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Abstract. We introduce a notion of double group construction within the category of

quasi Woronowicz algebras which are regarded as quantum groups in the von Neumann

algebra framework. We show that the quantum double in this setting is always uni-

modular. The Kac-Takesaki operator of the double group is explicitly described. It is

also proven that the dual of the quantum double has a quasitriangular structure.

Introduction.

In [Dr], Drinfeld devised a remarkable ingenious method, called the double

group construction, which generates a quasitriangular Hopf algebra out of any ®nite-

dimensional Hopf algebra. This method was used to ®nd solutions to the quantum

Yang-Baxter equation in statistical mechanics. It was PodlesÂ and Woronowicz [PW ]

who employed this method from the viewpoint of operator algebras in order to de®ne a

quantum deformation of Lorentz group. Later, Baaj and Skandalis [BS ] introduced a

notion of a Kac system, using (regular and irreducible) multiplicative unitaries. They

showed that one can equally de®ne the quantum double of a Kac system, and that the

framework of Kac systems is stable under the construction of the quantum double.

Afterwards, Nakagami [N] discussed the double group construction for Woronowicz

algebras. The category of Woronowicz algebras can be naturally regarded as a

``subcategory'' of Kac systems. In [N], Nakagami was able to de®ne the quantum

double of a compact Woronowicz algebra, and to show that the double group is again

a (noncompact, unimodular) Woronowicz algebra. It is, however, not so transparent

how Nakagami's double construction is related to Baaj-Skandalis'.

The purpose of this note is to de®ne (construct) the quantum double for a general

(quasi) Woronowicz algebra, and to prove that the category of (quasi) Woronowicz

algebras is stable under this construction. We exhibit an explicit relationship between

our double group construction and Baaj-Skandalis'. We also examine the dual of the

quantum double, which was left untouched in [N]. Roughly speaking, our main result

asserts that, if a Kac system ``comes from'' a (quasi) Woronowicz algebra, then the

Kac system obtained from the double group construction in the sense of [BS ] admits a

natural Haar measure.

The organization of this note is as follows. Section 1 is concerned with notation

which will be used in the sections that follow. We also brie¯y recall fundamental
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facts on quasi Woronowicz algebras. The reason why we deal with quasi Woronowicz

algebras here, not with Woronowicz algebras is also discussed. In Section 2, following

[BS ], we equip the tensor product of a given quasi Woronowicz algebra W and its dual

Ŵ with a structure of a coinvolutive Hopf-von Neumann algebra. This construction

turns out to be the same as the one used in [N]. In Section 3, we prove that the

coinvolutive Hopf-von Neumann algebra constructed in the previous section does

admit a Haar measure. We call the resulting quasi Woronowicz algebra D�W� the

quantum double of W . The quantum double of a (quasi) Woronowicz algebra is

always unimodular even if the original (quasi) Woronowicz algebra is not uni-

modular. The argument of this section more or less explains why Nakagami's case [N]

(i.e., the case of compact Woronowicz algebras) was relatively easy to handle. The last

Section is devoted to analysis on the dual of the quantum double. We give an explicit

relation between the Kac-Takesaki operator of D�W� and the mutiplicative unitary V in

[BS, Section 8]. This fully answers the problem raised in [N, Section 2].

1. Notation.

In this section, we give a quick review on quasi Woronowicz algebras, introducing

notation that will be used in our later discussion. Quasi Woronowicz algebras are

almost like Woronowicz algebras introduced in [MN]. It is not too much to say that

what is true for Woronowicz algebras is equally true for quasi Woronowicz algebras.

Thus, for the general theory of quasi Woronowicz algebras, we may refer readers to

[MN] and [N] (also see [Y ]). Our notation will be mainly adopted from these

literatures.

Given a von Neumann algebra M and a faithful normal semi®nite weight c on M,

we introduce subsets nc, mc and m�
c of M by

nc � fx A M : c�x�x� < yg; mc � n�
cnc; m�

c � mc VM�:

We denote by pc the standard (GNS) representation associated with c. Its represen-

tation space is denoted by Hc. We use the symbol Lc for the canonical embedding

of nc into Hc. Let ac � nc V n�
c and set Ac � Lc�ac�, which is the full left Hilbert

algebra associated with c. For a left bounded vector x A H with respect to the left

Hilbert algebra Ac, we write pl�x� for the left multiplication operator corresponding to

x. For a right bounded vector h, we use pr�h� for the corresponding right multi-

plication operator. The modular automorphism group of c is denoted by sc.

A coinvolutive Hopf-von Neumann algebra is a triple �M; d;R� in which:

(1) M is a von Neumann algebra;

(2) d is an injective normal �-homomorphism, called a coproduct (or a comulti-

plication), from M into MnM with the coassociativity condition: �dn idM� � d �

�idM n d� � d;

(3) R is a �-antiautomorphism of M, called a coinvolution or a unitary antipode,

such that R2 � idM and s � �RnR� � d � d � R, where s is the usual ¯ip.

A quasi Woronowicz algebra is a family W � �M; d;R; t; h� in which:

(1) �M; d;R� is a coinvolutive Hopf-von Neumann algebra;
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(2) t is a continuous one-parameter automorphism group of M, called the de-

formation automorphism, which commutes with the coproduct d and the antipode R;

(3) h is a t-invariant faithful normal semi®nite weight on M, called the Haar

measure of W , satisfying the following conditions:

(a) Quasi left invariance: For any f in M�
� , we have �fn h� � d�x� �

h�x�f�1� for all x A m�
h ;

(b) Strong left invariance: For any x; y A nh and f AM� which is analytic

with respect to the adjoint action of the deformation automorphism t on

M�, the following equality holds:

�fn h���1n y��d�x�� � �f � tÿi=2 � Rn h��d�y���1n x��:

(c) Commutativity: h � sh �R
t � h for all t A R (or, equivalently, h � R � sh

t �

h � R).

We say that a quasi Woronowicz algebra W � �M; d;R; t; h� is unimodular (resp.

compact) if h � h � R (resp. h is bounded).

Remark that only di¨erence between a Woronowicz algebra and a quasi Woro-

nowicz algebra is the requirement that the weight h is left invariant or quasi left

invariant. In other words, in the de®nition of a Woronowicz algebra, one requires that

h should satisfy �fn h� � d�x� � h�x�f�1� for all f AM�
� and all x AM�. At the present

stage, the author does not know whether left invariance and quasi left invariance are

distinct notions. Let us brie¯y tell the reason why we work with quasi Woronowicz

algebras rather than with Woronowicz algebras in this note. In the paper [MN], there

is a crucial gap at the end of the proof of Proposition 3.8. Because of this gap, we

do not yet know that the dual Woronowicz algebra in the sense of [MN] is really a

Woronowicz algebra. One can, however, easily see that the dual is a quasi Woronowicz

algebra. Moreover, most of the argument in [MN] goes through perfectly without

any change even if we start with a quasi Woronowicz algebra, not with a Woronowicz

algebra. (There are some points in which we really have to be careful, but those points

are irrelevant to our discussion that follows). This is why we stick to working with

quasi Woronowicz algebras. Besides, as shown in [Y ], every matched pair of (locally

compact) groups gives rise to a quasi Woronowicz algebra. Hence there are plenty of

examples of quasi Woronowicz algebras.

Throughout the remainder of this note, we ®x a quasi Woronowicz algebra W �

�M; d;R; t; h�. Identifying M with ph�M�, we always think of M as represented on

the Hilbert space H :� Hh. We denote by D and J the modular operator and the

modular conjugation of h, respectively. By the commutativity of h, there exists a

non-singular positive self-adjoint operator Q on H a½liated with the centralizer Mh �

fx AM : sh
t �x� � x �t A R�g of h such that the Connes' Radon Nikodym derivative

�D�h � R� : Dh�t satis®es �D�h � R� : Dh�t � Q it for t A R. In the notation in [MN],

we have Q � rÿ1. For any positive self-adjoint operator K and e > 0, set Ke :�

K�1� eK�ÿ1. With this notation, it follows from [PT, Theorem 5.12] that we have

h � R�x� � lim
e#0

h�Q1=2
e xQ1=2

e �: �x AM��

In this case, following the notation in [PT ], we write h � R � h�Q ��. Since h is t-

invariant, Lh�x� 7! Lh�tt�x�� �x A nh; t A R� de®nes a one-parameter unitary group on
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H. We write H for the analytic generator (see [SZ, p243] for this terminology) of this

one-parameter unitary group: H itLh�x� :� Lh�tt�x��. An element f A M� is said to be

L2�h�-bounded if

supfjf�x��j : h�x�x�U 1g < y:

We denote by ĥ�f� the unique vector in H such that f�x�� � �ĥ�f�jLh�x�� for x A nh.

For f;c A M�, de®ne an element f � c in M� by

�f � c��x� :� �fnc��d�x�� �x A M�:

This operation � turns M� into a Banach algebra. Let �M��
y

t be the set of analytic

elements in M� with respect to the action f 7! f � tt of the deformation automorphism

on M�. For f A �M��
y

t , put f] :� f� � tÿi=2 � R. This de®nes an involution on the

subalgebra �M��
y

t . Thanks to quasi left invariance, the equation

WLhn h�xn y� � Lhn h�d�y��xn 1�� �x; y A nh�

de®nes an isometry (in fact, a unitary) on HnH. This unitary W is called the Kac-

Takesaki operator of W and satis®es

W12W23 � W23W13W12; d�x� � W�1n x�W � �x A M�:

With W, the equation

p̂�f� :� �fn id ��W �� �f A M��

de®nes a homomorphism (resp. �-homomorphism) of M� (resp. �M��
y

t ) into the set

B�H� of all bounded operators on H. The mapping p̂ is called the Fourier represen-

tation of W . Let M̂ stand for the von Neumann algebra generated by p̂�f� �f A M��.

By [BS, Proposition 3.5], M̂ is the s-strong� closure of the subalgebra p̂�M�� (or the

�-subalgebra p̂��M��
y

t �). It is possible to equip M̂ with a quasi Woronowicz

algebra structure as follows:

coproduct: d̂�y� :� Ŵ�1n y�Ŵ � �y A M̂�

unitary antipode: R̂�y� :� Jy�J

deformation automorphism: t̂t :� AdH it

Haar measure: ĥ�x� :�
kxk2; if x1=2 � p̂l�x� for x A Â 00,

y; otherwise,

(

where Ŵ � SW �S and S is the ¯ip on HnH. Â is a left Hilbert algebra obtained

as the image of some suitable �-subalgebra in �M��
y

t under the map ĥ. In particular,

we have

ĥ�p̂�o��p̂�f�� � �ĥ�f� j ĥ�o��

for L2�h�-bounded functionals f;o. We denote this quasi Woronowicz algebra by Ŵ

and call it the quasi Woronowicz algebra dual to W . The Kac-Takesaki operator of
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Ŵ is Ŵ . The Fourier representation of Ŵ is denoted by ^̂p. The linear mapping F

de®ned by

FL
ĥ
�p̂�f�� :� ĥ�f� �f : L2�h�-bounded�

extends to a unitary, still denoted by F, from H
ĥ
onto H. We call this unitary the

Fourier transform. Note that fM̂;Hg is a standard representation. Thus we regard

D̂ :� D
ĥ
and Ĵ :� J

ĥ
as acting on the Hilbert space H. We have R�x� � Ĵx�Ĵ �x A M�.

The analytic generator of the Radon Nikodym derivative �D�ĥ � R̂� : Dĥ�t is denoted by

Q̂ : �D�ĥ � R̂� : Dĥ�t � Q̂ it.

Finally, for a linear operator T on a Hilbert space, let D�T� designate the domain

of T.

2. Hopf-von Neumann algebraic structure on Mn M̂.

In this section, we shall equip the tensor product N :� Mn M̂ with a Hopf-von

Neumann algebraic structure. The method for this is exactly the same as the one set

out in Section 2 of [N]. But, here, we will reconsider it more carefully along the line of

argument given in [BS, Section 8].

Let X � �Ŵ 0��, where Ŵ 0 stands for the Kac-Takesaki operator associated with the

commutant of the dual of the given quasi Woronowicz algebra W . Then set

Y0 :� SX �S; Z0 :� SX�un u�X ��un u�S:

Here u is the self-adjoint unitary given by u � JĴ � ĴJ. Then, by [BS, TheÂoreÁme 8.17],

the family f�H;X ; u�; �H;Y0; u�;Z0g forms a matched pair of Kac systems. Hence, by

[BS, Proposition 8.14], if we set V0 :� �Z0�
�
12X13�Z0�12�Y0�24, then the map dt given by

dt�X� :� V0�X n 1�V �
0 �X A S 00

X
nS 00

Y0
�

de®nes a coproduct on the von Neumann algebra S 00
X
nS 00

Y0
. In our notation, we have

S 00
X
� W ; S 00

Y0
� Ŵ

0s
:

Since we want to work with N :� Mn M̂ rather than Mn M̂
0, we modify the above

construction in the following way. First we note that the map Ad u gives a quasi

Woronowicz algebra isomorphism from Ŵ onto Ŵ
0s (cf. [N, Section 4]). So, through

the isomorphism idM nAd u, everything that is true for the above construction can be

translated in terms of our setting N � Mn M̂. Thus we put

Y :� �un u�Y0�un u�; Z :� �1n u�Z0�1n u�:

Then the family f�H;X; u�; �H;Y; u�;Zg forms a matched pair. Hence the map g given

by g :� s �AdZ de®nes an ``inversion'' on M and M̂ (in the sense of [BS ]). Namely, g

is an isomorphism from Mn M̂ onto M̂nM satisfying

�gn idM� � �idM n g� � �dn id
M̂
� � �id

M̂
n d� � g;

�id
M̂
n g� � �gn id

M̂
� � �idM n d̂� � �d̂n idM� � g:

(

�2:1�

Double group construction 811



Then the map

dN :� �idM n gn id
M̂
� � �dn d̂�

de®nes a coproduct on N. Moreover, with V � Z�
12X13Z12Y24, we have

dN�x� � V�xn 1HnH�V
� �x A N�:

It can be veri®ed that Z � X̂ ~X
� with the notation in [BS, Section 6]. Since ~X �

�un u�W ��un u� belongs to M
0 n M̂

0, the map g actually equals s �Ad X̂ . Since X̂ �

W �, the inversion g coincides with sW introduced in [N, Section 2]. Therefore, our

coproduct dN is the same as Nakagami's.

Theorem 2.2. Retain the notation established above. Let

RN
:� �Rn R̂� �AdW �

;

tNt :� tt n t̂t:

Then �N; dN;RN� is a coinvolutive Hopf-von Neumann algebra. Each tNt is a co-

involutive Hopf-von Neumann algebra automorphism, i.e., it satis®es

�tNt n tNt � � dN � dN � tNt ;

RN � tNt � tNt � RN

for any t A R.

Proof. This follows from a combination of Lemma 5 and Lemma 6 of

[N]. r

3. Haar measure for �N; dN;RN
; tN�.

The purpose of this section is to construct a Haar measure for the coinvolutive

Hopf-von Neumann algebra �N; dN;RN� with the deformation automorphism tN

de®ned in the previous section.

Let hN be the faithful normal semi®nite weight on N � Mn M̂ de®ned by

hN :� hn ĥ � R̂:

We shall show that hN is the desired Haar measure.

For the next lemma, note that, since the Kac-Takesaki operator W is a unitary

in N, the function t A R 7! W �s
h �Rn ĥ
t �W� is a unitary 1-cocycle (coboundary) for the

weight h � Rn ĥ.

Lemma 3.1. Let ut :� W �s
h �Rn ĥ
t �W� be the 1-cocycle mentioned above. Then we

have

ut � W ��Q it n Q̂ÿit�W :

Moreover, the faithful normal semi®nite weight on N determined by this cocycle is
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�h � Rn R̂� �AdW . Namely, we have

ut � �D��h � Rn ĥ� �AdW� : D�h � Rn ĥ��t

for any t A R.

Proof. Since �D�h � R� : Dh�t � Q it, it follows from [N, Lemma 7] that

s
h �Rn ĥ
t �W� � �Q it n 1�shn ĥ

t �W��Qÿit n 1� � �Q it n Q̂ÿit�W :

This proves the ®rst assertion. Let F � �h � Rn ĥ� �AdW . By [N, Lemma 7] again,

we easily ®nd that s
F

t � Ad ut � s
h �Rn ĥ
t . Now let X be in nF V n

�
h �Rn ĥ

and Y be

in n
�
F
V n

h �Rn ĥ
. Since nF � n

h �Rn ĥ
W , it follows that both XW � and WY belong to

n
h �Rn ĥ

V n
�
h �Rn ĥ

. Hence, by the KMS condition for the weight h � Rn ĥ, there exists

a bounded continuous function F de®ned on the strip D � fz A C : 0U Im zU 1g, which

is analytic in the interior, such that

F�t� � �h � Rn ĥ��sh �Rn ĥ
t �WY�XW �� �t A R�;

F�t� i� � �h � Rn ĥ��XW �
s
h �Rn ĥ
t �WY��:

These identities can be transformed into

F�t� � F�uts
h �Rn ĥ
t �Y �X�; F�t� i� � �h � Rn ĥ��Xuts

h �Rn ĥ
t �Y ��:

Therefore, by uniqueness of the Randon-Nikodym derivative, we conclude that the

1-cocycle ut must equal the Radon-Nikodym derivative �DF : D�h � Rn ĥ��t. r

Lemma 3.2. Let vt :� W �
s
hN

t �W� be the unitary 1-cocycle for the weight hN.

Then the faithful normal semi®nite weight on N determined uniquely by this cocycle is

h � Rn ĥ. Thus we have

�D�h � Rn ĥ� : DhN�t � W �
s
hN

t �W�

for any t A R.

Proof. Since �D�h � R� : Dh�t � Q it and �D�ĥ � R̂� : Dĥ�t � Q̂ it, one has

�D�h � Rn ĥ� : DhN�t � �D�h � R� : Dh�t n �Dĥ : D�ĥ � R̂��t � Q it n Q̂ÿit
:

Hence it su½ces to show that vt � Q it n Q̂ÿit. But this follows from a direct com-

putation with the help of [N, Lemma 7]. r

Theorem 3.3. The weight hN is RN-invariant, i.e.,

hN � hN � RN:

Proof. Let F � ��h � R�n ĥ� �AdW . As we saw in the proof of the preceding

lemma, we have

�D�h � Rn ĥ� : DhN�t � Q it n Q̂ÿit
:
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Hence it follows from Lemma 3.1 that

W�DF : D�h � Rn ĥ��tW
� � �D�h � Rn ĥ� : DhN�t:

On the other hand, one has

W�DF : D�h � Rn ĥ��tW
� � AdW��DF : D�h � Rn ĥ��t�

� �DF �AdW �
: D�h � Rn ĥ� �AdW ��t

� �D�h � Rn ĥ� : D�hN � RN��t

� �D�h � Rn ĥ� : DhN�t�DhN : D�hN � RN��t:

Therefore, we conclude that �DhN : D�hN � RN��t 1 1, which implies that hN �

hN � RN. r

In what follows, we set C � �hn ĥ� �AdW �.

Proposition 3.4. The weight hN is s
C -invariant. The Radon Nikodym derivative

�DhN : DC� of hN with respect to C is given by

�DhN : DC�t � W�Q it n 1�W �:

In particular, we have hN � C�P ��, where P is the nonsingular positive self-adjoint

operator de®ned by P :� W�Qn 1�W �.

Proof. Let P be the operator de®ned as above. First we claim that P is a½liated

with the centralizer of the weight C . Indeed, since P it � W�Q it n 1�W � and s
C

t �

AdW � shn ĥ
t �AdW �, we clearly obtain s

C

s �P it� � P it for any s; t A R.

Next note that we have

s
C

t � AdW � shn ĥ
t �AdW � � AdWs

hn ĥ
t �W �� � shn ĥ

t :

Thus, by [N, Lemma 7], we ®nd that

s
C

t � AdW�Qÿit n 1�W ��1n Q̂ it� � shn ĥ
t � AdW�Qÿit n 1�W � � shN

t :�3:4:1�

This shows that shN

t � AdP it � sC

t . In particular, one has C � shN � C , which in turn

implies that hN is s
C -invariant. Suppose that X is an arbitrary element in nhN . For

any positive self-adjoint operator K and e > 0, set Ke :� K�1� eK�ÿ1. With this

notation, we have

hN�X �X� � hN � RN�X �X � by Theorem 3:3

� �h � Rn ĥ��W �X �XW�

� lim
e#0

�hn ĥ���Q1=2
e

n 1�W �X �XW�Q1=2
e

n 1��

� lim
e#0

�hn ĥ��W �P1=2
e

X �XP1=2
e

W�

� lim
e#0

C�P1=2
e

X �XP1=2
e

� � C�PX �X�:
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Hence hN equals C�P �� on mhN . It follows from [PT, Proposition 5.9] that hN �

C�P ��. r

Lemma 3.5. Let A be a von Neumann algebra and c a faithful normal semi®nite

weight on A. Suppose that X is in ncn h. Then we have

�cnon h���idA n d��X �X �� � o�1��cn h��X �X�

for any o A M
�
� .

Proof. First we consider the case where o is of the form o � oLh�x� for some

x A nh. Since o�y� � h�x� yx� for any y A M�, it follows that

o�y� � h�x� yx�

for any y in the extended positive part Ext��M� in the sense of [H1]. Thus we have

o��cn idn h���idA n d��X �X ���

� h�x��cn idn h���idA n d��X �X ��x�

� �cn hn h���1n x� n 1��idA n d��X �X ��1n xn 1��:

Namely,

�cnon h���idA n d��X �X���3:5:1�

� �cn hn h���1n x� n 1��idA n d��X �X ��1n xn 1��:

Now, by the density theorem for left Hilbert algebra in [H ], there exists a sequence

fXng in the algebraic tensor product nc n nh such that

kXnkU kXk; lim
n!y

Lcn h�Xn� � Lcn h�X �:

In particular, Xn strongly converges to X. With this fXng, it is readily checked that one

has

�1nW��Sn 1�Lhncn h�xnXn� � Lcn hn h��idA n d��Xn��1n xn 1��:�3:5:2�

For any h A �Ac nAh nAh�
0 � �Acn hn h�

0, we have

lim
n!y

pr�h�Lcn hn h��idA n d��Xn��1n xn 1�� � lim
n!y

�idA n d��Xn��1n xn 1�h

� �idA n d��X��1n xn 1�h:

On the other hand, by (3.5.2), one has

lim
n!y

pr�h�Lcn hn h��idA n d��Xn��1n xn 1��

� lim
n!y

pr�h��1nW��Sn 1�Lhncn h�xnXn�

� lim
n!y

pr�h��1nW��Sn 1��Lh�x�nLcn h�Xn��

� pr�h��1nW��Sn 1��Lh�x�nLcn h�X ��:
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This shows that the vector �1nW��Sn 1��Lhncn h�xnX�� is left bounded with

respect to the left Hilbert algebra Acn hn h, and

pl��1nW��Sn 1��Lhncn h�xnX��� � �idA n d��X��1n xn 1�:

Particularly, �idA n d��X��1n xn 1� belongs to ncn hn h. So we obtain

�1nW��Sn 1�Lhncn h�xnX� � Lcn hn h��idA n d��X��1n xn 1��:�3:5:3�

From (3.5.1), (3.5.2), (3.5.3) and quasi left invariance of h, it follows that

�cnon h���idA n d��X �X�� � kLcn hn h��idA n d��X ��1n xn 1��k2

� kLhncn h�xnX �k2

� lim
n!y

kLhncn h�xnXn�k
2

� lim
n!y

kLcn hn h��idA n d��Xn��1n xn 1��k2

� lim
n!y

�cnon h���idA n d��X �
n Xn��

� lim
n!y

o�1��cn h��X �
n X

�
n �

� o�1� lim
n!y

kLcn h�Xn�k
2

� o�1�kLcn h�X�k2 � o�1��cn h��X �X �:

To show that the assertion of this lemma is true for any o in M
�
� , we proceed

as follows (cf. [S, Lemma II.8]). Regard m � �cn idn h���idA n d��X �X �� as an

element of Ext��M�. By [H1, Lemma 1.4], there exist a closed subspace K of H and a

densely de®ned positive self-adjoint operator A on K such that

m�ox� �
kA1=2xk2; �x A D�A1=2��;

y; otherwise.

�

From the preceding paragraph, D�A1=2� contains Lh�nh�, so that K equals H. If x A

Lh�nh�, then

kA1=2xk2 � k�cn h��X �X �1=2xk2:

From the uniqueness of polar decomposition, we ®nd that A1=2 � �cn h��X �X �1=2 � 1.

Since fM;Hg is a standard representation, it follows that

m�o� � o�1��cn h��X �X�

for any o A M
�
� . This proves the assertion. In particular, m � �cn idn h�

� ��idA n d��X �X �� actually belongs to M. r

Corollary 3.6. Let B be a von Neumann algebra and f a faithful normal

semi®nite weight on B. Suppose that X is in nidB n fn h. Then we have
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�yn fnon h���idB n idB n d��X �X�� � o�1��yn fn h��X �X�

for any y A B
�
� and o A M

�
� .

Proof. Let us take an o A M
�
� and ®x it. First we treat the case where y A B

�
� is

of the form y � oLf�x� for some x A nf. Then, as in the previous lemma, one can show

that

�yn fnon h���idn idn d��X �X ��

� �fn fnon h���idn idn d���x� n 1n 1�X �X �xn 1n 1���:

Applying Lemma 3.5 to our situation in which A � BnB and c � fn f, we obtain

�yn fnon h���idn idn d��X �X��

� o�1��fn fn h���x� n 1n 1�X �X �xn 1n 1��

� o�1��yn fn h��X �X�:

To prove that the above identity holds for a general y A B
�
� , one may just follow the

argument set out in the last paragraph of the proof of the preceding lemma. The

details are left to readers. r

Theorem 3.7. The weight hN is quasi left invariant.

Proof. Let X be any element in the algebraic tensor product nh n n
ĥ � R̂ J nhN .

First we claim that the identity

�cn hN��dN�X �X�� � hN�X �X�c�1�

holds for any c A N
�

� . For simplicity, we assume that X has the form X � an x,

where a A nh and x A n
ĥ � R̂. We assume also for the moment that c is of the form

c � yno for some y A M
�
� and o A M̂

�
� . Then, by Proposition 3.4, we have

�cn hN��dN�X �X ��

� lim
e#0

�ynonC���P1=2
e �34d

N�a�an x�x��P1=2
e �34�

� lim
e#0

�ynon hn ĥ��W �
34�P

1=2
e �34d

N�a�an x�x��P1=2
e �34W34�

� lim
e#0

�ynon hn ĥ���1n1nQ1=2
e n1�W �

34d
N�a�an x�x�W34�1n1nQ1=2

e n1��

� �ynon h � Rn ĥ��W �
34d

N�a�an x�x�W34�:

Here we used the notation introduced in the proof of Proposition 3.4. Since

dN � AdS23W
�
23 � �dn d̂�;

W �
13W

�
12 � �idM n d̂��W ��;

we ®nd that
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AdW �
34 � d

N�a�
an x

�
x� � AdW �

34S23W
�
23 � �idM n idM n d̂��d�a�

a�n x
�
x�

� AdS23W
�
24W

�
23 � �idM n idM n d̂��d�a�

a�n x
�
x�

� AdS23 � �idM n idM n d̂��W �
23�d�a

�
a�n x

�
x�W23�:

From this, it follows that

�cn h
N��dN�X �

X�� � �yn h � Rnon ĥ���idM n idM n d̂��W �
23�d�a

�
a�n x

�
x�W23��:

Meanwhile, by Theorem 3.3, we obtain

�idM n h � Rn ĥ��W �
23�d�a

�
a�n x

�
x�W23�

� �idM n �h � Rn ĥ� �AdW ���d�a�
a�n x

�
x�

� �idM n h
N � RN��d�a�

a�n x
�
x�

� �idM n h
N��d�a�

a�n x
�
x�

� �idM n h��d�a�
a��ĥ � R̂�x�

x�

� h�a�
a�ĥ � R̂�x�

x� � 1:

This implies that the element �d�a�n x�W23 belongs to n
idM n h �Rn ĥ

. It results from

Corollary 3.6 that

�yn h � Rnon ĥ���idM n idM n d̂��W �
23�d�a

�
a�n x

�
x�W23��

� o�1��yn h � Rn ĥ��W �
23�d�a

�
a�n x

�
x�W23�

� o�1�y�1�h�a�
a�ĥ � R̂�x�

x�

� o�1�y�1�hN�X �
X� � c�1�hN�X �

X�:

Therefore our claim is valid when c has the form described above. But the argument

set out in the last paragraph of the proof of Lemma 3.5 guarantees that this claim is still

valid even for a general c A N
�

� .

Now we let X be an arbitrary element in nhN . Then, by the density theorem for

left Hilbert algebras mentioned before, there exists a sequence fXng in nh n n
ĥ � R̂ such

that

kXnkU kXk; lim
n!y

LhN�Xn� � LhN�X�:

In particular, Xn strongly converges to X. In the meantime, from the preceding

paragraph, it is easy to see that, for A;B A nh n n
ĥ � R̂, we have

�hN n h
N���A� n 1�dN�B�

B��An 1�� � �oL
hN

�A� n h
N��dN�B�

B��

� h
N�A�

A�hN�B�
B�:

Thus the equation
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WN�LhN�A�nLhN�B�� � LhN n hN�d
N�B��An 1N�� �A;B A nh n n

ĥ � R̂�

de®nes an isometry WN on HhN nHhN . For any A A nh n n
ĥ � R̂, one has

lim
n!y

LhN n hN�d
N�Xn��An 1N�� � lim

n!y
WN�LhN�A�nLhN�Xn��

� WN�LhN�A�nLhN�X��:

Hence, for any h1; h2 A A 0
hN , we have

�pr�h1�n pr�h2��W
N�LhN�A�nLhN�X��

� lim
n!y

�pr�h1�n pr�h2��LhN n hN�d
N�Xn��An 1N��

� lim
n!y

dN�Xn��An 1N��h1 n h2�

� dN�X ��An 1N��h1 n h2�:

This proves that the vector WN�LhN�A�nLhN�X�� is left bounded with respect to the

left Hilbert algebra AhN n hN , and we have

pl�W
N�LhN�A�nLhN�X ��� � dN�X��An 1�:

In particular, dN�X��An 1� belongs to nhN n hN , and one has

WN�LhN�A�nLhN�X�� � LhN n hN�d
N�X��An 1��:

From this, it follows that

hN�A�A�hN�X �X � � kLhN�A�nLhN�X ��k2

� kWN�LhN�A�nLhN�X ��k2

� kLhN n hN�d
N�X��An 1��k2

� �hN n hN���A� n 1�dN�X �X ��An 1��

� �oL
hN

�A� n hN��dN�X �X��

Therefore, the identity

�cn hN��dN�X �X�� � hN�X �X�c�1�

holds for any c A N
�

� of the form c � oL
hN

�A� for some A A nh n n
ĥ � R̂. But, again, the

argument set out in the last paragraph of the proof of Lemma 3.5 enables us to conclude

that this identity is still true for all c A N
�
� . This completes the proof. r

Theorem 3.8. The weight hN is strongly left invariant.

Proof. We closely follow the proof of Lemma 10 in [N]. But there are minor

misprints in that proof, so that we proceed, correcting them.

Let X ;Y be in nhN . We denote the set of entire analytic elements in M� with

resepct to the adjoint action of the deformation automorphism fttg by �M��
y

t . The set
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�M̂��
y

t̂ is de®ned in the same way. We ®rst take an element f from the algebraic

tensor product �M��
y

t n �M̂��
y

t̂ . For simplicity, we assume that f has the form yno.

Put ~y :� y � tÿi=2 � R and ~o :� o � t̂ÿi=2 � R̂. Then we have

�f � tNÿi=2 � R
N n hN��dN�Y ���1N nX��

� �~yn ~on hn ĥ � R̂� �AdW �
12�AdS23W

�
23 � �dn d̂��Y �� � �1n 1nX ��

� �~yn ~on hn ĥ � R̂� �AdS23�AdW �
13W

�
23 � �dn d̂��Y �� �AdS23�1n 1nX��:

Since W �
13W

�
23 � �dn id

M̂
��W ��, it follows that

�f � tNÿi=2 � R
N n hN��dN�Y ���1N nX���3:8:1�

� �~yn hn ~on ĥ � R̂���dn id
M̂
n id

M̂
� �AdW �

12 � �idM n d̂��Y ��

�AdS23�1n 1nX��:

Now, from Theorem 3.3, we ®nd that

�h � Rn ĥ��W �Y �YW � � �h � Rn ĥ� �AdW ��Y �Y� � hN�Y �Y� < y:

Hence, from Lemma 3.5 and Theorem 3.3 again, it results that

�hn ~on ĥ � R̂��W �
12�idM n d̂��Y �Y �W12�

� �hn ~on ĥ � R̂��W �
13W

�
12�idM n d̂��Y �Y�W12W13�

� �hn ~on ĥ � R̂���idM n d̂��W �Y �YW��

� ~o�1��h � Rn R̂��W �Y �YW�

� ~o�1�hN�Y �Y � < y:

This shows that W �
12�idM n d̂��Y �W12 belongs to n

hn ~on ĥ � R̂. Thus we may use the

strong left invariance of the weight h to deduce that the right-hand side of (3.8.1) equals

�yn hn ~on ĥ � R̂��AdW �
23 � �idM n idM n d̂��Y �

23��3:8:2�

� �dn id
M̂
n id

M̂
��AdS12�1nX���:

Let A � AdW �
23 � �idM n idM n d̂��Y �

23� � �dn id
M̂
n id

M̂
��AdS12�1nX ��. Using Pro-

position 3.4, we further compute (3.8.2) as follows.

�3:8:2� � lim
e#0

�yn hn ~on ĥ��W �
24�P

1=2
e �24A�P

1=2
e �24W24�

� lim
e#0

�yn hn ~on ĥ���1nQ1=2
e n 1n 1�W �

24AW24�1nQ1=2
e n 1n 1��

� lim
e#0

�yn hn ~on ĥ���idM n idM n d̂���1nQ1=2
e n 1�W �

23Y
�
23W23�

�AdW �
24 � �dn id

M̂
n id

M̂
��AdS12�1nX���1nQ1=2

e n 1n 1��:

T. Yamanouchi820



Let X�e� :� W �
24�dn id

M̂
n id

M̂
��AdS12�1nX��W24�1nQ

1=2
e n 1n 1� and Y�e� :�

�Q
1=2
e n 1�W �YW . Then, by Proposition 3.4, we have

�yn hn ~on ĥ��X �e��X�e��

� �ynC24 n ~o���P1=2
e �24�dn id

M̂
n id

M̂
��AdS12�1nX ���P1=2

e �24�

U �yn hN24 n ~o���dn id
M̂
n id

M̂
��AdS12�1nX ��

� y�1��hn ~on ĥ � R̂��AdS12�1nX��

� y�1� ~o�1�hN�X �X� < y:

Moreover, one has

�hn ĥ��Y�e��Y�e�� � C�P1=2
e Y �YP1=2

e �

UC�PY �Y� � hN�Y �Y� < y:

Hence we may use the strong left invariance of the weight ĥ to conclude that (3.8.2)

equals

lim
e#0

�yn hnon ĥ���1nQ1=2
e n 1n 1�W �

24Y
�
24W24

� �idM n idM n d̂��AdW �
23 � �dn id

M̂
��X��1nQ1=2

e n 1���:

Since �idM n idM n d̂��W �
23� � W �

24W
�
23, we can continue to calculate the above limit as

follows.

the limit � lim
e#0

�yn hnon ĥ��W �
24�P

1=2
e �24Y

�
24 �AdW �

23 � �dn d̂��X��P1=2
e �24W24�

� �yn hnon ĥ � R̂��Y �
24 �AdW �

23 � �dn d̂��X ��

� �ynon hN��S23Y
�
24S23 �AdS23W

�
23 � �dn d̂��X��

� �fn hN���1N nY ��dN�X��:

Therefore, strong left invariance holds for any normal functional in �M��
y

t n �M̂��
y

t̂ .

Now we take any analytic element f in �N��
y

tN . Then we choose a sequence ffng

in �M��
y

t n �M̂��
y

t̂ that converges to f in norm. We de®ne entire functions fn and f

which is bounded on the strip D � fz A C : 0U Im zU 1=2g as follows.

fn�z� :� �fn � t
N

zÿi=2 � R
N n hN��dN�Y ���1N nX��; �z A C�;

f �z� :� �f � tNzÿi=2 � R
N n hN��dN�Y ���1N nX��:

Indeed, from the preceding paragraph, we have

fn�t� � �fn n hN���1n tNt �Y ���dN�tNt �X ���; �t A R�

fn t�
i

2

� �

� �fn � R
N n hN��dN�tNt �Y ����1n tNt �X���:
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(Note: the above equalities are stated wrong in [N]). From the proof of [N, Lemma

10], the functions f fng converges uniformly to a bounded continuous function g on the

strip D, which is analytic in the interior and satis®es

g�t� � �fn hN���1n tNt �Y ���dN�tNt �X���;

g t�
i

2

� �

� �f � RN n hN��dN�tNt �Y ����1n tNt �X ���:

Hence f equals g on the line R� i=2, which implies that f must coincide with g on the

strip D. In particular, we have f �0� � g�0�. This means that the identity

�f � tNÿi=2 � R
N n hN��dN�Y ���1N nX�� � �fn hN���1nY ��dN�X ��:

holds. This completes the proof. r

We summarize the results obtained in this section in the theorem that follows.

Theorem 3.9. The system �N; dN;RN; tN; hN� is a unimodular quasi Woronowicz

algebra.

Definition 3.10. We call the unimodular quasi Woronowicz algebra constructed

above the quantum double (group) of the given quasi Woronowicz algebra W , and

denote it by D�W�. The construction is referred to as the double group construction.

The next proposition states that the operation of taking the double group con-

struction is closed in the category of Kac algebras.

Corollary 3.11. If a quasi Woronowicz algebra W is a Kac algebra, then so is the

quantum double D�W�.

Proof. We retain the notation introduced so far. Note ®rst that a quasi

Woronowicz algebra W is a Kac algebra if and only if sh � sh �R and the deformation

automorphism is trivial. By Theorem 3.3, we certainly have shN � shN�RN

. If W is a

Kac algebra, then H � 1, so that tN is trivial. Hence the quantum double D�W� is a

Kac algebra. r

4. The dual of D�W�.

In this section, we shall study the dual of the quantum double D�W� and clarify

how the original algebra W or Ŵ etc. are related to it.

Our immediate aim is to describe the Kac-Takesaki operator WN of the double

group D�W� in more detail in terms of W or Ŵ . Since the Haar measure of D�W� is

hN � hn h � R, the algebra N � Mn M̂ should be represented on the Hilbert space

HhN � HnH
ĥ � R̂ from the viewpoint of theory of (quasi) Woronowicz algebras. It,

however, seems more natural (convenient) for our purpose mentioned above to work

with the weight hn ĥ and represent N on HnH
ĥ
GHnH, even though we know

that HhN is canonically isomorphic to HnH
ĥ
. Thus we ®rst study this canonical

isomorphism.
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Following [N], we de®ne a one-paramenter transformation Lt on M by

Lt�x� :� xQÿit �x AM�:

As noted in [N], all the one-parameter transformations sh, sh �R, t, L are mutually

commuting. Now we denote by a0 the set of all entire analytic elements x A ah with

respect to these four transformations satisfying sh
z �x�, s

h �R
z �x�, tz�x�, Lz�x� A ah for all

z A C . This set a0 is a s-weakly dense �-subalgebra of ah. Remark that A0 :� Lh�a0�

is a left Hilbert algebra dense in H such that A 00
0 � Ah.

Lemma 4.1. Let x A a0. Then we have

JQ izJLh�x� � Lh�Lz�x��

for any z A C .

Proof. Since x A a0, the function t A R 7! Lh�Lt�x�� has an analytic extension to

the whole plane C . In the meantime, since Q it lies in the centralizer Mh of the weight

h, we ®nd that

Lh�Lt�x�� � Lh�xQ
ÿit� � JQ itJLh�x�:

Hence, from [PT, Lemma 3.2], it follows that the vector Lh�x� belongs to

7
z AC

D��JQJ�z�. Therefore, we obtain

Lh�Lz�x�� � �JQJ�ÿiz
Lh�x� � JQ izJLh�x�:

This completes the proof. r

Lemma 4.2. Let P be the self-dual closed convex cone in H associated with the

standard representation fM;H; J � Jhg. Then we have

P � fxJLh�x� : x A aog:

Proof. By de®nition (see [H ]), P � fxJLh�x� : x A ahg. Our assertion now

follows from the density theorem for left Hilbert algebras. r

Proposition 4.3. The unitary conjugation Ĵ on H is the unique canonical imple-

mentation of the antipode R in the sense of Haagerup ([H ]).

Proof. By [MN, Lemma 3.9], Ĵ implements the antipode R : R�x� � Ĵx�Ĵ �x AM�.

From [MN, Corollary 3.6.2], Ĵ commutes with J. Hence, in order to prove this

proposition, it su½ces by [H, Theorem 2.3] to show that Ĵ leaves the self-dual closed

convex cone P in Lemma 4.2 invariant. So let x A a0. Then, by Lemma 4.1 and

[MN, Corollary 3.6.2], we have

ĴxJLh�x� � R�x��ĴJLh�x� � R�x��JLh�Li=2�R�x
����

� R�x��Q1=2JLh�R�x
���:

Let Q1=2 �
�
y

0 l de�l� be the spectral decomposition of Q1=2. Put yn �
� n

1=n l de�l�.

Note that each yn belongs to the centralizer of the weight h. Thus we have
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R�x��ynJLh�R�x
��� � R�x��y1=2n J�J y1=2n J�Lh�R�x

���

� R�x��y1=2n JLh�R�x
��y1=2n �

Since P � fxJLh�x� : x A nhg and R�x��y
1=2
n is in nh, it follows that the vector

R�x��ynJLh�R�x
��� lies in P. Since

R�x��Q1=2JLh�R�x
��� � lim

n!y
R�x��ynJLh�R�x

���;

we ®nd that ĴxJLh�x� still belongs to P, P being closed. From Lemma 4.2, we

conclude that Ĵ leaves P invariant. r

Corollary 4.4. Let ph �R be the standard representation of M on the Hilbert space

Hh �R constructed from the weight h � R. Then the unique canonical implementation

Uh �R;h : Hh �R ! H of ph �R is given by

Uh �R;hLh �R�x� � ĴLh�R�x�
�� �x A nh �R�:

Proof. First note that nh �R � R�n�
h �. Thus the operator Uh �R;h de®ned above

is clearly a unitary transformation from Hh �R onto H. It can be easily veri®ed that

ph �R�x� � U �
h �R;hxUh �R;h for any x AM.

Let x A ah �R. We denote the S-operator, the modular operator and the modular

conjugation associated with h � R by Sh �R, Dh �R and Jh �R, respectively. Then we have

Uh �R;hSh �RLh �R�x� � ĴLh�R�x�� � ĴSLh�R�x�
�� � ĴSĴUh �R;hLh �R�x�:

Since Lh �R�ah �R� (resp. Lh�ah�) is a core for Sh �R (resp. S) and

D�ĴSĴUh �R;h� � U �
h �R;hĴD�S�; U �

h �R;hĴLh�ah� � Lh �R�ah �R�;

it follows that Uh �R;hSh �R � ĴSĴUh �R;h. From the uniqueness of polar decomposition,

it results that

Uh �R;hJh �R � JUh �R;h; Dh �R � U �
h �R;hĴDĴUh �R;h:

Finally, if x A nh �R, then, by the preceding paragraphs, we have

Uh �R;hph �R�x�Jh �RLh �R�x� � xUh �R;hJh �RLh �R�x�

� xJUh �R;hLh �R�x�

� xJĴLh�R�x�
��

� ĴR�x��JLh�R�x�
��:

This shows that Uh �R;hfyJh �RLh �R�y� : y A nh �Rg � ĴfxJLh�x� : x A nhg. From Pro-

position 4.3, we conclude that the unitary Uh �R;h carries the self-dual closed convex

cone Ph �R asscoiated with the standard representation of h � R onto the self-dual cone

P introduced in Lemma 4.2. Therefore, by [H, Theorem 2.3], Uh �R;h is the unique

canonical implementation of the isomorphism ph �R. r

T. Yamanouchi824



Corollary 4.5. The unitary Uh �R;h in the preceding corollary is characterized by

Uh �R;hLh �R�a� � JQ1=2JLh�a� �a A nh V nh �R�

Proof. First we assert that Lh �R�nh V nh �R� is dense in Hh �R. Indeed, take any

x A nh �R. Let Qÿ1 �
�y
0 l de�l� be the spectral decomposition of Qÿ1. Set en :�� n

1=n de�l�. Since en belongs to the centralizer of h � R, we have

h � R��xen�
��xen�� � kLh �R�xen�k

2
U kLh �R�x�k

2 < y:

Thus xen is in nh �R for any nV 1. Meanwhile, we have

h��xen�
��xen�� � lim

e#0
h � R�Qÿ1=2

e
enx

�xenQ
ÿ1=2
e

�

� lim
e#0

kLh �R�xenQ
ÿ1=2
e

�k2

� lim
e#0

kJh �RenQ
ÿ1=2
e

Jh �RLh �R�x�k
2

� kJh �R y
1=2
n Jh �RLh �R�x�k

2

U kynkkLh �R�x�k
2 < y;

where yn :�Qÿ1en. This shows that xen lies in nh. Since limn!ykLh �R�xen�ÿLh �R�x�k

� 0, it results that Lh �R�nh V nh �R� is dense in Hh �R, as asserted.

Let a A nh V nh �R. One has

lim
e#0

kJQ1=2
e

JLh�a�k
2 � lim

e#0
kLh�aQ

1=2
e

�k2 � lim
e#0

h�Q1=2
e

a�aQ1=2
e

� � h � R�a�a� < y:

Hence, as shown in [PT, Lemma 7.9], Lh�a� belongs to the domain D�JQ1=2J� of the

positive operator JQ1=2J. Therefore, the mapping T given by

TLh �R�a� � JQ1=2JLh�a� �a A nh V nh �R�

is well-de®ned and can be extended to an isometry from Hh �R into H. Now we suppose

that a lies in a0. Then, by Lemma 4.1, one ®nds that TLh �R�a� � Lh�Li=2�a��. In the

meantime, from [MN, Corollary 3.6.2 (iii)], it follows that

Uh �R;hLh �R�a� � ĴLh�R�x�
�� � Lh�Li=2�a��:

Since Lh �R�a0� is dense in Hh �R, Uh �R;h equals T. r

The next corollary is irrelevant to the subject under discussion. We, however, think

it worth mentioning.

Corollary 4.6. Let W� � �M; s � d;R; tÿ1; h � R� be the quasi Woronowicz algebra

co-opposite to W . (see [N, Section 4]). Under the identi®cation of Hh �R with H through

the unitary Uh �R;h in the preceding corollary, the Kac-Takesaki operator W � of W
� is

given by

W � � �Ĵn Ĵ�W�Ĵn Ĵ�:

(Compare this result with the assertion (i) of [MN, Proposition 4.3]).
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Proof. One needs to show that

�Uh �R;h nUh �R;h�W
��Uh �R;h nUh �R;h�

� � �Ĵn Ĵ�W�Ĵn Ĵ�:

But this follows from a direct computation. So we leave the veri®cation to

readers. r

Lemma 4.7. Let x; y A M be in nh, nh V nh �R, respectively. Then we have

Lh �Rn h�d�x��yn 1�� � �U �
h �R;h n 1�W�Uh �R;h n 1�Lh �Rn h�yn x�:

Proof. The weight h being quasi left invariant, d�x��yn 1� is in fact in nh �Rn h.

Let zi A nh V nh �R �i � 1; 2�. By Corollary 4.5, we have

�Lh �Rn h�d�x��yn 1��jLh �Rn h�z1 n z2��

� �h � Rn h���z�1 n z�2 �d�x��yn 1��

� lim
e#0

�hn h���Q1=2
e z�1 n z�2 �d�x��yQ

1=2
e n 1��

� lim
e#0

�W�JQ1=2
e Jn 1�Lhn h�yn x� j �JQ1=2

e Jn 1�Lhn h�z1 n z2��

� �W�Uh �R;h n 1�Lh �Rn h�yn x� j �Uh �R;h n 1�Lh �Rn h�z1 n z2��:

Thus we are done. r

Lemma 4.8. Let B be a von Neumann algebra and c a faithful normal

semi®nite weight on B. Suppose that X, b and m are in BnM;B;M, respectively, so

that X�bn1� A ncnh and m A nh �R. Then �idBnd��X �bn1���1nmn1� � �idBnd��X � �

�bnmn 1� belongs to ncn h�Rn h, and we have

Lcn h�Rn h��idB n d��X��bnmn 1��

� �1nU �
h �R;h n 1�W23�1nUh �R;h n 1�Lcn h �Rn h�X13�bnmn 1��:

Proof. The claim that �idB n d��X��bnmn 1� belongs to ncn h�Rn h follows

from Lemma 3.5. The identity above can be veri®ed by the method analogous to the

proof of Lemma 3.5. Indeed, since X �bn 1� lies in ncn h, it follows from the density

theorem for left Hilbert algebras that there exists a sequence fYng in the algebraic

tensor product nc n nh, converging strongly to X�bn 1�, such that Lcn h�X �bn 1�� �

limn!y Lcn h�Yn�. From Lemma 4.7, we easily ®nd that

Lcn h�Rn h��idB n d��Yn��1nmn 1��

� �1nU �
h �R;h n 1�W23�1nUh �R;h n 1�Lcn h�Rn h��Yn�13�1nmn 1��:

The right-hand side of the above identity converges to the vector

�1nU �
h �R;h n 1�W23�1nUh �R;h n 1�Lcn h �Rn h�X13�bnmn 1��:

From this, with h A A
0
cn h �Rn h, one has
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pr�h�Lcn h�Rn h��idB n d��X��bnmn 1��

� �idB n d��X ��bnmn 1�h

� lim
n!y

�idB n d��Yn��1nmn 1�h

� lim
n!y

pr�h�Lcn h �Rn h��idB n d��Yn��1nmn 1��

� pr�h��1nU �
h �R;h n 1�W23�1nUh �R;h n 1�Lcn h �Rn h�X13�bnmn 1��:

This completes the proof. r

Lemma 4.9. The set W �nhNW is contained in n
h �Rn ĥ

, and there exists a unitary

TW from HhN onto H
h �Rn ĥ

given by

TWLhN�X � � L
h �Rn ĥ

�W �XW � �X A nhN�:

In particular, AdTW �phN�X�� � p
h �Rn ĥ

�W �XW �.

Proof. By Theorem 3.3, one has

�h � Rn ĥ� �AdW � � hN � RN � hN:

This shows that AdW � is a weight-preserving isomorphism. Hence it follows from a

general theory that the canonical implementation TW of AdW � is characterized (de-

®ned) by the equation in the statement of this lemma. r

Before we state the next lemma, let us recall the unitary Z introduced in Section

2. It is the unitary given by Z � X̂ ~X � W ��un u�W�un u�.

Lemma 4.10. Let F be the Fourier transform and TW the unitary in the

preceding lemma. Then the mapping Z�1nF��1nU
ĥ � R̂; ĥ�T

�
W : H

h �Rn ĥ
! HnH is

the canonical implementation of the standard representation p
h �Rn ĥ

. In particular, we

have

Ad�1nFU
ĥ � R̂; ĥ�T

�
W � p

h �Rn ĥ
�X� � AdZ��X� �X A N�:

Proof. By the de®nition of TW , it is easy to see that the unitary

�1nF��1nU
ĥ � R̂; ĥ�T

�
W : H

h �Rn ĥ
! HnH is the canonical implementation of the

isomorphism p
h �Rn ĥ

�X � 7! AdW�X�. Thus it su½ces to show that Z � is the ca-

nonical implementation of AdW . Since W is a unitary in N, the canonical imple-

mentation of AdW is given by W�Jn Ĵ�W�Jn Ĵ�. Since W � � �Ĵn J�W�Ĵn J�, it

is exactly the unitary Z �. r

Theorem 4.11. Let WN be the Kac-Takesaki operator of the quantum double D�W�

and F the Fourier transform. Then we have

�1nFU
ĥ � R̂; ĥ n 1nFU

ĥ � R̂; ĥ�W
N�1nU �

ĥ � R̂; ĥ
F

� n 1nU �
ĥ � R̂; ĥ

F
�� � Z �

34Ŵ24Z34W13:

Proof. Let a; b; c; d be in a0 and y; z; p; q be in â0. Then, by Proposition 3.4, we

have
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�WN
LhN n hN�an yn bn z� jLhN n hN�cn pn dn q��

� �hN n hN���cn pn dn q��dN�bn z��an yn 1n 1��

� lim
e#0

�CnC���P1=2
e

nP1=2
e

��cn pn dn q��dN

� �bn z��an yn 1n 1��P1=2
e

nP1=2
e

��

� lim
e#0

�hn ĥn hn ĥ���Q1=2
e

n 1nQ1=2
e

n 1�W �
12W

�
34

� �cn pn dn q��dN�bn z��an yn 1n 1�

�W12W34�Q
1=2
e

n 1nQ1=2
e

n 1��:

As we showed in the proof of Theorem 3.7, we have

AdW �
34 � d

N�bn z� � AdS23 � �idM n idM n d̂��W �
23�d�b�n z�W23�:

From this and unimodularity of hN, it results that

�WN
LhN n hN�an yn bn z� jLhN n hN�cn pn dn q��

� lim
e#0

�hn hn ĥn ĥ���Q1=2
e

nQ1=2
e

n 1n 1�W �
13W

�
24�cn dn pn q��W24

� �idM n idM n d̂��W �
23�d�b�n z�W23��an 1n yn 1�W13�Q

1=2
e

nQ1=2
e

n1n1��

� �h � Rn h � Rn ĥn ĥ��W �
13W

�
24�cn dn pn q��W24

� �idM n idM n d̂��W �
23�d�b�n z�W23� � �an 1n yn 1�W13�

� �hn h � Rn ĥ � R̂n ĥ��W �
24�cn dn pn q��

�W24�idM n idM n d̂��W �
23�d�b�n z�W23� � �an 1n yn 1��

� �L
hn h �Rn ĥ � R̂n ĥ

�X�jL
hn h �Rn ĥ � R̂n ĥ

�W �
24�cn dn pn q�W24��;

where X � �idM n idM n d̂��W �
23�d�b�n z�W23��an 1n yn 1�. With the notation in

the preceding lemma, we obtain

L
hn h �Rn ĥ � R̂n ĥ

�W �
24�cn dn pn q�W24� � �TW �24S23LhN n hN�cn pn dn q�:

From this, it follows that

WN
LhN n hN�an yn bn z� � S23�TW ��24Lhn h �Rn ĥ � R̂n ĥ

�X�:�4:11:1�

By Lemma 4.8, we have

L
hn h �Rn ĥ � R̂n ĥ

�X�

� �1n 1nU �
ĥ � R̂; ĥ

n 1�Ŵ34�1n 1nU
ĥ � R̂; ĥ n 1�L

hn h �Rn ĥ � R̂n ĥ

� �W �
24�d�b�n 1n z�W24�an 1n yn 1��
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� �1n 1nU �
ĥ � R̂; ĥ

n 1�Ŵ34�1n 1nU
ĥ � R̂; ĥ n 1�

� �TW �24Lhn hn ĥ � R̂n ĥ � R̂��d�b��an 1�n yn z�

� �1n 1nU �
ĥ � R̂; ĥ

n 1�Ŵ34�1n 1nU
ĥ � R̂; ĥ n 1�

� �TW �24W12S23LhN n hN�an yn bn z�:

From this and (4.11.1), it follows that

WN � S23�TW ��24�1n 1nU �
ĥ � R̂; ĥ

n 1�Ŵ34�1n 1nU
ĥ � R̂; ĥ n 1��TW �24W12S23

� �1nU �
ĥ � R̂; ĥ

nT �
W �Ŵ24�1nU

ĥ � R̂; ĥ nTW �W13:

Hence we obtain

�1nFU
ĥ � R̂; ĥ n 1nFU

ĥ � R̂; ĥ�W
N�1nU �

ĥ � R̂; ĥ
F

� n 1nU �
ĥ � R̂; ĥ

F
��

� �1nFn �1nF��1nU
ĥ � R̂; ĥ�T

�
W �Ŵ24

� �1nF
� nTW �1nU �

ĥ � R̂; ĥ
��1nF

���W13:

The assertion of this theorem now follows from Lemma 4.10 by identifying Ŵ with

�FnF��Ŵ�FnF�. r

From Theorem 4.11, we may and do identify the Kac-Takesaki operator WN of the

quantum double D�W� with the unitary Z �
34Ŵ24Z34W13. Hence we will think that both

D�W� and its dual D�W�d ``live'' on the Hilbert space HnH.

Remark. Theorem 4.11 fully answers the problem raised in Section 2 of [N, Page

532]. In other words, Theorem 4.11 gives an explicit relation between the Kac-Takesaki

operators for a general quasi Woronowicz algebra W and its quantum double D�W�.

Corollary 4.12. The quasi Woronowicz algebra N̂ dual to N is generated by

M̂nC and Z��C nM�Z. Indeed, it is the s-strong* closure of the linear span of the

set

f�yn 1�Z ��1n a�Z : a A M; y A M̂g:

Proof. Let y;o be in B�H��. We denote the Fourier repesentation of D�W� by

p̂N. By de®nition, N̂ is the s-strong� closure of the subalgebra p̂N�N��. By [MN,

Lemma 2.10], we have

p̂N�yno� � �ynon idn id���WN���

� �ynon idn id��W �
13Z

�
34Ŵ

�
24Z34�

� �p̂�y�n 1�Z ��1n ^̂p�o��Z:

From this, the assertion of this corollary immediately follows. r
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Proposition 4.13. The modular conjugation ĴN associated with the dual quasi

Woronowicz algebra D�W�d is �Ĵn J�Z � Z��Ĵn J�.

Proof. By Proposition 4.3, it su½ces to show that the conjugation �Ĵn J�Z is the

canonical implementation of the antipode RN. By de®nition, RN � �Rn R̂� � AdW �.

From Proposition 4.3, Ĵn J is the canonical implementation of Rn R̂. As we noted

in the proof of Lemma 4.10, the unitary Z is the canonical implementation of AdW �.

Thus we are done. r

Corollary 4.14. The commutant N̂ 0 of the dual N̂ is generated by Z ��M̂ 0 nC�Z

and C nM
0. Indeed, it is the s-strong* closure of the linear span of the set

fZ ��zn 1�Z�1n b� : b A M
0
; z A M̂

0g:

Proof. The assertion easily follows from a combination of Corollary 4.12 and

Proposition 4.13. r

In what follows, we set S12
34 :� S13S24. In other words, S12

34 is the unitary on Hn

HnHnH given by S12
34�xn h� � hn x for x; h A HnH.

Theorem 4.15. With the unitary V de®ned in Section 2, we have

�ĴN n ĴN�S12
34VS12

34�ĴN n ĴN� � WN
:

Therefore, V is the adjoint of the Kac-Takesaki operator W�D�W� 0�d of the commutant of

the dual quasi Woronowicz algebra.

Proof. We employ the notation introduced in Section 2. By Proposition 4.13, we

have

S12
34�ĴN n ĴN�V�ĴNn ĴN�S12

34 � S12
34�Ĵn Jn Ĵn J�Z12Z34VZ

�
12Z

�
34�Ĵn Jn Ĵn J�S12

34 :

By the remark following [BS, Proposition 8.10], one has Z12Z34VZ
�
12Z

�
34 �

Z12Y24Z
�
12X13. Thus we obtain

S12
34�ĴN n ĴN�V�ĴN n ĴN�S12

34

� S12
34�Ĵn Jn Ĵn J�Z12Y24Z

�
12X13�Ĵn Jn Ĵn J�S12

34

� �Ĵn Jn Ĵn J�Z34�S
12
34Y24S

12
34�Z

�
34�S

12
34X13S

12
34��Ĵn Jn Ĵn J�:

Since �Ĵn J�Z � Z ��Ĵn J�, we have

�Ĵn Jn Ĵn J�Z34 � Z �
34�Ĵn Jn Ĵn J�:

Moreover, since

X � �Ĵn Ĵ�SW �S�Ĵn Ĵ�;

Y � �Jn J�W ��Jn J�;

we ®nd that
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S
12
34X13S

12
34 � �Ĵn 1n Ĵn 1�W13�Ĵn 1n Ĵn 1�;

S
12
34Y24S

12
34 � �1n Jn 1n J�Ŵ24�1n Jn 1n J�:

From these identities, it follows that

�Ĵn Jn Ĵn J�Z34�S
12
34Y24S

12
34�Z

�
34�S

12
34X13S

12
34��Ĵn Jn Ĵn J�

� Z �
34Ŵ24Z34W13 � WN

:

The last part of this theorem results from Proposition 4.13. r

As a direct consequence of Theorem 4.15, we immediately obtain the proposition

that follows. It is merely a rephrase of a part of Proposition 8.14 and Proposition 8.19

in [BS ].

Proposition 4.16. (1) For any z A M̂
0 and b A M

0, put p�z� :� Z ��zn 1�Z,

p
0�b� :� 1n b. Then p : M̂

0 ! N̂
0 and p

0
: M

0 ! N̂
0 are Hopf-von Neumann algebra

morphisms, i.e., we have

�pn p� � d̂ 0�z� � �cdN� 0 � p�z�;

�p 0 n p
0� � d 0�b� � �cdN� 0 � p 0�b�:

(2) Set R :� Z �
12X14Z12. Then R is a unitary in N̂

0. One also has

�idn �cdN� 0��R� � R13R12; ��cdN� 0 n id��R� � R13R23:

For any x A N̂
0, we have s � �cdN� 0�x� � R�cdN� 0�x�R�. Moreover, it satis®es the

quantum Yang-Baxter equation: R12R13R23 � R23R13R12.

We now summarize the quasi Woronowicz algebraic structure of D�W�d . The Kac-

Takesaki operator dWN of D�W�d is, by de®nition, S12
34�W

N��S12
34 . From Theorem 4.11,

it follows that

dWN � Ŵ13Z
�
12W24Z12:�QD1�

We denote the modular operator and the modular conjugation of D�W� on HnH by

DN and JN, respectively. Since the Haar measure of D�W� is hn ĥ � R̂ and we need to

represent everything on HnH, we have (cf. Corollary 4.4)

DN � Dn JD̂J; JN � Jn Ĵ:

The antipode dRN of D�W�d is then given by

dRN�X� � JNX �JN; �X A N̂�:�QD2�

By the de®nition of t
N

t , it is easy to see that the canonical implementation of t
N

t on

HnH is H it nH it. Set HN :� HnH. By [MN, Proposition 3.6], the deformation
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automorphism fctNt g of the dual D�W�d is given by

ctNt � AdH it
N

� Ad �H it nH it�:�QD3�

Let D̂N stand for the modular operator of D�W�d on HnH. From [MN, Lemma

2.14] and Theorem 3.3, it follows that D̂N is nothing but HN � HnH. Thus one

has s
bhN
t � ctNt . The modular conjugation ĴN of D�W�d has already been given in

Proposition 4.13. We denote by Q̂N the analytic generator of the Radon Nikodym

derivative �D�chN � dRN� : DchN�t, which is a one-parameter unitary group. Namely,

�D�chN� dRN� :DchN�t�Q̂ it
N
. By [MN, Lemma 2.14] again, we have D it

N
� ĴNQ̂ÿit

N
ĴNH it

N
.

Hence we obtain

Q̂ it
N

� Z ��ĴDÿitĴH it n D̂ itH it�Z:�QD4�

We de®ne two homomorphisms a : M ! N̂ and b : M̂ ! N̂ by

a�a� :� Z ��1n a�Z; b�y� :� yn 1 �a A M; y A M̂�:

By virtue of Corollary 4.12, N̂ is the s-strong� closure of the linear span of elements of

the form b�y�a�a� �a A M; y A M̂�. Recall that the unitary Z is the canonical imple-

mentation of the inner automorphism AdW � of N. So Z commutes with JN. From

this, one easily ®nds that both a and b ``commute'' with the antipode R̂N, i.e.,

dRN � a � a � R; dRN � b � b � R̂:�QD5�

By [MN, Corollary 3.6.1], HN commutes with W. We also have �HN; un u� � 0,

where u � JĴ. Consequently, Z commutes with HN. It is now plain to see that

ctNt � a � a � tt; ctNt � b � b � t̂t:�QD6�

With the notation in Proposition 4.16, it can be veri®ed that

a�a� � ĴNp 0�JaJ�ĴN; b�y� � ĴNp�Ĵ yĴ�ĴN:

From this and the de®nition of the coproduct �cdN� 0, it follows that

�an a� � d � c
dN � a; �bn b� � d̂ � c

dN � b:�QD7�

Therefore we have shown that the maps a : M ! N̂ and b : M̂ ! N̂ de®ned above are

coinvolutive Hopf-von Neumann algebra morphisms.

Finally, we examine the dual Haar measure chN. As before, we denote the Fourier

representation of D�W� by p̂N. Let Y, F be in N� which are L2�hN�-bounded. We

use the notation ĥN�Y� etc., instead of ĥ�Y�, for the corresponding L2-vector in HnH.

Then, by de®nition, one has

chN�p̂N�Y��p̂N�F�� � �ĥ
N
�F� j ĥ

N
�Y��:�HM1�

If Y and F are of the form Y � yno, F � fnc for some y; f;o;c A B�H��, then, as
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shown in the proof of Corollary 4.12, we have

p̂N�Y� � b�p̂�y��a�^̂p�o��; p̂N�F� � b�p̂�f��a� ^̂p�c��:

Moreover, if y; f are L2�h�-bounded and if o;c are L2�ĥ � R̂�-bounded, then yno and

fnc are certainly L2�hN�-bounded, and we easily ®nd that

ĥ
N
�Y� � ĥ�y�n ĥ

ĥ � R̂�o�; ĥ
N
�F� � ĥ�f�n ĥ

ĥ � R̂�c�;

where ĥ
ĥ � R̂�o� stands for the vector in H corresponding to the L2�ĥ � R̂�-bounded

element o. Under these circumstances, (HM1) can be written as

chN�a�^̂p�o���b�p̂�y��p̂�f��a�^̂p�c��� � �ĥ�f� j ĥ�y���ĥ
ĥ � R̂�c� j ĥĥ � R̂�o��:

In the meantime, we have

�ĥ�f� j ĥ�y�� � ĥ�p̂�y��p̂�f��; �ĥ
ĥ � R̂�c�jĥĥ � R̂�o�� � h 0�p̂

ĥ � R̂�o�
�
p̂
ĥ � R̂�c��;

where h 0 is the Haar measure for the commutant W
0 of W , and p̂

ĥ � R̂ is the Fourier

representation of �Ŵ��. (Remark that the dual of �Ŵ�� is W
0). Therefore, we get

chN�a�^̂p�o���b�p̂�y��p̂�f��a� ^̂p�c��� � h 0�p̂
ĥ � R̂�o�

�
p̂
ĥ � R̂�c��ĥ�p̂�y�

�
p̂�f��:�HM2�

In some sense, this identity characterizes the Haar measure chN as we see in the next

proposition.

Remark. In the above discussion, if o and c are, in addition, analytic with respect

to the deformation automorphism t̂, then one can easily verify that, for example,

p̂
ĥ � R̂�o� � J ^̂p�o � t̂ÿi=2�

�
J � Jti=2�^̂p�o��

�
J:

Thus we have

chN�a� ^̂p�o���b�p̂�y��p̂�f��a� ^̂p�c��� � h�ti=2�^̂p�c��ti=2�^̂p�o��
��ĥ�p̂�y��p̂�f��:

Proposition 4.17. If the original quasi Woronowicz algebra W is compact, then

there exists a unique faithful normal conditional expectation E from N̂ onto b�M̂� such

that

chN � ĥ � bÿ1 � E:

Proof. If W is compact, then Q � 1. From [MN, Lemma 2.14], it then fol-

lows that s ĥ � t̂. Since shNb� ctN, it results from (QD6) that shNb�b � b � s ĥ. This

implies that, identifying b�M̂� with M̂, the modular automorpshim shNb leaves M̂

globally invariant and that its restriction to M̂ equals s ĥ. Moreover, from (HM2), we

®nd that the restriction of chN to b�M̂� � M̂ is semi®nite. Therefore, by [H2] and [T ],

there exists a unique faithful normal conditional expectation E from N̂ onto b�M̂� with

the desired property. r
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