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Abstract. The aim of this note is to generalize the Liouville theorem to poly-

harmonic functions u on Rn. We give a condition on spherical means to assure that u

is a polynomial.

1. Introduction.

Let Rn be the n-dimensional Euclidean space with a point x � �x1; x2; . . . ; xn�.

For a multi-index l � �l1; l2; . . . ; ln�, we set

jlj � l1 � l2 � � � � � ln;

xl � xl1

1 xl2

2 . . . xln
n

and

q

qx

� �l

�
q

qx1

� �l1
q

qx2

� �l2

� � �
q

qxn

� �ln

:

We denote by rBn the open ball centered at the origin with radius r > 0, whose

boundary is denoted by rS nÿ1.

A real valued function u is called polyharmonic of order m on Rn if u A C2m

and D
mu � 0, where m is a positive integer, D denotes the Laplacian and D

mu �

D
mÿ1�Du�. We denote by Hm�Rn� the space of polyharmonic functions of order

m on R
n. In particular, u is harmonic on R

n if u A H 1�Rn�. A real valued

function u on Rn belongs to Hm�Rn� if and only if there exists a family fhig
m
i�1 H

H 1�Rn� such that

u�x� �
X

m

i�1

jxj2�iÿ1�
hi�x� �1�

for every x A R
n; this is known as the ®nite Almansi expansion (cf. [2], [6]).
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The Liouville theorem for polyharmonic functions is known in several forms

(cf. [1], [4], [5]).

Theorem A. Let u A Hm�Rn� and s > 2�mÿ 1�. Then u is a polynomial of

degree less than s if one of the following conditions holds:

(i) lim
r!y

1

rs�nÿ1

�

rS nÿ1

u� dS � 0 (see [1]);

(ii) lim
r!y

1

rs�n

�

rB n

u� dx � 0 (see [4]);

(iii) lim sup
r!y

max
x A rS nÿ1

u�x�

jxjs

� �

U 0 (see [5]).

For harmonic functions, we refer the reader to Brelot [3; Appendix].

Now we propose the following theorem.

Theorem. Let u A Hm�Rn� and s > 2�mÿ 1�. Then u is a polynomial of

degree at most s if and only if

lim inf
r!y

1

rs�nÿ1

�

rS nÿ1

u� dS < y: �2�

We here note that each condition of Theorem A implies (2), so that our

theorem gives an improvement of Theorem A. We also see that if (iii) is

replaced by a weaker condition

(iii 0) lim inf
r!y

max
x A rS nÿ1

u�x�

jxjs

� �

< y,

then u is a polynomial of degree at most s.

2. The main lemma.

Let us begin by preparing the following lemma, which gives a relation

between spherical means and derivatives for harmonic functions.

Lemma 1. Suppose u A H 1�Rn�. For each multi-index l, there exists a

positive constant C � C�l� such that

�

rS nÿ1

uxl dS � Cr2jlj�nÿ1 q

qx

� �l

u�0� � P2jlj�nÿ3�r� �3�

for every r > 0, where Pk�r� is a polynomial of degree at most k.

Proof. We prove this lemma by induction on the length of l. Assume

®rst that ln � 1 and li � 0 �i � 1; . . . ; nÿ 1�. Using Green's formula and the
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mean-value property for harmonic functions, we have

�

rS nÿ1

uxl dS �

�

rS nÿ1

uxn dS

� r

�

rS nÿ1

u
xn

r
dS

� r

�

rBn

qu

qxn
dx

� snr
n�1 qu

qxn
�0�;

where sn is the n-dimensional volume of the unit ball. Hence (3) holds for

jlj � 1.

Next suppose that (3) holds for jlj � k, where k is a positive integer. Let

m � �m1; . . . ; mn� such that jmj � k � 1. We may assume without loss of gen-

erality that mn � 2, and set m 0 � �m1; . . . ; mnÿ1; mn ÿ 1�. Then we write

�

rS nÿ1

uxm dS � r

�

rS nÿ1

uxm 0 xn

r
dS:

From Green's formula we obtain

�

rS nÿ1

uxm dS � r

�

rB n

q�uxm 0
�

qxn
dx

� r

�

rB n

xm 0 qu

qxn
� �mn ÿ 1�ux

m1
1 � � � xmnÿ2

n

� �

dx � ���:

Set m 00 � �m1; . . . ; mnÿ1; mn ÿ 2�. Since jm 0j � k and jm 00j � k ÿ 1 (if mn V 2), we

®nd

��� � r

� r

0

�

tS nÿ1

xm 0 qu

qxn
� �mn ÿ 1�uxm 00

� �

dS

� �

dt

� r

� r

0

C�m 0�t2jm
0j�nÿ1 q

qx

� �m 0

qu

qxn

� �

�0� � P2jm 0j�nÿ3�t�

 !

dt

� r�mn ÿ 1�

� r

0

C�m 00�t2jm
00j�nÿ1 q

qx

� �m 00

u�0� � P2jm 00j�nÿ3�t�

 !

dt

� C�m�r2k�n�1 q

qx

� �m

u�0� � P2k�nÿ1�r�;
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where C�m� � �C�m 0��=�2k � n� > 0 and Pl denotes various polynomials of

degree at most l which may change from one occurrence to the next; throughout

this note, we use this convention. Hence (3) also holds for jmj � k � 1. The

induction is completed.

3. Proof of the theorem.

First we show that our theorem is valid under the two sided condition on

spherical means for polyharmonic functions.

Lemma 2. Let u A Hm�Rn� and s > 2�mÿ 1�. Then u is a polynomial of

degree at most s if

lim inf
r!y

1

rs�nÿ1

�

rS nÿ1

juj dS < y: �4�

Proof. By (4) we can ®nd a sequence frjg
y

j�1 such that rj ! y and

sup
j

rÿsÿn�1
j

�

rjS nÿ1

juj dS

 !

< y: �5�

Using (1) and Lemma 1, we have

�

rS nÿ1

uxl dS �

�

rS nÿ1

X

m

i�1

jxj2�iÿ1�
hi�x�

 !

xl dS

�
X

m

i�1

r2�iÿ1�

�

rS nÿ1

hi�x�x
l dS

�
X

m

i�1

r2�iÿ1� Cir
2jlj�nÿ1 q

qx

� �l

hi�0� � Pi;2jlj�nÿ3�r�

 !

;

where Ci is a positive constant and Pi;k denotes various polynomials of degree at

most k. Hence it follows that

rjlj
�

rS nÿ1

juj dSV

X

m

i�1

r2�iÿ1� Cir
2jlj�nÿ1 q

qx

� �l

hi�0� � Pi;2jlj�nÿ3�r�

 !�

�

�

�

�

�

�

�

�

�

;

so that we obtain

rÿsÿn�1
j

�

rjS nÿ1

juj dSV r
jljÿs�2�mÿ1�
j Cm

q

qx

� �l

hm�0� �O�rÿ2
j �

�

�

�

�

�

�

�

�

�

�

as rj ! y. By (5), we ®nd
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q

qx

� �l

hm�0� � 0

for all jlj > sÿ 2�mÿ 1�. By analyticity of harmonic functions, we see that hm
is a polynomial of degree at most sÿ 2�mÿ 1�. Hence we note that

r2�mÿ1�

�

rS nÿ1

hm�x�x
l dS � O�rs�jlj�nÿ1� as r ! y:

Consequently,

rÿsÿn�1
j

�

rjS nÿ1

juj dSV r
jljÿs�2�mÿ2�
j Cmÿ1

q

qx

� �l

hmÿ1�0� �O�rÿ2
j �

�

�

�

�

�

�

�

�

�

�

�O�1�

as rj ! y. This implies that �q=qx�lhmÿ1�0� � 0 for jlj > sÿ 2�mÿ 2�, so that

hmÿ1 is a polynomial of degree at most sÿ 2�mÿ 2�. By repeating this ar-

gument, we see that each hi is a polynomial of degree at most sÿ 2�i ÿ 1�

�i � 1; . . . ;m�. Thus it follows that u is a polynomial. In view of (1), the

degree of u is at most 2�i ÿ 1� � sÿ 2�i ÿ 1� � s.

Proof of the Theorem. If u A Hm�Rn�, then we see from (1) that

1

onrnÿ1

�

rS nÿ1

u dS �
X

m

i�1

r2�iÿ1�hi�0�;

where on denotes the surface measure of S nÿ1.

Since juj � 2u� ÿ u, we have

lim inf
r!y

rÿsÿn�1

�

rS nÿ1

juj dS

� lim inf
r!y

2rÿsÿn�1

�

rS nÿ1

u� dS ÿ rÿsÿn�1

�

rS nÿ1

u dS

� �

� lim inf
r!y

2rÿsÿn�1

�

rS nÿ1

u� dS ÿ rÿsP2�mÿ1��r�

� �

:

Hence (2) implies (4) since s > 2�mÿ 1�, so that the present theorem follows from

Lemma 2.
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