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Abstract. We investigate Lagrangian submanifolds of the 3-dimensional complex

projective space. In case the second fundamental form takes a special form, we obtain

several classi®cation theorems. As a consequence we obtain several new examples of

3-dimensional Lagrangian submanifolds.

1. Introduction.

In this paper we investigate 3-dimensional Lagrangian submanifolds of the

3-dimensional complex projective space CP3�4�. A 3-dimensional submanifold

of CP3�4� is called Lagrangian if the complex structure J interchanges the

tangent and normal spaces. Besides the complex submanifolds, the Lagrangian

submanifolds form the most important class of submanifolds of complex pro-

jective spaces and have already been studied by many people.

In this paper, we particularly focus our attention on Lagrangian sub-

manifolds which admit a special type of tangent frame. In particular we will

consider two special cases. The paper is organised as follows. In Section 2 we

recall the basic formulas for Lagrangian submanifolds of the complex projective

space. This will include the basic existence and uniqueness theorem as well as

the existence of a horizontal lift (see respectively [CDVV1] and [R]) in to the

7-dimensional sphere S7�1�.

Next, we suppose that there exist one of two special type of orthonormal

frame on our submanifold. We also show that such a frame always exists, if

necessary by restricting to an open dense subset if M 3 admits one of the fol-

lowing geometric properties:

(i) M 3 is minimal, dM 0 2 and M 3 is quasi Einstein, where dM is the

invariant introduced by Chen in [C1]. Minimal Lagrangian submanifolds with

dM � 2 were studied in [CDVV1] and [CDVV2]. A complete classi®cation of the

3-dimensional ones was obtained in [BSVW]. Note that M is called quasi
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Einstein if the Ricci tensor has a double eigenvalue at each point p of

M 3. Recall that a 3-dimensional manifold is Einstein if and only if it has

constant sectional curvature and that the minimal Lagrangian submanifolds with

constant sectional curvature were classi®ed in [E],

(ii) M 3 is minimal and M is semi symmetric,

(iii) M 3 is Lagrangian H-umbilical in the sense of [C3], i.e. it is nowhere

minimal, JH is an eigenvector of AH and AH restricted to fJHg? is a multiple of

the identity. Here H denotes the mean curvature vector ®eld. In particular this

class is a generalization of the one studied in [Ca], [C2] and [CV],

(iv) M 3 is nowhere minimal and JH=jHj is a Killing vector ®eld whose

integral curves lie in a complex vectorplane in CP3. Minimal Lagrangian

submanifolds admitting a unit length Killing whose integral curves are geodesics

were studied in [CaV].

In the next sections, we then express the Gauss and Codazzi equations for

the two main cases. In order to solve this system of equations, we have to

introduce several more subcases. We then, in the di¨erent subcases show

how these equations can be solved explicitely and construct the corresponding

Lagrangian immersions using the existence and uniqueness theorem.

In particular, we also obtain some new examples of Lagrangian submani-

folds with constant sectional curvature. It becomes then straightforward to

apply these results to obtain classi®cation theorems for the di¨erent classes of

Lagrangian submanifolds introduced above.

One of the main reasons for studying the above classes of Lagrangian

submanifolds is the following problem, which can be seen as a Lagrangian analog

of Chern's problem for minimal hypersurfaces in spheres:

Problem 1. Let M be a minimal Lagrangian submanifold of CPn�4� with

constant scalar curvature. Which are the possible values of the scalar curvature

which can occur?

2. Preliminaries.

First, we want to recall some basic de®nitions about distributions on

Riemannian manifolds. For more details we refer to [KN]. Let E be a dis-

tribution. Denote by E? its orthogonal distribution. Then E is called parallel

if X̀Y A E for all vector®elds X tangent to M and Y A E; it is called autoparallel

if X̀Y A E for all X ;Y A E; it is called totally umbilical if there exists a vector

H A E? such that h� X̀Y ;Z� � h�X ;Y�h�H;Z� for all X ;Y A E and for all

Z A E?, in this case H is called the mean curvature normal of the distribution

E. We call E spherical if it is totally umbilical and its mean curvature normal H

satis®es h� X̀H;Z� � 0 for all X A E and Z A E?. If E is autoparallel, totally
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umbilical or spherical, then E is involutive and all the leaves of the foliation of M

induced by E are totally geodesic, totally umbilical or spherical respectively.

Let M be a Lagrangian submanifold of CPn�4�. We denote the Levi-Civita

connections of M and of CPn�4� by ` and ~̀ , respectively. The formulas of

Gauss and Weingarten are given respectively by

~̀
XY � X̀Y � h�X ;Y�; �1�

~̀
Xx � ÿAxX �DXx; �2�

for tangent vector ®elds X and Y and normal vector ®elds x, where D is the

connection on the normal bundle. The second fundamental form h is related to

the shape operator Ax by

hh�X ;Y�; xi � hAxX ;Yi: �3�

The mean curvature vector H of M is de®ned by H � 1=n trace h.

For Lagrangian submanifolds of a Kaehler manifold, we have (cf. [CO])

DXJY � J X̀Y ; �4�

AJXY � ÿJh�X ;Y � � AJYX : �5�

The above formulas imply that hh�X ;Y�; JZi is totally symmetric. If we

denote the curvature tensors of ` and D by R and RD, respectively, i.e.

R�X ;Y� � � X̀ ;`Y � ÿ �̀X ;Y �; RD�X ;Y� � �DX ;DY � ÿD�X ;Y �;

then the equations of Gauss, Codazzi and Ricci are given respectively by

hR�X ;Y�Z;Wi � hAh�Y ;Z�X ;Wiÿ hAh�X ;Z�Y ;Wi

� �hX ;WihY ;Ziÿ hX ;ZihY ;Wi�; �6�

�`h��X ;Y ;Z� � �`h��Y ;X ;Z�; �7�

hRD�X ;Y�JZ; JWi � h�AJZ;AJW �X ;Yi

� c�hX ;WihY ;Ziÿ hX ;ZihY ;Wi�; �8�

where X ;Y ;Z;W (respectively, h and x) are vector ®elds tangent (respectively,

normal) to M and `h is de®ned by

�`h��X ;Y ;Z� � DXh�Y ;Z� ÿ h� X̀Y ;Z� ÿ h�Y ; X̀Z�: �9�
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We recall the following Existence and Uniqueness Theorems for later use (cf.

[CDVV1] and [CDVV2]).

Theorem 1. Let �M n
; h: ; :i� be an n-dimensional simply connected

Riemannian manifold. Let s be a TM-valued symmetric bilinear form on M

satisfying

(i) hs�X ;Y �;Zi is totally symmetric,

(ii) �`s��X ;Y ;Z� � X̀s�Y ;Z� ÿ s� X̀Y ;Z� ÿ s�Y ; X̀Z� is totally sym-

metric,

(iii) R�X ;Y �Z � �hY ;ZiX ÿ hX ;ZiY� � s�s�Y ;Z�;X � ÿ s�s�X ;Z�;Y�,

then there exists a Lagrangian isometric immersion L : �M; h: ; :i� ! CPn�4�

whose second fundamental form h is given by h�X ;Y� � Js�X ;Y�.

Theorem 2. Let L1;L2 : M ! CPn�4� be two Lagrangian isometric

immersions of a Riemannian manifold M with second fundamental forms h1 and

h2. If

hh1�X ;Y �; JL1?Zi � hh2�X ;Y �; JL2?Zi; �10�

for all vector ®elds X ;Y ;Z tangent to M, then there exists an isometry f of

CPn�4� such that L1 � f � L2.

In order to obtain the immersions more explicitly, it is often very convenient

to consider the Hopf ®bration p : S2n�1�1� ! CPn�4�. On S2n�1�1�HC
n�1 we

consider the Sasakian structure f (the projection of the complex structure J of

C
n�1 on the tangent bundle of S2n�1) and the structure vector ®eld x � Jx,

where x is the position vector. An isometric immersion f : M ! S2n�1 is called

C-totally real if x is normal to f��TM�. Note that for a C-totally real submani-

fold hf� f��TM��; f��TM�i � 0. On C n�1 we consider the complex structure J.

The main results of [R] can be specialized to our situation as follows.

First let g : M ! CPn�4� be a totally real isometric immersion. Then there

exist an isometric covering map t : M̂ ! M, and a C-totally real isometric

immersion f : M ! S2n�1 such that g�t� � p� f �. Hence every totally real

immersion can be lifted locally (or globally if we assume the manifold is simply

connected) to a C-totally real immersion of the same Riemannian manifold.

Conversely, let f : M ! S2n�1 be a C-totally real isometric immersion. Then

g � p� f � : M ! CPn�4� is again an isometric immersion, which is totally real.

Under this correspondence, the second fundamental forms h f and hg of f and g

satisfy p�h
f � hg. Moreover, h f is horizontal w.r.t. p.

We now restrict ourselves to the case that our Lagrangian submanifold is

3-dimensional and admits a frame of a special type. Namely, we call M a

Lagrangian submanifold of Type 1 if and only if around each point p of an open
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dense subset of M there exists a local orthonormal basis fE1;E2;E3g such that

È1
E1 � 0, È1

E2 � a1E3, È1
E3 � ÿa1E2,

È2
E1 � b1E3, È2

E2 � b2E3, È2
E3 � ÿb1E1 ÿ b2E2,

È3
E1 � ÿb1E2, È3

E2 � b1E1 � a2E3, È3
E3 � ÿa2E2,

h�E1;E1� � l1JE1, h�E2;E2� � l2JE1 � aJE2 � bJE3,

h�E1;E2� � l2JE2, h�E2;E3� � bJE2 ÿ aJE3,

h�E1;E3� � l3JE3, h�E3;E3� � l3JE1 ÿ aJE2 ÿ bJE3,

and we call M a Lagrangian submanifold of Type 2 if and only if around each

point p of an open and dense subset of M there exists a local orthonormal basis

fE1;E2;E3g such that

È1
E1 � a1E2 � a2E3, È1

E2 � ÿa1E1 � a3E3, È1
E3 � ÿa2E1 ÿ a3E2,

È2
E1 � b1E2 � b2E3, È2

E2 � ÿb1E1 � b3E3, È2
E3 � ÿb2E1 ÿ b3E2,

È3
E1 � c1E2 � c2E3, È3

E2 � ÿc1E1 � c3E3, È3
E3 � ÿc2E1 ÿ c3E2,

h�E1;E1� � l1JE1, h�E2;E2� � l2JE1 � aJE2,

h�E1;E2� � l2JE2, h�E2;E3� � ÿaJE3,

h�E1;E3� � l2JE3, h�E3;E3� � l2JE1 ÿ aJE2.

We now give some examples of geometric conditions which imply that the

Lagrangian submanifold M 3 is either of Type 1 or Type 2.

Lemma 1. Let M 3 be a minimal Lagrangian submanifold of CP3�4�.

Assume moreover that M is quasi Einstein and that dM 0 2. Then M is of Type 2.

Proof. Denote by S the Ricci tensor of M 3 de®ned by

S�Y ;Z� � tracefX 7! R�X ;Y �Zg;

and denote by ricci the associated 1-1 tensor ®eld, i.e. hricci�Y �;Zi � S�Y ;Z�.

Let p A M and assume that p is not a totally geodesic point of M 3. Then,

by choosing e1 as the vector in which the function

f �v� � h�K�v; v�; v�;

de®ned on all unit length vectors at the point p, attains an absolute maximum

it follows that e1 is an eigenvector of AJe1 . Next we choose e2 and e3 as
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eigenvectors of AJe1 with respective eigenvalues l2 and l3. More details of this

construction can be found in [E]. Using now that M 3 is minimal and that

hh�x; y�; Jzi is symmetric in x, y and z, it follows that

h�e1; e1� � l1Je1; h�e2; e2� � l2Je1 � aJe2 � bJe3; �11�

h�e1; e2� � l2Je2; h�e2; e3� � bJe2 ÿ aJe3; �12�

h�e1; e3� � l3Je3; h�e3; e3� � l3Je1 ÿ aJe2 ÿ bJe3; �13�

where l1 � l2 � l3 � 0. Since f attains an absolute maximum in e1, we must

have that l1 > 0, l1 ÿ 2l2b 0, l1 ÿ 2l3b 0. If l2 � l3 it is also clear that by

rotating e2 and e3, we can choose e2 and e3 such that b � 0.

A straightforward computation, using the Gauss equation now shows that

�S�ei; ej��

�

2ÿ l
2
1 ÿ l

2
2 ÿ l

2
3 ÿ�l2 ÿ l3�a ÿ�l2 ÿ l3�b

ÿ�l2 ÿ l3�a 2ÿ 2l22 ÿ 2a2 ÿ 2b2 0

ÿ�l2 ÿ l3�b 0 2ÿ 2l23 ÿ 2a2 ÿ 2b2

0

B

@

1

C

A
�14�

It now follows that

ricci�e2� � ÿ�l2 ÿ l3�ae1 � 2�1ÿ l
2
2 ÿ a2 ÿ b2�e2;

hricci�e1�; e3i � ÿ�l2 ÿ l3�b:

Since M 3 is quasi-Einstein, we know that e2, ricci�e2� and ricci�ricci�e2�� have to

be linearly dependent. Hence the above formulas imply that

ab�l2 ÿ l3�
2 � 0:

So, if necessary by interchanging e2 and e3, we may assume that b � 0. If

l2 � l3, we see that fe1; e2; e3g is a basis of Type 2 at the point p.

Therefore we may assume that l2 0 l3. Suppose now that a � 0. Hence

e1, e2 and e3 are eigenvectors of ricci. Since we assumed that l2 0 l3, we see

that (if necessary after interchanging e2 and e3, which is allowed in this case since

a and b both vanish) M 3 is quasi Einstein if and only if

2ÿ l
2
1 ÿ l

2
2 ÿ l

2
3 � 2ÿ 2l22 ;

which reduces to

ÿ2l21 ÿ 2l1l2 � 0:
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Hence, since l1 0 0, we see that l2 � ÿl1 and l3 � 0. Thus e3 is a vector such

that h�x; e3� � 0, for any vector x. It follows that dM�p� � 2, which is a

contradiction.

Finally, we consider the case that l2 0 l3 and a0 0. Since a0 0, we see

that M 3 is quasi-Einstein if and only if 2ÿ 2l23 ÿ 2a2 is a double eigenvalue of

S. This is the case if and only if

det
l
2
3 ÿ l

2
1 ÿ l

2
2 � 2a2 �l3 ÿ l2�a

�l3 ÿ l2�a 2�l23 ÿ l
2
2�

 !

� 0:

Since l2 0 l3 and l3 � ÿl1 ÿ l2, this is the case if and only if

det
2l1l2 � 2a2 ÿ�l1 � 2l2�a

a ÿ2l1

� �

� 0;

i.e. if and only if

4l21l2 � ÿ3l1a
2 � 2l2a

2
: �15�

Now, we consider the following change of basis

u1 �
1

������������������

a2 � 4l21

q �ae1 ÿ 2l1e2�;

u2 �
1

������������������

a2 � 4l21

q �2l1e1 � ae2�;

u3 � e3:

Then, using (15), we have

h�ae1 ÿ 2l1e2; ae1 ÿ 2l1e2� � �a2l1 � 4l21l2�Je1 � �ÿ4al1l2 � 4al21�Je2

� ÿ2�l1 ÿ l2�a�aJe1 ÿ 2l1Je2�;

h�ae1 ÿ 2l1e2; e3� � a�l1 ÿ l2�Je3;

h�2l1e1 � ae2; e3� � �2l1l3 ÿ a2�Je3;

h�ae1 ÿ 2l1e2; 2l1e1 � ae2� � �2al21 ÿ 2al1l2�Je1 � �a2 ÿ 4l21�l2Je2 ÿ 2a2l1Je2

� a�l1 ÿ l2��2l1Je1 � aJe2�;

from which it follows immediately that the basis fu1; u2; u3g is of Type 2 at the

point p.
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Since the Ricci tensor has two distinct eigenvalues, it is clear that such a

basis can be extented di¨erentiably on an open dense subset of M. r

Lemma 2. Let M 3 be a minimal semi-symmetric Lagrangian submanifold of

CP3�4� without totally geodesic points. Then, M 3 is of Type 2.

Proof. It is well known, see for example [Ver] that a 3-dimensional semi-

symmetric manifold is quasi Einstein. Therefore, applying the previous lemma,

we see that the set of point with dM�p�0 2 de®nes a Lagrangian submanifold of

Type 2.

Therefore, in order to complete the proof, we have to show that the set

of non-totally geodesic points with dM�p� � 2 is empty. Assume there exists

a point p such that dM�p� � 2. Then, since M is minimal, we know from

[CDVV1] and [CDVV2] that there exists an orthonormal basis fe1; e2; e3g at the

point p such that

h�e1; e1� � lJe1, h�e2; e2� � ÿlJe1,

h�e1; e2� � ÿlJe2, h�e2; e3� � 0,

h�e1; e3� � 0, h�e3; e3� � 0.

Then, it follows from the Gauss equation that

R�e1; e2�e2 � �1ÿ 2l2�e1

R�x; y�e3 � hy; e3ixÿ hx; e3iy

R�e1; e2�e1 � ÿ�1ÿ 2l2�e2

R�x; e3�y � he3; yixÿ hx; yie3;

where x and y are arbitrary tangent vectors. It now follows that

R:R�e1; e3; e1; e2; e2� � R�e1; e3�R�e1; e2�e2 ÿ R�R�e1; e3�e1; e2�e2

ÿ R�e1;R�e1; e3�e2�e2 ÿ R�e1; e2�R�e1; e3�e2

� �1ÿ 2l2�R�e1; e3�e1 � R�e3; e2�e2

� 2l2e3;

which vanishes only if l � 0, i.e. if p is a totally geodesic point. r

Remark that the class of semi-symmetric submanifolds is a natural gen-

eralization of the one of locally symmetric manifolds. For a survey of further

generalizations, we refer to [Ver].

Lemma 3. Let M 3 be a Lagrangian H-umbilical submanifold of CP3. Then

M 3 is of Type 2.
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Proof. Since H is a nowhere vanishing vector ®eld, we can take E1 as the

unit length vector ®eld in the direction of JH. Then, using the symmetries of

the second fundamental form and the assumptions about H, it follows that we

can write

h�E1;E1� � l1JE1; h�E2;E2� � l2JE1 � aJE2 � bJE3;

h�E1;E2� � l2JE2; h�E2;E3� � bJE2 ÿ aJE3;

h�E1;E3� � l2JE3; h�E3;E3� � l2JE1 ÿ aJE2 ÿ bJE3:

It is now clear that, at least on an open dense subset, by rotating E2 and E3, we

may assume that b � 0. r

Lemma 4. Assume that M 3 is a minimal Lagrangian immersion which admits

a unit length Killing vector ®eld whose integral curves, when considered in C 4, lie in

a complex vector plane. Then M 3 is of Type 1.

Proof. We denote the unit length Killing vector ®eld by E1. By the

assumption that the integral curves lie in a complex vector plane, it follows that

we can write

h�E1;E1� � l1JE1:

Hence AJE1
E1 � l1E1 and E1 is an eigenvector of AJE1

. Denote by E2 and E3

the other two eigenvectors of the symmetric operator AJE1
. It follows that

h�E1;E3� � l2JE1;

h�E2;E3� � l3JE2;

where due to the minimality, we have that l1 � l2 � l3 � 0. Using the sym-

metries of h, it now follows that we can introduce functions a and b such that

h�E2;E2� � l2JE1 � aJE2 � bJE3;

h�E2;E3� � bJE2 ÿ aJE3;

h�E3;E3� � l3JE1 ÿ aJE2 ÿ bJE3:

Since E1 is a unit length Killing vector ®eld it follows that the connection

coe½cients are as for a Type 1 submanifold. r

Lemma 5. Let M 3 be a Lagrangian submanifold of CP3�4� with nowhere

vanishing mean curvature vector H. Assume that JH=jHj is a Killing vector ®eld

whose integrals, when considered in C 4 lie in a complex vectorplane. Then M 3 is

of Type 1.

Proof. We de®ne E1 as the unit length vector ®eld in the direction of

JH. Proceeding now in the same way as in the previous lemma completes the

proof. r
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By a lengthy but straightforward computation we now compute that the

Codazzi equations for a Lagrangian immersion of Type 1 are equivalent with

Lemma 6. Assume that M is a 3-dimensional Lagrangian submanifold of Type

1. Denote by fE1;E2;E3g the corresponding orthonormal basis. Then, we have

b1�l2 � l3� � b1l1 � 0; �16�

a1�l2 ÿ l3� � 2b1l2; �17�

E2�l1� � E3�l1� � E1�l2� � E1�l3� � 0; �18�

E2�l2� � ÿE2�l3� � a2�l3 ÿ l2�; �19�

E3�l2� � ÿE3�l3� � b2�l2 ÿ l3�; �20�

E1�a� � b�3a1 ÿ b1� � a2�l3 ÿ l2�; �21�

E1�b� � a�b1 ÿ 3a1� � b2�l2 ÿ l3�; �22�

E3�b� � E2�a� � 3�bb2 ÿ aa2�; �23�

E3�a� ÿ E2�b� � 4b1l2 � 3�ab2 � ba2�: �24�

Proof. Assuming that M is of Type 1, and taking the corresponding

orthonormal basis, we ®nd that

�`h��E2;E3;E2� � `
?
E2
h�E2;E3� ÿ h� È2

E3;E2� ÿ h� È2
E2;E3�

� `
?
E2
�bJE2 ÿ aJE3� ÿ h�ÿb1E1 ÿ b2E2;E2� ÿ h�b2E3;E3�

� �ab1 � b2l2 ÿ b2l3�JE1 � �E2�b� � b1l2 � 3b2a�JE2

� �ÿE2�a� � 3b2b�JE3

and

�`h��E3;E2;E2� � `
?
E3
h�E2;E2� ÿ 2h� È3

E2;E2�

� `
?
E3
�l2JE1 � aJE2 � bJE3� ÿ 2h�b1E1 � a2E3;E2�

� �E3�l2� � ab1�JE1 � �E3�a� ÿ 3b1l2 ÿ 3a2b�JE2

� �E3�b� � 3a2a�JE3:

Consequently, it follows from the Codazzi equation that

ab1 � b2l2 ÿ b2l3 � E3�l2� � ab1

E2�b� � b1l2 � 3b2a � E3�a� ÿ 3b1l2 ÿ 3a2b

ÿE2�a� � 3b2b � E3�b� � 3a2a:
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The other equations are then derived in a similar fashion using the other Codazzi

equations. r

Using the de®nition of the curvature tensor and the Gauss equation, the

following lemma follows by straightforward computations.

Lemma 7. Assume that M is a 3-dimensional Lagrangian submanifold of Type

1. Denote by fE1;E2;E3g the corresponding orthonormal basis. Then, we have

1� l1l2 ÿ l
2
2 � b21 ; �25�

l1�l2 ÿ l3� � �l2 � l3��l2 ÿ l3�; �26�

E1�b1� � 0; �27�

E2�b1� � b�l2 ÿ l3�; �28�

E3�b1� � a�l3 ÿ l2�; �29�

E1�b2� ÿ E2�a1� � b�l3 ÿ l2� � a2�a1 ÿ b1�; �30�

E3�a1� ÿ E1�a2� � a�l3 ÿ l2� � b2�a1 ÿ b1�; �31�

E3�b2� ÿ E2�a2� � 1� l2l3 � b21 � b22 � a22 ÿ 2�a2 � b2� � 2a1b1: �32�

Proof. By the de®nition of the curvature tensor, we obtain that

R�E1;E2�E2 � È1 È2
E2 ÿ È2 È1

E2 ÿ `�E1;E2�E2

� È1
b2E3 ÿ È2

a1E3 ÿ `a1E3ÿb1E3
E2

� b21E1 � �E1�b2� ÿ E2�a1� ÿ a1a2 � b1a2�E3:

On the other hand, from the Gauss equation it follows that

R�E1;E2�E2 � E1 � Jh�Jh�E2;E2�;E1� ÿ Jh�Jh�E1;E2�E2�

� E1 � Jh�ÿl2E1 ÿ aE2 ÿ bE3;E1� ÿ Jh�ÿl2E2;E2�

� �1� l1l2 ÿ l
2
2 �E1 � �b�l3 ÿ l2��E3:

So by comparing components of both expressions, we deduce that

b21 � 1� l1l2 ÿ l
2
2

E1�b2� ÿ E2�a1� ÿ a1a2 � b1a2 � b�l3 ÿ l2�:

The other equations can be derived similarly from the other Gauss equations.

r

Similar, we obtain that if M is a Lagrangian of Type 2 that the Codazzi and

Gauss equations reduce respectively to
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Lemma 8. Assume that M is a 3-dimensional Lagrangian submanifold of

Type 2. Denote by fE1;E2;E3g the corresponding orthonormal basis. Then, we

have

l2�c1 ÿ b2� � l1�c1 ÿ b2� � 0; �33�

a�b2 � c1� � 2a2l2 � ÿ2a�3a3 ÿ b2�; �34�

a�b1 ÿ c2� � ÿ2a1l2; �35�

b2�l1 ÿ 2l2� � aa2; �36�

�l1 ÿ 2l2��c2 ÿ b1� � 2aa1; �37�

E2�l1� � a1�l1 ÿ 2l2�; �38�

E3�l1� � a2�l1 ÿ 2l2�; �39�

E1�l2� � b1�l1 ÿ 2l2� � aa1; �40�

E2�l2� � a�c2 ÿ b1�; �41�

E3�l2� � a�b2 � c1�; �42�

E1�a� � l2a1 ÿ c2a; �43�

E2�a� � l2�b1 ÿ c2� ÿ 3ac3; �44�

E3�a� � l2�c1 ÿ 3b2� � 3ab3: �45�

Lemma 9. Assume that M is a 3-dimensional Lagrangian submanifold of

Type 2. Denote by fE1;E2;E3g the corresponding orthonormal basis. Then, we

have

E2�a1� ÿ E1�b1� � 1ÿ l
2
2 � l1l2 � a21 � b21 � b2c1 ÿ b2a3 � a2b3 ÿ a3c1; �46�

E3�a2� ÿ E1�c2� � 1ÿ l
2
2 � l1l2 � a22 � c22 � b2c1 � b2a3 ÿ a1c3 � a3c1; �47�

E2�a2� ÿ E1�b2� � b1a3 � b1b2 � a1a2 ÿ a1b3 � c2b2 ÿ c2a3; �48�

E3�a1� ÿ E1�c1� � a2c3 ÿ a3c2 � a1a2 � b1c1 � c1c2 � b1a3; �49�

E2�c2� ÿ E3�b2� � b1c3 ÿ b3c1 ÿ a2b2 � a2c1 ÿ b2b3 ÿ c2c3; �50�

E2�c1� ÿ E3�b1� � b3c2 ÿ c3b2 � a1c1 ÿ a1b2 ÿ c1c3 ÿ b1b3; �51�

E3�a3� ÿ E1�c3� � a1c2 ÿ a2c1 � a2a3 � a3b3 � b3c1 � c2c3; �52�

E1�b3� ÿ E2�a3� � b1a2 ÿ a1b2 ÿ a1a3 ÿ b1b3 � a3c3 ÿ c3b2; �53�

E3�b3� ÿ E2�c3� � 1� l
2
2 ÿ 2a2 � b23 � c23 � a3b2 ÿ a3c1 � b1c2 ÿ b2c1: �54�
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3. Lagrangian submanifolds of Type 1.

In this section, we will assume that M is a Lagrangian submanifold of

CP3�4� of Type 1, i.e. by restricting to an open and dense subset if necessary, we

may assume that in a neighborhood of each point p, we have an orthonormal

frame fE1;E2;E3g such that the equations Lemma 6 and 7 are satis®ed. We

denote the immersion of M 3 into CP3 by F.

Now we consider again di¨erent subcases. First, we assume that b1 0 0 at

p and hence in a neighborhood U of p. In this case it follows from (16) that

l1 � l2 � l3 � 0. Hence F : U ! CP3�4� de®nes a minimal Lagrangian im-

mersion. Notice that since l1 � 0, we also have that the integral curves of E1

are geodesics in CP3�4�. These are precisely the Lagrangian immersions studied

in [CaV]. We recall from there the following two examples:

Example 1. Let f : N 2 ! CP3�4� be a horizontal holomorphic curve on a

simply connected domain N 2. It is well known that using the Hopf ®bration

there exists an invariant (and hence minimal) immersion to the Sasakian space

form �S7�1�; I ; x; h: ; :i� such that the following diagram commutes

M 3
���!

c
S7�1�HC

4 � H
2

?
?
?
y
p

?
?
?
y
p

N 2
���!

f
CP3�4�;

where p denotes the Hopf ®bration. On S7
HH

2, there exist 3 orthogonal

Sasakian structures I, J and K. Since f is horizontal, the immersion c is

horizontal with respect to J and K. Hence projecting using the Sasakian

structure J produces a minimal Lagrangian immersion ~c of M 3 into CP3�4�.

Example 2. Let DHR
2 be a simply connected domain and let f : D ! R

be a solution of the sinh-Gordon equation, i.e.

fxx � fyy � 8 sinh f � 0:

Then, denoting by x and y the coordinates on DHR
2 and by z the coordinate

on R, we de®ne a metric on D� R by

q

qx
;

q

qx

� �

� cosh f �
1

16
f 2y ;

q

qy
;

q

qx

� �

� ÿ
1

16
fx fy; �55a�

q

qy
;

q

qy

� �

� cosh f �
1

16
f 2x ;

q

qx
;

q

qz

� �

� ÿ
1

4
fy; �55b�

q

qy
;

q

qz

� �

�
1

4
fx;

q

qz
;

q

qz

� �

� 1; �55c�
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where fx (resp. fy) denotes the partial derivative of f with respect to x (resp. y)

and a tensor T by

T
q

qx
;

q

qx

� �

� ÿ
fx

2 cosh f

q

qy
� 1�

f 2x
8 cosh f �

 !

q

qz
;

T
q

qy
;

q

qy

� �

� ÿ
fy

2 cosh f

q

qx
ÿ 1�

f 2y

8 cosh f �

 !

q

qz
;

�56a�

T
q

qy
;

q

qx

� �

� ÿ
fx

4 cosh f

q

qx
ÿ

fy

4 cosh f

q

qy
;

T
q

qx
;

q

qz

� �

�
1

cosh f

q

qx
�
1

4
fy

q

qz

� �

;

�56b�

T
q

qy
;

q

qz

� �

� ÿ
1

cosh f

q

qy
ÿ
1

4
fx

q

qz

� �

; T
q

qz
;

q

qz

� �

� 0: �56c�

A straightforward computation shows that, for more details see [CaV], the exis-

tence theorem of [CDVV2] can be applied and hence there exists a Lagrangian

immersion cf : D� R ! CP3�4� with induced metric h: ; :i and with second

fundamental form h � J�cf ���T�.

The Main Theorem of [CaV] then states that:

Theorem 3. The Lagrangian immersions de®ned in Example 1 and 2 are of

Type 1, with b1 0 0. Conversely, every Lagrangian immersion of Type 1 with

b1 0 0 can be locally obtained in this way.

Therefore, restricting once more to an open and dense subset, we may now

assume that b1 � 0 in a neighborhood of the point p. In this case, it follows

from (17) that a1�l2 ÿ l3� � 0, so we have to consider again 2 subcases: l2 � l3
and l2 0 l3. Restricting once more to an open and dense subset if necessary, we

may assume that either l2 � l3 in a neighborhood of the point p or that l2 0 l3
in a neighborhood of the point p.

3.1. b1 � 0 and l2 � l3.

In this case by rotating the vector ®elds E2 and E3, we may assume that

b � 0. So from (22) we now ®nd that

aa1 � 0 �57�

and from (25) we have

l1 �
l22 ÿ 1

l2
: �58�
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On the other hand, we know from (18), (19) and (20) that l2 is constant, and

therefore by (58) l1 is a constant too.

From (57) it follows that either a � 0 or a1 � 0. Therefore by restricting

once more to an open and dense subset, we may assume that either a0 0 (and

hence a1 � 0) in a neighborhood of p or a � 0 in a neighborhood of p. In

the ®rst case, it follows from (21), (23), (24), (30), (31) and (32) that we have the

following system of di¨erential equations for the other functions:

E1�a� � 0 E2�a� � ÿ3aa2 E3�a� � 3ab2

E1�a2� � 0 E1�b2� � 0 E3�b2� ÿ E2�a2� � 1� l
2
2 ÿ 2a2 � b22 � a22 :

And in the other case, i.e. when a � 0, we obtain the following system

E1�b2� ÿ E2�a1� � a2a1;

E3�a1� ÿ E1�a2� � b2a1;

E3�b2� ÿ E2�a2� � 1� l
2
2 � b22 � a22 :

We now can prove the following theorem.

Theorem 4. Let G : N ! CP2�4� be a Lagrangian immersion. We denote

by g a horizontal Hopf lift of G to S5�1�. Then, for every constant number l2,

F�t; u; v� � 1=

�������������

1� l
2
2

q

� �

g�u; v�el2it; l2=

�������������

1� l
2
2

q

� �

eÿit=l2

� �

de®nes a Lagrangian immersion of Type 1 with b1 � 0 and l2 � l3. Conversely

every Lagrangian immersion of Type 1, with b1 � 0 and l2 � l3 can be locally

obtained in this way.

Proof. The fact that F as de®ned in the theorem is a Lagrangian sub-

manifold of Type 1 with the desired properties can be straightforwardly ver®ed.

In order to obtain the converse, we use the equations derived before together

with the Lemma 7. We consider the disributions T1 � spanfE1g and T2 �

spanfE2;E3g. It is clear that T1 and T2 are orthogonal distributions satisfying

the following properties:

T̀1
T1 HT1

T̀2
T1 HT1

T̀1
T2 HT2

T̀2
T2 HT2:
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From this, it is well known, see for instance [KN] that M can be locally written

as a product manifold (with metric the product metric). So, we can write

M 3 � R�N 2 and there exists coordinates

q

qt
� E1

span
q

qu
;
q

qv

� �

� spanfE2;E3g:

Since N 2 is a 2-dimensional we may also assume that q=qu and q=qv are

isothermal coordinates on the surface N 2.

The immersion f (which denotes the local horizontal lift of F to S7�1�, and

as usual we identify M with its image in S7�1�) now satis®es the following system

of di¨erential equations:

ftt � il1ft ÿ f

ftu � il2fu

ftv � il2fv:

The ®rst di¨erential equation implies that we can write f�t; u; v� � A1�u; v�e
a1it �

A2�u; v�e
a2it where a1 and a2 are the solutions of the equation

a2 ÿ al1 ÿ 1 � 0;

from which it follows that a1 � l2 and a2 � ÿ1=l2. On the other hand, the

other two di¨erential equation for f now yield that A2u � A2v � 0. Therefore A2

is a constant vector.

With respect to A1 we know that

E1 � ft � A1il2e
il2t ÿ

iA2

l2
eÿit=l2

and so, we have

A1 �
ÿeÿil2til2

l22 � 1
E1 �

if

l2

� �

a function of length jA1j
2 � 1=�1� l22�. Similarly, we obtain that

A2 �
ÿe i�1=l2�til2

l22 � 1
�ÿE1 � ifl2�;

implying that A1 and A2 are orthogonal and that the length of the constant

vector A2 equals jA2j
2 � l22=�1� l22�.
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If we call g �
�������������

1� l22

q

A1, we can consider g : N 2 ! S7�1� and it follows

that

DE2
g �

�������������

l22 � 1

q

eÿil2tE2

DE3
g �

�������������

l22 � 1

q

eÿil2tE3;

showing that g��TN� is spanned by E2 and E3. Since

DE2
E2 � b2E3 � aJE2 ÿ e il2t

�������������

l22 � 1

q

g;

DE2
E3 � ÿb2E2 ÿ aJE3;

DE3
E3 � ÿa2E3 ÿ aJE2 ÿ e il2t

�������������

l22 � 1

q

g;

it follows that g�N� is obtained in a 3-dimensional complex linear subspace of C 4

and thus g de®nes an immersion of N 2 into S5�1�.
And as g � ÿeÿil2t �il2�=

�������������

l22 � 1
q

�E1 � �if=l2��
� �

we know that g is

horizontal and moreover A1 and A2 are orthogonal, it follows that f can be

written as

f�t; u; v� � 1
�������������

1� l22

q g�u; v�el2it; l2
�������������

1� l22

q eÿit=l2

0

B

@

1

C

A

with l2 constant and the projection of g under the Hopf ®bration de®nes a

Lagrangian immersion of N 2 into CP2. r

In the other case, l2 0 l3, we have a1 � 0, and from (25) and (26) it follows

that l1 � l2 � l3 and l2l3 � ÿ1. As b1 � 0, for (28) and (29), we obtain

a � b � 0. Thus, for (21) and (22) we have a2 � b2 � 0. Finally, from (19) and

(20) we know that l2 is constant, and thus l1 and l3 are also constants. Also in

this case, we can prove the corresponding theorem.

Theorem 5. Let l2 and l3 be di¨erent constants satisfying l2l3 � ÿ1.

Then, we de®ne F : R
3 ! CP3�4� by

F�x; y; z� � 1=
���

2
p �������������

1� l22

q

� �

e il2xeGi
��������

1�l22

p
y; 1=

���

2
p �������������

1� l23

q

� �

e il3xeGi
��������

1�l23

p
z

� �

Then F de®nes a Lagrangian immersion of Type 1. Conversely every Lagrangian

immersion of Type 1, with b1 � 0 and l2 0 l3 can be obtained in this way.
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Proof. It is straightforward to compute that F as de®ned above is a

Lagrangian immersion of Type 1. In order to obtain the converse, we use

the equations derived before. Since in this case `Ei
Ej � 0, we can choose

coordinates

q

qx
� E1;

q

qy
� E2;

q

qz
� E3:

So, the horizontal lift of the immersion satis®es

fxx � il1fx ÿ f; �59�

fxy � il2fy; �60�

fxz � il3fz; �61�

fyy � il2fx ÿ f; �62�

fyz � 0; �63�

fzz � il3fx ÿ f: �64�

We now obtain from (59) that we can write our immersion as

f�x; y; z� � e ia1xA1�y; z� � e ia2xA2�y; z�

where a1 and a2 are the solutions of the equation

a2 ÿ l1aÿ 1 � 0;

thus, we have a1 � l2 and a2 � l3. Moreover, of (60), (61) and (63) we have

A1yz � A2yz � A2y � A1z � 0

and, of (62) and (64) we have

A1yy � ÿA1�1� l22�;

A2zz � ÿA2�1� l23�:

So, we can write our immersion as

f � B1e
il2xe i

��������

1�l22

p
y � B2e

il2xeÿi
��������

1�l2
2

p
y

B3e
il3xe i

��������

1�l2
3

p
z � B4e

il3xeÿi
��������

1�l23

p
z
:
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It follows that

fx � il2B1e
il2xe i

��������

1�l22

p
y � il2B2e

il2xeÿi
��������

1�l2
2

p
y

il3B3e
il3xe i

��������

1�l2
3

p
z � il3B4e

il3xeÿi
��������

1�l23

p
z;

fy � i

�������������

1� l22

q

B1e
il2xe i

��������

1�l22

p
y ÿ i

�������������

1� l22

q

B2e
il2xeÿi

��������

1�l22

p
y;

fz � i

�������������

1� l23

q

B3e
il3xe i

��������

1�l23

p
z ÿ i

�������������

1� l23

q

B4e
il3xeÿi

��������

1�l23

p
z:

From which we deduce that

B1e
il2xe i

��������

1�l22

p
y

� 1

2�l3 ÿ l2�
�����������������

�1� l22�
q

�������������

1� l22

q

l3f�
�������������

1� l22

q

iE1 � i�l2 ÿ l3�E2

� �

;

B2e
il2xeÿi

��������

1�l22

p
y

� 1

2�l3 ÿ l2�
�����������������

�1� l22�
q

�������������

1� l22

q

l3f�
�������������

1� l22

q

iE1 ÿ i�l2 ÿ l3�E2

� �

;

B3e
il3xe i

��������

1�l23

p
z

� 1

2�l3 ÿ l2�
�����������������

�1� l23�
q ÿ

�������������

1� l23

q

l2fÿ
�������������

1� l23

q

iE1 � i�l2 ÿ l3�E3

� �

;

B4e
il3xeÿi

��������

1�l23

p
z

� 1

2�l3 ÿ l2�
�����������������

�1� l23�
q ÿ

�������������

1� l23

q

l2fÿ
�������������

1� l23

q

iE1 ÿ i�l2 ÿ l3�
� �

E3:

Since f, E1, E2 and E3 are mutually orthonormal and l2l3 � ÿ1 it now follows

that B1, B2, B3 and B4 are mutually orthogonal. Therefore, we can apply a

isometry such that f is given by

f�x; y; z� � 1=
���

2
p �������������

1� l22

q

� �

e il2xeGi
��������

1�l22

p
y; 1=

���

2
p �������������

1� l23

q

� �

e il3xeGi
��������

1�l23

p
z

� �

where l2 and l3 are constants satisfying l2l3 � ÿ1. r
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Summarizing the results of this section, we have

Theorem 6. Let F : M 3 ! CP3�4� be a Lagrangian immersion of Type

1. Then there exists an open and dense subset V of M 3 such that for each point p

of V there exists a neighborhood U of p and FjU is congruent to one of the

immersions constructed in the previous 3 theorems.

4. Lagrangian submanifolds of Type 2.

From (33) it follows that we can have two cases, namely either c1 0 b2 or

c1 � b2. In the ®rst case it follows that l1 � l2 � 0, implying that M 3 is

minimal and satis®es Chen's equality. Those submanifolds were classi®ed in

[BSVW].

In the second case, from (34) we obtain that aa3 � 0, leading once more to

two di¨erent subcases: namely a � 0 or a0 0. Restricting once more to an open

and dense subset, and dividing M up into several pieces, we may assume that

either a � 0 on M or a0 0 on M. In the ®rst case, we call M of Type 2.1

whereas in the second case, we call M of Type 2.2.

4.1. Lagrangian submanifolds of Type 2.1.

If a � 0, we deduce from (34), (35), (44) and (45) that we have

a2l2 � a1l2 � �b1 ÿ c2�l2 � b2l2 � 0:

So, we consider again 2 cases: l2 � 0 or l2 0 0.

When l2 0 0, we get from the above equations that a2 � a1 � b2 � c1 � 0

and b1 � c2. And the other functions satisfy, using (40), (41), (42), (43), (44),

(45), (46), (50), (51), (52), (53) and (54),

E2�l1� � E3�l1� � 0;

E1�l2� � b1�l1 ÿ 2l2�;

E2�l2� � E3�l2� � 0;

ÿE1�b1� � 1ÿ l
2
2 � l1l2 � b21 ;

E2�b1� � E3�b1� � 0;

E3�a3� ÿ E1�c3� � b1c3 � a3b3;

E1�b3� ÿ E2�a3� � a3c3 ÿ b1b3;

E3�b3� ÿ E2�c3� � 1� l
2
2 � b21 � b23 � c23 :
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In this case it is clear that we have 2 integrable distributions T1 � spanfE2;E3g

and T2 � spanfE1g with T1 ?T2. We also see that T1 is autoparallel, i.e.

T̀1
T1 HT1:

The distribution T2 is in general not autoparallel. However, since in this case

È2
E2 � ÿb1E1 � b3E3;

È2
E3 � ÿb3E3;

È3
E2 � c3E3;

È3
E3 � ÿb1E1 ÿ c3E2;

we deduce that the distribution T2 is umbilical with mean curvature normal

ÿb1E1. Since E2�b1� � E3�b1� � 0, it is also spherical. Therefore applying the

result of Hiepko [H] we get that M can be written as a warped product with

warping function f , M � R�e f N 2 with f : M ! R, where q=qt � E3 and such

that

q f

qt
� b1; �65�

qb1

qt
� ÿ1ÿ b21 � l

2
2 ÿ l1l2; �66�

ql2

qt
� b1�l1 ÿ 2l2�: �67�

Using the standard formulas for warped product metrics, see for example [ON] it

follows that the Gaussian curvature ~K of the surface N is given by

~K � e2f �1� l
2
2 � b21�:

Since f , l2 and b1 depend only on t, and ~K has to be independent of t (which

also can be vari®ed by a straightforward computation). So, we deduce that N 2

has constant curvature c2 � e2f �1� l
2
2 � b21� and is therefore congruent with the

sphere with radius 1=c. Therefore, by applying the existence and uniqueness

theorems, we have the following theorem:

Theorem 7. Consider on an interval I a solution � f ; b1; l2� of the system

of di¨erential equations (67) for an arbitrary function l1. Introduce a constant c

by
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c2 � e2f �1� l22 � b21�

and denote by S2�1=c� the sphere with radius 1=c. We then consider M �

I �e f S2�1=c� and de®ne a �2; 1�-tensor®eld s on M by

s
q

qt
;
q

qt

� �

� l1
q

qt
;

s
q

qt
;X

� �

� l2X ;

s�X ;Y � � l2hX ;Yi
q

qt
;

where q=qt is tangent to I and X ;Y are tangent to S2�1=c�. Then there exists a

Lagrangian isometric immersion of Type 2 of M into CP3�4� such that h � Js.

Conversely every Lagrangian immersion of Type 2.1 with l2 0 0 can be locally

obtained in this way.

In the case that l2 � 0, if follows from (40) that b1l1 � 0. If l1 � 0 we

again have that M is minimal and satis®es Chen's equality, and if l1 0 0 then,

from (36), (37) and (40) we get

b1 � c2 � b2 � c1 � 0:

Since a is zero, we still are allowed to choose E2 and E3 appropriately. By

applying a suitable rotation, we can choose a2 � 0. So, (46) reduces to E2�a1� �

1� a21 , which implies that a1 is not a constant. Therefore, restricting once more

to an open and dense subset and changing the sign of E2 if necessary, we may

assume that a1 > 0. Now, from (48) it follows that we have b3 � 0, and from

(47) it follows that c3 � 1=a1. The other functions satisfy, using (46), (49), (52),

(53), (38) and (39),

E2�a1� � 1� a21 ; E3�a1� � 0;

E2�l1� � a1l1; E3�l1� � 0;

E2�a3� � a1a3 ÿ
a3

a1
; E3�a3� �

E1�a1�

a21
� 0;

where l1 is not a constant. We now introduce a function f by E1�a1�� f . Com-

puting �E1;E3�a1 and �E1;E2�a1 in two di¨erent ways it follows that E3� f � �

a3�1� a21� and E2� f � � 3a1 f . Next, we introduce functions a, b, g and d by
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a �
a1
�������������

1� a21

q ; �68�

b � ÿ�1� a21�l
ÿ3
1 ; �69�

g � f lÿ3
1 ; �70�

d � a3a1l
ÿ3
1 : �71�

A straightforward computation then shows that

�E2; aE3� � 0;

�aE3; bE1 � gE2 � dE3� � 0;

�E2; bE1 � gE2 � dE3� � 0:

Hence there exist coordinates such that

q

qx
� E2;

q

qy
� aE3;

q

qz
� bE1 � gE2 � dE3

with

a1x � 1� a21 ;

a1y � 0;

l1x � a1l1;

l1y � 0;

fx � 3a1 f ;

fy � a3a�1� a21�;

a1z � 0;

f �
a1z ÿ g�1� a21�

b
;

a3y

a
� ÿ

f

a21
;

obtaining, after applying suitable translations of the coordinates, the following

solutions:
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f �
A1�z� cos y� A2�z� sin y

cos3 x
�72�

a1 � tan x �73�

l1 �
A3�z�

cos x
�74�

a3 �
A2�z� cos yÿ A1�z� sin y

sin x cos x
�75�

where A1, A2 and A3 are functions. Applying the existence and uniqueness

theorem then gives the following result:

Theorem 8. Let A1, A2 and A3 be three arbitrary functions de®ned on

an interval I and depending only on the variable z. Consider M � � ÿ p=2;

p=2� � R� I . Let a; . . . ; d; a1; . . . ; f be as de®ned in (75) and (71). We de®ne a

metric on M by assuming that E1, E2 and E3 de®ned by

q

qx
� E2;

q

qy
� aE3;

q

qz
� bE1 � gE2 � dE3

forms an orthonormal basis of M. We de®ne a tensor ®eld s by

s�Ei;Ej� � l1dj1dijE1:

Then there exists a Lagrangian isometric immersion of Type 2 of M into CP3�4�

such that h � Js. Conversely every Lagrangian immersion of Type 2.1 with

l2 � 0 and which is not minimal can be locally obtained in this way.

4.2. Lagrangian submanifolds of Type 2.2.

If a0 0 then a3 � 0 and of (34) we have b2 � a2l2=a. And from (35), (36)

and (37) we have that

a2�a
2 � l2�2l2 ÿ l1�� � 0;

�b1 ÿ c2��a
2 � l2�2l2 ÿ l1�� � 0:

Now, we again have to consider two subcases. First, we have that a2 �

l2�2l2 ÿ l1�0 0. Then a2 � b2 � c1 � 0 and b1 � c2. From (37) it follows that
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a1 � 0. The other functions satisfy the following equations, as can be deduced

from (38), (39), (40), (41), (42), (43), (44), (45), (46), (50), (51), (52), (53) and (54),

E2�l1� � E3�l1� � 0;

E1�l2� � b1�l1 ÿ 2l2�;

E2�l2� � E3�l2� � 0;

E1�a� � ÿab1;

E2�a� � ÿ3ac3;

E3�a� � 3ab3;

ÿE1�b1� � 1ÿ l
2
2 � l1l2 � b21 ;

E2�b1� � E3�b1� � 0;

E1�c3� � ÿb1c3;

E1�b3� � ÿb1b3;

E3�b3� ÿ E2�c3� � 1� l
2
2 ÿ 2a2 � b21 � b23 � c23 :

In this case we again have two integrable distributions T1 � spanfE2;E3g and

T2 � spanfE1g with T1 ?T2. It follows again that T2 is autoparallel and T1 is

spherical with mean curvature normal ÿb1E1. Therefore according to [H] we

have that M � R�e f N 2 with f : R ! R satisfying

q f

qt
� b1;

qb1

qt
� ÿ1ÿ b21 � l

2
2 ÿ l1l2;

ql2

qt
� b1�l1 ÿ 2l2�

and the curvature of N 2 is given by

K�N 2� � e2f �1� l
2
2 ÿ 2a2 � b21�;

which we verify by a straightforward computation is indeed independent of t.

By translating f , i.e. by replacing a homothety N 2 with a homothetic copy of

itself, we may assume that eÿ2f �1� l
2
2 � b21� � 1. It is also clear that U1 � e fE2

and U2 � e fE3 form an orthonormal basis on N 2. We denote by ^̀ the Levi
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Civita connection of the metric g on N 2. Using the formulas for warped

product immersions, see [ON], we get that

^̀
U1
U1 � e f b3U2;

^̀
U1
U2 � ÿe f b3U1;

^̀
U2
U1 � e f c3U2;

^̀
U2
U2 � ÿe f c3U1:

We also de®ne a tensor ®eld T̂ by

T̂�U1;U1� � ÿT̂�U2;U2� � e f aU1; T̂�U1;U2� � ÿe f aU2:

A straightforward computation now shows that ^̀T̂ is totally symmetric. Hence

applying the existence and uniqueness theorem, we obtain that there exists an

isometric horizontal minimal immersion c : N 2 ! S5�1�. Therefore, we obtain

the following theorem:

Theorem 9. Let c : N 2 ! CP2�4� be a minimal isometric Lagrangian

immersion. Denote by K its sectional curvature, by g its metric and by a its

second fundamental form. Put T̂ � ÿJa. We also consider a solution, de®ned on

an interval I, of the system of di¨erential equations

q f

qt
� b1;

qb1

qt
� ÿ1ÿ b21 � l22 ÿ l1l2;

ql2

qt
� b1�l1 ÿ 2l2�;

where l1 is an arbitrary function, with initial conditions chosen such that

e2f �1� l22 � b21� � 1. We then de®ne on the 3-dimensional warped product mani-

fold I �e f N 2 a tensor T by

T
q

qt
;X

� �

� l2X ;

T
q

qt
;

q

qt

� �

� l1
q

qt
;

T�X ;Y� � hX ;Yil2
q

qt
� T̂�X ;Y�:

Then there exists a Lagrangian immersion F : I �e f N 2 ! CP2�4� such that

JT � h. Conversely every Lagrangian of Type 2.2 with a2 � l2�2l2 ÿ l1�0 0 can

be locally obtained in this way.

Finally, we consider the case that a2 � l2�2l2 ÿ l1� � 0. Using (38), (39),

(41), (42), (44) and (45) to compute the lefthandsides, we obtain that
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E2�a2 � l2�2l2 ÿ l1�� � E3�a2 � l2�2l2 ÿ l1�� � 0

implies that a2 � 2b3 and a1 � ÿ2c3. Now, after many tedious but straight-

forward computations, using the Mathematica computer program it follows that

a1 � a2 � 0, thus b2 � c1 � b3 � c3 � 0 and in view of (35) also b1 � c2. From

(54) we have

b21 � 2a2 ÿ 1ÿ l
2
2 ;

with ÿE1�b1� � 1� l
2
2 � b21 � a2, thus b1 is not a constant. Therefore, restricting

to an open dense subset and replacing E1 by ÿE1 if necessary, we may assume

that b1 > 0. Similarly, by choosing E2 we may assume that a > 0. The dif-

ferential equations determining the other functions are now obtained from (40),

(41), (42), (43), (44) and (45) and reduce to

E1�l2� �
a2

�����������������������������

j2a2 ÿ 1ÿ l
2
2 j

q

l2
;

E2�l2� � E3�l2� � 0;

E1�a� � ÿb1a;

E2�a� � E3�a� � 0;

where a, l1 and l2 are not constant. In this case a straightforward computation

now shows that there exist coordinates x, y and z such that

q

qx
� E1;

q

qy
� 1

a
E2;

q

qz
� 1

a
E3:

Solving now the system of di¨erential equations it follows that l
2
2 � ÿa2 � d 2,

where d is a positive constant and a 0�x� � ÿa
�����������������������������

j3a2 ÿ 1ÿ d 2j
p

obtaining after a

translation in the x coordinate that

a �
��������������

1� d 2
p

���

3
p

sin�x
��������������

1� d 2
p

�
:

Applying the existence and uniqueness theorem we then obtain the following

Theorem 10. Consider �0; p=2� and let d be a positive constant. De®ne a as

above and denote by I the interval where d 2 ÿ a2 > 0. We de®ne a metric on

I � R
2 such that E1, E2 and E3 de®ned by
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q

qx
� E1;

q

qy
� 1

a
E2;

q

qz
� 1

a
E3;

form an orthonormal basis and we de®ne a tensor TG by

TG�E1;E1� � l1E1; TG�E2;E2� � l2E1 � aE2;

TG�E1;E2� � l2E2; TG�E2;E3� � ÿaE3;

TG�E1;E3� � l2E3; TG�E3;E3� � l2E1 ÿ aJE2;

where l2 � G
����������������

d 2 ÿ a2
p

and l1 is determined by a2 � l2�2l2 ÿ l1� � 0. Then

there exist Lagrangian immersions fG : I � R
2 ! CP3�4� with second fundamental

forms respectively given by JTG. Conversely every Lagrangian of Type 2.2 with

a2 � l2�2l2 ÿ l1� � 0 can be locally obtained in this way.

As seen before each of the geometric conditions described in Lemma 1 upto

Lemma 5 leads upto the existence of a frame of Type 1 or Type 2. Combining

the above formulas with those lemmas it is straightforward to compute which of

the examples remain.

Corollary 1. Let M 3 be a minimal Lagrangian submanifold of CP3�4�.
Assume moreover that M is quasi Einstein and that dM 0 2. Then M is as

obtained in Theorem 7 or 9, where � f ; b1; l2� is a solution of

q f

qt
� b1;

qb1

qt
� ÿ1ÿ b21 � 3l22 ;

ql2

qt
� ÿ4b1l2:

Corollary 2. Let M 3 be a Lagrangian submanifold of CP3 with nowhere

vanishing mean curvature vector H. Assume moreover that JH is an eigenvector of

AH and AH restricted to fJHg? is a multiple of the identity. Then M 3 cor-

responds to the non-minimal examples in Theorems 7, 8, 9 and 10.

Corollary 3. Assume that M 3 is a minimal Lagrangian immersion which

admits a unit length Killing vector ®eld whose integral curves, when considered in

C
4, lie in a complex vector plane. Then M 3 is as in Theorem 3, or as in Theorem

4 with l2 � ÿ1=
���

3
p

or as in Theorem 5 with l2 � 1.
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