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Abstract. We call a function from »<® to w a predictor. A function fe w?® is
said to be constantly predicted by a predictor =z, if there is an n < ® such that
Vi<wijeli,i+n)(f(j)=n(flJj)). Let 0, denote the smallest size of a set @ of
predictors such that every few® can be constantly predicted by some predictor in
@. In [7], we showed that 6, may be greater than cof(./"). In the present paper, we
will prove that 6, may be smaller than d.

1. Introduction

A. Blass [2] introduced the notion of predictors and several evasion numbers,
and studied how large these evasion numbers are compared with cardinals in
Cichon’s diagram. After that, J. Brendle [4] extended this notion and studied
more closely. Also, he studied the ‘dual’ cardinals of evasion numbers. Each
evasion number can be characterized as the uniformity of a certain subset of
P?(®w®). The ‘dual’ cardinal of an evasion number means the covering number
of the corresponding subset. There are known relations between these cardinals
and the cardinals in Cichon’s diagram (for details, see [2], [3], [4], [5], [6])
Concerning this, we [7] introduced a notion of ‘constantly predict’, and using this
notion, defined cardinal invariants fx (for 2 < K < w), as follows.

Following A. Blass [2], we call a function from w<® to w a predictor. A
function f e w® is said to be predicted constantly by a predictor =z, if there is an
n< o such that, for any i<ow, f(j)=n(f[J), for some jel[i,i+n). Let
2 <K <. We denote by Ok the smallest size of a set of predictors @ such that
every function fe K® is predicted constantly by some predictor in @, and by
Dual(fk) the smallest size of a set of functions F < K such that, for any
predictor 7, there exists an f e F which is not predicted constantly by z.

The motivation of 0 and Dual(fg) is in some game-theoretical charac-
terizations for cardinals in Cichon’s diagram. F. Galvin gave game-theoretical
characterizations for d and cov(.#), and M. Scheepers for b, add(.#), non(.#)
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and add(4") (See [9], for details). After that, M. Kada (in unpublished
work) introduced new games in order to characterized other cardinals in Cichon’s
diagram. Also, he pointed out the relationship between game-theoretic prop-
erties and the notion of predictors. The 6, is a translation of the game which
corresponds to cof (.#).

It seems to be interesting to decide the size of these 0k and Dual(0k) (for
2 < K <o) in comparison with the cardinals in Cichon’s diagram and other
evasion numbers. Let .#,./" denote the meager ideal and the null ideal on w?®,
respectively. Concerning these, the followings is a summary of the results of [7].

l. If K< M <o then 0x <0y and Dual(f),) < Dual(0).

2. cov(.#) < 6, and cov(AN") < 60, and Dual(6,) < non(.#) and Dual(#,) <
non(./").

3. non(#) <0, and Dual(0,) < cov(.#).

4. There is a generic model in which cof(/") = w; and 6, = w, hold.

5. There is a generic model in which 6, = w; and Ox = w; hold, for all
K < o.

The purpose of this paper is to give a generic model in which 6, = w; and
d = @, hold. Before explaining how to get a desired generic model, I mention
several questions which I am interested in, but do not know the answers.

Question 0p. Is it consistent that b < Dual(6,,)?

Question 1. For 2 < K < w, is it consistent that Ox < non(A")?

Question 1p. For 2 < K < w, is it consistent that cov(./") < Dual(6x)?

Question 2. Is it consistent that 6, < non(.#)?

Question 2p. Is it consistent that cov(.#) < Dual(6,)?

Question 3. For 2 < K < M < w, is it consistent that Og < 0,,?

Question 3p. For 2<K <M <w, is it consistent that Dual(0y) <
Dual(HK)?

Question 4. For 2 < K < w, is it consistent that Dual(fg) < add(./")?

Now, we explain how to get a desired generic model. Let V be a ground
model which satisfies CH. In V, let {B|a < ;) be the w,-stage countable
support iteration of the rational perfect tree forcing. We will show that, in Ve,
every f e w® is constantly predicted by some predictor in V. Since it is known
(see e.g. [I]) that d = w; holds in ¥’ the model ¥’ is a desired one.

Let PT denote the rational perfect tree forcing. It is not difficult to check
that, in VT, every f e w® is constantly predicted by some predictor in V. So, if
we can show that this property is preserved by countable support iterations, we
complete a proof of the result. But I don’t know whether the property is
preserved by such iterations (even in the case of two step iterations). We
consider a somewhat stronger property of a forcing notion P. That is, in V7,
for any fe w®, there exists a skip branching tree H € ¥V such that f e Lim(H)
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(for the definition of skip branching trees, see the next section), and we will prove
that this property is preserved by the iteration.

In the next section, we give the definitions and notations, and describe the
result of this paper ([Theorem 2.1). Section 3 is devoted to some technical
lemmas. In section 4, we introduce the notion of tentacle trees, and prove some

kind of preservation lemmas. Finally, we prove in section 5.

2. Notations and the theorem.

We use the standard set theoretical notions and notations (see [1]). For any
set A, [A]” denotes the set of countable subsets of A, and 4<“ the set of finite
sequences of elements in A. The statement “there exist infinitely many i € x such
that ---x---” is denoted by 3%i e x(---x---). Let P be a forcing notion and f a
P-name such that }pf : @ — V. We say that g : @ — V is an interpretation of f
below pe P, if there exist p, e P (for n < ®) such that p,.; <p, <p and
pnll-frn:g[‘n, for all n < w.

The forcing notion which will be used in this paper is countable support
iteration by the rational perfect tree forcing. The rational perfect tree forcing
was introduced by A. Miller [8]. We start with the definition of the rational
perfect tree forcing.

DEFINITION 2.1. Let H < w<® be a tree. se H is a splitting point, if there
are distinct i,j € w such that s'{iy,s"(jy e H. The set of all splitting points of H
is denoted by split(H). For any splitting point s € H, nexty(s) denotes the set
{s<i)e H|i<w}. H is said to be perfect, if Vse H 3te H (s<t and t is a
splitting point of H). For any perfect tree H, stem(H) denotes the first splitting
point of H. H is said to be a rational perfect tree, if it is a perfect tree and
nexty (s) is infinite, for all s € split(H).

For any rational perfect tree H — v<®“, we denote by Iy the natural
isomorphism from @<“ to split(H).

DEerINITION 2.2.  The rational perfect tree forcing PT is defined by

PT = {q = ~®|q is a rational perfect tree},
and for any q,q' € PT,
q<4q' if and only if q<q'.

And, define the orderings <> on PT (for n < o) by

q<yq" if and only if ¢<q' and I} o"=T,[o"

Note that PT satisfies Baumgartner's Axiom A with these orderings.
For each q € PT and s € 0=, q | s € PT denotes {ueq|ucIy(s) or I;(s)cu}.
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DEFINITION 2.3. Let H < o= be a tree.
Max(H) denotes the set {se H|Vi < w(s i) ¢ H)}.
B(H) denotes the set {|s||s € split(H)UMax(H)}.

Lim(H) denotes the set {f e o®|Vi<w(f|ie H)}.

We say that H is skip branching, if Vs e split(H) (nexty(s)N (split(H)U
Max(H)) = ¢).

Now we describe the result of this paper.

THEOREM 2.1.  Assume that CH holds in V. Let (P,|o < wy) be the w,-
stage countable support iteration of the rational perfect tree forcing. Then, in

Ve it holds that, for every f € w®, there exists a skip branching tree H € V such
that fe Lim(H).

As a corollary, we have

COROLLARY 2.2.  Under the assumption of Theorem 2.1, in VI, there exists
a set of predictors @ of size w, such that, for any fe€ w®,

ImedVi<o(f(i)=n(fTi) or fi+1)=n(f]({i+1))).
So, 0, = w; holds in V.

Since d = w, holds in the generic model, we have that 6, < d is consistent.
In order to prove [Theorem 2.1, we need several definitions and lemmas.

DEFINITION 2.4.  For any a € [w|®, I, denotes the order isomorphism from @
to a.

For any a € [w]” and any g € ®, we say that a is g-thin, if g(i) < I,(i), for
all i < w.

LeEmMA 2.3.  For any g € ®®, there exists {g;|i < o} < o® such that, for any
{a;]i < w} < [w]®, if Vi< (4 is gi-thin) then | ),_, a; is g-thin.

Proor. Take a g-thin set a and divide a into countable disjoint infinite sets
{a;|i < w}. Then, g; =1, (for i < w) are as required. O

DEFINITION 2.5. A subset I of w is called an interval, if there exist n,m € w
such that n <m and I = [n,m).
A family {I,|n < w) of intervals is called disjoint intervals, if it holds that

Vn < Vm < w(max(l,) < min(Z,)) and 1i<m |I| = o.

LemmA 2.4. Let F be an unbounded subset of w® such that NfeF (f is
strictly increasing). Then, for any disjoint intervals {I,|n < w), there exists f € F



Cardinal invariants associated with predictors II 39

such that
Va e [w]®” (if a is f-thin, then 3*°n < w (I,Na = ¢)).
PrOOF. Define g € w® by
g(j) =max b +1, for all j <.

Since F is unbounded, take f'e F such that 377 < w(g(j) < f(j)). In order to
show that f satisfies the requirement of the lemma, let a € [w]“ be f-thin. We
claim that

Vi <o (if g(j) <f(j), then 3k €[}, 2j) (IxNa = ¢)).
To get a contradiction, assume that
9(j) <f(j) and Vkel[},2))(IxNa#¢).

Then, since |aNg(j)| >2j—j =, it holds that I3(j) < g(j) <f(j). This con-
tradicts that a is f-thin. ]

DEFINITION 2.6.  For any 6,7 € ® Uw<®, A(d,7) denotes the least i < w such
that o6(i) # t(i), if such i exists, otherwise, A(J,7) is undefined.

DEFINITION 2.7. Let u be a function from w to w<®. wu is called a type 1
function with root 6 € <?, if

Vi<Vj<w©cu(i) and 0| +2 < |u(i)| < |u(j)| and u(i)(|0]) < u(F)(|d])).
u is called a type 11 function with limit h e w®, if
Vi<Vj<o(u(i) ¢h and A(u(i),h) +2 < |u(i)| and A(u(i),h)+2 < A(u(j),h)).

Note that, for any functions {f;|i < w} c w®, if f; #f; for all i <j < o,
then there exist a € [w]” and k; < w (for i < w) such that {f;;[ ki|i < @) is a
type I or type II function.

The following lemma will be used in the proof of to handle the
successor cases of the induction step. We need the corresponding result which
handles the limit cases and will be established the next section.

LEMMA 2.5. Let h:w<® — w, ge PT, and f a PT-name such that q}f €
@®\V. Then, there exist q' < q and {05|s € <} such that, for any se w<,

(1) ¢'Tskds </,
(2)  hls) <105 <105 oyl
(3) bsivli<w) is a type I or type II function.

Proor. It suffices to show that
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CrLam 1. There exists g, € PT (for n < w) and d; € =® (for s € <) which
satisfy (2), (3) and

(1) gu[skds < f, for all sew”
4) qui1 <, qu<gq, for all n < w,

ProOF OF CLamM 1. By induction on n < @w. We only deal with the cases of
that 0 < n, because the case » =0 can be done by a similar argument. So,
assume that n=m+ 1 < w and ¢, and J, (for s € ®™) have been defined.

Let se w™. Define ¢, [ s and 5y, for i < w, as follows:

Take f; € o (for i < w) such that

f; is an interpretation of f below g, [s¢i) and Vi <Vj < (f; # 1)

This can be taken, since ¢, | sk/f ¢ V. Since all f;’s are distinct, there are
aelw]” and k; < w (for i < w) such that

{Srilkili<w)y is a type I or type II function and A(s™<(i)) < k;,
for all i < w.

For each i<w, take 1 <gq, s ;(i)) such that rilfrul ki c f Set
G [ s = UKw ri and dy¢iy = fr [ ki, for i <. Note that g, [ s"() = ry, for all
i<w. S0, 0y¢y (for sew™ and i < w) and g, satisfy the requirements. []

3. Iteration.

In this section, we deal with a countable support(CS, for short) iteration
of the rational perfect tree forcing. Throughout this paper, {(P,|a < w,) denotes
the w,-stage CS iteration of the rational perfect tree forcing. For each o < w»,
the canonical P,-name of a generic filter is denoted by ?E. For each p € P,,, the
support of p is denoted by support(p).

DerINITION 3.1. For each ¢ < o <y, PB,/P: denotes the P:-name which
represents P, in V. That is

ke B/ Pe={p ¢ ) |pe b},
and for any r,r' € P,/ P,

r<r" in B/P: if and only if poUr <poUr' in P,, for some poe%i.
Let ¢ <f <w,. It is known that, in V%, it holds that

(PPl e [&,B)) is isomorphic to the (f — &)-stage CS iteration of the
rational perfect tree forcing.

So, we may identify (B,/P:|o € [£,f)) with this iteration.
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DerINITION 3.2, Let (<a<wy, and pePB. For each i< w, define
pl<idel € B, by

support(p[<i):]) = support(p) U{<},

. [ pm), if n#¢,
PR = {p@ NGy, i p=¢

Note that {p[<i):]|i < w} is a partition of p.

DEFINITION 3.3. Let E<a <y, pe P, and p;e P, (for i < w).
We say that {p;|i < w) is a one-point partition of p at &, if for all i < w,

(1) pils=pTe
(2 pIEkPi(S) =p&) 1 <D,
3) pilntpi(n) =p), for al nel+1,a).
In this case, we say that p is the root of {p;|i < w).
Note that {p[<i);]|i < w) is a one-point partition of p at ¢.

LemMa 3.1.  Assume that {p;|i < w) is a one-point partition of p at C.
Then, it holds that p; = p[{i)¢], for all i < w.

Proor. Trivial. ]

LemMa 3.2. Let o <E< B <y, pe Pp, and p; € Py (for i < w). Then, the
following (a) and (b) are equivalent.

(a) (pili <w) is a one-point partition of p at &.
(b) The following (b.1) and (b.2) hold.

(b.1) Vi<w (pila=pTla).

(0.2) plaklp:l|o,p)li <w) is a one-point partition of p | |o,f) at & in
Py/P,.

ProoOF. Trivial. L]

LemmA 3.3, Let &{<a<w, and a,q P:-names, and p;e P, (for i < w).
Suppose that

(1) Ikeacelw)®” and g€ PT,
2) pilé=pil¢& foralij<ow
(3) pilllkepi(&) <qT<Li(i)), for all i< w.

Then, there exists p € B, such that {p;|i < w) is a one-point partition of p at &.
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Proor. Note that {p, I'n|i < w} is pairwise incompatible, for any 7 > ¢&.
Define a P:-name ¢; by leg: = J._ pi($). By (3), it holds that py [ &g, e
PT. Let X =], , support(p;)N[¢+1,a). For each 5 € X, take a P;-name g,
such that

pi Mg, =pi(y), for all i< cw.
Define p € B, by
support(p) = support(p, [ <) U{c} U X,
plr&=polé,
p(n) =¢q,, for ne{é}UX.
Then, p is as required. [

From now on, 4 is an arbitrary but fixed and sufficiently large regular
cardinal. H(A) denotes the family of sets that are hereditarily of cardinality < /.
Throughout the rest of this paper, N denotes a countable elementary substructure
of H(A), in general. For any forcing notion P € N and p € P, we say that p e P
is (N, P)-generic, if it holds that

DN N is predense below p, for any dense subset De N of P.
LeMMA 3.4. Let E<a<wy peP, and & o, P,e N. Suppose that
plKide] is (N, B,)-generic, for all i < w.
Then, p is (N, P,)-generic.
Proor. Trivial. ]
COROLLARY 3.5. Let (¢ <a<wy, and &, a,P, € N. Suppose that
peP: is (N,P:)-generic and pl: g€ N[%p]N P,/ P:.
Then, there exists p € P, such that
(1) p is (N, B)-generic and p | & = p,
() Phep ME®) < and p() 1 <> < (&) 1 <, for all i < o,

Proor. We work in V% below p. For each i < w, take ¢; < ¢[{i):] such
that

g; is (N [?pé],Pa/Pg)-generic and support(g;) = N [fépé].

Since {¢;|i < w) is a one point partition at ¢, let 7 be the root of this. Then, by
Lemma 34, i is (N[%p], P,/ P:)-generic. Return to V. Since p |t support(i) <
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N[%p], we can take p e P, such that
plé=p and phpl[a)="r
Then, p is as required. ]

DEFINITION 3.4.  Let o is a limit ordinal with cofinality o and {o,|n < ) an
increasing sequence of ordinals with limit o. For each p € P, and s € 0<%, define

plisll = pllsl] sy jnewy € B bY
support(p|[s]]) = support(p) U {ali < |s|},
plsIN&) =p(&), if E# o for i<]s,
ks, pU[s]] () = plou) [ <s(i), for i <|s].

We always omit the subscript {o,|n < w) of [[s]]
confusions throughout this paper.

(<o) Since there are no

Note that, for any s = {ip, ..., iny € ®=“ and any p € B, it holds that p[[s]] =
p[<i0>oc0] T [<im>am]'

The following hold.

(1) {plls]]|s € ®™} is a partition of p, for each m < w.

(2) If s,te <® and s = ¢, then p[[1]] < pl[[s]].

(3) Ifs,tew=” and s, ¢ are incompatible, then p[[¢]], p[[s]] are incompatible.

Now, we are ready to establish the result corresponding to the last lemma in
the previous section.

LemmA 3.6. Let o be a limit ordinal with cofinality o, {a,|n < w) an
increasing sequence with limit o, h: w<“ — w, p € P,, and [ a P,-name such that
plkfew®. Suppose that

plbfaé Vi for all ¢ < a.

Then, there exist p' < p and {0;|s € ®<®} such that, for all n < w and s € ",

(1) O5¢iy is a Py-name, for all i < o,
2 plskos < f,

(3) Ih(s) < [0s] < [0y coyls

4)

Proor. Take a countable elementary substructure N of H(Z) such that #,
{op|n < @), P, f, peEN.

We first show that, by induction on n < w, we can take p, € P, , a P, -name
4,, and P, -names 5'SA<,-> (for s e w" and i < w) such that, for all s € ®”,

3 <5.SA<,~>|1' < w) is a type I or type II function.
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(5) pnis (N, P, )-generic and p, <pl o, and p,i1 [ o = pn,
(6) pult g, € N%p,|NB/P, and g, <p | o, 2),

(1) Pt F iy < 4, T [otnr1, ),

(8) pullsl] I Gy k05 = 1,

9)  pulls]] F sy ]i < ) is a type I or type II function,

Palls|FA(s"<0Y) < 05| and G, [<i>y, | F o5y = f, for all i < w.
Case 1. n=0.

In N, take p’ <p and d;y € < such that h({ ) < |d¢y| and p’ |y < f.
Take (N, P, )-generic condition py e P, such that py <p'lay. Set ro=p'l
[#9,2). Then, it holds that

polkroe N[gp, IO B/,

Work in N [%10]. For each i < w, take an interpretation f; of f below ro[<iD ]
such that whenever i, j < w and i #j, f; # /. (This can be done, since | [ ¢
V%.) Take de[w]” and k; < o (for i < w) such that

h({i)) < k; and <f13(i) Fki|i <w)y is a type I or type II function.
Let 5<,-> :fm(i) rki, for i <w. For each i < w, take 7y ;€ P,/P, such that
Fo.i < ro[<T(i)Y,,] and o kdgy < f.

Since <{ry[<1i(i)),,]|i <w) is a one-point partition at oy, by Lemma 3.3,
(p,i|i < w) is too. Let ¢, € P,/P, be the root of {7y ;|i < w).
Note that po F gy < ro. So, po,qy, and d¢y (for i < w) satisfy (5)~(10).

CASE 2. n=m+ 1.

By induction hypothesis, it holds that p, ¢, € N[%p, |NF/P, . By
(Corollary 3.5, there exists p, € P, such that

(11) Pn is (N, Pan)-generic and Dn [\o(m = Dm,

(12)  pin b pu T [0 00) < Gy T [0, ) @ py(0) T 0D < (o) [ <), for all
I <.

Note that p, satisfies (5) and
®)  pullsl IF Gy, 1 [otms @) kO = f, for all s€w”.

Let sew”. Define ¢° and (s |i < ®) as follows:
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Work in N [%M] below p,[[s]]. Similar to the case 1, take @ € [w]” and 5SA<,->,
in.i (for i < w) such that

(9) <5SA<,~>|1' <) is a type I or type II function,
(13)  h(s"GY) < Pscis] and i < g, [0, o) [<13(7) ), ] and 7y IF dsciy < f.

Let ¢’ be the root of (i, ;|i < w). Then, it holds that
(14) G <G I lom, @) and G3[<0D,, o5y < .

Return to V, since {p,[[s]]|s € ®") is a partition of p,, we can take a P, -
name ¢, which satisfies

pn[[s]] I q.n = q;” for all s e w”.

Then, p,, ¢,, and sy (for se " and i < w) satisfy (5) ~(10).
Let p' = J,., Pn- It is easy to check that p’ and (0,|s € <) satisfy (1),
(2) and

(3) P[]l h(s<iy) < 10, for all i <,
@) p'[s]]IF o5y i < w) is type T or type II function.
Since {p'[[s]]|s € ") is a partition of p’, for all n < w, we can replace d,’s which
satisfy (3) and (4). [
4. Tentacle trees.

In this section, we consider to attach trees {H;|i < w} on a tree H. In
order to define this manipulation, we introduce the notion of tentacle trees. We
start with several definitions.

DEFINITION 4.1.  For any S < w<®, {S) denotes the tree generated by S.

DEFINITION 4.2. Let T < w<?” be a tree and 6 € o~“\T.
A(T,0) denotes the maximal element of TN{oTi|i< ||} and A(T,0) =
A(T,9)].

0 can be adjoinable on T, if it holds that

(1) A(T,0)+2 <19 and |stem(T)| < A(T,9)
(2) A(T,6) ¢ split(T)

(3) nextr(4A(T,0)) Nsplit(T) = ¢

(4) o1 (4(T,0) — 1) ¢ split(T).
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T is called a tentacle tree of type 1, if there is a type I function u:w — <%
such that T = {rang(u)).

T is called a tentacle tree of type Il, if there are a skip branching tree H
without a maximal element and a function u:w — w<® such that

(1) u(i) is adjoinable on H, for all i < w,

2) |u(i)| < |u(j)| and A(H,u(i))+2 < A(H,u(j)), for all i <j < o,
(3) T = <HUrang(u)).

In this case, we say that H and u construct T.

Note that every tentacle tree is a skip branching tree.
For any tentacle tree 7, er denotes the enumeration of Max(7) which is
defined by

ler ()| < ler(j)|, for all i< j < .

DErFINITION 4.3. & denotes the set of all tentacle trees of type I or type II.
For each ge w®, ¥(g) denotes the set {H € &|B(H) is g-thin}.

DEFINITION 4.4. 9/ denotes the set:

{U:o— o Vi< aw(U(i) is increasing) and
Vi<Vj<oVk <o(U@{)(k) < U®j)k))}.

DEFINITION 4.5. For K€ & and U €U, o/ (K, U) denotes the set:

{pl3a,befw]”(pe TTS(UI(1) and Vi< o(ex(Ib(i)) < stem(p(L3(1))))}-

i€ea

The next three lemmas can be proved by using easy diagonal arguments.
We left proofs to the reader.

LEmMMA 4.1, Let g € ®, 0 € o=“, and u, be a type I function with root o, for

all n < .
Then, there exists a type I function v with the root o0 such that

(1) AlDIJ < @} is g-thin,
(2) 3% < w(u,(i) € rang(v)), for all n < w. O

Lemma 4.2. Let g€ w®, and H a skip branching tree without a maximal
element, and u, € (0=?)”, for n < . Assume that

H and u, construct a tentacle tree of type II, for all n < .
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Then, there exists a function v:w — w<® such that
(1) H and v construct a tentacle tree of type II,
(2) 3% < w(uy(i) € rang(v)), for all n < w,
3) AlWIJ < w}UL4(H,v(j))lj < w} is g-thin. O

Lemma 4.3. Let K€ and U e . Then, for any countable subset ¥ of
o (K, U), there exists y € o/ (K, U) such that

Vg € ¥3%i e dom(p) Ndom(y)(p(i) = ¥(i)). O

The next lemma is a preservation theorem like those which appeared in
and is proved almost the same arguments.

LemMA 4.4. Let o <w, and P= P, e N.

(1) Let 0 € ®w~”. Suppose that v is a type I function with root & which
satisfies 371 < w(u(i) € rang(v)), for all type I functions ue N with root 9.
Then, for each p € PN\ N, there exists an (N, P)-generic condition p < p such that

P 3%i < o(u(i) e rang(v)), for all type I functions u e N[%p| with root 9.

(2) Let He N be a skip branching tree without a maximal element, and
v:w— w<”. Assume that

H and v construct a tentacle tree of type II
and, for any ue (w<?)“NN,
if H and u construct a tentacle tree of type II, then 3*i < w(u(i) € rang(v)).
Then, for each p € PN\ N, there exists an (N, P)-generic condition p < p such that
Pl for any ue (w<°)”NN[%p]

if H and u construct a tentacle tree of type II,
then 31 < w(u(i) € rang(v))

(3) Let Kye NN, U,eUNN, and Y, € 4 (K,,U,) (for n<w), and
n<oa, P*=PF/P, and N* = N[?B?]. Suppose that, in VT, it holds that, for all
n< o,

Vo e o (K,, U)NN* (if rang(p) = N, then 3%i < w(p(i) =y, (i))).
Then, in V', it holds that, for any p e P*N\N*, there exists a p <p such that
(3.1) p is (N*, P*)-generic and support(p) < N*,
and, for any n < w,

(3.2) pIVpe (K, U) NN*[%p-] (if rang(p) = N then 3%i < w(p(i) = ¥, (i))).
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ProoF. We only deal with (3), since (1) and (2) can be proved by similar
arguments.

Let o« be the unique ordinal such that o« =#-+o'. Then, in V%,
(Py/P,|p €n, o)y is isomorphic to the a' stage CS iteration of the rational
perfect tree forcing. So, we consider that the ground model is V% (we will
denote this by V¥ in the proof), and the forcing notion is the a«'-stage CS
iteration. In addition, in the proof, we change notations as follows:

N [%}] will be denoted by N,
the original N will be denoted by N.

The proof will be done by induction on o’ < w,. Let K, Uy, for n < w
satisfy the assumption of (3).

Case 1. o' =p+1 (cf. the proof of Theorem 7.3.46 (p. 360) in [1])

Let pe PN N. Take an (N, Pg)-generic condition p’ < p | f which satisfies
the requirements. We work in ¥ below p’. Take an enumeration & i< w)
of the set {5 € N[%ﬂ] ]é is a PT-name and | ¢e On}, and, for each n < w, take
an enumeration {¢, ;|i <) of the set

{pe N[?pﬁ] |¢ is a PT-name and |prg € o/(K,, U,) and rang(¢) = N}.

For each s e w<®, define the ordering <; on PT by
q' <;q if and only if ¢’ < ¢ and Vie ®<*
(if s and 7 is incompatible, then ¢'[ ¢t =gq | t).

Take an enumeration <s;|j < @) of < such that if 5; — s; then j < j’. Note
that, for any conditions ¢; € PT (for j < w),

if gj11 <y q;, for all j < then () ¢; € PT.

j<w

CLAM 2. For any j < w and any quTﬂN[f%ﬂ], there exist q* < q and
k™ < such that q* € N[%p] and, for each n,i < j,

(4) g decides the value of &;, ¢, ;[ k",

(5) dme[j,k")Ndom(y,)(¢" kmedom(g,;) and ¢, ,(m)=,(m)).

Proor oF CLamm 2. Work in N [{épﬁ]. Take ¢’ < ¢ such that ¢’ decides the
values of ¢&;, for i <.
By induction on k < w, take [, < w and ¢; € PT such that

Gt < qr < ¢ and  j <l <l
qx decides the values of ¢, ; [ I, for n,i </,

m € I, l+1)(qis1 - m € dom(g, ;)), for each n,i < ;.
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For each n,i < j, let ¢,; be the function such that
Qi k@i Mk =9, [ Ik, for all k <.

Then it is easy to check that ¢, ; € «/(K,, U,) and rang(e, ;) < N, for all i,n < j.
In V%, by induction hypothesis, there exists k < w such that

Im e [j,[;)(m e dom(y,,) and ¢, (m) =y, (m)), for all n,i <.

Let ¢" =¢q; and k™ =1[;. Then, ¢* and k* are as required. O
3 k

CrLamM 3. There exist gje PTNN [?pﬂ] and intervals I; (for j < w) such that

(6) dj+1 <51 9j Sp(ﬁ) and max(lj) < min(lj+1):

(7) qj s decides the value of &;, for i < j,

(8) dme ;Ndom(y,)(q; st medom(g, ;) and ¢, ,(m)=1,(m)), for all
Ln<j.

Proor or CLamvM 3. By induction on j < w. Assume that j < w and g;/, I
(for j <j) have been defined. Set

1, 1f0<y - e
g = gj-1, 1 <]., and k — max(lj_;) + 1, 1f]>q,
p(f), otherwise, 0, otherwise.

By Claim 2, take an interval I; c [k,®) and ¢* < ¢ [s; such that
gt €N[%p] and g¢" decides the value of ¢, for i<,
Im e I;Ndom(y,)(¢" Ik m e dom(g, ;) and ¢, ,(m) =, (m)), for each i,n < j.
Define g; <, q by q;'sj=¢". Then, ¢; and I; satisfy (6)~(8). O

Take ¢; and I; (for j < w) which satisfy (6)~(8). Note that it holds that
(7" qiTsikéie N[?pﬁ], for all i < j < w.
Let 51 - mj<w qj-

CLam 4. For all i,n < w, it holds that
(9) q ”'PTfi € N[gpﬂ] n OnJ

ProOF OF CLAIM 4. Let ¢’ < ¢ and i,n < w.

(9) Take j < w such that i < j and I;(s;) € split(¢’). Then, ¢’ and g [ s;
are compatible. Since ¢ ['s; < g; [ s;, ¢’ and g; [ s; are also compatible. By this
and by (7)', there exists ¢” < ¢’ such that ¢” | & eN[%/,].

Similar to the proof of (9). ]

Let p=p'{g>. By (9) and [10}, p is as required.
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Casg 2. o' is a limit ordinal.
Take an increasing sequence <«;|j < w) of ordinals such that

o€ NNa', for all j < and sup o; = sup(N Na').
j<w

Similar to the case 1, take enumerations (;|i < ) and (@i i < @) (for n < w).

CLAM 5. There exist p; € P, and Py-names ij, I (for j < ) such that
1) p; is (N, Py)-generic and support(p;) = N and pj1 [ oy =p; <p [ o,
12) pilkie N[%%j] NPy /P, and 7; < p | [oj, o),

(

(

(13) pror iz <y T lajer, o) and pylepjar Ty, a41) < T o %11).

(14) p; -7 decides the value of &,

(15) p; Ik I is an interval of o and max(L;) < min(f;), for all i< j,

(16) pjkIme I, Ndom(y,)(ij Ik me dom((pn,i) and (/')n’l.(m) =, (m)), for all
ni<j

Proor oF CLamm 5. Similar to the proof of Claim 3. n

Take p;, #, I; (for j < ) which satisfy (11)~(16) in Claim 5. Let p =
Uj _, Pj- Then, by (11) and (14), p is (N, P)-generic. In order to check that p
is as required, let n, i, m < w and p’ <p. Take j < w such that n, i, m <j.
Then, since p [ ol p [ [#,0') <7, by (16), we have that

" <p'(p" k3Im" € dom(y,) Ndom(p, ;)\m (Y, (m') = ¢, ;(m"))). O

COROLLARY 4.5. Let o < wy, P= P, and g€ w®. Then, the following hold
in vVF

(1) Let it be a type I function with root 6 such that g(0) < |0|. Then, there
exists a tentacle tree T € V of type I such that

stem(T) =0 and 3%i < w(i(i) € Max(T)) and B(T) is g-thin.

(2) Let H €V be a skip branching tree without maximal elements, and it be a
type I function with limit h e Lim(H). Assume that H and i construct a tentacle
tree of type II. Then, there exists a tentacle tree T € V such that

(2.1) T is constructed from H and some type II function,
(2.2) {|0]| |0 e Max(T)} U{4(H,d)|6 € Max(T)} is g-thin,
(2.3) 3% < w(u(i) e Max(T)).

PrROOF. Let o <w,, P=P,, and g € o®.
(1) Let pe P and i, 6 be P-names such that

pli is a type I function with root J.
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Replacing p by a certain stronger condition, if necessary, we may assume that
plké =0, for some 6. Take an elementary substructure N of H(A) such that o,
P, g, e N. BylLemma 4.1, there exists a type I function v with root ¢ such that

(3) {lo()l]j <o} is g-thin,
(4) 3%i < o(u(i) e rang(v)), for every type I function u e N with root 6.
Deleting a certain finite part of v, we may assume that {|v(j)||j < @} U{|d|} is g-
thin. By using [Lemma 4.4 (1), take p < p such that p | 3% < w(u(i) € rang(v)),
for all type I function u e N[%p| with root 6. Especially, it holds that
pIF3%i < w(i(i) € rang(v)).

So, T = (rang(v)) is as required.
(2) Similar to (1) by using and [Lemma 4.4 (2). H
5. Proof of the theorem.
Now, we are ready to prove [Theorem 2.1. [Theorem 2.1 follows from the

following lemma.

LEMMA 5.1. Leta <wy, P=P, pe P, gew®, and [ be a P-name such that
plkf € w”.

Then, there exist p <p and H < o<® such that
(1) H is a skip branching tree,
(2) B(H) is g-thin,
(3) pIf eLim(H).

ProoF. We prove this lemma by induction on o < w;. So, let & < @, and
assume that the lemma was proved for all o’ < o. Letpe P=P,, ge w®, and f
a P-name such that p|Ff € w®.

CLAM 6. Let <o and g' € ®. Then, the following holds in V1.

Suppose that u: @ — o< is a type I function with root 6 such that g'(0) < |0
or a type II function. Then, there exists a tentacle tree T € V such that

(4) B(T) is g'-thin,

(5) 3%i < w(u(i) e Max(T)).

PrOOF OF CLAIM 6. The case that u: w — w<® is type I was already proved
as corollary 4.5 (1). So, it suffices to deal with the case that u is a type II
function. We work in V. Let hew® be the limit of u. Take disjoint in-
tervals {I,|n < ) such that

i < w3i < o([A(hu(i) - 1,|ul)| +2) < L,).

By Lemmas 2.3 and 2.4, since ¥ Nw® is unbounded in »®, there is a g e o® NV
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such that
3%°n < w(aNl, = ¢) and aUb is g'-thin, for any g;-thin sets a,b € [w]”.
By induction hypothesis, take a skip branching tree H € V such that
heLim(H) and B(H) is g;-thin.

Deleting the set of finite maximal branches in H, if necessary, we may assume
that H has no maximal elements. Since B(H) is g;-thin, there exists an a € [w]”
such that

[A(hyu(i)) — 1,|u(@)| +2)NB(H) = ¢, for all i€a.
Let v=ul,:w — »~“. Then, it holds that

H and v construct a tentacle tree of type II.

By [Corollary 4.5 (2), there exists a tentacle tree 7 € V of type II such that

T is constructed from H and some type II function,
{l0]10 e Max(T)} U{4(H,0) |6 € Max(T)} is g;-thin,
3*i < w(v(i) e Max(T)).
This T is as required. []

Take increasing functions ¢g;e w® (for sew<®) such that, Usewm a
is g-thin, whenever a;e€ [w]” is gethin for all sew<®, Vte a)|5|(if Vi<
|s|(¢(i) < s(7)) then Vi < w (g:(i) < gs(i)), for all s€ w=“. For each s € w=?, set
Us= s |li<w)e.

First, we deal with the case that « is a successor ordinal. So, let o = f + 1.
Without loss of generality, we may assume that p |t f ¢ V7

We work in V. By using Cemma 2.3, take ¢ < p(f) and {J;|s € »<®}
such that, for all s w<?, g,(0) < |o,| and (55 |i < w) is a type I or type II
function and ¢ | sld, < f.

Using Claim 6, we can take tentacle trees {7;|s € ®<®} < ¥ such that, for all

<
’

B(T}) is gs-thin and 3% < a)(5'SA<l~> € Max(j})) and ¢, c stem(ﬁ).

](,0

SeEW

Set ¢, = <TSA<Z-> |i < ® and 5SA<,-> € Max(]})), for s e w<®. Note that it holds

that, _
¢, € (T}, Uy) and rang(¢,) = V, for all sew=".

Return to V. Take a countable elementary substructure N of H(A) such
that the above arguments were done in N. By [Lemma 4.3, take yy , € (K, U)
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(for Ke NN and U e NN) such that, for all Ke NN, UeUNN,
Vo e o/ (K. U)NN3*i < (i) = Y o (1),

Without loss of generality, we may assume that, for any K € ¥ NN and any
UeWUNN, rang(Yx ;) = N. By (3), take p < p [ f such that, for all
KeYNN, UeuNN,

PIVpe (K, U) ﬂN[?pﬁ] (if rang(p) = N then 3 i(p(i) = g y(i)).

Especially, it holds that

6) plrI”i(p,(i) = WT-MUX(i)), for all se ®w~®.
Replacing p by certain stronger condition, if necessary, we may assume that

pIFT¢y =T, for some TeN.

By induction on n < w, define C, = " and tentacle trees K; € N (for s € C,)
by

C() = {< >}7
Ko =T
Cont = {°Cid]s€ G, and i e dom(p o)},

Ky ¢iy =Yg p (i), for all 5y e Gy

Let C=1{]), _, G and K = J{K|se C}. It is easy to check that K is a skip
branching tree. Since it holds that

Vse C,37i< w(s"(y e Cpyy), for all n< o,
C 1s a perfect rational tree.
CLam 7. B(Kp.y) is gs-thin, for all se€ w=®.

Proor oF Cramm 7. By induction on |s| < w. The case s =) is clear.
So, let s=1"¢). Set s'=1Ic(s), t'=1c(1), a=dom(yg, y,), i"=1a(i), u=
t""{iy. Note that s"=:1"¢"). So, Kp) =Ky =Kvqy =g, y,(i"). Since
Vg, v, (i) € S (UALN) = L(g.), B(Kp () is g,-thin.  Since s(j) < u(j), for
all j < |u|, go(k) < gu(k), for all k <. So, B(Kp.) is g,-thin. ]

By Claim 7, since B(K) = | J,_. B(K,), B(K) is g-thin. Work in V" below
p. By induction on n < w, define D, < C, by

DO = {< >}7
D1 = {57y € Cpy1|s€ D, and i e dom(gp,) and ¢ (i) = Yk, v, (D)}
CLamm 8. plVse D, (K = TS), for all n < w.
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Proor or CrLAamM 8. Easy. []

By Claim 8 and (6), it holds that
(7) pIkVseD,3%i < w(s'iy e Dyyy), for all n < w.
Define Pg-name 7 by

b= (Y U{g]s|se Dy}

n<w

By (7), it holds that p 7€ PT. Note that
pli<gand {¢|s|seD,} is predense below .
Since it holds that

pl{dslse | D,y =K and ¢ shkd,c f, for all sew™®
n<w
we have that pl7Ff € Lim(K). So, it holds that p"¢i I f € Lim(K). This
completes the proof of the case that o is a successor ordinal.

Next, we deal with the case that o is a limit ordinal. Without loss of
generality, we may assume that p |, f ¢ VI for all ¢ <o and cof(a) = w.
Take an increasing sequence <o, |n < w) of ordinals with the limit . Replacing
p by a certain stronger condition, if necessary, we may assume that there exist
{0s]s € ©<®} which satisfy (1)~(4) in [[emma 3.6, where & = {g,(0)|s € ®<?).
Note that, for any s,7€ w<®, if s and ¢ are incompatible, then |t s and J, are
incompatible. For each n < w, by using Claim 6, take P, -names <7}|se ™)
such that, for each se w”,

(8) Ik, T.e¢V and T, is a tentacle tree and B(Y}) is g,-thin and 5, =
stem(T;),

9) Ik, 37i< w(ésKi} € Max(TS))

Since T' ¢y 18 a P,-name, without loss of generality, we may assume that p [ o
decides the value of T(y. Take T such that pl T(y = T. For notational
convenience, we denote T by T > .

Let n < and se w". We define P, -names 7", iy (for i < w), and ¢,
as follows:

Work in V5. Let i <w. Take T*<l> e V and #-y € P, /P, such that

’;.‘YA<I'> <p r [O(na O‘n+l)[<i>o¢n] and i:f(i} I T.V(i) = 7:*:<l>

Note that

8) T vy 18 a tentacle tree and B(T; <i>) is gycp-thin and d-¢y =
stem(];:" )

) i <z> F37) < 0(vajy € Max (T ).

Let ¢, =Ty ]i <o and ds¢iy € Max(T)).
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Return to V. Note that, for all n < w, se€ w”,

(10) I, rang(¢,) = V, and if dom(g,) € [w]® then ¢, € (T, Uy).

Take a countable elementary substructure N of H(/) such that the above
arguments were done in N. By using the same arguments as in the proof of the
successor case, take Vg  €./(K,U) (for Ke NN and U e%NN), and define
C, c o" (for n < w), C, and tentacle trees K (for s e C) and K. Note that K is
a skip branching tree and B(K) is g-thin. We complete the proof by showing
that there exists p < p such that pltf € Lim(K). The desired p will be con-
structed as the union of p, (for n < w) in the next claim.

CLAM 9.  There exist p, € P, and P, _ -names D,, p, (for n < w) such that,
for all n < w,

(11) pn is (N, P, )-generic and p, <p | o and pyi1 | ay = pn,

(12) for all K'e S NN and all UeUNN,

pultVpe o/ (K',UYNN[Gp,] (if rang(p) = N then 37i(p(i) = Yk y(i)))

(13) D, <= C, and Py 0" — ngn Dy is an order isomorphism and
Vk < n(pk - pn))

(14)  pal[s]] Y;j(s) =Tj (5 = Kj;,(s), for all se ",

(15) Vp' <palls) (F 9 puls) =t then p' < p P ayl[A), for all 5, te o

ProoF oF CLAIM 9. By induction on n < @w. By using (3), take
po <p | oo which satisfies (11) and (12). Set Dy = {<{>} and p, the unique
function from w° to D;. Assume that n=m+ 1 and Pms pm,Dm have been
defined. Let se ™. Define P, -names Es, 7, and ¢, as follows:

We work in VB below p,[[s]]. Set

t=py(s) and ag={i <o|¢;(i) = v, (i)}

By induction hypothesis (14), and by (9) and [10], it holds that ¢; € o/ (K;, U;).
By this and (12), 4y is infinite. Set E, = {i"{iy|i € a,} and define 7, : v — E; by

(i) = ' (T4, (i)), for all i < w.
For each i < w, since i;; e N [%p |, take r'ST@ < i:,;) such that

%m

fj@ is (N [?Bﬁl],P“n /P, )-generic and support(;gf<l.>) N [?p ],

%m

and, for all K'e NN and all Ue % NN,

i FVp e /(K U)NNG,] (i ranglp) € N then 37i(p(i) = b (1)
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Since <r';f<l.> |i < w) is a one point partition at ,, let ¢, be the root of this. Note
that support(g,) = {o,} U |, support(iy) = N and ¢,[<i>, ] = if,,, for all
I <.
Return to V. Take p, € P, such that
DPn |ty = pm and pp[[s]] ¥ pn | [om, o) = ¢, for all s e ™.

It is not difficult to check that p, satisfies (11) and (12). Replacing E,, 7, (for
s € w™), if necessary, we may assume that

F3%i < w(p,,(s)<i> € E;) and 1,:w — E, is a bijection, for all se ™.
Define D, and p, | ©”" by

D, = | Es and p,(s°<i)) = 4,(i), for all () ew”

sew™

It is easy to check that D, and p, satisfy (13). In order to show (14), let s =
5o’ iy e w". Set ty=p,,(s0), { =p,(s) = k). Since

Punllsol] 77 < i < p 1 oy o) [k Dy, ] and py | [0ty ) [0y, ] =

and 7;F T = T}, it holds that p,[[s]] " = T;.  Since pu[[so]] i € d,, we have
that pu[[sol] IF 77 = ¢;, (k) = K, .Uy (k) = K;. Now, we deal with (15). Suppose
that s,z7€ ", p’ < p,[[s]], and p' | p,(s) =¢t. Let s =s0"() and t = £y"<k). By
induction hypothesis, it holds that p'[ o, < p [ o,[[t%]]. Since it hold that

Pllso]] b T [etm, o) [<03s,,] < p T [otm, o) [ (5)(m) ), ] and
P'1 o b p" T oy 0) < pu T [y ) [<D5,, ] and () (m) = k,
we have that p'[ o, Fp'[ [0, 00) < p I [0, ) [<kD, ] So, p" <pToff]]. O
Let p=1{]J,_, pr- It follws from the next claim that p | f € Lim(K).
CLam 10. piVn < wItew” (9, € K and 6, < f).

Proor or Cramm 10. Let p’ <p and n < w. Take s € w” such that p’ and
pl[s]] are compatible. Without loss of generality, we may assume that

p' <plls]] and p'[ o, I p,(s) =1, for some tew”.
Set p” =p' o,. Note that

p" < p I an[ls]] = palls]]-
By (14), we have that p” | 0, €K, c K. By (15), p" <pla[d]. So, p’ <p[[]
and p'Ito, < f. W
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