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Abstract. In this paper, we discuss factorization of the solutions of some linear

ordinary di¨erential equations with transcendental entire coe½cients. We give a con-

dition which shows that the solutions for some di¨erential equations are prime, for some

are factorizable.

1. Introduction.

Let f �z� be a meromorphic function. f �z� is said to be factorizable, if there

exist a transcendental mermorphic function h�z� and a transcendental entire func-

tion g�z� such that f �z� � h�g�z��; f �z� is said to be prime (pseudo-prime, left-

prime), if every factorization f �z� � h�g�z�� implies that either h�z� is bilinear (a

rational function, bilinear) or g�z� is linear (a polynomial). N. Steinmetz ([9])

proved that each meromorphic solution of linear ordinary di¨erential equation

with rational coe½cients is pseudo-prime. A natural question arises: how about

the solutions of linear di¨erential equations with transcendental coe½cients? In

this paper, we shall point out ®rstly that certain class of entire functions are prime,

and then show that the solutions of some linear di¨erential equations with tran-

scendental coe½cients are prime. We also discuss the factorization of the solution

of some other di¨erential equations and prove that the solutions are factorizable.

Throughout this paper, by r� f � we denote the order of f �z�. We assume

that the reader is familiar with Nevanlinna's theory of meromorphic functions

and the meaning of the symbols T�r; f �;N�r; f � and etc. For other notation and

terminology, the reader is referred to [6].

2. A class of prime entire functions.

In this section, we obtain a class of prime entire functions, which is used to

discuss the factorization of the solutions of certain di¨erential equation with the

coe½cients of periodic entire functions.
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Therefore

T�r; g�
r

<
degz c�z�

p�mÿ 1ÿ o�1�� ;

noting m is arbitrary we have

lim inf
r!y

T�r; g�
r

a lim inf
r!y
r AE

T�r; g�
r
� 0:

Obviously, the set of zeros of c�ez� is the same as the set of all the roots of

g�z� ÿ wn � 0, �n � 1; 2; . . .�. Suppose that z1; . . . ; zk are the zeros of c�z�, z0 �
max1a jakflogjzjjg > ÿy. Then all the zeros of c�ez� must lie on the left hand

side of the straight fz;Re z � z0g, and so do all the roots of g�z� ÿ wn � 0. By

Lemma 2.3, g�z� is a polynomial of degree a 2.

If deg g�z� � 2 and g�z� � �az� b�2 � g, then set Z � az� b or z � aZ � b,

g�z� � g�aZ � b� � Z2 � g is even in Z, and f �aZ � b� is even, writing Z by z,

we have

c�eaz�b� exp�F�az� b� � d�az� b��
� c�eÿaz�b� exp�F�ÿaz� b� � d�ÿaz� b��;

therefore

exp�2adz� � c�eÿaz�b�
c�eaz�b� exp�F�ÿaz� b� ÿF�az� b��:

This implies that F�ÿaz� b� ÿF�az� b� is a constant, for it is periodic.

Therefore exp�2adz� has period 2pi=a, 2d must be an integer. This is clearly a

contradiction. Therefore g�z� must be linear. Lemma 2.2 is proved.

Lemma 2.4. Suppose that h�z� in (2.1) has only ®nitely many zeros, then h�z�
is linear.

Proof. Since h�z� has only ®nitely many zeros, then h�z� must be of the

form

h�z� � C�z�eB�z� �2:2�

for a non-constant polynomial C�z� and an entire function B�z�. Since f �z� has

in®nitely many zeros, g�z� must be transcendental. It follows from (2.1) that

C�g�z�� � c�ez�eM�z��dz �2:3�
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3. Solutions of w 00 � A�ez�w � 0.

With respect to representations of solutions of periodic second order linear

di¨erential equation

w 00 � A�ez�w � 0; �3:1�
where A�t� �Pp

j�0 bjt
j, bp 0 0, p b 2, S. Bank and I. Laine [2] proved the

following

Theorem A. Let f �z��2 0� be a solution of (3.1) with the property that the

exponent of convergence for the zero-sequence of f �z� is ®nite, then the following is

true:

(I) If f �z� and f �z� 2pi� are linearly dependent, then f �z� can be represented

in the form

f �z� � C�ez� exp
Xm

j�q

dje
jz � dz

 !
: �3:2�

(II) If f �z� and f �z� 2pi� are linearly independent, then f �z� can be

represented in the form

f �z� � C�ez=2� exp
Xm

j�q

dje
� j�1=2�z � dz

 !
; �3:3�

where C�t� is a polynomial all of whose roots are simple and nonzero, m and q A Z

with m b q and d; dq; . . . ; dm A C with dq � dm 0 0.

In this section, we shall point out that in (3.2) and (3.3), m > 0, q b 0 and

d � ���������ÿb0

p
.

Theorem 3.1. Let f �z� be de®ned as in Theorem A. If f �z� and f �z� 2pi�
are linearly dependent, then in (3.2), d � ���������ÿb0

p
, m � p=2 and q b 0.

Proof. By Theorem A, we have f �z� � tdG�t�, where t � ez,

G�t� � C�t� exp
Xm

j�q

djt
j

 !
:

Since

df �z�
dz
� d�tdG�t��

dt
� dt

dz
� d � tdG�t� � td�1G 0�t�;

d 2 f �z�
dz2

� d 2tdG�t� � �2d � 1�td�1G 0�t� � td�2G 00�t�;
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We shall prove q b 0. In fact, if q < 0, then by using the same method as in the

above, dividing both sides of (3.5) by sÿ2q and setting s!y, we get q2d 2
q a0 � 0.

This is a contradiction. Therefore it must be q b 0. Since s2H 00 and sH 0�s� tend

to zero as s!y, it follows from (3.5) that b0 � d 2 � 0, and further d � �ÿb0�1=2.

Theorem 3.1 follows. r

Theorem 3.2. Let f �z� be de®ned as in Theorem A. If f �z� and f �z� 2pi�
are linearly independent, then in (3.3), d � ���������ÿb0

p
, m � �pÿ 1�=2 and q b 0.

Proof. We set

f �z� � t2dG1�t�;
where G1�t� �C1�t� exp�Pm

j�q djt
2j�1�, t� ez=2, where C1�t� � a0�a1t� � � � � antn,

a0 0 0. From (3.1), it is easy to see that C1�t� satis®es the following equation

t2C 00
1 � 2

Xm

j�q

�2 j � 1�djt
2j�1 � 4d � 1

 !
tC 0

1

�
0@Xm

j�q

2 j�2 j � 1�djt
2j�1 �

Xm

j�q

�2 j � 1�djt
2j�1

 !2

� �4d � 1�
Xm

j�q

�2 j � 1�djt
2j�1 � 4d 2 � 4A�t2�

1AC1 � 0: �3:6�

Similar to Theorem 3.1, we can also point out that m > 0, and then dividing both

sides of (3.6) by C1�t�t4m�2 and setting t!y, we obtain

A�t2� f
t4m�1

! �2m� 1�2d 2
m 0 0;

so that m � �pÿ 1�=2.

Set H1�s� � C1�sÿ1�, we can show that H1�s� solves the following equation

s2H 00
1 � 1ÿ 2d ÿ

Xm

j�q

�2 j � 1�djs
ÿ�2 j�1�

 !
sH 0

1

�
0@Xm

j�q

2 j�2 j � 1�djs
ÿ�2 j�1� �

Xm

j�q

�2 j � 1�djs
ÿ�2 j�1�

 !2

� �4d � 1�
Xm

j�q

�2 j � 1�djs
ÿ�2 j�1� � 4d 2 � 4A�sÿ2�

1AH1 � 0: �3:7�
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Furthermore, f �z� admits the following representation

f �z� � C�ez=3� expfÿz� S�ez=3�g;

C�z� �
Xs

j�0

cjz
j ; S�z� � d0 � d2z2; d2 � ÿ 3

2

�����
b2

3
p

:

Corollary. Let f �z� be a solution of (4.1) with the condition (4.2), then f �z�
is factorizable. Moreover, one of the factorization is that f �z� � h�g�z�� where

g�z� � ez=3, h�z� � c�z�zÿ3 exp S�z�.
Proof of Theorem 4.1. Let d̂ � d ÿ r

q
, ŝ � s� r, we may rewrite f �z� as

f �z� �
X̂s

j�0

ĉje
zj=q

( )
exp d̂z�

Xm

j�ÿn

dje
zj=q

( )

� Ĉ�ez=q� expfd̂z� S�ez=q�g: �4:4�
Set z � ez=q, then f �z� � zd̂qG�z�, G�z� � Ĉ�z� exp S�z�, where Ĉ�z� �Pŝ

j�0 ĉjz
j ,

S�z� �Pm
j�ÿn djz

j. A computation implies that

f 0�z� � d̂zd̂qG�z� � 1

q
zd̂q�1G 0�z�;

f 00�z� � d̂ 2zd̂qG�z� � 1

q2
�2d̂q� 1�zd̂q�1G 0�z� � 1

q2
zd̂q�2G 00�z�;

f 000�z� � d̂ 3zd̂qG�z� � 1

q3
�1� 3d̂q� 3d̂ 2q2�zd̂q�1G 0�z� � 3

q3
�1� d̂q�zd̂q�2G 00�z�

� 1

q3
zd̂q�3G 000�z�:

Substituting the above expressions into (4.1), we get

z3G 000�z� � 3�d̂q� 1�z2G 00�z� ÿ fKq2 ÿ �1� d̂q�3 � d̂ 3q3gzG 0�z�

� q3�d̂ 3 ÿ Kd̂ � b0 � b1z2 � b2z2q�G�z� � 0: �4:5�
We may assume that m0 0, dm 0 0, then by substituting the representation of

G 0�z�=G�z�, G 00�z�=G�z� and G 000�z�=G�z� with respect to z into (4.5), we have

�mdm�3z3m � 3�mdm�2�mÿ 1�dmÿ1z3mÿ1 � 3�d̂q� 1��mdm�2z2m

ÿ fKq2 ÿ �1� d̂q�3 � d̂ 3q3gmdmzm

� q3�d̂ 3 ÿ Kd̂ � b0 � b1zq � b2z2q� �O�z3mÿ2� � 0 �4:6�
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