A generalization of the Liouville theorem to polyharmonic functions

By Toshihide Futamura, Kyoko Kishi and Yoshihiro Mizuta

(Received Sept. 9, 1999)

Abstract

The aim of this note is to generalize the Liouville theorem to polyharmonic functions u on \boldsymbol{R}^{n}. We give a condition on spherical means to assure that u is a polynomial.

1. Introduction.

Let \boldsymbol{R}^{n} be the n-dimensional Euclidean space with a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. For a multi-index $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, we set

$$
\begin{gathered}
|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}, \\
x^{\lambda}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{n}^{\lambda_{n}}
\end{gathered}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\lambda}=\left(\frac{\partial}{\partial x_{1}}\right)^{\lambda_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\lambda_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\lambda_{n}} .
$$

We denote by $r B^{n}$ the open ball centered at the origin with radius $r>0$, whose boundary is denoted by $r S^{n-1}$.

A real valued function u is called polyharmonic of order m on \boldsymbol{R}^{n} if $u \in C^{2 m}$ and $\Delta^{m} u=0$, where m is a positive integer, Δ denotes the Laplacian and $\Delta^{m} u=$ $\Delta^{m-1}(\Delta u)$. We denote by $H^{m}\left(\boldsymbol{R}^{n}\right)$ the space of polyharmonic functions of order m on \boldsymbol{R}^{n}. In particular, u is harmonic on \boldsymbol{R}^{n} if $u \in H^{1}\left(\boldsymbol{R}^{n}\right)$. A real valued function u on \boldsymbol{R}^{n} belongs to $H^{m}\left(\boldsymbol{R}^{n}\right)$ if and only if there exists a family $\left\{h_{i}\right\}_{i=1}^{m} \subset$ $H^{1}\left(\boldsymbol{R}^{n}\right)$ such that

$$
\begin{equation*}
u(x)=\sum_{i=1}^{m}|x|^{2(i-1)} h_{i}(x) \tag{1}
\end{equation*}
$$

for every $x \in \boldsymbol{R}^{n}$; this is known as the finite Almansi expansion (cf. [2], [6]).

[^0]The Liouville theorem for polyharmonic functions is known in several forms (cf. [1], [4], [5]).

Theorem A. Let $u \in H^{m}\left(\boldsymbol{R}^{n}\right)$ and $s>2(m-1)$. Then u is a polynomial of degree less than s if one of the following conditions holds:
(i) $\lim _{r \rightarrow \infty} \frac{1}{r^{s+n-1}} \int_{r S^{n-1}} u^{+} d S=0 \quad($ see $[\mathbf{1}]) ;$
(ii) $\lim _{r \rightarrow \infty} \frac{1}{r^{s+n}} \int_{r B^{n}} u^{+} d x=0 \quad$ (see [4]);
(iii) $\quad \limsup _{r \rightarrow \infty}\left(\max _{x \in r S^{n-1}} \frac{u(x)}{|x|^{s}}\right) \leq 0 \quad$ (see [5]).

For harmonic functions, we refer the reader to Brelot [3; Appendix].
Now we propose the following theorem.
Theorem. Let $u \in H^{m}\left(\boldsymbol{R}^{n}\right)$ and $s>2(m-1)$. Then u is a polynomial of degree at most s if and only if

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{1}{r^{s+n-1}} \int_{r S^{n-1}} u^{+} d S<\infty \tag{2}
\end{equation*}
$$

We here note that each condition of Theorem A implies (2), so that our theorem gives an improvement of Theorem A . We also see that if (iii) is replaced by a weaker condition

$$
\text { (iii') } \liminf _{r \rightarrow \infty}\left(\max _{x \in r S^{n-1}} \frac{u(x)}{|x|^{s}}\right)<\infty,
$$

then u is a polynomial of degree at most s.

2. The main lemma.

Let us begin by preparing the following lemma, which gives a relation between spherical means and derivatives for harmonic functions.

Lemma 1. Suppose $u \in H^{1}\left(\boldsymbol{R}^{n}\right)$. For each multi-index λ, there exists a positive constant $C=C(\lambda)$ such that

$$
\begin{equation*}
\int_{r S^{n-1}} u x^{\lambda} d S=C r^{2|\lambda|+n-1}\left(\frac{\partial}{\partial x}\right)^{\lambda} u(0)+P_{2|\lambda|+n-3}(r) \tag{3}
\end{equation*}
$$

for every $r>0$, where $P_{k}(r)$ is a polynomial of degree at most k.
Proof. We prove this lemma by induction on the length of λ. Assume first that $\lambda_{n}=1$ and $\lambda_{i}=0(i=1, \ldots, n-1)$. Using Green's formula and the
mean-value property for harmonic functions, we have

$$
\begin{aligned}
\int_{r S^{n-1}} u x^{\lambda} d S & =\int_{r S^{n-1}} u x_{n} d S \\
& =r \int_{r S^{n-1}} u \frac{x_{n}}{r} d S \\
& =r \int_{r B^{n}} \frac{\partial u}{\partial x_{n}} d x \\
& =\sigma_{n} r^{n+1} \frac{\partial u}{\partial x_{n}}(0),
\end{aligned}
$$

where σ_{n} is the n-dimensional volume of the unit ball. Hence (3) holds for $|\lambda|=1$.

Next suppose that (3) holds for $|\lambda| \leq k$, where k is a positive integer. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ such that $|\mu|=k+1$. We may assume without loss of generality that $\mu_{n} \geq 2$, and set $\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{n-1}, \mu_{n}-1\right)$. Then we write

$$
\int_{r S^{n-1}} u x^{\mu} d S=r \int_{r S^{n-1}} u x^{\mu^{\prime}} \frac{x_{n}}{r} d S
$$

From Green's formula we obtain

$$
\begin{aligned}
\int_{r S^{n-1}} u x^{\mu} d S & =r \int_{r B^{n}} \frac{\partial\left(u x^{\mu^{\prime}}\right)}{\partial x_{n}} d x \\
& =r \int_{r B^{n}}\left(x^{\mu^{\prime}} \frac{\partial u}{\partial x_{n}}+\left(\mu_{n}-1\right) u x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}-2}\right) d x=(*) .
\end{aligned}
$$

Set $\mu^{\prime \prime}=\left(\mu_{1}, \ldots, \mu_{n-1}, \mu_{n}-2\right.$). Since $\left|\mu^{\prime}\right|=k$ and $\left|\mu^{\prime \prime}\right|=k-1$ (if $\mu_{n} \geq 2$), we find

$$
\begin{aligned}
(*)= & r \int_{0}^{r}\left(\int_{t S^{n-1}}\left(x^{\mu^{\prime}} \frac{\partial u}{\partial x_{n}}+\left(\mu_{n}-1\right) u x^{\mu^{\prime \prime}}\right) d S\right) d t \\
= & r \int_{0}^{r}\left(C\left(\mu^{\prime}\right) t^{2\left|\mu^{\prime}\right|+n-1}\left(\frac{\partial}{\partial x}\right)^{\mu^{\prime}}\left(\frac{\partial u}{\partial x_{n}}\right)(0)+P_{2\left|\mu^{\prime}\right|+n-3}(t)\right) d t \\
& +r\left(\mu_{n}-1\right) \int_{0}^{r}\left(C\left(\mu^{\prime \prime}\right) t^{2\left|\mu^{\prime \prime}\right|+n-1}\left(\frac{\partial}{\partial x}\right)^{\mu^{\prime \prime}} u(0)+P_{2\left|\mu^{\prime \prime}\right|+n-3}(t)\right) d t \\
= & C(\mu) r^{2 k+n+1}\left(\frac{\partial}{\partial x}\right)^{\mu} u(0)+P_{2 k+n-1}(r)
\end{aligned}
$$

where $C(\mu)=\left(C\left(\mu^{\prime}\right)\right) /(2 k+n)>0$ and P_{ℓ} denotes various polynomials of degree at most ℓ which may change from one occurrence to the next; throughout this note, we use this convention. Hence (3) also holds for $|\mu|=k+1$. The induction is completed.

3. Proof of the theorem.

First we show that our theorem is valid under the two sided condition on spherical means for polyharmonic functions.

Lemma 2. Let $u \in H^{m}\left(\boldsymbol{R}^{n}\right)$ and $s>2(m-1)$. Then u is a polynomial of degree at most s if

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{1}{r^{s+n-1}} \int_{r S^{n-1}}|u| d S<\infty \tag{4}
\end{equation*}
$$

Proof. By (4) we can find a sequence $\left\{r_{j}\right\}_{j=1}^{\infty}$ such that $r_{j} \rightarrow \infty$ and

$$
\begin{equation*}
\sup _{j}\left(r_{j}^{-s-n+1} \int_{r_{j} S^{n-1}}|u| d S\right)<\infty \tag{5}
\end{equation*}
$$

Using (1) and Lemma 1, we have

$$
\begin{aligned}
\int_{r S^{n-1}} u x^{\lambda} d S & =\int_{r S^{n-1}}\left(\sum_{i=1}^{m}|x|^{2(i-1)} h_{i}(x)\right) x^{\lambda} d S \\
& =\sum_{i=1}^{m} r^{2(i-1)} \int_{r S^{n-1}} h_{i}(x) x^{\lambda} d S \\
& =\sum_{i=1}^{m} r^{2(i-1)}\left(C_{i} r^{2|\lambda|+n-1}\left(\frac{\partial}{\partial x}\right)^{\lambda} h_{i}(0)+P_{i, 2|\lambda|+n-3}(r)\right)
\end{aligned}
$$

where C_{i} is a positive constant and $P_{i, k}$ denotes various polynomials of degree at most k. Hence it follows that

$$
r^{|\lambda|} \int_{r S^{n-1}}|u| d S \geq\left|\sum_{i=1}^{m} r^{2(i-1)}\left(C_{i} r^{2|\lambda|+n-1}\left(\frac{\partial}{\partial x}\right)^{\lambda} h_{i}(0)+P_{i, 2|\lambda|+n-3}(r)\right)\right|
$$

so that we obtain

$$
r_{j}^{-s-n+1} \int_{r_{j} S^{n-1}}|u| d S \geq r_{j}^{|\lambda|-s+2(m-1)}\left|C_{m}\left(\frac{\partial}{\partial x}\right)^{\lambda} h_{m}(0)+O\left(r_{j}^{-2}\right)\right|
$$

as $r_{j} \rightarrow \infty$. By (5), we find

$$
\left(\frac{\partial}{\partial x}\right)^{\lambda} h_{m}(0)=0
$$

for all $|\lambda|>s-2(m-1)$. By analyticity of harmonic functions, we see that h_{m} is a polynomial of degree at most $s-2(m-1)$. Hence we note that

$$
r^{2(m-1)} \int_{r S^{n-1}} h_{m}(x) x^{\lambda} d S=O\left(r^{s+|\lambda|+n-1}\right) \quad \text { as } r \rightarrow \infty .
$$

Consequently,

$$
r_{j}^{-s-n+1} \int_{r_{j} S^{n-1}}|u| d S \geq r_{j}^{|\lambda|-s+2(m-2)}\left|C_{m-1}\left(\frac{\partial}{\partial x}\right)^{\lambda} h_{m-1}(0)+O\left(r_{j}^{-2}\right)\right|+O(1)
$$

as $r_{j} \rightarrow \infty$. This implies that $(\partial / \partial x)^{\lambda} h_{m-1}(0)=0$ for $|\lambda|>s-2(m-2)$, so that h_{m-1} is a polynomial of degree at most $s-2(m-2)$. By repeating this argument, we see that each h_{i} is a polynomial of degree at most $s-2(i-1)$ $(i=1, \ldots, m)$. Thus it follows that u is a polynomial. In view of (1), the degree of u is at most $2(i-1)+s-2(i-1)=s$.

Proof of the Theorem. If $u \in H^{m}\left(\boldsymbol{R}^{n}\right)$, then we see from (1) that

$$
\frac{1}{\omega_{n} r^{n-1}} \int_{r S^{n-1}} u d S=\sum_{i=1}^{m} r^{2(i-1)} h_{i}(0)
$$

where ω_{n} denotes the surface measure of S^{n-1}.
Since $|u|=2 u^{+}-u$, we have

$$
\begin{aligned}
& \liminf _{r \rightarrow \infty} r^{-s-n+1} \int_{r S^{n-1}}|u| d S \\
& \quad=\liminf _{r \rightarrow \infty}\left(2 r^{-s-n+1} \int_{r S^{n-1}} u^{+} d S-r^{-s-n+1} \int_{r S^{n-1}} u d S\right) \\
& \quad=\liminf _{r \rightarrow \infty}\left(2 r^{-s-n+1} \int_{r S^{n-1}} u^{+} d S-r^{-s} P_{2(m-1)}(r)\right)
\end{aligned}
$$

Hence (2) implies (4) since $s>2(m-1)$, so that the present theorem follows from Lemma 2.

References

[1] D. H. Armitage, A polyharmonic generalization of a theorem on harmonic functions, J. London Math. Soc. (2) 7 (1973), 251-258.
[2] N. Aronszajn, T. M. Creese, and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.
[3] M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1969.
[4] Y. Mizuta, An intefral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures, Hiroshima Math. J., 27 (1997), 415-427.
[5] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic functions, to appear in Hiroshima Math. J.
[6] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. École Norm Sup., 52 (1935), 183-220.

Toshihide Futamura and Kyoko Kishi
Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
\section*{Yoshihiro Mizuta}
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 31B30
 Key Words and Phrases. polyharmonic functions, Almansi expansion, Green's formula, mean value property

