=G�z� � 4d 2
2 z2 � 6d2 �O�zÿ1�

and G 000�z�=G�z� � 8d 3
2 z3 � 24d 2

2 z�O�1�. From (4.5), it follows that

8d 3
2 z6� 24d 2

2 z4� 12d 2
2 �qd̂ � 1�z4� 12d2�qd̂ � 1�z2

ÿ 2d2�Kq2ÿ �1� d̂q�3� d̂ 3q3�z2� q3�d̂ 3ÿKd̂ � b0� bz3� b2z6��O�z3� � 0:

Making use of q � 3 and 8d 3
2 � 27b2 � 0, collecting the coe½cient of the term z4,

we get

24d 2
2 � 12d 2

2 �3d̂ � 1� � 0

noting d2 0 0, it follows that d̂ � ÿ1.

Therefore G�z� � Ĉ�z� exp�d0 � d2z�, and then substituting the representation

of G 0�z�, G 00�z� and G 000�z� into (4.5) and making use of q � 3, we have

z3Ĉ 000 � f6d2z3 � 3�3d̂ � 1�z2gĈ 00 � f12d 2
2 z5 � 6d2z3 � 12d2�3d̂ � 1�z3

� �1� 9d̂ � 27d̂ 2 ÿ 9K�zgĈ 0 � f�12d2z4 � 3�3d̂ � 1��2d2 � 4d2z2��z2

� 2d2�1� 9d̂ � 27d̂ 2 ÿ 9K�z2 � 27�b0 � b1z3 � d̂ 3 ÿ Kd̂ �gĈ � 0: �4:8�
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Since Ĉ�z� �Pŝ
j�0 ĉjz

j and

Ĉ �k��z� �
X̂s

j�k

j� j ÿ 1� � � � � j ÿ k � 1�ĉjz
jÿk; k � 1; 2; 3;

substituting these equalities into (4.8) and collecting the coe½cient of constant

term, we get

27ĉ0�b0 � d̂ 3 ÿ Kd̂ � � 0;

which shows that d̂ is a root of the algebraic equation

x3 ÿ Kx� b0 � 0:

Further we have K � b0 � ÿ1 which is desired (4.3). r
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