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Abstract. Let S be a smooth hypersurface in the projective three space and

consider a projection of S from P A S to a plane H. This projection induces an

extension of ®elds k�S�=k�H�. The point P is called a Galois point if the extension

is Galois. We study structures of quartic surfaces focusing on Galois points. We will

show that the number of the Galois points is zero, one, two, four or eight and the

existence of some rule of distribution of the Galois points.

1. Introduction.

Let k be an algebraically closed ®eld of characteristic zero. We ®x it as

the ground ®eld of our discussion. Let S be a smooth hypersurface of degree

d in the projective three space P
3 � P

3�k�, where we assume that db 4. Let

K � k�S� be the rational function ®eld of S. A sub®eld Km is said to be a

maximal rational sub®eld if it is rational, i.e., a purely transcendental extension

of k, and is not contained in any other rational sub®eld. It seems interesting

to study the structure of the extension K=Km. If we know it, we will be able to

classify of all the sub®elds of K. Because, by Zariski-Castelnuovo's theorem any

sub®eld (which is not k) of Km is rational. So that it is su½cient to study what

®elds exist between K and Km. Let L be the Galois closure of K=Km, then we

need to study the structure of the Galois group Gal�L=Km�.

For that reason, the study we have to do ®rst is to ®nd when the extension is

Galois (cf. [6]). Here the meaning ``when'' is a little ambiguous, it will become

clear if we consider the model of K as follows. For each point P A S, let

pP : S � � � ! H be a projection of S from P to a plane H. This rational map

induces the extension of ®elds K=k�H�. We know that the degree of irrationality

of S is d ÿ 1 or d ÿ 2 (cf. [1], [10]), hence k�H� is a maximal rational sub®eld.

Clearly the structure of this extension does not depend on H, but on P, so that

we write KP instead of k�H�. Therefore, the above question is equivalent to say

for which point P A S the extension K=KP becomes Galois. The study following

the above method has been done for curves of degrees 4 and 5 (cf. [6], [7]).
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However we have to note here that not all maximal rational sub®elds are

obtained as the projection above, i.e., there are many maximal rational sub®elds

which cannot be obtained from the projections.

Acknowledgement. The author expresses his gratitude to Mr. Takeshi

Takahashi for calculating the number of lines on S8 in Remark 2.8 and ®nding

an example in Example 2.9.

2. Statement of results.

We use the same notation as is used in Section 1.

Definition 1. A point P A S is called a Galois point if the extension K=KP

is Galois.

Let S be the set of lines on S passing through P. Then S 0 � Sn�SUP�

becomes a covering of U of degree d ÿ 1 by p
0
P � pPjS 0 , where U � P

2nfa ®nitely

many pointsg. Hence P is a Galois point if and only if p 0
P is a Galois covering.

First, we want to know the set of Galois points.

Theorem 1. Suppose that db 4. Then the number of Galois points is

®nite. If S is general in the class of surfaces with degree d, then the number is

zero.

Let d � d�S� denote the number of the Galois points. Note that d is

invariant under projective transformations of S.

Here we mention a note, which will be often used later.

Note 2.1. If HP is a general plane among the ones passing through P, then

S VHP is a smooth curve.

Hereafter we restrict ourselves to the case where d � 4 and we assume that k

is the ®eld of complex numbers. We want to know the exact value d and the

place where the Galois points exist. First we ®nd necessary conditions that a

point to be a Galois one.

Let �X : Y : Z : W� be homogeneous coordinates on P
3. Then we

have the following standard form for the equation of S if S has a Galois

point.

Theorem 2. If there exists a Galois point P on S, then S is projectively

equivalent to the surface given by the equation ZW 3 � G�X ;Y ;Z� � 0, where G is

a quartic form and P � �0 : 0 : 0 : 1�.

Let TP denote the tangent plane of S at P.
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Corollary 2.2. If P is a Galois point, then TP VS consists of four distinct

lines.

Let F be the homogeneous de®ning equation of S and H�F � be the Hessian

of F. Then we have another necessary condition.

Proposition 2.3. If P is a Galois point, then H�F ��P� � 0.

Let P be a point on S with P � �0 : 0 : 0 : 1� and put x � X=W ; y � Y=W ,

z � Z=W and f �x; y; z� � F �X ;Y ;Z;W�=W 4 �
P4

i�1 fi, where fi is a homo-

geneous part of f with degree i �i � 1; 2; 3; 4�. Using these expressions, we have

the following criterion that a point to be a Galois point.

Proposition 2.4. Under the notation above, a point P is a Galois point if and

only if f 22 � 3 f1 f3.

In the paper [6], we have studied Galois points on quartic curves.

The following proposition is also useful for checking whether a point is Galois or

not.

Proposition 2.5. Suppose that HP is a general plane passing through P and

let C � S VHP be a quartic curve. Then a point P is a Galois point of S if

and only if it is a Galois point of C.

For a Galois point P, take three lines flig from S VTP and consider a divisor

D � l1 � l2 � l3. The rational map associated with the complete linear system

jDj gives S a structure of a ®ber space, i.e., we have the following.

Lemma 2.6. If there exists a Galois point on S, then S has a structure of an

elliptic surface.

Definition 2. We call the surface with the structure de®ned in Lemma 2.6

an elliptic surface associated with the Galois point.

Note that there are four possibilities for the choice of the lines S VTP, hence

there are four elliptic surfaces associated with the Galois point. Observing the

singular ®bers of the elliptic surface, we obtain the following.

Theorem 3. If S is a quartic surface, then d�S� � 0; 1; 2; 4 or 8. Especially,

d�S� � 8 if and only if S is projectively equivalent to the surface S8 given by the

equation XY 3 � ZW 3 � X 4 � Z4 � 0.

Moreover, the distribution of the Galois points are illustrated as follows, where

the dots indicate Galois points, the lines indicate the lines on S and the broken lines

indicate the lines in P
3 but not on S.
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By Lemma 2.2 there exist four lines on S passing through each Galois point,

but we omit to illustrate here some of them.

Note that the coordinates of the Galois points on S8 are �0 : 0 : 0 : 1�,

�0 : 0 : z : 1�, �0 : 0 : z3 : 1�, �0 : 0 : z5 : 1�, �0 : 1 : 0 : 0�, �z : 1 : 0 : 0�,

�z3 : 1 : 0 : 0� and �z5 : 1 : 0 : 0�, where z is a primitive sixth root of unity.

Furthermore there exist some rules between Galois points and lines on S, for the

details, see Lemma 3.10.

Corollary 2.7. If d�S� � 2 or 8, then S has a structure of an elliptic surface

whose singular ®bers are all of type IV (in the sense of Kodaira's notation in [4]).

A quartic surface is a K3 surface, and it is known that the maximum number

of lines lying on a quartic surface is 64 (cf. [9]). The surface S8 in Theorem 3 is

the most special one among quartic surfaces as we see below.

Remark 2.8. The surface S8 has the following properties:

(a) The number of lines on S8 is 64.

(b) The surface S8 is a singular K3 surface (cf. [2]).

For each value of d in Theorem 3, there are many examples taking the value

as follows.

Example 2.9. (1) If S is (i) a general quartic surface, or (ii) the Fermat

quartic given by the equation X 4 � Y 4 � Z4 �W 4 � 0, or (iii) the surface given

by the equation X 3Y � Y 3Z � Z3W �W 3X � 0, then d�S� � 0.

(2) If S is the surface given by the equation (i) ZW 3 � G�X ;Y ;Z� � 0,

where G is a general quartic form, or (ii) ZW 3 � X 4 � Y 4 � YZ3 � 0, then

d�S� � 1.
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(3) Suppose that S is given by the equation XY 3 � ZW 3 �H�X ;Z� � 0,

where H�X ;Z� �
P4

i�0 ciX
iZ4ÿi, c0c4 0 0. Then,

(a) if at least one of ci�i � 1; 2; 3� is not zero, then d�S� � 2,

(b) if c1 � c2 � c3 � 0, then d�S� � 8.

(4) If S is the surface given by the equation (i) ZW 3 � Z4 �H�X ;Y� � 0,

where H is a general quartic form, or (ii) ZW 3 � X 4 � Y 4 � Z4 � 0, then d�S� � 4.

Remark 2.10. Although there are many lines on the Fermat quartic, indeed

there are 48 pieces lines on it, there exists no Galois point.

3. Proofs and some other results.

First we prove Theorem 1. Let P be a Galois point and s be an element of

Gal�K=KP�. Then s induces a birational transformation of S over k�H�G

k�P2�, which turns out an isomorphism, since S is the minimal model of the ®eld

K. We claim that s is a restriction of a projective transformation of P3. This

assertion is a well known fact in the case where db 5, so that we prove it when

d � 4.

Let HP be a plane passing through P. If it is general, then C �

S VHP is a smooth quartic curve by Note 2.1. Let lP be a line in HP passing

through P. If lP is general, then C V lP consists of four distinct points

fP;P1;P2;P3g. By de®nition s induces a permutaiton of the set fP1;P2;P3g.

Hence we infer that s�C� � C, especially we have that s�P� � P. This implies

that s�� f � A H 0�S;OS�HP�� if f A H 0�S;OS�HP��. Thus s induces an element of

Aut�H 0�S;OS�HP���. Since H 0�S;OS�HP��GH 0�P3;O�HP��, s is a restriction

of a projective transformation of P
3. We denote it by M�s� A PGL�4; k�.

Definition 3. We call s an automorphism belonging to the Galois point P

and M�s� the representation of s.

Let L�S� denote the set of automorphisms of S induced by the projective

transformations which leave S invariant. Suppose that s and s
0 are auto-

morphisms belonging to Galois points P and P 0 respectively. Then, it is easy to

see that s0 s
0 if P and P 0 are distinct points, hence M�s�0M�s 0�. Thus we

infer readily Theorem 1 from the following lemma (cf. [5]).

Lemma 3.1. The group L�S� has a ®nite order if db 3. If S is generic,

then L�S� consists of only an identity element.

Next we investigate the structure of the covering p
0
P : S 0 ! U .

Let C be the discriminant determined by the projection pP. Let us express C

explicitly using a suitable a½ne coordinates as follows. First we take homo-

geneous coordinates �X : Y : Z : W� on P
3 satisfying the following conditions:
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(1) P � �0 : 0 : 0 : 1�

(2) The plane given by Z � 0 is the tangent plane of S at P.

(3) The plane given by X � 0 is not a tangent plane at any point of S.

(4) The number of lines passing through P and touching S at S V fW � 0g is

®nite.

(5) The line given by the equations X � Y � 0 does not touch S.

We use the notation in the previous sections and consider the projec-

tion pP restricted to the a½ne part W 0 0. Let m be the blowing up of A
3 �

P
3nfW � 0g with center P. Then in an a½ne part, m can be expressed as

m�x; s; t� � �x; sx; tx�. Since the structure of the extension K=KP does not depend

on the choice of planes H, we may assume that pP�x; sx; tx� � �s; t�. Thus ~pP �

pp � m maps �x; s; t� to �s; t�. The extension of ®elds is not changed if we take ~pP
instead of pP. The de®ning equation (of the a½ne part) of the proper transform

of S is

f ?�x; s; t� �
f �x; sx; tx�

x
A k�x; s; t�:

Let c � c�s; t� be the discriminant of f ?�x; s; t� with respect to x. Then C

is obtained by homogenizing c and we have that degC � degc by the choice of

coordinates (1)@ (5). Let IR�X ;Y � denote the intersection number of X and Y

at R and let �X ;Y� �
P

R IR�X ;Y �. We will consider the intersection numbers

on P
2, P

3 or S, and use the same notation.

Lemma 3.2. degC � d 2 ÿ d ÿ 2.

Proof. Let G be the divisor of C on P
2 and �G ; l� be the intersection

number of G and a line l on P
2. Then we have that degc � �G ; l�. If

H � pÿ1
P �l�, then C � S VH is a smooth curve of degree d if l is general by Note

2.1. Using Hurwitz's theorem, we infer that the degree of the discriminant for

the smooth curve C is d 2 ÿ d ÿ 2 (cf. [6]). r

Hereafter we assume that d � 4.

Let P be a Galois point. Then Gal�K=KP� is the cyclic group of order three

and let s be a generator of it.

Lemma 3.3. The subvariety F�s� � fQ A S j s�Q� � Qg contains a curve.

Proof. Let S be the set of four lines S VTP. Then we have that s�S� � S

and p 0
: S 0 ! U is a triple Galois covering. By Lemma 3.2 we have that

degG � 10. Therefore p 0 is rami®ed along pÿ1�U VG�, thus F�s� contains a

curve. r

When A � �aij� is a diagonal matrix of size four and aii � ai �i � 1; 2; 3; 4�,

we denote it by �a1 I a2 I a3 I a4�. Let M�s� A PGL�4; k� be the represen-
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tation of s. Since s3 � id, the matrix M�s� is similar to �oIo i Io j I 1�,

where o is a primitive cubic root of 1 and 0a ia ja 2. By taking a suitable

projective change of coordinates, we may assume that M�s� is expressed as

above. From Lemma 3.3 we infer that s must ®x a hyperplane. This implies

that three eigen values of M�s� coincide, hence we have that i � j � 0 or

i � j � 1. Consequently we may assume that i � j � 1. We express F as
P4

i�0 FiW
4ÿi where Fi A k�X ;Y ;Z� is a homogeneous polynomial of degree

i�0a ia 4�. Since s A L�S�, we have that F s � lF for some l A knf0g.

Whence we can conclude easily that F has an expression as F1W
3 � F4. Since

F1 0 0, this form can be transformed to the standard one by a projective

transformation. Thus we complete the proof of Theorem 2.

Suppose that P � �0 : 0 : 0 : 1� is a Galois point. Then the equation of S

can be given by ZW 3 � G�X ;Y ;Z� � 0. The equation of the tangent plane TP

is Z � 0. Since S is smooth, the form G�X ;Y ; 0� has no multiple factor, this

proves Corollary 2.2.

The proof of Proposition 2.3 is easy from the following lemma.

Lemma 3.4 (x7, [8]). Let f be the restriction of f to the a½ne tangent plane

of S at P. Then the Taylor expansion of f at P starts with a nondegenerate

quadratic form if and only if H�F ��P�0 0.

Next we prove Proposition 2.4. If P is a Galois point, then making use of

Theorem 2, we easily obtain f 22 � 3 f1 f3. Conversely we assume this relation.

As we have de®ned above, f ? can be expressed as f ?�x; s; t� � f4�1; s; t�x
3 �

f3�1; s; t�x
2 � f2�1; s; t�x� t. Then we have that K � k�x; s; t�, where f ?�x; s; t�

� 0. Since LP � k�x 0; x; s; t�, where x 0 is another root of f ?�x 0; s; t� � 0, we can

write LP � k�x; s; t; u�, where

u2 � � f3 � f4�
2 � 4 f1 f4 � f 22 ÿ 2 f1 f2 ÿ 3 f 21 ÿ 4 f1 f3:

Thus, if f 22 � 3 f1 f3, then u2 becomes a complete square in k�x; s; t�. Hence

K=KP is a Galois extension.

The proof of Proposition 2.5 may be clear if we consider the branching

divisor. The point P is a Galois point if and only if the divisor G is two times

of some divisor. Since HP is a general plane passing through P and the

discriminant of the projection of C from P to a line is obtained by restricting C ,

the assertion may be clear.

When P is a Galois point, let
P3

i�0 li be the four lines S VTP and put

D � l1 � l2 � l3. The complete linear system jDj is obtained as follows.

Consider the set H � fHl jHl I l0;Hl is a planeg. Then S VHl can be

written as a divisor l0 � Cl, where Cl is a curve. Taking o¨ the ®xed part l0
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from the linear system fS VHl jHl A Hg, we obtain a base points free linear

system, which coincides with jDj. Thus we obtain the following lemma.

Lemma 3.5. We have that D2 � 0, �D; l0� � 3, dimH 0�S;O�D�� � 2 and the

complete linear system jDj has no base point.

Consequently we obtain an elliptic surface f � fjDj : S ! P
1 in Lemma 2.6.

Now we proceed with the proof of Theorem 3. The elliptic ®bration

f : S ! P
1 has a singular ®ber D, which is of type IV.

Lemma 3.6. The automorphism s preserves each ®ber of f , i.e., s�Fa� � Fa,

where Fa � f ÿ1�a� for a A P
1. Especially, a smooth ®ber is an elliptic curve with

an automorphism of order three.

Proof. Since s is determined from the projection, we have that s�l0 � Cl�

� l0 � Cl and s�l0� � l0, where S VHl � Cl � l0 as above. Hence we obtain

s�Cl� � Cl. r

Note that l0=hsi is the base curve P
1 of the elliptic ®bration. Thus

f jl0 : l0 ! P
1 is a triple Galois covering with two branching points which are

®xed points of sjl0 , i.e., l0 is a triple section of f . Hence we infer the following.

Lemma 3.7. The elliptic ®bration f : S ! P
1 has at most one singular ®ber

D 0 besides D satisfying that D 0 is of type IV and D 0 V l0 consists of one point.

Especially, if l is a line on S, then the number of Galois points on l is at most two.

Lemma 3.8. If P 0 is another Galois point and s 0 is an automorphism

belonging to P 0, then s�P 0� is also a Galois point and ss 0sÿ1 is an automorphism

belonging to s�P 0�.

Proof. Put s 00 � ss 0sÿ1 and s�P 0� � P 00. Suppose that l is a line passing

through P 00 and IQ�S; l�b 2 for some point Q A S. Then we have that IQ�S; l�

� Isÿ1�Q��S; l
0�, where l 0 � sÿ1�l�. Since l 0 passes through the Galois point P 0,

we have that IQ�S; l�b 3, this means that P 00 is a Galois point. Since s 0 is an

automorphism belonging to P 0, we have that s 0�l 0� � l 0. Hence we have that

s 00�l� � l, this implies that s 00 is an automorphism belonging to P 00. r

Lemma 3.9. Suppose that P and P 0 are two Galois points and the line l

passing through these points does not lie on S. Then in Lemma 3.8 we have that

s�P 0�0P 0, hence there exist two more Galois points s�P 0� and s2�P 0�.

Proof. In case IP�l;S�b 2, the line l is contained in TP�S�, hence it

lies on S by Lemma 2.2. Therefore we have that IP�l;S� � 1. Suppose that

s�P 0� � P 0. Then we have that IP 0�l;S� � 3. By the same reasoning as above

we have that l must lie on S, which is a contradiction. r
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Suppose that d � d�S�b 2 and take another Galois point P 0. Then one of

the following cases takes place.

(i) There exists a unique i satisfying li C P 0 �i � 0; 1; 2; 3�, or

(ii) There does not exist i satisfying li C P 0.

In the case (i) we may assume that i � 0 and consider the elliptic ®ber space

f : S ! P
1 associated with the Galois point P with the singular ®ber l1 � l2 � l3.

By Lemma 2.2, S VTP 0 can be expressed as
P3

i�0 l
0
i , where l

0
i �i � 0; 1; 2; 3� is a line

on S. Since there exist just four lines on S passing through P 0, we may assume

that l0 � l 00. Thus D 0 � l 01 � l 02 � l 03 is a singular ®ber of f , especially DVD 0 � q.

On the contrary in the case (ii), put l � TP VTP 0 . Since the degree of S is

four, we infer that l does not lie on S, and P B l and P 0 B l.

Let X be the set consisting of the Galois points and the lines on S passing

through at least one Galois point. Combining the results obtained above, we

conclude the following properties of distribution of the Galois points.

Lemma 3.10. The set X has the following properties.

(P1) For each point of X, there exist four lines of X passing through it.

(P2) For any two points P and P 0 of X, the con®guration of lines are

illustrated as follows, where a line indicates a line of X and a broken line indicates

a line in P
3 but not belonging to X.
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(P3) For each line l of X, there exist one or two points of X lying on l.

(P4) For each point P of X, there exists an automorphism s of S belonging to

P, which has the following properties:

(a) s�P� � P.

(b) s has an order three.

(c) s induces a permutation of elements in X.

(d) If
P3

i�0 li is the lines passing through P, i.e., it is TP VS, then s�li� � li
�0a ia 3� and sjli is an automorphism of li with an order three and ®xes two

points.

(P5) If there does not exist a line of X passing through two points P and P 0 of

X, then there exist two more points of X. These four points are collinear, but the

line passing through them is not an element of X.

In the case where db 2, there are two lines on S not meeting each other as

we have seen above (P2). Referring to Proposition 1 in [10], we obtain the

following.

Corollary 3.11. If d�S�b 2, then the degree of irrationality of S is two.

Let us prove Theorem 3 by examining the following cases separately.

(1) For each line l of X, there exists just one point of X on l.

(2) There exists a line l of X on which there exist two points P and P 0 of X.

Take one point P of X and consider the associated elliptic surface

f : S ! P
1. Here we assume that k is the ®eld of complex numbers. Then the

topological Euler characteristic of S is 24.

In the case (1), for each point Q�0P� of X, if we choose a suitable a line l

from the irreducible components of S VTQ, then l meets l0 and does not meet D

by (P2). That is, l is contained in a singular ®ber of f . Suppose that db 5.

Then four Galois points P � P1;P2;P3 � s�P2� and P4 � s�P3� are collinear and

suppose that Q � Q1 is another Galois point. Then we can ®nd two more

Galois points Q2 � s�Q� and Q3 � s�Q2�. Next we consider the automorphism

s2 belonging to P2. Then we can ®nd new Galois points s2�Q1�, s
2
2�Q1�, s2�Q2�,

s2
2�Q2�, s2�Q3� and s2

2�Q3�. Next we consider the automorphism belonging

to the Galois point P3. Then we can ®nd new Galois points, etc. In this

way, continuing these processes, we will be able to ®nd more than 24 pieces of

Galois points. This contradicts to the Euler characteristic of S. Thus in this

case d � 1 or 4.

In the case (2), ®rst we prove the following.

Lemma 3.12. Suppose that there exists a line l on S satisfying that there

exist two Galois points on l. Then the de®ning equation of S can be given by the

equation XY 3 � ZW 3 �H�X ;Z� � 0, where H�X ;Z� is a quartic form. The
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coordinates of Galois points are �0 : 0 : 0 : 1� and �0 : 1 : 0 : 0� and the equations of

the line are given by X � Z � 0. Especially each singular ®ber of the elliptic

surface associated with the Galois points is of type IV.

Proof. By Theorem 2 we have the standard form ZW 3 � G�X ;Y ;Z�.

Since G�X ;Y ; 0� factors into four distinct linear forms, we can transform

G�X ;Y ; 0� to X � G3�X ;Y �, where G3 is a cubic form. We may assume that two

Galois points P and P 0 lie on the line given by the equations l0 : X � Z � 0.

Since the automorphism s belonging to P ®xes the point at in®nity W � 0, we

see that P � �0 : 0 : 0 : 1� and P 0 � �0 : 1 : 0 : 0� by Lemma 3.7. The curve C �

S V fW � 0g is a smooth quartic curve given by the equation G�X ;Y ;Z� � 0 on

the plane W � 0.

Since P 0 lies on the plane given by W � 0, the point P 0 is also a Galois

point of the quartic curve C. This assertion can be proved by similar argument

of the proof of Proposition 2.5.

By the way, G can be written as
P4

i�1 Gi�X ;Z�Y 4ÿi, hence G�X ;Y ;Z�=Y 4 �

g�x; z� �
P4

i�1 gi�x; z�.

It is easy to see that g1�x; 0�0 0, hence we can transform g to the expression

whose linear part is x. So that we may assume that g1 � x. The similar

assertion to Proposition 2.4 holds true for quartic curves, i.e., we have that g22 �

3x f3. This implies that g2 and g3 are divisible by x, from which we infer that,

by taking projective transformations, G can be expressed as XY 3 �H�X ;Z�.

Since each ®ber of f is obtained by cutting S by aX � bZ � 0, we infer easily the

last assertion. r

Claim 1. There is no Galois point not lying on �TP UTP 0�VS.

Proof. Suppose the contrary. Then, let Q be such a point. By the

property (P5) there exist three points Q � Q1;Q2 � s�Q1� and Q3 � s�Q2�, which

are collinear. Corresponding to each point Qi �i � 1; 2; 3�, there exists a line

mi meeting l0 and does not meet D by (P2). By Lemma 3.12 these three lines

make a singular ®ber of type IV. Moreover, take an automorphism s 0 belonging

to P 0. Considering s 0�Qi� and s 02�Qi� �i � 1; 2; 3� and using the property (P3)

and Lemma 3.12, we obtain a singular ®ber containing m1 �m2 �m3, which

cannot appear as a ®ber of any elliptic ®ber space (cf. [4]). This is a

contradiction. r

Therefore we conclude that da 8 in view of (P3).

Claim 2. In the case (2) we have that d � 2, 5 or 8.

Proof. In case db 3, we use (P5) and Claim 1. As we see from the

illustration below, we conclude that d � 5 or 8.
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We now prove that the surface with d � 5 cannot exist. Let H�X ;Z� be

expressed as
P4

i�0 aiX
4ÿiZ i in Lemma 3.12, where a0 0 0. Suppose that db 5.

Then R � �x : 1 : 0 : 0�, where a0x
3 � 1 � 0, is also a Galois point by Claim 1

and R is on the plane given by W � 0. Putting u � X=Y ; v � Z=Y ;w � W=Y

and h � F=Y 4, we have that h�u; v;w� � u� vw3 � h4�u; v�. Moreover, putting

u 0 � uÿ x, we have that h 0�u 0; v;w� � h�u 0 � x; v;w�. Here we make use of

Proposition 2.4. Then we obtain that a1 � a2 � a3 � 0. This implies that

d � 8. Combining the assertions obtained above, we see that d�S� � 8 if and

only if S � S8. Thus we complete the proof of Theorem 3.

Remark 3.13. Suppose that s and s 0 are the automorphisms belonging to

Galois points P and P 0 respectively. Then, ss 0 � s 0s if and only if the line l

passing through P and P 0 lies on S.

Proof. If l lies on S, then by Lemma 3.12 we may assume that M�s� �

�oIoIoI 1� and M�s 0� � �o i I 1Io i Io i�, where i � 1 or 2. Especially

s and s 0 are commutative. Conversely, if ss 0 � s 0s, then M�s� and M�s 0� can

be diagonalized simultaneously. Hence in view of Lemma 3.3, s and s 0 have the

same projective representation as above. By using the action of M�s� and

M�s 0� on the de®ning equation of S, we obtain the same de®ning equation as in

Lemma 3.12, this implies that l lies on S. r

Remark 3.14. Let G be the group generated by the automorphisms

belonging to the Galois points on S8. We will show in the forthcoming paper [3]

that G has an order 288 and some other properties.

We mention the methods to check Example 2.9. By Proposition 2.3 all the

Galois points exist on the curve given by the equations F � H�F� � 0.

Proposition 2.5 may be helpful for checking some example such as the Fermat

quartic. Next, we use the distribution rule of the Galois points in Lemma

3.10. Using Proposition 2.4, we will be able to ®nd all the Galois points.

Finally we raise problems.

Problem 3.15. (1) Find the degrees of irrationality for the surfaces with

d � 1.
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(2) Let ~S be the nonsingular projective model of the Galois closure of K=KP,

where K is the function ®eld of a quartic surface S. Suppose that P is not a

Galois point. Then is it true that the Kodaira dimension of ~S is two? Moreover,

®nd several geometric invariants of it as we have done in the case of quartic

curves (cf. [6]).

(3) Describe the con®guration of X for the surface S8.
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